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Mathematical Formulas*

Quadratic Formula Derivatives and Integrals
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1]k 2 4 22 20,2 o 2\R
P > (x* + a?) a*(x* + a?%)
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b, b, b, Cramer’s Rule
Two simult ti i k dy,
:’1\ ay az s a, az N 12 a, ay WO Simultaneous equations i unknowns x and y
b, b, b, b, b, b, ax + by =c¢; and ax + by = ¢,

have the solutions
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Trigonometric Identities 22
and
sin @ = sin B = 2sin 3(a = B) cos i(a = B)
a G
cos a + cos B = 2 cos 3(a + B) cos 3(a — B) y = B2 Gl _ ;6 — @
a; b ab, — aby
*See Appendix E for a more complete list. a, b,

S| Prefixes*

Factor Prefix ~ Symbol Factor  Prefix Symbol

10% yotta Y 107! deci d
107! zetta V4 107 centi c
108 exa E 1073 milli m
101 peta P 107 micro “
10'2 tera T 107 nano n
10° giga G 10712 pico P
106 mega M 10713 femto f
10° kilo k 10718 atto a
10? hecto h 1072 zepto z
10! deka da 107 yocto y

*In all cases, the first syllable is accented, as in nd-no-mé-ter.
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PREFACE

WHY | WROTE THIS BOOK

Fun with a big challenge. That is how I have regarded physics since the day when Sharon, one of the
students in a class I taught as a graduate student, suddenly demanded of me, “What has any of this
got to do with my life?” Of course I immediately responded, “Sharon, this has everything to do with
your life—this is physics.”

She asked me for an example. I thought and thought but could not come up with a single one. That
night I began writing the book The Flying Circus of Physics (John Wiley & Sons Inc., 1975) for
Sharon but also for me because I realized her complaint was mine. I had spent six years slugging my
way through many dozens of physics textbooks that were carefully written with the best of pedagog-
ical plans, but there was something missing. Physics is the most interesting subject in the world
because it is about how the world works, and yet the textbooks had been thoroughly wrung of any
connection with the real world. The fun was missing.

I have packed a lot of real-world physics into this HRW book, connecting it with the new edition
of The Flying Circus of Physics. Much of the material comes from the HRW classes I teach, where |
can judge from the faces and blunt comments what material and presentations work and what do
not. The notes I make on my successes and failures there help form the basis of this book. My mes-
sage here is the same as I had with every student I’ve met since Sharon so long ago: “Yes, you can
reason from basic physics concepts all the way to valid conclusions about the real world, and that
understanding of the real world is where the fun is.”

I have many goals in writing this book but the overriding one is to provide instructors with tools
by which they can teach students how to effectively read scientific material, identify fundamental
concepts, reason through scientific questions, and solve quantitative problems. This process is not
easy for either students or instructors. Indeed, the course associated with this book may be one of
the most challenging of all the courses taken by a student. However, it can also be one of the most
rewarding because it reveals the world’s fundamental clockwork from which all scientific and engi-
neering applications spring.

Many users of the eighth edition (both instructors and students) sent in comments and suggestions
to improve the book.These improvements are now incorporated into the narrative and problems
throughout the book. The publisher John Wiley & Sons and I regard the book as an ongoing project
and encourage more input from users. You can send suggestions, corrections, and positive or negative
comments to John Wiley & Sons or Jearl Walker (mail address: Physics Department, Cleveland State
University, Cleveland, OH 44115 USA; or email address: physics@wiley.com; or the blog site at
www.flyingcircusofphysics. com). We may not be able to respond to all suggestions, but we keep and
study each of them.

LEARNINGS TOOLS

Because today’s students have a wide range of learning styles, I
have produced a wide range of learning tools, both in this new edi- Fundamentals of Physics, 3e
tion and online in WileyPLUS:

Animation

@\ ANIMATIONS of one of the key figures in each chapter.
*) Here in the book, those figures are flagged with the
swirling icon. In the online chapter in WileyPLUS, a mouse click
begins the animation. I have chosen the figures that are rich in
information so that a student can see the physics in action and
played out over a minute or two instead of just being flat on a
printed page. Not only does this give life to the physics, but the ani-
mation can be repeated as many times as a student wants.

“wiev e VIDEDS I have made well over 1000 instructional
PLUS videos, with more coming each semester. Students can
watch me draw or type on the screen as they hear me talk about a
solution, tutorial, sample problem, or review, very much as they

xXvii
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would experience were they sitting next to me in my office
while I worked out something on a notepad. An instruc-
tor’s lectures and tutoring will always be the most valuable
learning tools, but my videos are available 24 hours a day,
7 days a week, and can be repeated indefinitely.

* Video tutorials on subjects in the chapters. I chose the
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subjects that challenge the students the most, the ones that
my students scratch their heads about.

[ Close

GO Tutorial

This GO Tukarial will provide vou with & step-by-step guide on how to approach this
problem. When you are finished, go back and try the problem again on your own, To
view theonginar‘qhestmn while you work, you can just drag this screen to the side,
(This GO Tutorial consists of 6 steps)..

Step 1.1 : Concept — Evaluate quantities

KET IDEAS!

(1) We want the net farce on particle 1 to be a certain value (2era), Thus, we choose
particle 1 as our swstem

(2) Because particles 1 and 4 have the same sign:of charge, they repel each cther.

(3} In order for the net force on particle 1 to be zera, the forces on it due to particles 2
and 3 must be sttractive, to counter the repulsive fores,

4) Because the net force on particle 105 zero, the = component and the ¥ component
of that net foree must each be zero, ) )

GETTING STARTED: We need to consider each of the three forces actng an particle 1. | =

we start with the force dus to particle 4. What is the distance between particles 1 and

Number Units | [w]

the tolerance s +{-2%
| Check YourInput
Step 1.7 : Concept — Evaluate quantities

What is the magnitude of the force on particle 1 due to particle 47
Humber Units ]

the tolerante is +7-2%

Check Your Input

Step 1.1 i Concept — Evaluate quantities

Whict of the vectars i Figure-{1 or 2} best shows the force on particle 1 due to

patticle 42

02

o1

Step 1.4 : Concept - Evaluate quantities

What is the maghitids af the ¥ corpanent that forcs?
Number Units | [w]
the tolsrance Is +{-2%

Step 1.5 : Concept — Evaluate quantities

Ta countsr that ¥ component, should the farce on particle 1 due to-particle 2 be
leftward or rightward?

5 rightward

& leftward

| Check Your Input

Step 1.5 : Concept — Evaluate quantities

What s the magnitude of the force on particle 1 due to particle 27
Number Units | In]
the toleramre &5 /2%

| Check Your Input

Now that yau know, how to solve the problem, goback and try again on yoUr s
i

GO Tutorial

'Che[kVuurIn;lul'

o]
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* Video reviews of high school
math, such as basic algebraic manip-
ulations, trig functions, and simulta-
neous equations.

Video Review

¢ Video introductions to math, such as vector multiplication, that will be new
to the students.

* Video presentations of every Sample Problem in the textbook chapters
(both 8e and 9¢). My intent is to work out the physics, starting with the Key
Ideas instead of just grabbing a formula. However, I also want to demonstrate
how to read a sample problem, that is, how to read technical material to learn
problem-solving procedures that can be transferred to other types of problems.

* Video solutions to 20% of the end-of chapter problems. The availability and
timing of these solutions are controlled by the instructor. For example, they
might be available after a homework deadline or a quiz. Each solution is not
simply a plug-and-chug recipe. Rather I build a solution from the Key Ideas to
the first step of reasoning and to a final solution. The student learns not just
how to solve a particular problem but how to tackle any problem, even those
that require physics courage.

