Umm Al-Qura University Faculty of Applied Science Physics Department

General Physics 101 lab report

Student Name	
ID number	
Group no.	
Practical	
Teacher	
Theoretical	
Teacher	

Experiment Title	Graphing
Experiment Date	
Practical Mark	/5
report Mark	/5
Total Mark	/10

Objective of the	e experime	ent				
		• • • • • • • • • • • • • • • • • • • •				
		• • • • • • • • • • • • • • • • • • • •				
		• • • • • • • • • • • • • • • • • • • •				
Example 1 (F	= - K X)					
M (kg)	0.12	0.15	0.22	0.27	0.35	0.40
X (m)	0.30	0.45	0.67	1.09	1.15	1.4
F = Mg(N)						
the value of the						
Determine the	scale Parti	al reading o	on x - axis =	10	 =	
the value of the	e y-axis is		• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	•••
Determine the	scale of the	e graph on	y - axis = —		- =	
Determine the	scale Parti	al reading o	on y - axis =	10	— =	
After the graph	the slope	is (which is	s k)			
the percentage	error if the	theoretical	value of sp	oring consta	nt is 4.5 N	/m

Example 2:
the value of the x-axis is
Determine the scale of the graph on $x - axis = =$
Determine the scale Partial reading on x - axis = ${10}$ =
the value of the y-axis is
Determine the scale of the graph on y - axis = ——— =
Determine the scale Partial reading on y - axis = ${10}$ =
After the graph the slope is
The intercept of $y - axis$
The equation for the relation between v & t is
The acceleration <i>a</i> is
The initial velocity v_o

Experiment Title	Accurate Measurements
Experiment Date	/ /
Practical Mark	/5
report Mark	/5
Total Mark	/10

Objective of the experiment
Equipment of the experiment
<u>First: Vernier Calipers</u>
1-Less reading of the Vernier (accuracy):
2-Zero error amount:
••••••

Sample Type: Cylinder

Measurement type	Reading	First reading (mm)	Second reading (mm)	Average (mm)
	main scale			
External	vernier scale			
diameter	Zero error			
	total reading			
Internal diameter	main scale			
	vernier scale			
	Zero error			
	total reading			
Height	main scale			
	vernier scale			
	Zero error			
	total reading			

	main scale	
Depth	vernier scale	
_	Zero error	
	total reading	

Second: Micrometer Screw Gauge

1-Less reading of the Micrometer (accuracy):				
2-Zero error amount:				

Sample and type of measurement	Reading	First reading (mm)	Second reading (mm)	Average (mm)
	main scale			
The thickness of	vernier scale			
the slide	Zero error			
	total reading			
Diameter of metal wire	main scale			
	vernier scale			
	Zero error			
	total reading			

Experiment Title	Force Table
Experiment Date	
Practical Mark	/5
report Mark	/5
Total Mark	/10

Part 1: experimental method					
Equipment of the experiment					
	-				
	-				
	•				
Objective of the experiment					

Experiment	First Force	Second Force	Balancing force
θ			
M(g)			
M (Kg)			
F(N)=mg			
Res	ult force (F_R)		
Res	sult angle 0 R		

Part 2: component method:

	First force	second force
θ		
F = mg		
x – component		
$F_x = F \cos \boldsymbol{\theta}$		
Total component in		
x-direction		
$F_{x} = F_{1x} + F_{2x}$		
y – component		
$F_y = F \sin \theta$		
Total component in		
y – direction		
$F_y = F_{1y} + F_{2y}$		
$F_R = \sqrt{F_x^2 + F_y^2}$		
$\theta_R = \tan^{-1} \left(\frac{F_{\mathcal{Y}}}{F_{\mathcal{X}}} \right)$		

Calculate the percentage error:	
•••••••••••••••••••••••••••••••••••••••	
••••••••••••	

Part 3: Graphical method.

