Can The Automatic Speaker Recognition Detect The Similarity of Siblings Voices?

Amal Al-Zhrani, Mshael Al-Zhrani, Rahaf Al-Thobati, Rawan Al-Zhrani, Wala'a Al-Zhrani. Supervisor: Dr. Sarah Al-Shareef Computer Sciences Department, Umm Al-Qura University, 2020

Abstract:

Shiny

Naves

Everyone has a unique voice, because of the different structure of the articulatory organs. Some people have similar voices due to biological similarity or someone is mimicking them. This similarity raises a security concern. Several studies tried to distinguish between similar voices of people using speaker recognition techniques. This study surveys the use of automatic speaker recognition techniques in order to find the similarity between siblings. This includes comparing the performance of several models, such as artificial neural networks (ANNs), Gaussian mixture model (GMM) and i-vector.

Research Objectives:

- Developing siblings dataset (Shiny dataset).
- Compare different models to find the similarity between siblings voices.

Related Work:

Speaker recognition	The similarity between speakers	
Automatic speaker recognition is validating the user's claimed identity using characteristics extracted from their voices.	Two people may sound alike either because of biological similarity or one is mimicking the other	
Many research tried to detect the voice similarity between speakers by automatic speaker recognition		
Such as: Kunzel-2010 research, tested if an automatic SPID		

twins.

Data Collection:

Outcome Dataset:

Total siblings utterances durations

Development tools:

Results:

Models	EER% :for each experiment		
ANN	One hidden layer	Two hidden layer	Three hidden layer
	24.10%	25.12%	29.11%
GMM	With 512 Gaussains	With 2048 Gaussains	With 8192 Gaussains
	31.25%	21.88%	34.37%
i-vector	With 512 Gaussains	With 2048 Gaussains	With 8192 Gaussains
	12.5%	9.37%	65.62%

Conclusion:

In this study, we explored the similarity between siblings through speaker recognition models. First, we collected, cleaned and processed shiny dataset of 28 speakers with 9229s duration. This dataset was used to build three models: ANN, GMM, and i-vector. Then the models' performance was compared. The i-vector has shown the best performance with EER 9.375%.

Contact:

Group email: <u>cs04.2020@gmail.com</u>

Supervisor email: saashareef@ugu.edu.sa

E - copy:

References:

