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Abstract
The ecological fitness of soil- and root-associated bacterial communities is a key 
element for soil fertility and plant health as well as plant stress tolerance. Genetic 
variability in bacterial populations is maintained through mutation and gene 
acquisition. Horizontal gene transfer (HGT) is accomplished by conjugation, 
transformation, and transduction both in  vitro and under natural conditions. 
Mobile genetic elements (MGEs) play a significant role in gene dissemination in 
bacterial communities and increase their adaptability, survival, and ability to 
colonize different environmental niches. In this context, bacterial conjugative 
plasmids encoding resistance genes, degradative genes, and tolerance to stress 
conditions are of much significance. The biofilm mode of bacterial growth fur-
ther enhances gene exchange and increase the fitness and competitiveness of 
bacteria. Microcosm studies reveal a number of factors influencing the HGT pro-
cess in soil. Considering the importance of HGT, a better understanding of 
genetic processes in the rhizosphere will further help in effective exploitation of 
naturally engineered bacteria for sustainable agriculture.
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6.1  Introduction

Horizontal gene transfer (HGT) refers to the transfer of genetic material between 
prokaryotes. The process occurs in one of three ways: (1) transformation (the uptake 
of free DNA by competent bacteria from the surrounding environment), (2) trans-
duction (gene transfer mediated by bacteriophages), and (3) conjugation (gene 
transfer by means of plasmids or integrative conjugative elements). Conjugation is 
the process by which a DNA molecule (i.e., plasmid or conjugative transposon) is 
transferred from a donor cell to a physically attached recipient cell via some conju-
gation apparatus (Zechner et al. 2000). Although most conjugative plasmids shared 
common mechanistic principles, e.g., synthesis of conjugative pili, there is a remark-
able diversity of conjugative systems in Gram-negative and Gram-positive bacteria, 
depending on the shape and other characteristics of the plasmid-encoded pili. 
Nonconjugative plasmids are transferred to recipient cells by mobilizing/helper 
plasmids (Heuer and Smalla 2007). Transfer of conjugative plasmids or transposons 
has been demonstrated to occur in various ecological habitats, for example, the 
plant surface, rhizosphere, surface water, and human and animal intestines (Aminov 
2011; Madsen et al. 2012; Huddleston 2014; Juhas 2015; Pinto-Carbo et al. 2016; 
Sun et al. 2016). In contrast to conjugation, transduction provides a means of DNA 
acquisition in which nonviral DNA is transferred from an infected host bacterium to 
a new host via infectious or noninfectious virus particles (Meena et  al. 2013a; 
Bahadur et al. 2014; Maurya et al. 2014; Jaiswal et al. 2016; Jha and Subramanian 
2016; Kumar et al. 2016a, b).

Defective phage particles released from lysed host cells attach to new host cells 
and deliver their DNA into the new host. The injected bacterial DNA is subse-
quently integrated into the recipient genome. Unlike conjugation, transduction does 
not require cell-to-cell contact; however, most bacteriophages infect only a narrow 
range of hosts (Wommack and Colwell 2000). Evidence for the importance of trans-
duction as an HGT process in the natural environment arises from studies on the 
abundance of bacteriophages in different settings, primarily soil (Ashelford et al. 
2003) and from bacterial genome sequences (Canchaya et al. 2003). The role of 
bacteriophages in contributing various genes to bacterial genera of medical and 
ecological significance is well documented (Weitz et  al. 2013; Broszat and 
Grohmann 2014; Dalmasso et al. 2014; Chen et al. 2015; Obeng et al. 2016).

Horizontal gene transfer plays an important role in formulating bacterial 
genomes, promoting intra- and interspecies variability and distributing functional 
genetic modules within communities. HGT provides a means for enhanced under-
standing of ecological adaptation and bacterial evolution in the biosphere. Extensive 
gene exchange during bacterial evolution is made evident by the marked similarity 
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of genes among distantly related species, variation of gene content between closely 
related strains, and incongruent phylogenetic trees. Horizontal gene transfer is a 
major force in bacterial evolution; a well-documented example of HGT is the spread 
of antibiotic resistance genes among pathogenic and nonpathogenic bacteria 
(Barlow 2009; Boto 2010; Davies and Davies 2010; Abulreesh 2011, 2012; Baltrus 
2013; Wellington et al. 2013). The driving force for the acquisition of foreign genes 
via HGT is believed to be the need for bacteria to overcome environmental stresses 
for survival and to compete successfully in their ecological niches (Hacker and 
Kaper 2000).