	First force	second force
θ		
F = mg		
$drawing \ scale = \\ 0.3 \ N = 1 \ cm \\ \underline{\dots \dots x1 \ cm} \\ 0.3 \ N$		

graph

Result Force (F_R) from graph =
F _R after using drawing scale =
x 0.3 <u>N</u>
1 cm
$\boldsymbol{\theta}_R$ from graph =
Calculate the percentage error:
•••••••••••••••••••••••••••••••••••••••
•••••••••••

Experiment Title	Forces on an Inclined Plane
Experiment Date	/ /
Practical Mark	/5
report Mark	/5
Total Mark	/10

Objective o	of the e	xperiment				
	•••••					
Equipment	of the	experiment				
,	ne roller)		g =g =			;
Angle of inclination (θ^0)	sinθ	M g sinθ (N)	Weight in pan when roller moves	Total weight when roller moves $M_{1,2} = m_{1,2} + m_{p}$ Force actin roller down $W = \frac{(M_{1} + M_{1})^{2}}{2}$		Force acting on roller downward $W = \frac{(M_1 + M_2)g}{2}$ (N)
			Upwared m ₁ (g) Downwared m ₂ (g) Upwared m ₁ (g) Downwared	Upwared M ₁ (kg) Downwared M ₂ (Kg) Upwared M ₁ (kg) Downwared		
			m2 (g) Upwared m1 (g) Downwared m2 (g) Upwared m1 (g) Downwared m2 (g) Upwared m2 (g) Upwared Upwa	M ₂ (kg) Upwared M ₁ (kg) Downwared M ₂ (kg) Upwared M ₁ (kg) Downwared M ₂ (kg) Upwared		
İ			m ₁ (g)	M ₁ (kg)		4

What is relation between downward force and angle of inclination of the plane?	
	• • • • •

Downwared M₂ (kg)

Downwared m₂ (g)

Experiment Title	Atwood Machine
Experiment Date	/ /
Practical Mark	/5
report Mark	/5
Total Mark	/10

(Objective of the experiment						
ı							
i	• • • • • • •						
]	Equipm	ent of the expe	riment	Ī			
ı	• • • • • •						
(Calcula	ation:					•••••
3	y ₀ (the m	aximum height of	$(m_2) =$		cm =	m	
		The hanging ma	uss (g)	The hold	der mass (g)	The total	mass (Kg)
	$m_1 = m_2 = m_2 = m_2$						
y (cm,)	y (m)		ly (m)	Time t (s)	Avenge of time T(s)	$T^{2}\left(s^{2} ight)$
						_	

Find the slope for your straight line.
Find experimentally acceleration a.
Find theoretically acceleration a.
Find the percentage error of acceleration

Experiment Title	Archimedes Principle
Experiment Date	/ /
Practical Mark	/5
report Mark	/5
Total Mark	/10

Objective of the experiment		
	 •••••	
Equipment of the experiment		
•••••		
•••••	 •••••	

The first method

Type of object	Weight in air W _{air} (N)	Weight in water Wwater(N)	Buoyant force F _B =W _{air} -W _{water} (N)
Floating objects (Plastic cylinder)			
Objects submerged in water (Aluminum cylinders)			
Objects submerged in water			
(copper cylinders) Objects submerged in water			
(Aluminum cube irregular)			

The second method

Density of water = 1000 kg/m^3
$1 \text{ml} = 1 \times 10^{-6} \text{ m}^3$
Remember:

Type of object	Volume of displaced water V (m³)	Mass of displaced water $m = \rho_{water} \times V (Kg)$	Weight of displaced water $F_{displaced\ water} = mg\ (N)$		
Floating objects (Plastic					
cylinder)					
submerged object					
(Aluminum cylinders)					
Submerged object					
(copper cylinders)					
Submerged object					
(Aluminum cube					
irregular)					
The third method					

	Aluminum cylinder	Copper cylinder
Hight of cylinder		
h (m)		
Diameter of cylinder		
d (m)		
Radius of cylinder		
r (m)		
Volume of cylinder		
$V = \pi r^2 h (\mathbf{m}^3)$		
$F_B = \rho_{water} \times V_{object} \times g$		
(N)		

Finally, what can you get from this experiment?	
	••••
•••••••••••••	••••
•••••••••••••••••••••••••••••••••••••••	••••

