

# **Internet of Things in Textile Sensors**

Dr. Hattan Khaled Ballaji

Computer Engineering Department, College of Computers and Information System, Umm Al-Qura University, Makkah, Saudi Arabia



## Introduction

- The digitization of textiles (textronics) has created new opportunities for integration with conformable sensors to enable unobtrusive, noninvasive, and continuous decoding of vital body signals.
- > This study offers an analysis of the IoTs'

# Form Factors and Fabrications of Textile Sensors

- A. Smart Fibers: The two most common form factors are staple fiber and filaments [3].
- B. Smart Yarns Filaments: Optoelectronics and electrode yarns are combined via weaving, stitching, adhesive coating, and polymer encapsulating processes to create physiological sensors.
  C. Smart Fabrics: For creating printed electrodes or conductive interconnects with PCBs on fabrics and flexible substrates, stencil printing is much more straightforward to use.
  D. Smart Garments: The flexible poly-SEBS substrate, along with conductive composite inks and CNT networks, were used to create the sticker-like sensor tags, which demonstrated good sensitivity and stretchability (up to 50%),

textile sensors and the fabrication techniques utilized for textronic sensors according to the form factors of fiber, yarn, fabric, and clothes.

Figure 1 shows the reflected mode.

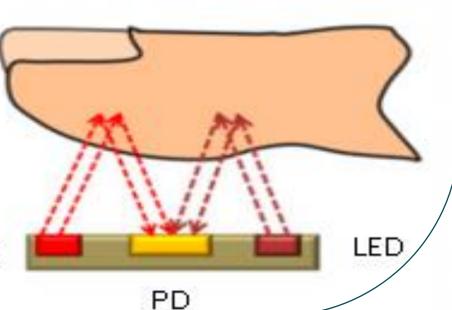



Figure 1 LED

# **Electronic Textile Sensor for Decoding Vital Body Signal**

- By 2025, it is expected that the wearable biosensor market will have grown at an unprecedented rate to exceed \$5 billion annually.
- As of now, no researches have statistically demonstrated the state-of-the-art in relation to the characterisation requirements for

# Conclusion

The study comes to the conclusion that textile-based sensors that can be worn on the human body can be utilized as smart sensing devices to access the internet in addition to being able to send information.

#### References

textile sensors in particular [1].

Example of textronic sensors, Monitoring ECG, respiration, temperature and motion sensing. Figure 2 shows a) inner side, b) outer side [2].



[1] Shuvo, et al. "Electronic Textile Sensors for Decoding Vital Body Signals: State-of-the-Art Review on Characterizations and Recommendations." Advanced Intelligent Systems 4.4 (2022): 2100223.

[2] Tao, Xuyuan, et al. "Bluetooth Low Energy-Based Washable Wearable Activity Motion and Electrocardiogram Textronic Monitoring and Communicating System." Advanced Materials Technologies 3.10 (2018): 1700309.
[3] Oh, Hyun Ju, et al. "Fabrication of piezoelectric poly (l-lactic acid)/BaTiO3 fibre by the melt-spinning process." Scientific Reports 10.1 (2020): 1-12.

Contact Details: <u>hkballaji@uqu.edu.sa</u>