Mobile genetic elements (MGEs) such as plasmids, bacteriophages, integrative 
conjugative elements, transposons, insertion sequences (IS) elements, integrons, 
gene cassettes, and genomic islands are the key vehicles among HGT mechanisms. 
In many species, a high proportion of horizontally transferred genes can be attrib-
uted to plasmid-, phage-, or transposon-related sequences, as remnants of these 
mobile elements have been located adjacent to genes identified as horizontally 
transferred (Ochman et al. 2000; Brussow et al. 2004; Frost et al. 2005; Gyles and 
Boerlin 2013). It has been suggested that MGEs add some metabolic burden to their 
host, and adaptation occurs to minimize this impact (Dahlberg and Chao 2003; 
Heuer et al. 2007). The prevalence of plasmids, however, indicates that they benefit 
bacteria and compensate for any burden they might impose on the cell. Plasmids 
persist because bacterial communities and their environments are continuously 
changing; the variability carried by these genetic elements increases the speed at 
which adapted strains arise, and the adapted strains retain the MGE so they can 
propagate rapidly (Jat et al. 2015; Kumar et al. 2015; Ahmad et al. 2016; Meena 
et al. 2015f, 2016a; Dominguez-Nunez et al. 2016; Dotaniya et al. 2016).

The MGEs that enhance an organism’s adaptability evolve and survive at the 
expense of those that do not. Thus, MGEs confer an improved fitness to the bacterial 
community and its ability to colonize different environmental niches. MGEs addi-
tionally increase the possibility of new strains arising with novel or increased selec-
tive advantages over neighboring communities. Metagenomic approaches have 
revealed a large and untapped diversity of resident MGEs in soil- and plant- 
associated bacteria. Approximately 18% of bacterial isolates from the phytosphere 
of sugar beets was found to contain plasmids (Powell et al. 1993), and a large pro-
portion were able to mobilize non-self-transferable but mobilizable Inc-Q plasmids 
(Kobayashi and Bailey 1994). The extensive presence of plasmid-related sequences 
in soil DNA (directly extracted) indicates a significant abundance of plasmids in soil 
(Heuer et al. 2009). The abundance of transferable plasmids in soil is believed to be 
related to the presence of contaminants (e.g., antibiotics, xenobiotics). Several stud-
ies have indicated that genes encoding the enzymes involved in catabolism of envi-
ronmental pollutants are present on plasmids (Smets and Barkay 2005; Kopmann 
et al. 2013).

Different methods involving various molecular techniques have been employed 
to detect and study soil plasmid structure, organization and function (Heuer and 
Smalla 2012). Moreover, metagenomics methods such as pyrosequencing of soil 
DNA have proved to be highly sensitive and have led to the discovery of novel 
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plasmid sequences (Kristiansson et  al. 2011). Genome sequencing data have 
revealed the modular character of conjugative plasmids, where different modules 
(e.g., a compactly arranged gene) are dedicated toward carrying out specific func-
tions (de la Cueva-Méndez and Pimentel 2007; Norman et al. 2009). The overall 
genetic makeup of conjugative plasmids can be divided into four distinct categories 
of modules: (1) modules affecting plasmid replication and copy control, (2) mod-
ules affecting plasmid stability, (3) modules affecting plasmid propagation, and (4) 
modules affecting plasmid host adaptation, along with numerous other subcatego-
ries (Norman et al. 2009). The first three categories are considered “plasmid core” 
or plasmid “backbone” genes. Sequence analysis of plasmid backbone genes is con-
sidered a consistent and reliable foundation for plasmid classification, as opposed to 
traditionally used methods (Heuer and Smalla 2012). Apart from plasmid backbone 
genes, a highly diverse, accessory, or flexible set of genes within soil plasmids 
occurs as a fourth module which carries genes responsible for environmental adap-
tation. These accessory genes often differ greatly among plasmids with identical 
plasmid backbones and impart the ability to adapt to varied environmental condi-
tions such as exposure to antibiotics, heavy metals, and xenobiotics (Dennis 2005; 
Schluter et al. 2007; Heuer et al. 2009).

