Chapter 1 Measurement # Units of Chapter 1: Measurements - The Physical Quantities, Standards and Units - The international System of units - The standard of time - The standard of length - The standard of mass - Dimensional Analysis # Learning goals of this chapter - On completing this chapter, the student will be able to : - Differentiate between the fundamental quantities and the derivative quantities. - Express the physical quantities using the international system of units. - Differentiate between the international system of units and the British system of unit. - Defined The standard of time - Defined The standard of length - Defined The standard of mass - Convert the units of the physical quantities from system to another. - Determine the dimensions of the physical quantity. - Check the physical formula using of Dimensional analysis. ### 1-1 The Physical Quantities, Standards and Units - To describe the physical quantities we need to choose a unit that does not differ from a corresponding quantity physically but has a quite definite dimension. - Every Physical quantity (Y) can be defined as the product of a (unit) multiplied by an abstract number (x): - ☐ Y = X (unit) - For example: - □ Mass = 5 Kg - Physical Quantities - Basic (Length, Mass, Time) - Derived (area, speed, density,) # 1-2 The international System of units | length | meter | m | |---------------------------|----------|-----| | mass | kilogram | kg | | time | second | S | | electric current | ampere | A | | thermodynamic temperature | kelvin | K | | amount of substance | mole | mol | | luminous intensity | candela | cd | # Other System of Units - □ Gaussian System of Units - □ **Length in (cm):** $1 \text{ cm} = 10^{-2} \text{ m}$ - □ Mass in (g): $1 \text{ g} = 10^{-3} \text{ kg}$ - □ Time in (s) - British System of Units - □ Length in feet (ft): 1 foot (ft) = 12 in = 30.48 cm - Mass in Pound (lb): 1 pound (lb) = 453.59 g - Time in second (s) ## **Prefixes** - The standard prefixes are used to designate common multiples in powers of ten. - □ 1 angstrom=10⁻¹⁰ m | TABLE 1-4 Common Prefixes | | | | |---------------------------|--------|--------------|--| | Power | Prefix | Abbreviation | | | 10^{15} | peta | P | | | 10^{12} | tera | T | | | 10^{9} | giga | G | | | 10^{6} | mega | M | | | 10^{3} | kilo | k | | | 10^{2} | hecto | h | | | 10^{1} | deka | da | | | 10^{-1} | deci | d | | | 10^{-2} | centi | c | | | 10^{-3} | milli | m | | | 10^{-6} | micro | μ | | | 10^{-9} | nano | n | | | 10^{-12} | pico | р | | | 10^{-15} | femto | f | | ### 1-3 The Standard of Time - Unit of Time is second (s) - Before 1960, the second was originally defined as $\left(\frac{1}{60}\right) \cdot \left(\frac{1}{60}\right) \cdot \left(\frac{1}{24}\right)$ of the mean solar day. - Now: the second (s) is defined as the time required for Cesium (Cs-133) atom to undergo 9,192,631,770 vibration. # Typical Time Intervals | TABLE 1-3 Typical Times | | |--|----------------------------------| | Age of the universe | $5 \times 10^{17} \mathrm{s}$ | | Age of the Earth | $1.3 \times 10^{17} \mathrm{s}$ | | Existence of human species | $6 \times 10^{13} \mathrm{s}$ | | Human lifetime | $2 \times 10^9 \mathrm{s}$ | | One year | $3 \times 10^7 \mathrm{s}$ | | One day | $8.6 \times 10^4 \mathrm{s}$ | | Time between heartbeats | 0.8 s | | Human reaction time | 0.1 s | | One cycle of a high-
pitched sound wave | $5 \times 10^{-5} \mathrm{s}$ | | One cycle of an AM radio wave | $10^{-6} \mathrm{s}$ | | One cycle of a visible light wave | $2 \times 10^{-15} \mathrm{s}$ | # 1-4 The Standard of Length - SI Unit of Length: the meter (m) - in October 1983, the meter (m) was redefined as the distance traveled by light in vacuum during a time of 1/299 792 458 second. #### **Converting Units of length** - □ 1 inch (in)= 2.54 cm - \Box 1 foot (ft) = 12 in = 30.48 cm - 1 yard (yd) = 3 feet = 36 in= 0.9144 m - □ 1 miles (mi) =1760 yards = 5280 feet = 1,609.344 m - \Box 1 m = 3.281 ft # Typical Length | TABLE 1-1 Typical Distances | | |---|----------------------------------| | Distance from Earth to the nearest large galaxy (the Andromeda galaxy, M31) | $2 \times 10^{22} \mathrm{m}$ | | Diameter of our galaxy (the Milky Way) | $8 \times 10^{20} \mathrm{m}$ | | Distance from Earth to the nearest star (other than the sun) | $4 \times 