SAMPLING DISTRIBUTIONS & INFERENCES 7\
CONCERNING A MEAN

Populations and Samples
If a population is infinite, it is impossible to observe all its values, and even if it is finite it
may be impractical or uneconomical to observe it in its entirety. Thus, it is usually necessary
to use a sample, a part of a population, and deduce from it results refer to the entire
population. Clearly, such results can be useful only if the sample is in some way
“representative” of the population.

The Sampling Distribution of the Mean (g known)
Theorem 1 If a random sample of size 1 is taken from a population having the mean £ and

the variance @4, then X is a random variable whose distribution has the mean M.

2
o
For samples from infinite populations the variance of this distribution is ?
. . . . . . 0-2 N_n N_n .
For samples from a finite population of size N the variance is F ﬁ where N—1 is often

called the finite population correction factor.

Theorem 2 If X is the mean of a random sample of size n taken from a population having
the mean u and the finite variance ¢, then
X—pu
o/\n
is a random variable whose distribution function approaches that of the standard
normal distributions as 1 =0,

Z =




Example 1: Car mufflers are constructed by nearly automatic machines. One
manufacturer finds that, for any type of car muffler, the time for a person to set up and
complete a production run has a normal distribution with mean 1.82 hours and standard
deviation 1.20. What is the probability that the sample mean of the next 40 runs will be
from 1.65 to 2.04 hours.
Solution:
According to Theorem 2
X—-u 1.65-1.82
o/yn  1.2/V/40
e X—-u 2.04-1.82

“o/yn 1.2/V30 116

Z = —0.896

From Table 3

P(Z = 1. 16) — P(Z = —. 896) =0.877 — (0-1867+0.1841

2

) ~0.6916

jTapes N Table 3 Standard Normal Distribution Function

F(2) F@)
ey A 1 fz ey
V2r J—o

1 Z
F(z)= 7‘[
& A2 J—o0 [T F(o)=—
[}z [T
z0
z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
z ‘ 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

10 | 0.8413  0.8438 08461 0.8485 08508 0.8531 08554 0.8577 0.8599 0.8621
1.1 | 0.8643  0.8665 0.8686 0.8708 0.8729 0.8749 [0:8770]0.8790 0.8810 0.8830 | —0.9
12 | 0.8849  0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015 | —0.8
1309032 09049 0.9066 0.9082 0.9099 09115 09131 09147 09162 09177 | _07

0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611
0.2119 0.2090 0.2061 0.2033 02005 0.1977 0.1949 0.1922 0.1894 ] 0.1867
0.2420 0.23890 0.2358 0.2327 02296 02266 0.2236 02206 02177 0.2148




The Sampling Distribution of the Mean (o unknown)

Theorem 3 If Xis the mean of a random sample of size n taken from a normal
population having the mean g and the variance 0'2, and

n —_
Sz= (Xl_X)z
n—1
i=1
_X—-wu
Then t_S/\/ﬁ

is a random variable having the t distribution with the parameterv = n — 1 givenin
Table 4.



INFERENCES CONCERNING A MEAN
b glall Claliii

Statistical Approaches to Making Generalizations

Suppose that a random sample of n observations, from some population, leads. As matter
of fact, to obtain new knowledge about a process or phenomena, appropriate data must
be collected. Usually, it is not possible to obtain a complete set of data but only a sample.
Statistical inference b=yl JY3Yl developed whenever it is needed to make
generalizations ~=3 about a population on the basis of a sample. It has to be mentioned
that the generalization is usually called a statistical inference or just an inference.

The first step in making a good statistical inference is to model the population. Next, any
statistic parameter, such as X or 82, are calculated as a function of the sample. There are
two main steps of statistical inference to estimation of population parameters <—3lzs
i<l and testing hypotheses. First estimation can be either @ point estimator that gives
a single number estimate of the value of the parameter or am interval estimate that
specifies an interval of reasonable values for the parameter. A test of hypotheses provides
the answer to whether the data support or deny an investigator’s claim about the value of
the parameter.