Degradative genes resident on MGEs have been isolated successfully from soil 
treated with the herbicide 2, 4-D but not from untreated control soil. Similarly, self- 
transferable plasmids which confer resistance toward antibiotics have been isolated 
from animal manures used for soil fertilization (Heuer and Smalla 2007; van 
Overbeek et  al. 2002). Sequencing of plant-associated bacteria reveal that many 
phytopathogenic and symbiotic bacteria carry plasmids (Zhao et al. 2005; Bardaji 
et al. 2011), pathogenicity islands (Gardiner et al. 2014), or integrons (Gillings et al. 
2005). These studies reveal the significance of horizontal gene transfer in bacterial 
adaptation and evolution under changing environmental conditions (Parewa et al. 
2014; Prakash and Verma 2016; Meena et  al. 2015e, 2016b; Teotia et  al. 2016; 
Bahadur et al. 2016b; Das and Pradhan 2016).

In recent years, the importance of biofilm formation and its relationship to gene 
transfer has received significant attention (Burmolle et al. 2014; Stalder and Top 
2016). It is well recognized that horizontal gene transfer via plasmids occurs more 
effectively on surfaces, e.g., in biofilms than among planktonic cells. Biofilms are 
highly structured bacterial communities embedded in a self-produced matrix com-
posed of exopolysaccharides (EPSs), proteins, and DNA. These films adhere to bio-
logical and non-biological surfaces (Hall-Stoodley et  al. 2004) and provide a 
favorable environment for genetic elements to be transferred horizontally. 
Rhizobacterial biofilms associated with plant roots support bacterial survival and 
host plant colonization, reduce biotic and abiotic plant stress, and enhance agricul-
tural productivity (Lopez et al. 2010; Yadav and Sidhu 2016; Meena et al. 2016d; 
Saha et al. 2016b; Verma et al. 2014, 2015b). All these advantages conferred by 
biofilms are directly or indirectly associated with a high frequency of horizontal 
gene transfer in the biofilm mode of growth. In this chapter, we focus on horizontal 
gene transfer in soil- or plant-associated (rhizosphere) bacteria that contribute to 
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genetic variation in microbial populations and ultimately broaden their range of 
environmental niches by increasing their fitness and competitiveness (Fig. 6.1).

6.2  HGT in Environment and Its Role in Evolution 
of the Bacterial Genome

Discovery of the transferable nature of multidrug resistance by Watanabe in 1963 
resulted in the recognition of horizontal gene transfer. Since then, HGT has become 
a topic of extensive investigation worldwide, particularly in medical microbiology. 
The occurrence of HGT among bacteria in the natural environment was subse-
quently recognized; such processes are believed to relate to the risk of genetically 
modified bacteria released into the environment (Heuer and Smalla 2012). In view 
of the use of genetically modified (GM) crops and microbes in agricultural settings, 
the role of mobile genetic elements (MGE; plasmids, transposons, bacteriophages, 
etc.) associated with plant and soil and factors influencing this mobility has received 
attention from many scientists (Smalla et  al. 2000; van Elsas and Bailey 2002). 
Studies have demonstrated that HGT is a major, if not the dominant force in bacte-
rial evolution (Frost et al. 2005; Davies and Davies 2010; Wiedenbeck and Cohan 
2011; Dutta and Sarkar 2015; Navarre 2016). Up to 20% of a typical bacterial 
genome acquired from other species and MGE acts as a vector for HGT (Ochman 
et al. 2000).

HGT affects only those bacteria that readily exchange genes, and members of 
such rapidly exchanging communities have shown similar characteristics such as 
genome size, GC content, carbon utilization, and oxygen tolerance (Jain et al. 2003). 

Fig. 6.1 Gene transfer in the rhizosphere: mechanisms, factors, and outcomes
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On the other hand, considerable evidence indicates that HGT is an ongoing process 
that plays a primary role in real-time ecological adaptations of prokaryotes (Smets 
and Barkay 2005). MGEs play an essential role in the process by shaping the bacte-
rial genome, promoting intraspecies variability, and distributing functional genetic 
modules among communities. Consequently, HGT of genetic modules that allows 
adaptation to rapidly changing biotic interactions has frequently been observed 
(Smets and Barkay 2005). The interactions include:

 1. Antibiotics production by microorganisms
 2. Dissemination of antibiotic resistance
 3. Release of xenobiotics or new secondary metabolites
 4. Dissemination of degradative gene and pathway assemblies (McManus et  al. 