* Video examples of how to read data from graphs (more than simply read-
ing off a number with no comprehension of the physics).
witey Y READING MATERIAL I have written a large number of reading
PLUS resources for WileyPLUS.

* Every sample problem in the textbook (both 8¢ and 9e) is available online
in both reading and video formats.

* Hundreds of additional sample problems. These are available as stand-
alone resources but (at the discretion of the instructor) they are also linked
out of the homework problems. So, if a homework problem deals with, say,
forces on a block on a ramp, a link to a related sample problem is provided.
However, the sample problem is not just a replica of the homework problem
and thus does not provide a solution that can be merely duplicated without

comprehension.

@ * GO Tutorials for 10% of the end-of-chapter homework problems. In
multiple steps, I lead a student through a homework problem, starting

with the Key Ideas and giving hints when wrong answers are submitted.

However, I purposely leave the last step (for the final answer) to the student

so that they are responsible at the end. Some online tutorial systems trap a student when wrong

answers are given, which can generate a lot of frustration. My GO Tutorials are not traps, because at
any step along the way, a student can return to the main problem.

e Hints on every end-of-chapter homework problem are available online (at the discretion of the
instructor). I wrote these as true hints about the main ideas and the general procedure for a solution,
not as recipes that provide an answer without any comprehension.

WILEY ©
PLUS

EVALUATION MATERIALS Both self-evaluations and instructor evaluations are available.

* Reading questions are available within each online section. I wrote these so that they do
not require analysis or any deep understanding; rather they simply test whether a student has read the



section. When a student opens up a section, a randomly chosen read-
ing question (from a bank of questions) appears at the end. The
instructor can decide whether the question is part of the grading for
that section or whether it is just for the benefit of the student.

\.CHECKPOINT 1

* Checkpoints are available within most sections. I wrote these so
that they require analysis and decisions about the physics in the
section. Answers to all checkpoints are in the back of the book.

both cases, draw v on the figure.

¢ All end-of-chapter homework questions and problems in the book (and many more problems)
are available in WileyPLUS. The instructor can construct a homework assignment and control
how it is graded when the answers are submitted online. For example, the instructor controls the
deadline for submission and how many attempts a student is allowed on an answer. The

instructor also controls which, if any, learning aids are available with

Xix
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The figure shows a circular path taken by a particle. If
the instantaneous velocity of the particle is
V = (2m/s)i — (2m/s)j, through which quadrant is the
particle moving at that instant if it is traveling (a) clock-
wise and (b) counterclockwise around the circle? For

Checkpoint

Expanded Figure

each homework problem. Such links can include hints, sample prob-

@

lems, in-chapter reading materials, video tutorials, video math
reviews, and even video solutions (which can be made available to
the students after, say, a homework deadline).

7 Vertical motion + ntal motion

* Symbolic notation problems are available in every chapter and

This vertical motion plus
this horizontal motion
produces this projectie motion.

i [Vertical velocity

o

require algebraic answers.

witey o DEMONSTRATIONS AND INTERACTIVE SIMULATIONS o
PL These have been produced by a number of instructors, to ’
provide the experience of a computerized lab and lecture-room
demonstrations.

oL

ART PROGRAM
° Many of the figures in the book have been modified to make the

physics ideas more pronounced.

e At least one key figure per chapter has been greatly expanded so
that its message is conveyed in steps.

FLYING CIRCUS OF PHYSICS

e Flying Circus material has been incorporated into the text in several ways: Sample
Problems, text examples, and end-of-chapter Problems. The purpose of this is two-fold: (1)
make the subject more interesting and engaging, (2) show the student that the world around
them can be examined and understood using the fundamental principles of physics.

e Links to The Flying Circus of Physics are shown throughout the text material and end-of-
chapter problems with a biplane icon. <%= In the electronic version of this book, click-
ing on the icon takes you to the corresponding item in Flying Circus. The bibliography of
Flying Circus (over 11 000 references to scientific and engineering journals) is located at
www.flyingcircusofphysics.com.

SAMPLE PROBLEMS are chosen to demonstrate how problems can be solved with reasoned solu-
tions rather than quick and simplistic plugging of numbers into an equation with no regard for what
the equation means.

KEY IDEAS in the sample problems focus a student on the basic concepts at the root of the solution
to a problem. In effect, these key ideas say, “We start our solution by using this basic concept, a pro-
cedure that prepares us for solving many other problems.We don’t start by grabbing an equation for
a quick plug-and-chug, a procedure that prepares us for nothing.”

\WHAT IS PHYSICS? The narrative of every chapter begins with this question, and with an answer
that pertains to the subject of the chapter. (A plumber once asked me, “What do you do for a liv-
ing?” I replied, “I teach physics.” He thought for several minutes and then asked, “What is physics?”
The plumber’s career was entirely based on physics, yet he did not even know what physics is. Many
students in introductory physics do not know what physics is but assume that it is irrelevant to their
chosen career.)
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ICONS FOR ADDITIONAL HELP. When worked-out solutions are provided either in print or elec-
tronically for certain of the odd-numbered problems, the statements for those problems include an
icon to alert both student and instructor as to where the solutions are located. An icon guide is pro-
vided here and at the beginning of each set of problems

@ Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign
SSM  Worked-out solution available in Student Solutions Manual WWW Worked-out solution is at
e —ee  Number of dots indicates level of problem difficulty ILW Interactive solution is at

http://www.wiley.com/college/halliday

<4~ Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

Icon Guide

VERSIONS OF THE TEXT

To accommodate the individual needs of instructors and students, the ninth edition of Fundamentals
of Physics is available in a number of different versions.

The Regular Edition consists of Chapters 1 through 37 (ISBN 978-0-470-04472-8).

The Extended Edition contains seven additional chapters on quantum physics and cosmology,
Chapters 1-44 (ISBN 978-0-471-75801-3).

Both editions are available as single, hardcover books, or in the following alternative versions:
Volume 1 - Chapters 1-20 (Mechanics and Thermodynamics), hardcover, ISBN 978-0-47004473-5
Volume 2 - Chapters 21-44 (E&M, Optics, and Quantum Physics), hardcover, ISBN 978-0-470-04474-2

INSTRUCTOR SUPPLEMENTS

INSTRUCTOR’S SOLUTIONS MANUAL by Sen-Ben Liao, Lawrence Livermore National Laboratory.
This manual provides worked-out solutions for all problems found at the end of each chapter.

INSTRUCTOR COMPANION SITE http://www.wiley.com/college/halliday

e Instructor’'s Manual This resource contains lecture notes outlining the most important topics of
each chapter; demonstration experiments; laboratory and computer projects; film and video
sources; answers to all Questions, Exercises, Problems, and Checkpoints; and a correlation guide
to the Questions, Exercises, and Problems in the previous edition. It also contains a complete list
of all problems for which solutions are available to students (SSM,WWW, and ILW).

e Lecture PowerPoint Slides by Sudipa Kirtley of The Rose Hulman Institute. These PowerPoint slides
serve as a helpful starter pack for instructors, outlining key concepts and incorporating figures and
equations from the text.

e Classroom Response Systems (“Clicker”) Questions by David Marx, Illinois State University. There
are two sets of questions available: Reading Quiz questions and Interactive Lecture questions. The
Reading Quiz questions are intended to be relatively straightforward for any student who reads
the assigned material. The Interactive Lecture questions are intended for use in an interactive lec-
ture setting.

e Wiley Physics Simulations by Andrew Duffy, Boston University. This is a collection of 50 interactive
simulations (Java applets) that can be used for classroom demonstrations.

e Wiley Physics Demonstrations by David Maiullo, Rutgers University. This is a collection of digital
videos of 80 standard physics demonstrations. They can be shown in class or accessed from the
Student Companion site. There is an accompanying Instructor’s Guide that includes “clicker”
questions.

e Test Bank The Test Bank includes more than 2200 multiple-choice questions. These items are also
available in the Computerized Test Bank which provides full editing features to help you cus-
tomize tests (available in both IBM and Macintosh versions). The Computerized Test Bank is
offered in both Diploma and Respondus.

e [nstructor’s Solutions Manual, in both MSWord and PDF files.

e All text illustrations, suitable for both classroom projection and printing.
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ONLINE HOMEWORK AND QUIZZING. In addition to WileyPLUS, Fundamentals of Physics, ninth
edition, also supports WebAssignPLUS and LON-CAPA, which are other programs that give
instructors the ability to deliver and grade homework and quizzes online. WebAssign PLUS also
offers students an online version of the text.

