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Abbreviations

CERs cerebrosides

CK creatine phosphokinase

CPRO cold pressed rosemary (Rosmarinus officinalis) oil

DG diacylglycerol

DGDs digalactosyldiglycerides

DM diabetes mellitus

DPPH% 2,2-diphenyl-1-picrylhydrazyl

ESGs esterified sterylglycosides

FBG fasting blood glucose

FFA free fatty acid

GC-FID gas chromatography-flame ionization detector

HDL-C high dentistry lipoprotein-cholesterol

HPLC high-performance liquid chromatography

LDL-C low dentistry lipoprotein-cholesterol

MG monoacylglycerol

MGDs monogalactosyldiglycerides

MIC minimum inhibitory concentration

REO rosemary essential oil

RSA radical scavenging activity

SCF supercritical fluid

SFA saturated fatty acid

SQD sulphoquinovosyldiacylglycerol

STEs esterified sterols

STZ streptozotocin

T1DM DM type 1

T2DM DM type 2

TAG triacylglycerol

TC total cholesterol

TGs total triacylglycerols

TLs total lipids
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TPCs total phenolic compounds

VLDL-C very low dentistry lipoprotein-cholesterol

WHO World Health Organization

1 Introduction

Medicinal and aromatic plants are rich in bioactive phytochemicals, which are used in nutraceuticals, functional foods, and

pharmaceuticals with biological properties to promote health (Al-Kalaldeh, Abu-Dahab, & Afifi, 2010; Albano & Miguel,

2011; Elbanna et al., 2014; El-Hadary & Ramadan, 2019; Ramadan, Amer, & Awad, 2008; Ramadan & Elsanhoty, 2012;

Ramadan, Sharanabasappa, Seetharam, Seshagiri, & Moersel, 2006). Rosemary (Rosmarinus officinalis, family

Lamiaceae) is a perennial herb and native Mediterranean shrub (El-Naggara, Abdel-Farid, Germoush, Elgebaly, &

Alm-Eldeen, 2016; Elbanna et al., 2018). Andrade et al. (2018) showed an interest in R. officinalis, with about 120 studies
every year since 2010. Sadeh et al. (2019) highlighted the impact of production process and the genetic variation on

R. officinalis oil composition. They reflected the importance of studying the impact of genetic and environmental factors

and processing on oil composition for industrial breeding and oil production. Sarmoum et al. (2019) investigated the impact

of water stresses and salinity on the constituents of R. officinalis essential oil (REO). R. officinalis plants were subjected to
tap water, salt water, and without irrigation. Nonirrigated plants contained the highest oil yield. Differences in the oil con-

stituents were highlighted in relation to water stress.

R. officinalis extracts and REO are in edible applications as preservatives and for treating some diseases (Elbanna et al.,

2018; Olmedo, Nepote, & Grosso, 2013; Wollinger et al., 2016). R. officinalis extracts are natural sources of antioxidants
(Commission Regulation (EU) no. 1130/2011, 2011; Ojeda-Sana, Baren, Elechosa, Juárez, & Moreno, 2013; Yang et al.,

2016), wherein the antioxidant potential has been attributed to phenolic diterpenes (Gallego, Gordon, Segovia, Skowyra, &

Almajano, 2013). Bioactive constituents of REO are 1,8-cineole, camphor, carnosic acid, and rosmarinic acid (Borges,

Ortiz, Pereira, Keita, & Carvalho, 2019; Terpinc, Bezjak, & Abramovic, 2009). REO exhibited antibacterial (Ojeda-

Sana et al., 2013), antifungal (Soylu, Kurt, & Soylu, 2010), and hepatoprotective (Amin & Hamza, 2005) properties. R.
officinalis extracts showed hepatoprotective effects against hepatotoxic agents such as t-BHP ( Joyeux, Roland,

Fleurentin, Mortier, & Dorfman, 1990), CCl4 (Fahim, Esmat, Fadel, & Hassan, 1999), and cyclophosphamide (Fahim

et al., 1999). In addition, R. officinalis showed a protective impact against Azathioprine-induced liver damage in animals

and blocked serum high levels of alanine aminotransferase and aspartate aminotransferase (Amin & Hamza, 2005).