2002; Top and Springael 2003; Larrain-Linton et al. 2006)
 5. Symbiotic or pathogenic interactions and speed of the spread of genomic islands 

(Arnold et al. 2007; Heuer and Smalla 2012)

The most widely studied examples of genetic exchange through HGT in natural 
environments is the dissemination of multiple antibiotic resistance via MGE, which 
allows bacterial populations to adapt rapidly to strong selective pressures (Cordero 
et al. 2012; Wellington et al. 2013; Ojala et al. 2014). MGEs involved in transmis-
sion of antibiotic resistance include combinatorial genetic evolution of MDR facili-
tated by transposons, IS elements, and integrons. Transposable elements like ISCRs 
(insertion sequence common regions) mobilize DNA adjacent to their insertion site 
via rolling circle replication (Toleman et al. 2006). ISCRs are closely associated 
with antibiotic resistance genes on conjugative plasmids (Priyadharsini and 
Muthukumar 2016; Kumar et al. 2017; Masood and Bano 2016; Meena et al. 2016e).

It is interesting to observe that under natural conditions, especially in wastewater 
and soil, the presence of several toxic pollutants (e.g., metals and pesticides) may 
increase selective pressure and co-selection of resistant strains. These pollutants 
may further increase the ecological fitness and survivability of bacterial strains (De 
Lipthay et al. 2008; Imfeld and Vuilleumier 2012). Various degradative plasmids 
have been characterized from bacteria which degrade PCBs, chloroaniline, and 
other recalcitrant molecules (Merlin et al. 1999; Boon et al. 2001; Springael and Top 
2004). Many self-transferable plasmids participate directly in active gene transfer. 
Russell et  al. (2011) reviewed the evolutionary trends of enzymatic machinery 
involved in the degradation of xenobiotics and concluded that horizontal gene trans-
fer among bacteria is one of the major determinants in the acquisition of new and 
efficient enzymatic functions. New enzymatic pathways have emerged from a wide 
variety of enzyme families.

Metagenomic mapping studies for two discretely located hexachlorocyclohex-
ane (HCH)-degrading strains of Sphingobium japonicum (Sphingobium japonicum 
UT26 from Japan and Sphingobium indicum B90A from India) have shown that the 
previous common ancestor was unable to degrade HCH isomers, but descendants 
acquired degrading genes by transposon-mediated HGT (Sangwan et  al. 2014). 
Likewise, Pearce et  al. (2015) showed that different HCH-degrading bacteria 
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yielded a distinct set of metabolites during degradation of HCH isomers. The analy-
sis confirmed the role of horizontal transfer mediated by an insertion sequence in 
the acquisition of the pathway.

6.3  Gene Transfer in the Rhizosphere

Among the conditions occurring within the phytosphere, the rhizosphere is opti-
mally suited for the growth and intensive interaction among microbial communities. 
The availability of essential elements (C, N, P, K), moisture, and other critical con-
stituents (e.g., organic acids) in the vicinity of plant roots make the rhizosphere the 
preferred site for gene transfer, such that it is referred to as a “hotspot” for genetic 
evolution (van Elsas et al. 2003). The rhizosphere provides an ideal environment for 
HGT processes and may support rapid adaptation of bacteria against environmental 
changes as compared with bulk soil. Conjugative plasmid transfer frequency 
between bacterial species is enhanced under high nutrient availability and water 
movement (Kroer et  al. 1998). Bacterial colonization and adherence to the root 
surface in response to the presence of root exudates impart significant effects on 
gene transfer.