STUDENT SUPPLEMENTS

STUDENT COMPANION SITE. The web site http://www.wiley.com/college/halliday was developed
specifically for Fundamentals of Physics, ninth edition, and is designed to further assist students in the
study of physics. It includes solutions to selected end-of-chapter problems (which are identified with a
www icon in the text); self-quizzes; simulation exercises; tips on how to make best use of a programma-
ble calculator; and the Interactive LearningWare tutorials that are described below.

STUDENT STUDY GUIDE by Thomas Barrett of Ohio State University. The Student Study Guide
consists of an overview of the chapter’s important concepts, problem solving techniques and detailed
examples.

STUDENT SOLUTIONS MANUAL by Sen-Ben Liao, Lawrence Livermore National Laboratory. This
manual provides students with complete worked-out solutions to 15 percent of the problems found
at the end of each chapter within the text. The Student Solutions Manual for the ninth edition is writ-
ten using an innovative approach called TEAL which stands for Think, Express, Analyze, and Learn.
This learning strategy was originally developed at the Massachusetts Institute of Technology and has
proven to be an effective learning tool for students. These problems with TEAL solutions are indi-
cated with an SSM icon in the text.

INTERACTIVE LEARNINGWARE. This software guides students through solutions to 200 of the end-
of-chapter problems. These problems are indicated with an ILW icon in the text. The solutions
process is developed interactively, with appropriate feedback and access to error-specific help for the
most common mistakes.

INTRODUCTORY PHYSICS WITH CALCULUS AS A SECOND LANGUAGE: Mastering Problem
Solving by Thomas Barrett of Ohio State University. This brief paperback teaches the student how
to approach problems more efficiently and effectively. The student will learn how to recognize com-
mon patterns in physics problems, break problems down into manageable steps, and apply appropri-
ate techniques. The book takes the student step by step through the solutions to numerous examples.
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MEASUREMENT

WHAT IS PHYSICS?

Science and engineering are based on measurements and comparisons.

Thus, we need rules about how things are measured and compared, and we need
experiments to establish the units for those measurements and comparisons. One
purpose of physics (and engineering) is to design and conduct those experiments.
For example, physicists strive to develop clocks of extreme accuracy so that
any time or time interval can be precisely determined and compared. You may
wonder whether such accuracy is actually needed or worth the effort. Here is
one example of the worth: Without clocks of extreme accuracy, the Global
Positioning System (GPS) that is now vital to worldwide navigation would be useless.

1-2 Measuring Things

We discover physics by learning how to measure the quantities involved in
physics. Among these quantities are length, time, mass, temperature, pressure,
and electric current.

We measure each physical quantity in its own units, by comparison with a
standard. The unit is a unique name we assign to measures of that quantity—for
example, meter (m) for the quantity length. The standard corresponds to exactly
1.0 unit of the quantity. As you will see, the standard for length, which corre-
sponds to exactly 1.0 m, is the distance traveled by light in a vacuum during a
certain fraction of a second. We can define a unit and its standard in any way we
care to. However, the important thing is to do so in such a way that scientists
around the world will agree that our definitions are both sensible and practical.

Once we have set up a standard—say, for length—we must work out proce-
dures by which any length whatever, be it the radius of a hydrogen atom, the
wheelbase of a skateboard, or the distance to a star, can be expressed in terms of
the standard. Rulers, which approximate our length standard, give us one such
procedure for measuring length. However, many of our comparisons must be
indirect. You cannot use a ruler, for example, to measure the radius of an atom
or the distance to a star.

There are so many physical quantities that it is a problem to organize them.
Fortunately, they are not all independent; for example, speed is the ratio of a
length to a time. Thus, what we do is pick out—by international agreement—
a small number of physical quantities, such as length and time, and assign standards
to them alone. We then define all other physical quantities in terms of these base
quantities and their standards (called base standards). Speed, for example, is de-
fined in terms of the base quantities length and time and their base standards.

Base standards must be both accessible and invariable. If we define the
length standard as the distance between one’s nose and the index finger on an
outstretched arm, we certainly have an accessible standard—but it will, of course,
vary from person to person. The demand for precision in science and engineering
pushes us to aim first for invariability. We then exert great effort to make dupli-
cates of the base standards that are accessible to those who need them.

CHAPTER
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CHAPTER 1 MEASUREMENT

Units for Three S| Base Quantities

Quantity Unit Name Unit Symbol
Length meter m

Time second S

Mass kilogram kg

1-3 The International System of Units

In 1971, the 14th General Conference on Weights and Measures picked seven
quantities as base quantities, thereby forming the basis of the International
System of Units, abbreviated SI from its French name and popularly known as
the metric system. Table 1-1 shows the units for the three base quantities—
length, mass, and time—that we use in the early chapters of this book. These
units were defined to be on a “human scale.”

Many SI derived units are defined in terms of these base units. For example,
the SI unit for power, called the watt (W), is defined in terms of the base units
for mass, length, and time. Thus, as you will see in Chapter 7,

1 watt = 1 W =1 kg-m?s’, (1-1)

where the last collection of unit symbols is read as kilogram-meter squared per
second cubed.

To express the very large and very small quantities we often run into in
physics, we use scientific notation, which employs powers of 10. In this notation,

3560 000 000 m = 3.56 X 10° m (1-2)
and 0.000000492 s = 4.92 X 1077 . (1-3)

Scientific notation on computers sometimes takes on an even briefer look, as in
3.56 E9 and 4.92 E-7, where E stands for “exponent of ten.” It is briefer still on
some calculators, where E is replaced with an empty space.

As a further convenience when dealing with very large or very small mea-
surements, we use the prefixes listed in Table 1-2. As you can see, each prefix
represents a certain power of 10, to be used as a multiplication factor. Attaching
a prefix to an SI unit has the effect of multiplying by the associated factor. Thus,
we can express a particular electric power as

1.27 X 10° watts = 1.27 gigawatts = 1.27 GW (1-4)
or a particular time interval as
2.35 X 107% s = 2.35 nanoseconds = 2.35 ns. (1-5)

Some prefixes, as used in milliliter, centimeter, kilogram, and megabyte, are
probably familiar to you.

Table 1-2

Prefixes for S| Units

Factor Prefix® Symbol Factor Prefix? Symbol
10% yotta- Y 107! deci- d
107! zetta- Z 102 centi- ¢
10" exa- E 10-3 milli- m
107 peta- P 10— micro- i
1012 tera- T 10~° nano- n
10° giga- G 1012 pico- p
106 mega- M 107 femto- f
10° kilo- k 10718 atto- a
10? hecto- h 1072 zepto- z
10! deka- da 107 yocto- y

“The most frequently used prefixes are shown in bold type.