Extract from R. officinalis leaves mitigated cyclophosphamide-induced (El-Naggara et al., 2016) and creosote-induced

(El-Demerdash, Abbady, & Baghdadi, 2016) hepatotoxicity in rats. R. officinalis oleoresin was used to develop stabile

vegetable oil blends used for frying (Upadhyay, Sehwag, & Mishra, 2017; Yang et al., 2016).

Crude extracted oils are rich sources of bioactive compounds, such as phenolics, tocols, phytosterols, and fatty acids

with health-promoting and functional properties (Assiri, Elbanna, Abulreesh, & Ramadan, 2016; Kiralan et al., 2017;

Ramadan, Asker, & Tadros, 2012). Current interest in environmentally friendly technologies has resulted in a huge inter-

national market of natural products (Ibrahim, Attia, Maklad, Ahmed, & Ramadan, 2017). Cold pressing is popular due to

the high levels of bioactives in the recovered oil. Cold pressing is an environmentally safe and simple technique that

requires no chemical or thermal treatments (Assiri, Elbanna, Al-Thubiani, & Ramadan, 2016; El-Hadary & Ramadan,

2016a; Ramadan, 2013). Some cold pressed oils showed a protective impact against CCl4-induced hepatotoxicity in rats

(El-Hadary & Ramadan, 2016a, 2016b).

This chapter reviews the lipids profile, phenolics content, and antioxidant, antimicrobial, antidiabetic, and hepatopro-

tective properties of cold pressed rosemary (R. officinalis) oil (CPRO).

2 Extraction and processing of cold pressed R. officinalis oil

Ali, Chua, and Chow (2019) reviewed the history, chemical profile, and analysis of R. officinalis extraction technologies.

The execution of extraction methods is endless because they stretch from conventional (maceration, Soxhlet, microwave

distillation) to developed technologies (supercritical fluid extraction, ultrasound-assisted, pressurized liquid). Carnosol,

carnosic acid, and rosmarinic acid, the major markers of bioassays with the highest activities in drugs, were the main

compounds investigated. To produce fractions rich in those bioactive compounds, pressurized liquid and SCF extraction

followed by supercritical antisolvent fractionation are among the most tested methods. With the development of novel

techniques, extracting plant bioactive phytochemicals according to the desired applications is possible. The major bioactive
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compounds in the R. officinalis volatiles are 1a-pinene, 8-cineole, and camphor, while bioactive compounds in the non-

volatile extract are carnosol, carnosic acid, and rosmarinic acid.

3 Acyl lipids and fatty acid profile of cold pressed R. officinalis oil

3.1 Lipid classes

Neutral lipids (NL), phospholipids (PL), and glycolipids (GL) represent the main lipid classes in the most of crude veg-

etable oils. The proportions of lipid classes in CPRO are shown in Table 1 (Elbanna et al., 2018). In the CPRO, NL fraction

was the highest, followed by PL and GL. Triacylglycerol (TAG), diacylglycerol (DG), free fatty acids (FFAs), monoacyl-

glycerol (MG), and esterified sterols (STEs) were the main NL classes. Classes of GL were sterylglycosides (SGs), sul-

phoquinovosyldiacylglycerol (SQD), digalactosyldiglycerides (DGDs), monogalactosyldiglycerides (MGDs),

cerebrosides (CERs), and esterified sterylglycosides (ESGs). The main PL subclasses were phosphatidylcholine, followed

by phosphatidylethanolamine. Polar lipids (GL and PL) in crude vegetable oils exhibited antiradical and antioxidant traits

(Ramadan, 2008, 2012; Ramadan and Asker, 2009).

3.2 Fatty acids

Fatty acid profiles of the R. officinalis total lipids (TL) and lipid classes in CPRO are given in Table 2 (Elbanna et al., 2018).

Lipid classes have a similar fatty acid composition, whereas linoleic (C18:2) and oleic (C18:1) acids were the major acids.