10^{16} \mathrm{m}$ | | One light year | $9.46 \times 10^{15} \mathrm{m}$ | | Average radius of Pluto's orbit | $6 \times 10^{12} \mathrm{m}$ | | Distance from Earth to the Sun | $1.5 \times 10^{11} \mathrm{m}$ | | Radius of Earth | $6.37 \times 10^{6} \mathrm{m}$ | | Length of a football field | 10^{2}m | | Height of a person | 2 m | | Diameter of a CD | 0.12 m | | Diameter of the aorta | 0.018 m | | Diameter of a period in a sentence | $5 \times 10^{-4} \text{m}$ | | Diameter of a red blood cell | $8 \times 10^{-6} \text{m}$ | | Diameter of the hydrogen atom | $10^{-10} \mathrm{m}$ | | Diameter of a proton | $2 \times 10^{-15} \mathrm{m}$ | ### Problem 1 Any physical quantity can be multiplied by 1 without changing its value. For example, 1 min = 60 s, so 1 = 60 s/1 min; similarly, 1 ft = 12 in, so 1 = 1 ft/12 in. Using appropriate conversion factors, find - (a) the speed in meters per second equivalent to 55 miles per hour, and - (b) the volume in cubic centimeters of a tank that holds 16 gallons of gasoline. Solution (a) For our conversion factors, we need (see Appendix G) 1 mi = 1609 m (so that 1 = 1609 m/1 mi) and 1 h = 3600 s (so 1 = 1 h/3600 s). Thus speed = $$55 \frac{\text{mi}}{\text{l}} \times \frac{1609 \text{ m}}{1 \text{ mi}} \times \frac{1 \text{ lt}}{3600 \text{ s}} = 25 \text{ m/s}.$$ (b) One fluid gallon is 231 cubic inches, and 1 in. = 2.54 cm. Thus volume = $$16 \text{ gat} \times \frac{231 \text{ in.}^3}{1 \text{ gat}} \times \left(\frac{2.54 \text{ cm}}{1 \text{ in.}}\right)^3 = 6.1 \times 10^4 \text{ cm}^3$$. ### Problem 2 A light-year is a measure of length (not a measure of time) equal to the distance that light travels in 1 year. Compute the conversion factor between light-years and meters, and find the distance to the star Proxima Centauri (4.0 X 10¹⁶ m) in light-years. Solution The conversion factor from years to seconds is $$1 y = 1 y \times \frac{365.25 d}{1 y} \times \frac{24 h}{1 d} \times \frac{60 min}{1 h} \times \frac{60 s}{1 min}$$ = 3.16 × 10⁷ s. The speed of light is, to three significant figures, 3.00×10^8 m/s. Thus in 1 year, light travels a distance of $$(3.00 \times 10^8 \text{ m/s}) (3.16 \times 10^7 \text{ s}) = 9.48 \times 10^{15} \text{ m},$$ so that 1 light-year = $$9.48 \times 10^{15}$$ m. The distance to Proxima Centauri is $$(4.0 \times 10^{16} \text{ m}) \times \frac{1 \text{ light-year}}{9.48 \times 10^{15} \text{ m}} = 4.2 \text{ light-years}.$$ ### 1-5 Standard Mass - Unit of Mass: kilogram (kg) - The kilogram (kg), is defined as the mass of a specific platinum—iridium alloy cylinder kept at the International Bureau of Weights and Measures at Sèvres, France. - This mass standard was established in 1887 and has not been changed since that time because platinum—iridium is an unusually stable alloy. #### Converting Unit of Mass The atomic mass unit u is $$1 \text{ u} = 1.661 \times 10^{-27} \text{ kg}$$ 1 pound (lb) = $$453.59 g$$ # **Typical Mass** | TABLE 1–2 Typical Masses | | | |--------------------------|------------------------------------|--| | Galaxy (Milky Way) | $4 \times 10^{41} \mathrm{kg}$ | | | Sun | $2 \times 10^{30} \mathrm{kg}$ | | | Earth | $5.97 \times 10^{24} \mathrm{kg}$ | | | Space shuttle | $2 \times 10^6 \mathrm{kg}$ | | | Elephant | 5400 kg | | | Automobile | 1200 kg | | | Human | 70 kg | | | Baseball | 0.15 kg | | | Honeybee | $1.5 \times 10^{-4} \mathrm{kg}$ | | | Red blood cell | $10^{-13} \mathrm{kg}$ | | | Bacterium | $10^{-15} \mathrm{kg}$ | | | Hydrogen atom | $1.67 \times 10^{-27} \mathrm{kg}$ | | | Electron | $9.11 \times 10^{-31} \mathrm{kg}$ | | # 1-7 Dimensional Analysis - □ **The dimension in physics** refer to the type of quantity in question regardless of the unit used in the measurement. - The symbols we use to specify length, mass, and time are L, M, and T, respectively. - We shall often use brackets [] to denote the dimensions of a physical quantity. For example, the nature of speed v, is length/time, so the dimension of speed [v] = L/T, and nature of the area is length \times length, so the dimension of the area $[A] = L^2$. - Any valid physical formula must be dimensionally consistent- each term of the formula must have the same dimensions. - □ This type of calculation with dimensions is (dimensional analysis). # 1-7 Dimensional Analysis | Quantity | The