1-4 Changing Units

We often need to change the units in which a physical quantity is expressed.
We do so by a method called chain-link conversion. In this method, we multi-
ply the original measurement by a conversion factor (a ratio of units that is
equal to unity). For example, because 1 min and 60 s are identical time inter-
vals, we have

1 min 60s
60 s =1 and 1min

Thus, the ratios (1 min)/(60s) and (60 s)/(1 min) can be used as conversion
factors. This is not the same as writing & = 1 or 60 = 1; each number and its unit
must be treated together.

Because multiplying any quantity by unity leaves the quantity unchanged, we
can introduce conversion factors wherever we find them useful. In chain-link
conversion, we use the factors to cancel unwanted units. For example, to convert
2 min to seconds, we have

60 s
1 mint

2min = (2 min)(1) = (2 m—m)( ) = 120s. (1-6)

If you introduce a conversion factor in such a way that unwanted units do not
cancel, invert the factor and try again. In conversions, the units obey the same
algebraic rules as variables and numbers.

Appendix D gives conversion factors between SI and other systems of units,
including non-SI units still used in the United States. However, the conversion
factors are written in the style of “1 min = 60 s” rather than as a ratio. So, you
need to decide on the numerator and denominator in any needed ratio.

1-5 Length

In 1792, the newborn Republic of France established a new system of weights
and measures. Its cornerstone was the meter, defined to be one ten-millionth of
the distance from the north pole to the equator. Later, for practical reasons, this
Earth standard was abandoned and the meter came to be defined as the dis-
tance between two fine lines engraved near the ends of a platinum-iridium bar,
the standard meter bar, which was kept at the International Bureau of Weights
and Measures near Paris. Accurate copies of the bar were sent to standardizing
laboratories throughout the world. These secondary standards were used to
produce other, still more accessible standards, so that ultimately every measur-
ing device derived its authority from the standard meter bar through a compli-
cated chain of comparisons.

Eventually, a standard more precise than the distance between two fine
scratches on a metal bar was required. In 1960, a new standard for the meter,
based on the wavelength of light, was adopted. Specifically, the standard for the
meter was redefined to be 1 650 763.73 wavelengths of a particular orange-red
light emitted by atoms of krypton-86 (a particular isotope, or type, of krypton) in
a gas discharge tube that can be set up anywhere in the world. This awkward
number of wavelengths was chosen so that the new standard would be close to
the old meter-bar standard.

By 1983, however, the demand for higher precision had reached such a
point that even the krypton-86 standard could not meet it, and in that year a
bold step was taken. The meter was redefined as the distance traveled by light

1-5 LENGTH
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in a specified time interval. In the words of the 17th General Conference on
Weights and Measures:

= The meter is the length of the path traveled by light in a vacuum during a time interval
of 1/299 792 458 of a second.

This time interval was chosen so that the speed of light c is exactly

Measurements of the

¢ =299792 458 m/s.

speed of light had become extremely precise, so it made sense

to adopt the speed of light as a defined quantity and to use it to redefine the meter.

Table 1-3 shows

a wide range of lengths, from that of the universe (top line)

to those of some very small objects.

Table 1-3

Some Approximate Lengths

Measurement Length in Meters
Distance to the first galaxies formed 2 X 10%
Distance to the Andromeda galaxy 2 X 102
Distance to the nearby star Proxima Centauri 4 x10'°
Distance to Pluto 6 X 102
Radius of Earth 6 X 10°
Height of Mt. Everest 9 x 10°
Thickness of this page 1x10™*
Length of a typical virus 1x10°8
Radius of a hydrogen atom 5x 1071
Radius of a proton 1X1075

Sample Problem

Estimating order of magnitude, ball of string

The world’s largest ball of string is about 2 m in radius. To
the nearest order of magnitude, what is the total length L of
the string in the ball?

KEY IDEA

We could, of course, take the ball apart and measure the total
length L, but that would take great effort and make the ball’s
builder most unhappy. Instead, because we want only the
nearest order of magnitude, we can estimate any quantities re-
quired in the calculation.

Calculations: Let us assume the ball is spherical with ra-
dius R = 2 m. The string in the ball is not closely packed
(there are uncountable gaps between adjacent sections of
string). To allow for these gaps, let us somewhat overesti-
mate the cross-sectional area of the string by assuming the
cross section is square, with an edge length d =4 mm.

WILEY ©

Then, with a cross-sectional area of d? and a length L, the
string occupies a total volume of

V = (cross-sectional area)(length) = d>L.

This is approximately equal to the volume of the ball, given
by 3R, which is about 4R® because 7 is about 3. Thus, we
have

d’L = 4R3,

4R? 42 m)®
L = =
o 2 (4 x10°m)y
=2 X 10°m~10°m = 10> km.
(Answer)

(Note that you do not need a calculator for such a simplified
calculation.) To the nearest order of magnitude, the ball
contains about 1000 km of string!

PLUS Additional examples, video, and practice available at WileyPLUS




1-6 Time

Time has two aspects. For civil and some scientific purposes, we want to know
the time of day so that we can order events in sequence. In much scientific work,
we want to know how long an event lasts. Thus, any time standard must be able
to answer two questions: “When did it happen?” and “What is its duration?”
Table 1-4 shows some time intervals.

Some Approximate Time Intervals

Measurement Time Interval in Seconds
Lifetime of the proton (predicted) 3 X 10%
Age of the universe 5 x 107
Age of the pyramid of Cheops 1 x 101
Human life expectancy 2 X 10°
Length of a day 9 % 10*
Time between human heartbeats 8 x 107!
Lifetime of the muon 2 X107
Shortest lab light pulse 1x 10716
Lifetime of the most unstable particle 1Xx107%
The Planck time® 1X10°%

“This is the earliest time after the big bang at which the laws of physics as we
know them can be applied.

Any phenomenon that repeats itself is a possible time standard. Earth’s
rotation, which determines the length of the day, has been used in this way for
centuries; Fig. 1-1 shows one novel example of a watch based on that rotation.
A quartz clock, in which a quartz ring is made to vibrate continuously, can be
calibrated against Earth’s rotation via astronomical observations and used to
measure time intervals in the laboratory. However, the calibration cannot be
carried out with the accuracy called for by modern scientific and engineering
technology.

To meet the need for a better time standard, atomic clocks have been devel-
oped. An atomic clock at the National Institute of Standards and Technology

Fig. 1-1  When the metric system was proposed in
1792, the hour was redefined to provide a 10-hour
day. The idea did not catch on. The maker of this 10-
hour watch wisely provided a small dial that kept
conventional 12-hour time. Do the two dials indicate
the same time? (Steven Pitkin)

1-6 TIME
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Fig. 1-3 The international 1 kg standard
of mass, a platinum—iridium cylinder 3.9 cm
in height and in diameter. (Courtesy Bureau
International des Poids et Mesures, France)
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Fig. 1-2 Variations in the length of the day over a 4-year period. Note that the entire
vertical scale amounts to only 3 ms (= 0.003 s).

(NIST) in Boulder, Colorado, is the standard for Coordinated Universal Time
(UTC) in the United States. Its time signals are available by shortwave radio
(stations WWV and WWVH) and by telephone (303-499-7111). Time signals
(and related information) are also available from the United States Naval
Observatory at website http://tycho.usno.navy.mil/time.html. (To set a clock
extremely accurately at your particular location, you would have to account for
the travel time required for these signals to reach you.)