Experiment Title	Viscosity
Experiment Date	/ /
Practical Mark	/5
report Mark	/5
Total Mark	/10

Objective of the experiment
Equipment of the experiment
Calculation:
L (distance between the two marker) =m
ρ (the density of the sphere ball) = 7790 kg / $m^{_3}$. ρ_o (the density of glycerin) = 1260 kg / $m^{_3}$

dimeter of ball d (mm)	dimeter of ball d (m)	radius of the ball $r = d/2 (m)$	square radius r ² (m ²)	Time t (s)	Avenge of time T(s)	$velocity \\ v = L/T \\ (m/s)$

Find the slope for your straight line.
Find viscosity of glycerin η.

Experiment Title	Surface tension
Experiment Date	/ /
Practical Mark	/5
report Mark	/5
Total Mark	/10

Objective of the exper	iment		
Equipment of the expe	eriment		
Calculation:			
d (diameter of the metal rin	$ng) = \dots c$	$m = \dots$	m
$2\pi d = \dots$			m
F_0 (Weight the ring in air)	=	N	
Type of Liquid	water	glycerine	
F ₁ (N)			
$F = F_1 - F_0 (N)$			
$\sigma_{experiment} = \frac{F}{2\pi d} (N/m)$			
$\sigma_{\it theoretical} (N\!/\!m)$			
percentage error (%)			

Experiment Title	Refractive Index of the Materials
Experiment Date	
Practical Mark	/5
report Mark	/5
Total Mark	/10

Objective of the experiment
Equipment of the experiment
First: a rectangular acrylic plate
graph

From graph the incident and refracted angles

i	r_1	r_2	e
What you observe b	etween the incident	and refracted angles	
The index refraction	ı is		
Calculate the percer	itage error:		
	Second: an	acrylic prim	

graph

From graph the incident and refracted angles

i	r_1	r_2	е	Ψ	Ø

The index refraction is		
Calculate the percentage error:		

Experiment Title	Focal Length of Thin Lens
Experiment Date	/ /
Practical Mark	/5
report Mark	/5
Total Mark	/10

ipment of the exp	eriment	• • • • • • • • • • • • • • • • • • • •	
• • • • • • • • • • • • • • • • • • • •			
First,	determined the foca	al length of conv	<u>ex lens</u>
able 1			
Object Distance <i>o</i> (c <i>m</i>)	Image Distance <i>i</i> (cm)	$1/_{0} ((cm)^{-1})$	$\frac{1}{i}$ ((cm)-1)
1. Calculation m	ethod		
$\frac{1}{f} = \frac{1}{o} + \frac{1}{i} \left(\left(\frac{1}{o} + \frac{1}{i} \right) \right)$	(cm)-1)	f(cm)	The average of $f(cm)$
			-
			_

2. Graphical method

From graph,

y _{intercept} ((cm) ⁻¹)	x _{intercept} ((cm) ⁻¹)	$\frac{1}{f} = \frac{y_{\text{intercept}} + x_{\text{intercept}}}{2}$ ((cm) ⁻¹)	f(cm)
the percentage 6	error for focal ler	l ngth	

the percentage error for focal length	
	•••
	•••

Second, determined the focal length of concave lens

Table 2

Object Distance o (cm)	Image Distance <i>i</i> (cm)	1/ ₀ ((c <i>m</i>) ⁻¹)	1/ _i (cm)-1)

1. Calculation method

$\frac{1}{f} = \frac{1}{o} + \frac{1}{i} \left((cm)^{-1} \right)$	f(cm)	The average of $f(cm)$

ne percentage e	rror for focal ler	ngth	
Graphical m	ethod		
Grupmen	<u>ictriou</u>		
om graph,			
om grapm,		1	
y _{intercept} ((cm) ⁻¹)	X _{intercept} ((cm) ⁻¹)	$\frac{1}{f} = \frac{y_{\text{intercept}} + x_{\text{intercept}}}{2}$ ((cm)-1)	f(cm)
 e nercentage e	rror for focal ler	l 10th	
e percentage e	1101 101 10001 101	.5	