type | Dimension | |--------------|----------------------------|----------------------| | Distance | Length | L | | Area | Length × Length | L^2 | | Volume | (Length) ³ | L^3 | | Velocity | Length/time | L/T | | Acceleration | Length/time ² | L/T^2 | | Force | $Mass \times acceleration$ | ML/T^2 | | Pressure | Force/area | $ML/T^2L^2 = M/T^2L$ | | Density | Mass/volume | M/L^3 | ### Problem 4 To keep an object moving in a circle at constant speed requires a force called the "centripetal force". Use the dimensional analysis to predict the formula of centripetal force F, if you know that F depends on its mass m, its speed v, and the radius r of its circular path. #### Solution: - $lue{}$ Suppose that $F lpha ma v^b r^c$ - where the symbol " α " means "is proportional to," and where a, b, and c are numerical exponents to be determined from analyzing the dimensions. - □ The dimensions of the left hand side: the force $[F] = MLT^{-2}$ ### Problem 4 - □ The dimension of the right hand side = $[m^a][v^b][r^c]$ = $Ma(L/T)^b L^c$ - \square Therefore, $MLT^2 = M^a L^{b+c} T^{-b}$ - Dimensional consistency means that the fundamental dimensions must be the same on each side. Thus, equating the exponents, exponent of M: a = 1 exponent of T: b = 2 exponent of L: b + c = 1 so c = -1: The resulting expression is $F \propto \frac{mv^2}{r}$ # Solved problems - 1- if you know that the acceleration of gravity in SI unit equals g=9.8 ms⁻², find the acceleration in British System of Units. - Solution: - \square Since 1 m = 3.28 ft, then - $g = 9.80665 \ ms^{-2} = 9.80665 \times 3.2808 \ (ft \ s^{-2}) = 32.174 \ ft/s^2$ - \square 2- if you know that the force is given by Force = Mass \times acceleration , Fined the unit , of the force in SI unit and the British system of unit. - Solution: - The force F = ma, the dimension of the force is MLT^{-2} . - \Box The unit of the force in SI unit is kg.m.s⁻² which is known as Newton (N). - In Britch system of unit, we use the expression pound-force which is equal to the gravitational force exerted on a mass of one pound, i.e., - □ 1 Pound-force (1 lbf) = 1 lb (pound-mass) \times gravity - 1 lbf = $1 lb \times 32.174 (ft/s^2) = 32.174 lb.ft/s^2 = 1 slug \times ft/s^2$ - □ Where 1 slug = 32.174 lb - 1 lbf = $0.45359 kg \times 9.8 m/s^2 = 4.4443 N$ # Ch.1 Summary #### PHYSICS AND THE LAWS OF NATURE Physics is based on a small number of fundamental laws and principles. #### UNITS OF LENGTH, MASS, AND TIME #### Length Was: one ten-millionth of the distance from the North Pole to the equator Now: One meter is defined as the distance traveled by the light in vacuum in 1/299,792,458 second. #### Mass One Kilogram is the mass of a metal cylinder kept at the international Bureau of Weights and Standards, Sevres, France. #### **Time** One second is the time required for a particular type of radiation from Cesium-133 to undergo 9,192,631,770 oscillations. # Ch.1 Summary #### **DIMENSIONAL ANALYSIS** #### **Dimension:** The dimension of a quantity is the type of quantity it is, for example, Length [L], mass [M], or time [T]. #### **Dimensional Consistency** An equation is dimensionally consistent if each term in it has the same dimensions. All valid physical equations are dimensionally consistent. #### **Dimensional Analysis:** A calculation based on the dimensional consistency of an equation. #### **CONVERTING UNITS** Multiply by the ratio of two units to convert from one to another. As an example, to convert 3.5 m t feet, you multiply by the factor (1ft/0.3048 m) $$\square$$ 1 yard (yd) = 0.9144 m 1 inch (in)= 2.54 cm $$\square$$ 1 miles (mi) = 1,609.344 m 1 yard (yd) = 3 feet (ft) $$\square$$ 1 foot (ft) = 30.48 cm 1 m = 3.281 ft ### Homework - 1. The earth is approximately a sphere of radius 6.37×10⁶ m. (a) What is its circumference in kilometers? (b) what its volume in cubic kilometers? - 2. A room has dimensions of 21 ft \times 13 ft \times 12 ft. What is the mass of the air it contains? The density of air at room temperature and normal atmospheric pressure is 1.21 Kg/m³. - 3. Show that $v=v_o+at$ is dimensionally consistent, where v and v_o are velocities and a is the acceleration and t is the time. - 4. Show that $x=x_o+v_ot+at^2$ is dimensionally consistent, where x and x_o are distances and v_o is a velocity and a is the acceleration.