Due to intimate contact among cells and higher metabolic activity in response to 
the presence of an ample nutrient supply, elevated plasmid transfer in the rhizo-
sphere has been observed (Kroer et al. 1998; van Elsas et al. 2003). Musovic et al. 
(2006) demonstrated the exceptionally broad host range of the pKJK10 plasmid in 
the barley rhizosphere. They describe the potential of mobile genetic elements, 
crossing large phylogenetic distances, i.e., gene swapping between Actinobacteria 
and Proteobacteria, in bacterial evolution. Organic acids and other constituents of 
root exudates stimulate the transformation in Acinetobacter sp. BD413 (pFG4) in 
sterile soils. The organic acids, acetate, lactate, and alanine, resulted in the highest 
transformation frequencies (Nielsen and van Elsas 2001). Molbak et al. (2007) stud-
ied conjugal transfer in the rhizospheres of pea and barley. The experiments showed 
that a higher rate of root exudation and root growth rate in pea was responsible for 
higher conjugal frequency. The distribution pattern of donors on pea roots was 
shown to affect genetic transfer. Transfer of the plasmid RP4 derivative between 
Pseudomonas fluorescens and Serratia sp. was studied in a sand microcosm and 
found to be related to the availability of root exudates and bacterial metabolic activ-
ity (Kroer et  al. 1998). Regardless, however, the direct relationship between the 
metabolic activity of transforming bacteria and gene transfer is in need of further 
investigation (Meena et al. 2013c, 2015a; Raghavendra et al. 2016; Zahedi 2016; 
Singh et al. 2015; Bahadur et al. 2016a).

Genetic transfer of various contaminant-degrading genes has also been shown to 
take place effectively in the rhizosphere and is concurrently responsible for enhanced 
plant growth (Wang et al. 2007, 2014a, b; Jia et al. 2013). Using an in silico metage-
nomic prediction method, Cabezon et al. (2015) and Lopes et al. (2016) revealed a 
significantly higher abundance of predicted genes associated with HGT in the rhi-
zosphere compared with bulk soil. The pilus assembly protein CpaE and type IV 
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pilus assembly protein PilV as well as genes involved in transformation/conjuga-
tion, such as the type IV secretion system proteins VirB4, VirB5, VirB6, and VirB9, 
among other transduction and transformation stimulating genes, were prevalent in 
the rhizosphere.

Bacteriophages present in the rhizosphere serve as another important agent 
responsible for genetic variation and evolution of indigenous bacterial communi-
ties. Because phage DNA is often packaged in relatively resilient phage coats, it is 
possible that transducing phages provide a reservoir of bacterial genes under local-
ized conditions where the host may not survive (Van Elsas et al. 2003). Studies have 
shown that soil conditions affect the burst size of the lytic phage thus indirectly 
affecting the frequency of gene transfer and lysogeny (Burroughs et al. 2000). One 
of the mechanisms responsible for interspecies gene transfer in the rhizosphere is 
the overlapping susceptibility to phages among bacterial communities (Ashelford 
et  al. 2000). Ashelford et  al. (2003) highlighted the importance of soil bacterio-
phages in controlling bacterial populations and in mediating gene transfer in soil. 
Moreover, studies have shown that the lysogenic mode is preferable and common 
under different soil environments (Williamson et al. 2007; Ghosh et al. 2008).

Biofilm development and succession of microbial communities are now recog-
nized as an important arena of rhizosphere biology. Different rhizospheric factors 
are known to influence bacterial biofilm formation. The beneficial effects of root 
exudates on biofilm development have been extensively investigated and reviewed 
(Bais et al. 2006; Zhang et al. 2014; Yuan et al. 2015).

6.4  Gene Transfer in Biofilms

Genetic variability among bacterial populations occurs via mutation and acquisition 
of new genes through various genetic exchange mechanisms. Gene transfer in a 
single species results in the propagation of specific traits. Interspecies gene transfer 
may result in an entirely new genetic combination which may be of significance to 
human health and the environment. The relationship between biofilms and HGT has 
been investigated by numerous workers (Ghigo 2001; Tormo et al. 2005; Antonova 
and Hammer 2011; Madsen et al. 2012; Cook and Dunny 2014). In general, HGT 
rates are higher in biofilm communities compared with those in the planktonic state. 
Biofilms are also implicated in the promotion of plasmid stability and may enhance 
the host range of MGEs that are being transferred (Madsen et al. 2012; Broszat and 
Grohmann 2014).