Palmitic (C16:0) and stearic (C18:0) acids were the major identified saturated fatty acids (SFAs). The amounts of poly-

unsaturated fatty acids (PUFAs), monounsaturated fatty acids (MUFAs), and SFAs were 42.30%, 41.70%, and 15.80%,

respectively. The U/S ratio of CPRO was 5.3, and CPRO might be included into oleic/linoleic oils group. The CPRO fatty

acids profile was similar to that of pumpkin, sunflower, and maize oils (Tuberoso, Kowalczyk, Sarritzu, & Cabras, 2007).

MUFA levels were comparable to cranberry, blueberry, hemp, and onion cold pressed oils (Parker, Adams, Zhou, Harris, &

Yu, 2003; Parry et al., 2006). High levels of PUFAs and MUFAs make CPRO a valuable oil in human nutrition (Elbanna

et al., 2018).

4 Minor bioactive lipids in cold pressed R. officinalis oil

Tocols are inhibitors of free radical chain reactions and delay lipids oxidation (Hassanien et al., 2014Parry et al., 2006).

CPRO contained high amounts (25g/kg oil) of unsaponifiables. a-, b-, g-, and d-tocopherols in CPRO accounted for 291,

22, 1145, and 41mg/100g CPRO, respectively. Levels of a-, b-, g-, and d-tocotrienols accounted for 18, 12, 29, and 158mg/

100g CPRO, respectively (Elbanna et al., 2018). The major tocopherol homologue was g-tocopherol (more than 66% of

the tocols), followed by d-tocopherol. According to the levels of tocochromanols (Hassanien et al., 2014), oils could be

divided to oils with high a-tocopherol amounts (sunflower, almond, olive oil, hazelnut, and wheat germ) and oils with high

g-tocopherol amounts (pumpkin, black cumin, flaxseed, poppy, apricot kernel, and sesame). The most efficient antioxidant

TABLE 1 Neutral lipids (NL), glycolipids (GL), and phospholipids (PL) classes (g/kg total lipids) of CPRO.

NL class Total lipids (g/kg) GL class Total lipids (g/kg) PL class Total lipids (g/kg)

MG 2.55 SQD 0.70 PS 1.20

DG 7.59 DGD 0.55 PI 2.10

FFAs 10.9 CER 3.26 PC 3.44

TG 833 SG 2.45 PE 2.50

STEs 6.88 MGD 0.33

ESG 1.55

MAGs, monoacylglycerols; DAGs, diacylglycerols; TAGs, triacylglycerols; FFAs, free fatty acids; STEs, sterol esters; SQD, sulphoquinovosyldiacylglycerol;
DGD, digalactosyldiacylglycerol; CERs, cerebrosides; SG, steryl glucoside; MGD, monogalactosyldiacylglycerol; ESG, esterified steryl glucoside; PS,
phosphatidylserine; PI, phosphatidylinositol; PC, phosphatidylcholine; PE, phosphatidylethanolamine.
(Adapted from Elbanna, K., Assiri, A. M. A., Tadros, M., Khider, M., Assaeedi, A., Mohdaly, A. A. A., & Ramadan, M. F. (2018). Rosemary (Rosmarinus officinalis)
oil: Composition and functionality of the cold-pressed extract. Journal of Food Measurement and Characterization, 12, 1601–1609.)
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of tocols is a-tocopherol, while g-tocopherol has 35% of the antioxidant impact of g-tocopherol (Ramadan, 2013).

The amounts of tocochromanols in CPRO suggest that it might effectively resist oxidation in vivo and in vitro.

5 Health-promoting properties of cold pressed R. officinalis oil and oil constituents

5.1 Antioxidant activity

Radical scavenging activity (RSA) of CPRO and extra virgin olive oil (EVOO) was evaluated against galvinoxyl and

DPPH� free radicals (Elbanna et al., 2018). CPRO exhibited more RSA than EVOO (Fig. 1). After 60min of incubation

with DPPH� free radicals, 67% of free radicals were quenched by CPRO. In the course of 60min, CPRO quenched 55% of

galvinoxyl free radicals. CPRO contained higher total phenolics (7.2mg GAE/g) than EVOO (3.6mg GAE/g). The same

study (Elbanna et al., 2018) reported that the induction period (IP) of CPRO and sunflower oil blend (1:9, v/v) was 390min,

while the IP of CPRO blended with sunflower oil (2:8, v/v) was 540min. The antioxidant effect of CPRO was likely to be

due to the high amounts of tocochromanols and phenolic compounds in the cold pressed oil.