Figure 1-2 shows variations in the length of one day on Earth over a 4-year
period, as determined by comparison with a cesium (atomic) clock. Because the
variation displayed by Fig. 1-2 is seasonal and repetitious, we suspect the rota-
ting Earth when there is a difference between Earth and atom as timekeepers.
The variation is due to tidal effects caused by the Moon and to large-scale winds.

The 13th General Conference on Weights and Measures in 1967 adopted
a standard second based on the cesium clock:

-_
W One second is the time taken by 9 192 631 770 oscillations of the light (of a speci-

fied wavelength) emitted by a cesium-133 atom.

Atomic clocks are so consistent that, in principle, two cesium clocks would have to
run for 6000 years before their readings would differ by more than 1 s. Even such
accuracy pales in comparison with that of clocks currently being developed; their
precision may be 1 partin 10'8—thatis, 1 sin 1 X 10'® s (which is about 3 X 10! y).

1-7 Mass
The Standard Kilogram

The SI standard of mass is a platinum—iridium cylinder (Fig. 1-3) kept at the
International Bureau of Weights and Measures near Paris and assigned, by
international agreement, a mass of 1 kilogram. Accurate copies have been sent
to standardizing laboratories in other countries, and the masses of other bodies
can be determined by balancing them against a copy. Table 1-5 shows some
masses expressed in kilograms, ranging over about 83 orders of magnitude.

The U.S. copy of the standard kilogram is housed in a vault at NIST. It is
removed, no more than once a year, for the purpose of checking duplicate


http://tycho.usno.navy.mil/time.html

1-7 MASS 7

copies that are used elsewhere. Since 1889, it has been taken to France twice for Table 1-5

recomparison with the primary standard. Some Approximate Masses

Mass in

A Second Mass Standard Object Kilograms
The masses of atoms can be compared with one another more precisely than Known universe 1 X 10%
they can be compared with the standard kilogram. For this reason, we have  Qur galaxy 2 % 101
a second mass standard. It is the carbon-12 atom, which, by international agree- Sun 2 % 1030
Elim, hatshbteen as§t1gped a mass of 12 atomic mass units (u). The relation . 7 % 102
ctween the tWo units 15 Asteroid Eros 5% 10%
1u = 1.66053886 x 107 kg, (1-7)  Small mountain 1 x 102
1 7
with an uncertainty of =10 in the last two decimal places. Scientists can, with Ocean liner 7 103
reasonable precision, experimentally determine the masses of other atoms  Elephant 5x10
relative to the mass of carbon-12. What we presently lack is a reliable means ~ Grape 3x107
of extending that precision to more common units of mass, such as a kilo-  Speck of dust 71071
gram. Penicillin molecule 5x107"7
Uranium atom 4x107%
Densit Proton 2x107%
ensity Electron 9 x 1073

As we shall discuss further in Chapter 14, density p (lowercase Greek letter rho)
is the mass per unit volume:

=— 1-8
P=7 (1-8)
Densities are typically listed in kilograms per cubic meter or grams per cubic
centimeter. The density of water (1.00 gram per cubic centimeter) is often used as
a comparison. Fresh snow has about 10% of that density; platinum has a density
that is about 21 times that of water.

Sample Problem

Density and liquefaction

A heavy object can sink into the ground during an carth

quake if the shaking causes the ground to undergo liquefac-
tion, in which the soil grains experience little friction as they
slide over one another. The ground is then effectively quick-
sand. The possibility of liquefaction in sandy ground can be

The density of the sand p,,,q in a sample is the mass per unit
volume — that is, the ratio of the total mass mg,,4 of the sand
grains to the total volume V., of the sample:

predicted in terms of the void ratio e for a sample of the M nd
ground: Psand = v ° (1_10)
total
_ Vvoids 1-9
€= V grains ’ 1-9) Calculations: The total volume V,,; of a sample is

Here, Vg ains 1s the total volume of the sand grains in the Viotat = Vigrains T Vioias:

sample and V4 is the total volume between the grains Substituting for Vg from Eq. 1-9 and solving for V.
(in the voids). If e exceeds a critical value of 0.80, 1..4¢0 ¢
liquefaction can occur during an earthquake. What is Viotal

the corresponding sand density pg,q? Solid silicon di- Vgrains = 1+4e (1-11)
oxide (the primary component of sand) has a density of

psio, = 2.600 X 107 kg/m?. - (continues on the next page)



8 CHAPTER 1 MEASUREMENT

From Eq. 1-8, the total mass m,,q of the sand grains is the
product of the density of silicon dioxide and the total vol-
ume of the sand grains:

(1-12)

Substituting this expression into Eq. 1-10 and then substitut-
ing for Vy,ins from Eq. 1-11 lead to

Msand = pSiOZVgrainS'

Psio, View _ Psio,

M =y ke i@

(1-13)

3
=<

=

PL

c

Measurement in Physics Physics is based on measurement
of physical quantities. Certain physical quantities have been cho-
sen as base quantities (such as length, time, and mass); each has
been defined in terms of a standard and given a unit of measure
(such as meter, second, and kilogram). Other physical quantities
are defined in terms of the base quantities and their standards
and units.

S| Units The unit system emphasized in this book is the
International System of Units (SI). The three physical quantities
displayed in Table 1-1 are used in the early chapters. Standards,
which must be both accessible and invariable, have been estab-
lished for these base quantities by international agreement. These
standards are used in all physical measurement, for both the base
quantities and the quantities derived from them. Scientific nota-
tion and the prefixes of Table 1-2 are used to simplify measure-
ment notation.

Changing Units Conversion of units may be performed by us-
ing chain-link conversions in which the original data are multiplied

Substituting pg;o, = 2.600 X 10° kg/m? and the critical value
of e = 0.80, we find that liquefaction occurs when the sand
density is less than

2,600 X 10° kg/m’
Psand — 1.80

= 1.4 X 10° kg/m?.
(Answer)

A building can sink several meters in such liquefaction.

S Additional examples, video, and practice available at WileyPLUS
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successively by conversion factors written as unity and the units
are manipulated like algebraic quantities until only the desired
units remain.

Length The meter is defined as the distance traveled by light
during a precisely specified time interval.

Time The second is defined in terms of the oscillations of light
emitted by an atomic (cesium-133) source. Accurate time signals
are sent worldwide by radio signals keyed to atomic clocks in stan-
dardizing laboratories.

Mass The kilogram is defined in terms of a platinum-
iridium standard mass kept near Paris. For measurements on an
atomic scale, the atomic mass unit, defined in terms of the atom
carbon-12,is usually used.

Density The density p of a material is the mass per unit volume:

P= (1-8)

r"-"_'\ﬂ
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e Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM  Worked-out solution available in Student Solutions Manual
e —eee  Number of dots indicates level of problem difficulty

WWW Worked-out solution is at

ILW Interactive solution is at

http://www.wiley.com/college/halliday

=% Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

sec. 1-5 Length

*1 ssm Earth is approximately a sphere of radius 6.37 X 10° m.
What are (a) its circumference in kilometers, (b) its surface area in
square kilometers, and (c) its volume in cubic kilometers?

°2 A gryis an old English measure for length, defined as 1/10 of a
line, where line is another old English measure for length, defined
as 1/12 inch. A common measure for length in the publishing busi-
ness is a point, defined as 1/72 inch. What is an area of 0.50 gry? in
points squared (points?)?

*3 The micrometer (1 um) is often called the micron. (a) How
many microns make up 1.0 km? (b) What fraction of a centimeter
equals 1.0 um? (c) How many microns are in 1.0 yd?