Point Estimation

Basically, point estimation concerns the choosing of a statistic, that is, a single number
calculated from sample data. This property suggests considering the sample mean X as a
point estimator of the population mean . In the context of point estimation, the quantity

of standard error can be calculated as —
Vn

Example 2: Of all the waste materials entering landfills <Ll 3 substantial proportion
consists of construction and demolition materials. From the standpoint of green
engineering, before incorporating these materials into the base for new or rehabilitated
roadways, engineers must assess their strength. Generally, higher values imply a stiffer
base which increases pavement life. Measurements of the elasticity modulus (MPa) on
n = 18 specimens of recycled concrete aggregate produce the ordered values

136 143 147 151 158 160

161 163 165 167 173 174

181 181 185 188 190 205
The descriptive summary for the sample are sample meanx = 168.2 and
sample standard deviationS = 18.10
It is required to estimated standard error

Solution:

Our point estimator is sample meanisx = 168.2 and $=18.10 MPa is the calculated
. . .S 181 _

sample standard deviation. The estimated standard error is n o Vis 4.27



Maximum Error of Estimate with High Probability
When a sample mean is used to estimate the mean of a population, it is no doubt that the
chances are almost nonexistent, that the estimate will actually equal u. Hence, it would

seem desirable to supplement such a point estimate of 4 with some statement as to how

close we might reasonably expect the estimate to be. The error, X — W, is the difference
between the estimator and the quantity it is supposed to estimate. To examine this error,

let us make use of the fact from Theorem 2 that for large n:

X—pu

o/\n
is a random variable having approximately the standard normal distribution.
As illustrated in the given figure, for any specified value of Q:

P( X-w >=1—a

—Z <——F—=<12Z
a/2 O'/\/ﬁ a/2

7 =

or, equivalently,

a/Nm = "¢?

where Z /5 is such that the normal curve area to its right

equals a/2. ~Zgz -1 0 1  Zgp
The sampling distribution of
X—pn

o/\n



Now, let E, called the maximum error of estimate stand for the maximum of these values

of | X — u|. Then, the error | X — u/|, will be less than Maximum error of estimate E

E o
=Zy/9.——
a/z \/ﬁ
with probability 1 - a.
In other words, if it is intended to estimate i with the mean of a large (n = 30) random
sample, it can be assert with probability 1-a@ that the error, |X — u|, will be at most

. The most widely used values for 1-a@ are 0.95 and 0.99.

o
Za/z . ﬁ
Example 3 Specifying a high probability for the maximum error (o known)
An industrial engineer intends to use the mean of a random sample of size n = 150 to
estimate the average mechanical skill (as measured by a certain test) of assembly line
workers in a large industry. If, on the basis of experience, the engineer can assume that o=
6.2 for such data, what can be asserted with probability 0.99 about the maximum size of his

error? e
Solution:

Substitutingm = 150,06 = 6.2, F(z>=L[Z 22 )

a=1- 0.99=0.01 and then from Table 3 Vo Joo 02

At F(z) = 0.995 the value of z 000 001 002 003 004 005 006 007 008 0.09

Zg/2 = Z0.005 = 2.375 25| 09938 09940 0.9941 09943 09945 09946 0.9948 [0:9949 0.9951] 0.9952

2.6 | 0.9953 0.9955 0.9956 0.9957 09959 09960 09961 0.9962 0.9963 0.9964

Into the the formU|a 2.7 | 0.9965 0.9966 0.9967 09968 09969 09970 09971 0.9972 0.9973 0.9974

2.8 | 0.9974 09975 09976 09977 09977 09978 0.9979 0.9979 0.9980 0.9981

o
E=zw/2.\/—ﬁ=2.575x\/1750

Thus, the engineer can be asserted with probability 0.99 that his error will be at most 1.30.



The methods discussed so far require that obe known or that it can be approximated with

the sample standard deviation S, thus requiring that n be large. However, if it is

reasonable to assume that we are sampling from a normal population, the Theorem 3
instead of Theorem 3, namely on the fact that:

X—pn
S/\n
is a random variable having the t distribution with v=n-1 degrees of freedom.
When X and S become available, it can be prove with (1 - @)100% confidence that the

error made in using X to estimate W is at most It can be reached the maximum error of
estimate, normal population when o /sunknown as:

t =

E — ta/z._

Vn



Example 4 A 98% confidence bound on the maximum error

In six determinations of the melting point of an aluminum alloy, a chemist obtained a
mean of 532.26 °C with a standard deviation of 1.14 °C. If this mean is used to estimate
the actual melting point of the alloy, what can the chemist confirm with 98% confidence
about the maximum error?