5.2 Antimicrobial activity

Nowadays, there is an interest in use of natural preservatives in the production of foodstuffs. Rosemary extracts showed

biological activities such as insecticide, antioxidant, hepatoprotective, antifungal, and antibacterial. The antimicrobial

activity (AA) of CPRO was tested against dermatophyte fungi (Trichophyton mentagrophytes, and Trichophyton rubrum),

and food pathogens (Salmonella enteritidis, Listeria monocytogenes, and Escherichia coli). CPRO exhibited a broad AA

spectrum (Table 3) against food-borne pathogens and dermatophyte fungi (Elbanna et al., 2018). The inhibition effect of

CPRO against selected microorganisms is shown in Fig. 2. AA, measured as a clear zone diameter (CZD), was 29mm,

17mm, and 14mm for E. coli, S. enteritidis, and L. monocytogenes, respectively. CPRO had activity against the pathogenic

microorganisms with minimum inhibitory concentration (MIC) ranging from 160 to 320mg/mL. CPRO exhibited a high

AA compared to different antibiotics (Chloramphenicol, Flucoral, Augmentin, and Mycosat) as given in Table 3. On the

other hand, CPRO did not inhibit Staphylococcus aureus growth. Dermatophytic fungi such as T. rubrum are anthropophilic

TABLE 2 Fatty acid profile of CPRO and lipid classes.

CPRO NL GL PL

C 10:0 0.07 0.07 0.06 0.07

C 12:0 0.04 0.03 0.02 0.02

C 14:0 0.09 0.05 0.03 0.03

C 16:0 9.10 8.95 8.40 8.90

C 16:1 0.54 0.53 0.55 0.54

C 18:0 6.55 6.41 5.50 5.96

C 18:1n-9 41.0 41.1 41.6 41.2

C 18:2n-6 41.1 41.4 41.9 41.7

C 20:1 0.25 0.26 0.38 0.28

C 18:3 1.21 1.20 1.50 1.30

SSFA 15.85 15.51 14.01 14.98

SMUFA 41.79 41.89 42.59 42.02

SPUFA 42.36 42.60 43.40 43.00

U/S 5.30 5.44 6.09 5.67

n-6/n-3 34.01 34.50 27.93 32.08

(Adapted from Elbanna, K., Assiri, A. M. A., Tadros, M., Khider, M., Assaeedi, A., Mohdaly, A. A. A., & Ramadan, M. F. (2018). Rosemary (Rosmarinus officinalis)
oil: Composition and functionality of the cold-pressed extract. Journal of Food Measurement and Characterization, 12, 1601–1609.)
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and cause acute inflammatory tinea corporis, which is dermatophytosis of the arms and legs (Burmester et al., 2011).

CPRO inhibited T. mentagrophytes and T. rubrum with CZDs of 25mm and 23mm, respectively, while the MLC for

both fungi was 160mg/mL. It was worth noting that the AA of CPRO against tested microorganisms kept the same

CZD for long time (more than 10days). The AA of CPRO might be due to the presence of tococls and phenolics in

CPRO (Elbanna et al., 2018). The proposed mode of action of CPRO is that the cell walls and membranes of the pathogen

microorganisms were damaged with the loss of cytoplasmic materials. A similar observation was reported by Carson, Mee,

& Riley (2002), who showed the electron micrographs captured for the cell wall and membrane of S. aureusMRSA by the

cold Valencia orange. Cell walls were damaged with the loss of cytoplasmic materials.