*4  Spacing in this book was generally done in units of points and
picas: 12 points = 1 pica, and 6 picas = 1 inch. If a figure was mis-
placed in the page proofs by 0.80 cm, what was the misplacement
in (a) picas and (b) points?

°5 ssm www Horses are to race over a certain English meadow
for a distance of 4.0 furlongs. What is the race distance in (a) rods
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and (b) chains? (1 furlong =201.168 m, 1 rod = 5.0292 m,
and 1 chain = 20.117 m.)

*s6 You can easily convert common units and measures electron-
ically, but you still should be able to use a conversion table, such as
those in Appendix D. Table 1-6 is part of a conversion table for a
system of volume measures once common in Spain; a volume of 1
fanega is equivalent to 55.501 dm? (cubic decimeters). To complete
the table, what numbers (to three significant figures) should be en-
tered in (a) the cahiz column, (b) the fanega column, (c) the cuar-
tilla column, and (d) the almude column, starting with the top
blank? Express 7.00 almudes in (e) medios, (f) cahizes, and (g) cu-
bic centimeters (cm?).

Table 1-6

Problem 6

cahiz fanega cuartilla almude medio
1 cahiz = 1 12 48 144 288
1 fanega = 1 4 12 24
1 cuartilla = 1 3 6
1 almude =
1 medio = 1

*7 1LW Hydraulic engineers in the United States often use, as a
unit of volume of water, the acre-foot, defined as the volume of wa-
ter that will cover 1 acre of land to a depth of 1 ft. A severe thun-
derstorm dumped 2.0 in. of rain in 30 min on a town of area 26
km?. What volume of water, in acre-feet, fell on the town?

«s8 (@ Harvard Bridge, which connects MIT with its fraternities
across the Charles River, has a length of 364.4 Smoots plus one ear.
The unit of one Smoot is based on the length of Oliver Reed
Smoot, Jr., class of 1962, who was carried or dragged length by
length across the bridge so that other pledge members of the
Lambda Chi Alpha fraternity could mark off (with paint) 1-Smoot
lengths along the bridge. The marks have been repainted biannu-
ally by fraternity pledges since the initial measurement, usually
during times of traffic congestion so that the police cannot easily
interfere. (Presumably, the police were originally upset because the
Smoot is not an SI base unit, but these days they seem to have ac-
cepted the unit.) Figure 1-4 shows three parallel paths, measured in
Smoots (S), Willies (W), and Zeldas (Z). What is the length of 50.0
Smoots in (a) Willies and (b) Zeldas?

0 32 212
1 1 1 S
| | |
0 | 258
— ——w
60 216
| | Z

Fig. 1-4 Problem 8.

**9 Antarctica is roughly semicir-
cular, with a radius of 2000 km
(Fig. 1-5). The average thickness of
its ice cover is 3000 m. How many
cubic centimeters of ice does
Antarctica contain? (Ignore the cur-
vature of Earth.)

‘\2.000 km

3000 m

Fig. 1-5 Problem 9.

PROBLEMS 9

sec.1-6 Time

*10 Until 1883, every city and town in the United States kept its
own local time. Today, travelers reset their watches only when the
time change equals 1.0 h. How far, on the average, must you travel
in degrees of longitude between the time-zone boundaries at
which your watch must be reset by 1.0 h? (Hint: Earth rotates 360°
in about 24 h.)

*11 For about 10 years after the French Revolution, the French
government attempted to base measures of time on multiples of
ten: One week consisted of 10 days, one day consisted of 10 hours,
one hour consisted of 100 minutes, and one minute consisted of 100
seconds. What are the ratios of (a) the French decimal week to the
standard week and (b) the French decimal second to the standard
second?

*12 The fastest growing plant on record is a Hesperoyucca whip-
plei that grew 3.7 m in 14 days. What was its growth rate in micro-
meters per second?

*13 @ Three digital clocks A, B, and C run at different rates and
do not have simultaneous readings of zero. Figure 1-6 shows simul-
taneous readings on pairs of the clocks for four occasions. (At the
earliest occasion, for example, B reads 25.0 s and C reads 92.0 s.) If
two events are 600 s apart on clock A, how far apart are they on
(a) clock B and (b) clock C? (c) When clock A reads 400 s, what
does clock B read? (d) When clock C reads 15.0 s, what does clock
B read? (Assume negative readings for prezero times.)

312 512
: — 40
2?{.0 1?5 2(I)O 2?0
| | B (s)
92.0 142
L L C (S)

Fig. 1-6 Problem 13.

*14 A lecture period (50 min) is close to 1 microcentury. (a) How
long is a microcentury in minutes? (b) Using

tual — imati
actual — approximation > 100.

tage diff =
percentage difference ( actual

find the percentage difference from the approximation.

*15 A fortnight is a charming English measure of time equal to
2.0 weeks (the word is a contraction of “fourteen nights”). That is a
nice amount of time in pleasant company but perhaps a painful
string of microseconds in unpleasant company. How many mi-
croseconds are in a fortnight?

*16 Time standards are now based on atomic clocks. A promising
second standard is based on pulsars, which are rotating neutron
stars (highly compact stars consisting only of neutrons). Some ro-
tate at a rate that is highly stable, sending out a radio beacon that
sweeps briefly across Earth once with each rotation, like a light-
house beacon. Pulsar PSR 1937+21 is an example; it rotates once
every 1.557 806 448 872 75 = 3 ms, where the trailing =3 indicates
the uncertainty in the last decimal place (it does not mean =3 ms).
(a) How many rotations does PSR 1937+21 make in 7.00 days?
(b) How much time does the pulsar take to rotate exactly one mil-
lion times and (c) what is the associated uncertainty?

*17 ssm Five clocks are being tested in a laboratory. Exactly at
noon, as determined by the WWYV time signal, on successive days
of a week the clocks read as in the following table. Rank the five

PART 1
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clocks according to their relative value as good timekeepers, best
to worst. Justify your choice.

Clock  Sun. Mon. Tues. Wed. Thurs. Fri. Sat.

A 12:36:40  12:36:56  12:37:12  12:37:27 12:37:44 12:37:59 12:38:14
11:59:59  12:00:02 11:59:57 12:00:07 12:00:02 11:59:56 12:00:03
15:50:45  15:51:43 15:52:41 15:53:39  15:54:37  15:55:35  15:56:33
12:03:59  12:02:52  12:01:45 12:00:38 11:59:31 11:58:24 11:57:17
12:03:59  12:02:49 12:01:54 12:01:52 12:01:32 12:01:22 12:01:12

m g O w

*=18 Because Earth’s rotation is gradually slowing, the length of
each day increases: The day at the end of 1.0 century is 1.0 ms
longer than the day at the start of the century. In 20 centuries, what
is the total of the daily increases in time?

*=19 Suppose that, while lying on a beach near the equator
watching the Sun set over a calm ocean, you start a stopwatch just
as the top of the Sun disappears. You then stand, elevating your
eyes by a height H = 1.70 m, and stop the watch when the top of
the Sun again disappears. If the elapsed time is ¢ = 11.1 s, what is
the radius r of Earth?

sec.1-7 Mass

*20 @ The record for the largest glass bottle was set in 1992 by a
team in Millville, New Jersey —they blew a bottle with a volume of
193 U.S. fluid gallons. (a) How much short of 1.0 million cubic cen-
timeters is that? (b) If the bottle were filled with water at the
leisurely rate of 1.8 g/min, how long would the filling take? Water
has a density of 1000 kg/m?.

*21 Earth has a mass of 5.98 X 10?* kg. The average mass of the
atoms that make up Earth is 40 u. How many atoms are there in
Earth?