Several authors have reported enhanced HGT in biofilms via conjugation 
(Sorensen et al. 2005; Maheshwari et al. 2016); however, certain spatial constraints 
within biofilms may hinder the dispersal of plasmids (Krol et al. 2011; Merkey et al. 
2011). Lili et al. (2007) indicated that plasmids which are maintained through high 
transfer frequencies may only be able to persist in biofilms. Interestingly, other 
mechanisms of gene transfer, for example, transformation, occur at higher rates in 
biofilms. Gene transfer via both small DNA fragments as well as plasmid transfor-
mation has been documented (Maeda et al. 2006; Etchuuya et al. 2011). It has been 
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reported that competence of cells in the biofilm mode is triggered by extracellular 
DNA (eDNA) molecules within the biofilm matrix (Molin and Tolker-Nielsen 2003; 
Meena et al. 2014a, 2016c; Saha et al. 2016a; Sharma et al. 2016). Thus, transfor-
mation triggers and stabilizes biofilms and vice versa.

Conjugative pili formation is best studied among other biofilm-associated factors 
encoded by backbone genes of plasmids. There is much evidence in support of 
greater effectiveness of conjugative plasmids, compared to deficient strains, in bio-
film formation (Reisner et al. 2006; Burmolle et al. 2008; Roder et al. 2013; Madsen 
et al. 2016). Other factor encoded by plasmid accessory regions includes different 
types of fimbriae and conjugative pili. These adhesions play a significant role in cell 
surface adherence and cell-to-cell contact, mainly in members of family 
Enterobacteriaceae. Three pathways in enteric bacteria are known for synthesis of 
surface-associated fimbriae: (1) the type IV pili pathway, (2) the nucleation path-
way, and (3) the chaperone/usher pathway (Clegg et al. 2011; Madsen et al. 2012). 
These fimbriae perform a number of functions, and genes are located both on plas-
mids and on chromosomes. Several such plasmid-encoding cell surface adhesion 
factors are known in Gram-negative and Gram-positive bacteria, for example, 
Pseudomonas putida TOL plasmid, Lactococcus lactis pAMb1, and Azospirillum 
brasilense plasmids (D’Alvise et al. 2010; Petrova et al. 2010). Thus, the plasmid’s 
role as a social evolutionary platform has been described in accordance to plasmid 
functions including (a) host fitness, (b) multicopies of gene present on the plasmid, 
(c) high gene expression rate, (d) mobility of gene, and (e) high turnover of plasmid- 
encoded gene (Madsen et al. 2012).

The interconnection between biofilm formation and gene transfer has been a 
topic of investigation in recent years. Madsen et al. (2012) published an excellent 
article on this issue and concluded that plasmid biology and biofilm community 
structure and related functions are interconnected through various interactions at 
both community and genetic levels. Biofilms provide an excellent environment for 
bacterial interaction due to their high cell density and extensive communication 
network within the biofilm matrix. Since bacterial communities within biofilms are 
heterogeneous and often multispecific, variations within specific bacterial lineages 
have been recorded (Stewart and Franklin 2008). These variations provide recipi-
ents that are more accessible for plasmid transfer than in planktonic culture. Thus, 
bacterial genetic heterogeneity is maintained and promoted by HGT and mutation 
provided via the biofilm mode of growth (Jefferson 2004; Conibear et  al. 2009; 
Rankin et al. 2011).

6.5  Gene Transfer in the Soil System

Most of our knowledge of gene exchange, however, comes from investigations of 
the planktonic mode. The study of gene transfer under complex natural conditions 
such as bulk and rhizosphere soil remains a challenging task. Many factors are 
known to affect gene transfer occurring in the soil system; therefore, careful inves-
tigation using soil microcosms is suggested. Hill and Top (1998) reviewed gene 
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transfer in soil using microcosms with special focus on transfer of broad host range 
plasmids and catabolic soil plasmids. The importance of gene transfer in soil and 
other natural habitats has been recognized due to (a) interest in the possible spread 
of genetically modified microorganisms, (b) spread and exchange of antibiotic 
resistance, (c) the role of HGT in the evolution of new bacterial traits, and (d) the 
possible role of introducing catabolic genes to enhance bioaugmentation strategies 
to enhance bioremediation of soil contaminants.