Solution Substitutingn = 6, § = 1.14,and as a = 0.02 then from

Table4 ty 51 = 3.365 and v =n — 1 = 5 degrees of freedom

into the formula for E,

\) 4
t“/z'\/_ﬁ = 3.365x \/g = 1.57°C

Thus the chemist can be sure with 98% confidence that his figure for the melting point
of the aluminum alloy is off by at most 1.57 °C

Table 4 Values oft,

E =

0 fo
v @=0.10 «=0.05 « =0.025 o=0.01 «=0.00833 o =0.00625 «=0.005 v
1| 3078 6314 12706 31.821 38204 50.923 63.657 1
2| 1.886 2920 4303 6965 7.650 8.860 9.925 | 2
3| 1638 2353 3182 4541 4.857 5.392 5.841 3
4] 1533 2132 2776 3747 3.961 4315 4604 | 4
5/ 1476 2015 2571 [3.365 3.534 3.810 4032 | 5




Determination of Sample Size

o
The formula of E = Z /5 “Tn can also be used to determine the sample size that is needed

to reach a desired degree of precision. Suppose that the mean of a large random sample is
used to estimate the mean of a population, and it is wanted to be sure with probability of

1 — athat the error will be at most some prescribed quantity E. As before, if the equation

of E =2,/ .% is solved for n then: N = [%
formula 1 —= a, E, and 0 must be known and it is often substitute an estimate based on
prior data of a similar kind.

Example 5 Selecting the sample size

A research worker wants to determine the average time it takes a mechanic to rotate the
tires of a car, and he wants to be able to be sure with 95% confidence that the mean of his
sample is off by at most 0.50 minute. If he can presume from past experience that o= 1.6

minutes, how large a sample will he have to take?
Solution Substituting E = 0.50,0 = 1.6,and zg g5 = 1.96 into the formula for n:

2
] . In order to be able to use this

2
Zy/2 072 1.96x 1.6 r o
n=|"2—| = =39/33 Lk
E 0.5 Fay=—— [ et a
' V27 J—c0 '\) |
. z
Thus, the research worker will
have to time 40 mechanics z 000 00l 002 003 004 005 006 007 008 0.09
] ] 1.5 | 09332 09345 09357 0.9370 09382 09394 09406 0.9418 0.9429 0.9441
performing the task of rotating the 1.6 | 09452 09463 09474 0.9484 0.9495 09505 09515 09525 09535 0.9545
17 | 09554 09564 09573 09582 009591 09599 09608 09616 0.9625 0.9633
i 1.8 | 09641 09649 09656 0.9664 09671 09678 09686 09693 0.9699 0.9706
tires of a car. 19 | 09713 09719 09726 09732 09738 0.9744 0.9756 0.9761 0.9767




Interval Estimation

It is sometimes preferable to replace point estimates with the so-called interval
estimates, because point estimates cannot really be expected to match with the
guantities that are intended to be estimated.

Referring to the probability statement

X-w
P|—z <——<z =1—«
< a/z O'/\/ﬁ 0(/2
g — ()
P _Za/Z\/_ﬁS(X_M)SZa/Z\/_ﬁ =1—-a

— o — o
P(X—Za/z \/_HSHSX'I'Z(Z/Z\/—ﬁ):l—a

This probability statement concerns a random interval covering the unknown parameter
U with probability 1 = a. Accordingly, When the observed value X becomes available,

then for large sample confidence interval for it (0 known), the following will be obtained:
_ o — o
X—2z — < u<X+z,/y—
a/2 \/ﬁ u a/2 \/ﬁ

Thus, when a sample has been obtained and the value of X has been calculated, it can be
. . . . T ) ey ()
claimed with (1 - @) 100% confidence that the interval from X — z,, /, N toX+z,/, NG

will be surely contained L.



Example 5 Calculating and interpreting a large sample confidence interval

A random sample of size n = 100 is taken from a population with & = 5.1. Given that
the sample mean is X = 21.6, construct a 95% confidence interval for the population
mean U.