*22 Gold, which has a density of 19.32 g/cm’, is the most ductile
metal and can be pressed into a thin leaf or drawn out into a long
fiber. (a) If a sample of gold, with a mass of 27.63 g, is pressed into a
leaf of 1.000 wm thickness, what is the area of the leaf? (b) If,
instead, the gold is drawn out into a cylindrical fiber of radius 2.500
um, what is the length of the fiber?

*23 ssm (a) Assuming that water has a density of exactly 1 g/cm?,
find the mass of one cubic meter of water in kilograms. (b) Suppose
that it takes 10.0 h to drain a container of 5700 m? of water. What is
the “mass flow rate,” in kilograms per second, of water from the
container?

*24 (@ Grains of fine California beach sand are approximately
spheres with an average radius of 50 um and are made of silicon
dioxide, which has a density of 2600 kg/m>. What mass of sand grains
would have a total surface area (the total area of all the individual
spheres) equal to the surface area of a cube 1.00 m on an edge?

«e25 =% During heavy rain, a section of a mountainside mea-
suring 2.5 km horizontally, 0.80 km up along the slope, and 2.0 m
deep slips into a valley in a mud slide. Assume that the mud ends
up uniformly distributed over a surface area of the valley measur-
ing 0.40 km X 0.40 km and that mud has a density of 1900 kg/m?>.
What is the mass of the mud sitting above a 4.0 m? area of the val-
ley floor?

*26 One cubic centimeter of a typical cumulus cloud contains 50
to 500 water drops, which have a typical radius of 10 um. For that

range, give the lower value and the higher value, respectively, for
the following. (a) How many cubic meters of water are in a cylin-
drical cumulus cloud of height 3.0 km and radius 1.0 km? (b) How
many 1-liter pop bottles would that water fill? (c) Water has a den-
sity of 1000 kg/m>. How much mass does the water in the cloud
have?

*27 TIron has a density of 7.87 g/cm?, and the mass of an iron
atom is 9.27 X 1072 kg. If the atoms are spherical and tightly
packed, (a) what is the volume of an iron atom and (b) what is the
distance between the centers of adjacent atoms?

*28 A mole of atoms is 6.02 X 10% atoms. To the nearest order
of magnitude, how many moles of atoms are in a large domestic
cat? The masses of a hydrogen atom, an oxygen atom, and a carbon
atom are 1.0 u, 16 u, and 12 u, respectively. (Hint: Cats are some-
times known to kill a mole.)

29 On a spending spree in Malaysia, you buy an ox with
a weight of 28.9 piculs in the local unit of weights: 1 picul =
100 gins, 1 gin = 16 tahils, 1 tahil = 10 chees, and 1 chee =
10 hoons. The weight of 1 hoon corresponds to a mass of 0.3779 g.
When you arrange to ship the ox home to your astonished family,
how much mass in kilograms must you declare on the shipping
manifest? (Hint: Set up multiple chain-link conversions.)

=30 @& Water is poured into a container that has a small leak.
The mass m of the water is given as a function of time ¢ by
m = 5.00/°% — 3.00¢ + 20.00, with 1 = 0, m in grams, and ¢ in sec-
onds. (a) At what time is the water mass greatest, and (b) what is
that greatest mass? In kilograms per minute, what is the rate of
mass change at (c) r = 2.00 s and (d) r = 5.00 s?

*=e31 A vertical container with base area measuring 14.0 cm by
17.0 cm is being filled with identical pieces of candy, each with a
volume of 50.0 mm? and a mass of 0.0200 g. Assume that the vol-
ume of the empty spaces between the candies is negligible. If the
height of the candies in the container increases at the rate of 0.250
cm/s, at what rate (kilograms per minute) does the mass of the can-
dies in the container increase?

Additional Problems

32 In the United States, a doll house has the scale of 1:12 of a
real house (that is, each length of the doll house is ;5 that of the real
house) and a miniature house (a doll house to fit within a doll
house) has the scale of 1:144 of a real house. Suppose a real house
(Fig. 1-7) has a front length of 20 m, a depth of 12 m, a height of 6.0
m, and a standard sloped roof (vertical triangular faces on the
ends) of height 3.0 m. In cubic meters, what are the volumes of the
corresponding (a) doll house and (b) miniature house?

Fig. 1-7 Problem 32.




33 ssm A ton is a measure of volume frequently used in ship-
ping, but that use requires some care because there are at
least three types of tons: A displacement ton is equal to 7 barrels
bulk, a freight ton is equal to 8 barrels bulk, and a register ton is
equal to 20 barrels bulk. A barrel bulk is another measure of vol-
ume: 1 barrel bulk = 0.1415 m>. Suppose you spot a shipping order
for “73 tons” of M&M candies, and you are certain that the client
who sent the order intended “ton” to refer to volume (instead of
weight or mass, as discussed in Chapter 5). If the client actually
meant displacement tons, how many extra U.S. bushels of the can-
dies will you erroneously ship if you interpret the order as (a) 73
freight tons and (b) 73 register tons? (1 m* = 28.378 U.S. bushels.)

34 Two types of barrel units were in use in the 1920s in the
United States. The apple barrel had a legally set volume of 7056 cu-
bic inches; the cranberry barrel, 5826 cubic inches. If a merchant
sells 20 cranberry barrels of goods to a customer who thinks he is
receiving apple barrels, what is the discrepancy in the shipment
volume in liters?

35 An old English children’s rhyme states, “Little Miss Muffet
sat on a tuffet, eating her curds and whey, when along came a spi-
der who sat down beside her.. . .” The spider sat down not because
of the curds and whey but because Miss Muffet had a stash of 11
tuffets of dried flies. The volume measure of a tuffet is given by
1 tuffet = 2 pecks = 0.50 Imperial bushel, where 1 Imperial bush-
el = 36.3687 liters (L). What was Miss Muffet’s stash in (a) pecks,
(b) Imperial bushels, and (c) liters?

36 Table 1-7 shows some old measures of liquid volume. To com-
plete the table, what numbers (to three significant figures) should
be entered in (a) the wey column, (b) the chaldron column, (c) the
bag column, (d) the pottle column, and (e) the gill column, starting
with the top blank? (f) The volume of 1 bag is equal to 0.1091 m>. If
an old story has a witch cooking up some vile liquid in a cauldron
of volume 1.5 chaldrons, what is the volume in cubic meters?

Problem 36

wey chaldron bag pottle gill
1 wey = 1 10/9 40/3 640 120240
1 chaldron =
1 bag =
1 pottle =
1gill =

37 A typical sugar cube has an edge length of 1 cm. If you had a
cubical box that contained a mole of sugar cubes, what would its
edge length be? (One mole = 6.02 X 10% units.)

38 An old manuscript reveals that a landowner in the time
of King Arthur held 3.00 acres of plowed land plus a live-
stock area of 25.0 perches by 4.00 perches. What was the total area
in (a) the old unit of roods and (b) the more modern unit of square
meters? Here, 1 acre is an area of 40 perches by 4 perches, 1 rood is
an area of 40 perches by 1 perch, and 1 perch is the length 16.5 ft.

39 ssM A tourist purchases a car in England and ships it home to
the United States. The car sticker advertised that the car’s fuel con-
sumption was at the rate of 40 miles per gallon on the open road.

PROBLEMS "

The tourist does not realize that the U.K. gallon differs from the
U.S. gallon:

1 UK. gallon = 4.546 090 0 liters
1 U.S. gallon = 3.785 411 8 liters.

For a trip of 750 miles (in the United States), how many gallons of
fuel does (a) the mistaken tourist believe she needs and (b) the car
actually require?