Laboratory microcosms are used to assess gene transfer for a number of potential 
benefits as mentioned above. Although microcosms are not exact replicas of the soil 
system, they possess many of the same chemical and physical attributes. Microcosms 
must be calibrated to ensure that they reflect natural conditions (Bolton et al. 1991). 
Microcosms can be used to obtain vital information on (1) survival and dispersal of 
bacterial strains, (2) ability to compete with indigenous microflora, (3) capacity to 
exchange genetic information, and (4) stability of heterogeneous DNA in soil. Most 
of the well-studied examples mainly comprise various conjugative plasmids and 
their exchange by conjugation using suitable recipient strains. Some of the widely 
used plasmids described by Hill and Tops (1998) are RP4, RP4p (RP4::pat), 
pBLK1-2 (pRK2073::Tn5), RP4::Tn4371, pJP4, pEMT3k (pEMT3::mini Tn5), 
pEMT1k (pEMT1::miniTn) R57.b, R388::Tn1721, pLF40, pFT30, pJB5JI::Tn5, 
and pIJ673. Other plasmids studied include fluorescent marker-tagged plasmids 
such as pB10 (De Gelder et al. 2005), pKJK10 (Musovic et al. 2006; Claudia et al. 
2013), gfp-tagged IncP-1α plasmid RP4 (Musovic et al. 2010), pBP136, pCAR1, 
NAH7 (Shintani et al. 2014), and low GC-type plasmid pHHV216 (Jechalke et al. 
2013).

Soil microcosms utilized in gene transfer studies vary in complexity from simple 
closed vessels containing a few grams of soil in a conical flask or falcon tube to 
more complicated systems including vertical soil columns. Other microcosms 
include continuous flow reactors through which water or nutrients are percolated. 
Microcosms for studying bacterial interactions in the rhizosphere/rhizoplane were 
elaborated by Hill and Top (1998). The microcosm system adopted depends upon 
the objectives of the study. Care should be taken to assess the desired factors affect-
ing gene transfer in the soil/rhizosphere (Meena et al. 2013b, 2014b, 2015b, c, d; 
Rawat et al. 2016; Yasin et al. 2016; Verma et al. 2015a; Shrivastava et al. 2016; 
Velazquez et  al. 2016; Sindhu et  al. 2016; Singh et  al. 2016). Important factors 
include inoculum treatment and mode of application, concentration and sampling 
methods, soil temperature, soil depth, concentrations of media, and types and 
amounts of degradable chemicals (Hill and Top 1998; Wang et  al. 2014a, b). 
Table  6.1 shows the various soil factors affecting gene transfer studies in 
microcosms.
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6.6  Conclusions

The current state of understanding of HGT in soil and other natural environments 
demonstrates that HGT is a mechanism of bacterial chromosomal evolution which 
provides real-time adaptation among bacteria. HGT also provides genetic diversity 
through its gene pool, which helps bacteria adapt to changing environmental condi-
tions. The availability of nutrients in the plant rhizosphere attracts bacteria, thus 
offering a greater opportunity for HGT compared to bulk soil. Microcosm and bio-
film studies demonstrate that bacteria receive advantages and long-term ecological 
benefits for survival and adaptation through HGT. However, the exact mechanisms 
and magnitude of HGT in unsterile soil and in the rhizosphere must be explored 
further, as factors influencing gene transfer in such situations are complex and 
multifactorial.

Considering the untapped diversity of MGEs in soil- and plant-associated micro-
biomes, the impact of HGT on influencing plant-microbe interactions must be fur-
ther explored for possible exploitation in sustainable agriculture.
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Table 6.1 Soil factors affecting gene transfer

Factors Effects/explanation
Drying and sieving Disturbing the soil results in poor survivability of strains 

and ultimately poor conjugation
Earthworm activity Varying influence, depending upon the depth at which 

earthworms are present
Nutrient availability Nutrient availability enhances survival and therefore gene 

transfer
Plant rhizosphere High concentrations of root exudates and nutrients in the 

rhizosphere positively affect gene transfer
Selective pressure such as heavy 
metals or recalcitrant organics

In most of cases, heavy metals/recalcitrant organics 
enhance the number of transconjugants

Soil type Soil variables such as types and amounts of clay, organic 
matter, pH, moisture, and incubation temperature 
influence gene transfer

Spatial separation between donor 
and recipient strains

Moisture content helps in movement and survivability of 
strains thus directly affecting gene transfer

Sterilization Sterilization of soil increases transfer frequencies
Temperature Higher transfer frequency observed at environmentally 

relevant soil temperatures

Adopted and modified from Hill and Top (1998)
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