Solution Substituting the given values of m,x, 0, and zg g5 for (1 —a) =0.975 is
= 1.96 (from Table 3) into the confidence interval formula, it can be obtained:

5.1
21.6 —1.96. <pu<21.6+1.96. —
# v100

v100
20.6 < p<22.6

Of course, either the interval from 20.6 to 22.6 contains the population mean u, or it does
not, but we are 95% confident that it does.

F(z)
1 2 D
F(2) = —= f_ao e 1712 gy -|'|
0z

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

1.5 | 0.9332 0.9345 0.9357 0.9370 09382 09394 0.9406 09418 0.9429 0.9441
1.6 | 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 09525 0.9535 0.9545
1.7 | 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 09616 0.9625 0.9633
1.8 | 0.964] 0.9649 09656 09664 09671 09678 09686 09693 09699 09706
1.9 | 0.9713 09719 09726 09732 0.9738 0.9744 -o.w-ss 0.9761 0.9767




The preceding confidence interval formula is exact only for random samples from normal

populations, but for large samples it will generally provide good approximations. Since o
is unknown in most applications, then it will have to make the further approximation of

substituting the sample standard deviation 8§ for @. Accordingly, the large sample
confidence interval for  for samples size (n = 30), can be as the following:

_ S _ S
X—Za/z _<ﬂ<X+Za/2—

Vn Vn

For small samples (n < 30), small sample confidence interval for u of normal
population :

_ S _ S

X—ta/z _<[1<X‘|‘ta/2_

Vn Vn



Example 6

The nanopillar height data of n=50, x=30558nm , and
$2 = 1,366.86 (hence,S = 36.97 nm), construct a 99% confidence interval for the
population mean of all nanopillars.

Solution Substituting into the confidence interval formula with n = 50, x = 305.58,
and S = 36.97,, and zZg gg5 for (1 —a) =0.995 is = 2.575 (from Table 3), ) into
the confidence interval formula, it can be obtained:

305.58 — 2.575 36'97< < 305.58 + 2.575 36.97
' ' "~ /50 # ' ' "~ /50

292.12 < n < 319.04

It is 99% confident that the interval from 292.12 nm to 319.04 nm contains the true mean

nanopillar height. [T

F(z)
1 Z 2
F(z) = — f —t°/2 g
(z) V2T —ooe 1
0z
z 0.00 0.0l 0.02 0.03 004 005 006 007 008 0.09
2.5 | 0.9938 0.9940 09941 0.9943 0.9945 0.9946 0.9948 |0.9949 0.9951 | 0.9952
2.6 | 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0. ) 0.9964
27 | 0.9965 0.9966 09967 0.9968 09969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 | 0.9974 0.9975 09976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 | 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986




Example 7 Engineers are making discoveries to create synthetic silk fibers. One research
group reports the following statistics for the toughness (MJ/m3):

n = 18, XxX=22.6 and S = 15.7
Construct a 95% confidence interval for the mean toughness of these fibers. Assume that
the population is normal distribution.
Solution The sample size is n = 18 and t,/,; = tgg25 from Table 4 at degree of
freedomn—1= 17 isfor n-1=2.110.
The 95% confidence formula for u becomes:

_ S _ S
X—typ —=<pu<X+ty,—
a/z \/ﬁ I'l' a/z\/ﬁ
22.6 —2.11 15'7< <22.6+2.11 15.7
.6 — 2. —<u . . —
V18 V18
14.79 < < 40.41M)/m?
Now, it is 95 % confident
that the interval from 14.79
to 36.41 MJ/m3 contains a
the mean toughness of all 0 .
possible artificial fibers
created v|@=0.10 @ =0.05 «=0.025 «=0.0 o=0.00833 o =0.00625 o =0.005| v
16| 1337 1746 2120 2583 2.673 2813 2921 | 16
17| 1333 1740 2110 2567 2.655 2.793 2.898 | 17
18| 1330 1734 2101 2552 2.639 2.775 2878 | 18
19| 1328 1729 2093 2539 2.625 2.759 2861 | 19
200 1325 1725 2086 2528 2613 2.744 2845 | 20
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