Burt (2004) and Sirocchi et al. (2013) found that the rosemary oil exhibited potential AA against both Gram-negative

and Gram-positive bacteria including Bacillus cereus, S. aureus, Clostridium perfringens, E. coli, Aeromonas hydrophila,
and Salmonella choleraesuis. Fung, Taylor, and Kahan (1977) mentioned that the inhibitory effect of the rosemary essential

oil refers to the action of carnosic acid, rosmanol, carnosol, epirosmanol, rosmarinic acid, rosmaridiphenol, and isoros-

manol on the cell membrane, causing changes in nutrients and genetic material and nutrients, leakage of cellular compo-

nents, altering the transport of electrons, and changing the fatty acids. Furthermore, it produces an interaction with the

membrane of proteins that causes the loss of membrane structure and functionality. Khezri, Farahpour, and Mounesi

Rad (2019) evaluated the efficiency of rosemary essential oil loaded in the nanostructured lipid carrier (REO-NLC) on

in vitro AA and in vivo infected wound healing in experimental animals. REO-NLC showed AA against E. coli, Staph-
ylococcus epidermidis, S. aureus, L. monocytogenes, and Psudomonas aeruginosa. REO-NLCs reduced the rate of tissue

bacterial colonization and wound size. In a recent study, Risaliti et al. (2019) reported that R. officinalis oil-loaded lipo-

somes and exhibited significant AA, antiinflammatory, and antioxidant activities. These findings might lead to effective

applications of CPRO as a natural antimicrobial agent to control food-borne and food spoilage pathogens.

5.3 Antidiabetic activity

Diabetes mellitus (DM) is the fast-growing chronic disease and one of the main disorders threatening human health (Assiri,

El-Beeh, Amin, & Ramadan et al., 2017; Esteves et al., 2008; Hebi, Farid, Ajebli, & Eddouks, 2017; Wang et al., 2018).

The WHO reported that DM patients by 2025 will reach 300 million ( Jeszka-Skowron et al., 2014; Rahimi-Madiseh,

Heidarian, Kheiri, & Rafieian-Kopaei, 2017; Sarfraz, Khaliq, Khan, & Aslam, 2017). DM is classified as type 1

(T1DM) and type 2 (T2DM), with T2DM accounting for about 95% of cases (Taslimi et al., 2018). Pathogenesis of

T2DM involved resistance to insulin activities, an abnormality in glucose, and inadequate insulin secretion from b-cells
(Achenbach, Bonifacio, Koczwara, & Ziegler, 2005; Goldstein, 2007).

El-Beeh et al. (2019) studied the ameliorative effect of CPRO against liver injury and genotoxic impacts in streptozo-

tocin (STZ)-induced diabetic rats and offspring. Treatment with CPRO reduced the harmful impact of diabetes on the

weight loss and caused an increase in the animal’s body weight except of the animals in the control group. According

to Wang et al. (2018), body weight reduction is one of the major markers of diabetic. On the other hand, CPRO supple-

mentation decreased the impact of diabetes on the liver weight.

FIG. 1 Antiradical impact after 60min of incubation for CPRO and EVOO on DPPH� and galvinoxyl free radicals. (Adapted from Elbanna, K., Assiri, A.
M. A., Tadros, M., Khider, M., Assaeedi, A., Mohdaly, A. A. A., & Ramadan, M. F. (2018). Rosemary (Rosmarinus officinalis) oil: Composition and func-

tionality of the cold-pressed extract. Journal of Food Measurement and Characterization, 12, 1601–1609.)
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Liver histological graphs of maternal and offspring are shown in Fig. 3. DM rats showed degeneration of hepatic cells,

congestion of blood vessels with an edematous central vein, as well as fatty degeneration. In addition, livers of offspring

from DM animals showed degeneration of hepatic cords and vascularization of blood vessels, while DM animals treated

with CPRO showed good recovery of histological characteristics (El-Beeh et al., 2019).

The serum biochemical parameters are given in Table 4. Group D contained high TC, TG, LDL-C, FBG, and CK as well

as lowHDL-C levels. Supplementation with CPRO reduced TC, TG, LDL-C, FBG, and CK levels. FBG reached the highest

value (630mg/dL) in DM animals, while supplementation with CPRO decreased the serum FBG. Table 5 represents the

biochemical parameters of antioxidant enzymes, liver function, lipid oxidation, tumor markers, and free radicals of DM

animals and offspring. DM increased alanine and aspartate transaminase. Liver bilirubin and albumen contents, as well

as the activities of a-L-fucosidases and arginase, increased in DM animals. Antioxidant enzymes (i.e., superoxide dis-

mutase, catalase, glutathione S-transferase, peroxidase, and reductase) showed a reduction in DM mothers and offspring.

Fig. 4 shows photomicrographs from Comet assay for the livers. DM animals and offspring showed increased stretching of

apoptotic cells, while in the CPRO-treated group, normal cell content was shown. DNA fragments were detected in the

livers of DM animals and offspring, but there was some amelioration upon CPRO supplementation (El-Beeh et al., 2019).

Tocols are in vivo lipid radical scavengers and play a key role in the maintenance of cell membrane integrity

(Gugliandolo, Bramanti, & Mazzon, 2017). Tocols maintain the membrane structure, limit lipid oxidation, and prevent

inflammation in the neuroglia and hippocampal neurons (Galli et al., 2017). CPRO contained high levels of tocols and

phenolics, which have unique antioxidative effects and play a role as antioxidant agents in treating DM and cardiovascular

diseases (El-Beeh et al., 2019; Wang et al., 2018).

5.4 Hepatoprotective activity

El-Hadary, Elsanhoty, and Ramadan (2019) studied the hepatoprotective impact of CPRO against carbon tetrachloride

(CCl4)-induced toxicity in rats. Using concentrations of CPRO (100, 200, and 400mg/kg, p.o.), only 400mg/kg decreased

the body weight. Based on a 24-h toxicity investigation, the LD50 of CPRO was 5780mg/kg. The defensive aptitude of

T. mantigrophytes Escherichia coli

Listeria monocytogenesSalmonella enteritidis

FIG. 2 Antimicrobial effect of CPRO against food-

borne pathogens and dermatophyte fungi (Elbanna

et al., 2018).
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CPRO was validated by determining serum ALT, AST, and ALP. Serum markers levels were reduced upon CPRO sup-

plementation at low dose. In addition, CPRO attenuated the increased levels of AST, ALT, and ALP enzymes, and caused a

recovery toward normalization. Table 6 represents the CPRO impact on the protein profiles (albumin (A), globulin (G), A/G

ratio, and total protein) of CCl4-adminstrated animals. The impact of CPRO on the kidney function markers is also shown in

Table 6. CCl4 resulted in an increase in creatinine, urea, and uric acid levels, while CPRO administration decreased urea,

creatinine, and uric acid amounts (El-Hadary et al., 2019). CPRO administration prevented the harmful impacts of CCl4,

indicating that CPRO might attenuate lipid per-oxidation resulted from CCl4. Bioactive phytoconstituents might be the

cause of CPRO protective potential. The mechanism of CPRO hepatoprotection might be due to its antioxidant activities.

CPRO is rich in essential fatty acids. MUFAs were reported to reduce “bad” LDL-C and retain “good” HDL-C. CPRO also

FIG. 3 Photomicrographs of transverse histological sections of maternal and offspring liver (sections stained with hematoxylin and eosin H&E�400)

(El-Beeh, Aljabri, Orabi, Qari, Ramadan, 2019). (A) Control group showing a normal arrangement of hepatic cells in cords around the central vein. (B)

CPRO-treated group showing a normal arrangement of hepatocytes. (C) Experimental diabetic group (group D) showing degeneration of hepatic cells. (D)

Experimental D-CPRO group. (E) Control pups liver showing normal hepatocytes. (F) Liver of pups maternally CPRO-treated group showing a normal

arrangement of hepatocytes. (G) Liver of offspring group (D) showing degeneration of hepatic cells. (H) Liver of offspring of diabetic mothers treated with

CPRO (D-CPRO) showing some degree of recovery.

TABLE 4 Biochemical profiles in the serum of nondiabetic and diabetic animals treated with CPRO (El-Beeh et al., 2019).

FBG

(mg/dL)

LDL-C

(mg/dL)

HDL-C

(mg/dL)

TG

(mg/dL)

TC

(mg/dL)

CK

(U/L)

Control pregnant (C) 238 52 41 33 30 87

CPRO-treated group (CPRO) 245 57 40 32 34 88

Diabetic group (D) 630 110 39.2 52 45 348

Combined diabetic and CPRO-treated
group (D-CPRO)

367 65 57.3 47 42 153
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TABLE 5 Antioxidant markers and enzymes levels in the livers of mothers and offspring in nondiabetic and diabetic rats

treated with CPRO (El-Beeh et al., 2019).

Mother Offspring

C CPRO D D-CPRO C CPRO D D-CPRO

MDA (nmol/g tissue) 10.47 10.27 19.24 12.37 11.37 10.37 22.4 12.87

H2O2 (mmol/g tissue) 166.09 156.19 380.03 199.65 164.0 154.0 231.6 195.6

SOD (U/g tissue) 19.25 19.2 10.48 17.37 25.35 25.35 12.88 15.3

CAT (U/g tissue) 362.08 362.01 323.20 330.24 379.1 379.7 333.87 360.86

GSH (mg/g tissue) 1.85 1.82 0.58 0.99 2.91 2.99 1.60 2.68

GST (U/g tissue) 87.51 86.51 144.8 113.6 81.99 80.09 368.33 220.93

GSPase (U/g tissue) 41.05 42.05 25.29 32.57 45.1 45.91 24.9 25.7

ALT (U/mL) 1.25 1.24 2.11 1.11 1.05 1.14 2.01 1.01

AST (U/mL) 29.7 30.5 45.85 33.99 28.79 31.5 44.85 35.99

Albumin (mg/dL) 12.43 13.3 23.56 15.29 13.43 13.9 25.56 14.29

Bilirubin (mg/dL) 1.02 1.05 1.4 1.31 1.52 1.55 1.04 1.30

Arginase (U/L) 4.08 4.0 50.6 10.75 4.8 3.9 45.6 10.75

a-L-fucosidase (U/L) 21.81 20.5 45.09 25.5 22.8 22.5 46.19 25.9

MDA, malondialdhyde concentration; H2O2, hydrogen peroxide; SOD, superoxide dismutase activity; CAT, catalase activity; GSH, glutathione reduced
concentration; GST, glutathione-S-transferase activity; GSPase, glutathione peroxidase activity; ALT, alanine transaminase; AST, asparate transaminase.

FIG. 4 Photomicrograph of Comet cells of the mothers and their offspring liver of rats treated with CPRO (El-Beeh et al., 2019). (A) Control group

showing a normal structure of the liver cells. (B) RO-treated rats showing a normal structure of the liver. (C) Experimental diabetic group (D) showing

increased stretching of apoptic cells. (D) Experimental D-CPRO group showing some amelioration. (E) Control offspring group showing a normal

structure of the liver cells. (F) CPRO-maternally treated offspring group showing a normal structure of the liver. (G) Experimental maternally diabetic

offspring (D) showing increased stretching of apoptic cells. (H) Experimental D-CPRO treated offspring group showing amelioration traits.
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contains high amounts of unsaponifiables (tocols, sterols, and phenolics). Healthy oils rich in phenolic compounds play an

important role in preventing several diseases (Ramadan, 2013; Ramadan, Kinni, Seshagiri, & M€orsel, 2010).

6 Edible and nonedible applications of cold pressed R. officinalis oil

CPRO is a promising healthy oil rich in phytonutrients (i.e., PUFAs, MUFAs, tocols, and phenolic compounds), and

exhibits unique antiradical, antioxidant, and antimicrobial traits. CPRO could be used in novel pharmaceutical, cosmetic,

and edible applications. Recently, Mahgoub et al. (2019) studied the effects of CPRO on growth performance, biostimu-

lating health, and intestinal bacterial populations in Japanese quail. The addition of CPRO increased the body weight and

the body weight gain of birds. CPRO administration showed an increase in metabolic hormones levels and serum total

protein, while it reduced serum TC, LDL-C, 8-hydroxy-20-deoxyguanosine, and protein carbonyl levels. In addition, CPRO
increased antioxidant enzymes and reduced lipids oxidation in quail liver. Supplementation with CPRO also reduced the

populations of total cultural bacterial count, E. coli, coliforms, and Salmonella spp.
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