40 Using conversions and data in the chapter, determine
the number of hydrogen atoms required to obtain 1.0 kg of
hydrogen. A hydrogen atom has a mass of 1.0 u.

41 ssm A cord is a volume of cut wood equal to a stack 8 ft
long, 4 ft wide, and 4 ft high. How many cords are in 1.0 m3?

42  One molecule of water (H,O) contains two atoms of hydrogen
and one atom of oxygen. A hydrogen atom has a mass of 1.0 u and an
atom of oxygen has a mass of 16 u, approximately. (a) What is the
mass in kilograms of one molecule of water? (b) How many mole-
cules of water are in the world’s oceans, which have an estimated total
mass of 1.4 X 10! kg?

43 A person on a diet might lose 2.3 kg per week. Express the
mass loss rate in milligrams per second, as if the dieter could sense
the second-by-second loss.

44 What mass of water fell on the town in Problem 7? Water has
a density of 1.0 X 103 kg/m?.

45 (a) A unit of time sometimes used in microscopic physics is
the shake. One shake equals 1078 s. Are there more shakes in a sec-
ond than there are seconds in a year? (b) Humans have existed for
about 10° years, whereas the universe is about 10'° years old. If the
age of the universe is defined as 1 “universe day,” where a universe
day consists of “universe seconds” as a normal day consists of nor-
mal seconds, how many universe seconds have humans existed?

46 A unit of area often used in measuring land areas is the
hectare, defined as 10*m? An open-pit coal mine consumes
75 hectares of land, down to a depth of 26 m, each year. What vol-
ume of earth, in cubic kilometers, is removed in this time?

47 ssm An astronomical unit (AU) is the average distance
between Earth and the Sun, approximately 1.50 X 10% km. The
speed of light is about 3.0 X 10®% m/s. Express the speed of light in
astronomical units per minute.

48 The common Eastern mole, a mammal, typically has a mass of
75 g, which corresponds to about 7.5 moles of atoms. (A mole of
atoms is 6.02 X 10 atoms.) In atomic mass units (u), what is the
average mass of the atoms in the common Eastern mole?

49 A traditional unit of length in Japan is the ken (1 ken =
1.97 m). What are the ratios of (a) square kens to square meters
and (b) cubic kens to cubic meters? What is the volume of a cylin-
drical water tank of height 5.50 kens and radius 3.00 kens in (c) cu-
bic kens and (d) cubic meters?

50 You receive orders to sail due east for 24.5 mi to put your sal-
vage ship directly over a sunken pirate ship. However, when your
divers probe the ocean floor at that location and find no evidence
of a ship, you radio back to your source of information, only to dis-
cover that the sailing distance was supposed to be 24.5 nautical
miles, not regular miles. Use the Length table in Appendix D to
calculate how far horizontally you are from the pirate ship in
kilometers.

PART 1
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51 The cubit is an ancient unit of length based on the distance
between the elbow and the tip of the middle finger of the mea-
surer. Assume that the distance ranged from 43 to 53 cm, and sup-
pose that ancient drawings indicate that a cylindrical pillar was to
have a length of 9 cubits and a diameter of 2 cubits. For the stated
range, what are the lower value and the upper value, respectively,
for (a) the cylinder’s length in meters, (b) the cylinder’s length in
millimeters, and (c) the cylinder’s volume in cubic meters?

52 As a contrast between the old and the modern and between
the large and the small, consider the following: In old rural
England 1 hide (between 100 and 120 acres) was the area of land
needed to sustain one family with a single plough for one year. (An
area of 1 acre is equal to 4047 m2.) Also, 1 wapentake was the area
of land needed by 100 such families. In quantum physics, the cross-
sectional area of a nucleus (defined in terms of the chance of a par-
ticle hitting and being absorbed by it) is measured in units of barns,
where 1 barn is 1 X 1072 m? (In nuclear physics jargon, if a nu-
cleus is “large,” then shooting a particle at it is like shooting a bul-

let at a barn door, which can hardly be missed.) What is the ratio of
25 wapentakes to 11 barns?

53 ssm An astronomical unit
(AU) is equal to the average
distance from Earth to the
Sun, about 92.9 X 10°mi. A
parsec (pc) is the distance at
which a length of 1 AU would
subtend an angle of exactly 1
second of arc (Fig. 1-8). A
light-year (ly) is the distance that light, traveling through a vacuum
with a speed of 186 000 mi/s, would cover in 1.0 year. Express the
Earth—Sun distance in (a) parsecs and (b) light-years.

An angle of
exactly 1 second

1pe 1 AU

Fig. 1-8 Problem 53.

54 The description for a certain brand of house paint claims a
coverage of 460 ft?/gal. (a) Express this quantity in square meters
per liter. (b) Express this quantity in an SI unit (see Appendices A
and D). (c) What is the inverse of the original quantity, and
(d) what is its physical significance?




MOTION ALONG
A STRAIGHT LINE

2_] WHAT IS PHYSICS?

One purpose of physics is to study the motion of objects—how fast they
move, for example, and how far they move in a given amount of time. NASCAR
engineers are fanatical about this aspect of physics as they determine the
performance of their cars before and during a race. Geologists use this physics to
measure tectonic-plate motion as they attempt to predict earthquakes. Medical
researchers need this physics to map the blood flow through a patient when diag-
nosing a partially closed artery, and motorists use it to determine how they might
slow sufficiently when their radar detector sounds a warning. There are countless
other examples. In this chapter, we study the basic physics of motion where the
object (race car, tectonic plate, blood cell, or any other object) moves along a sin-
gle axis. Such motion is called one-dimensional motion.

2-2 Motion

The world, and everything in it, moves. Even seemingly stationary things, such as
a roadway, move with Earth’s rotation, Earth’s orbit around the Sun, the Sun’s or-
bit around the center of the Milky Way galaxy, and that galaxy’s migration relative
to other galaxies. The classification and comparison of motions (called kinematics)
is often challenging. What exactly do you measure, and how do you compare?

Before we attempt an answer, we shall examine some general properties of
motion that is restricted in three ways.

1. The motion is along a straight line only. The line may be vertical, horizontal, or
slanted, but it must be straight.

2. Forces (pushes and pulls) cause motion but will not be discussed until Chapter
5. In this chapter we discuss only the motion itself and changes in the motion.
Does the moving object speed up, slow down, stop, or reverse direction? If the
motion does change, how is time involved in the change?

3. The moving object is either a particle (by which we mean a point-like object
such as an electron) or an object that moves like a particle (such that every
portion moves in the same direction and at the same rate). A stiff pig slipping
down a straight playground slide might be considered to be moving like a par-
ticle; however, a tumbling tumbleweed would not.

2-3 Position and Displacement

To locate an object means to find its position relative to some reference point, of-
ten the origin (or zero point) of an axis such as the x axis in Fig. 2-1. The positive
direction of the axis is in the direction of increasing numbers (coordinates), which
is to the right in Fig. 2-1. The opposite is the negative direction.

CHAPTER

Positive direction

Negative direction

! ! | ! ! ! L x (m)
-3 -2 -1 0 1 2 &)

Origin
Fig. 2-1 Position is determined on an
axis that is marked in units of length (here
meters) and that extends indefinitely in op-
posite directions. The axis name, here x, is
always on the positive side of the origin.

-
W
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For example, a particle might be located at x = 5 m, which means it is 5 m in
the positive direction from the origin. If it were at x = —5 m, it would be just as
far from the origin but in the opposite direction. On the axis, a coordinate of
—5m is less than a coordinate of —1 m, and both coordinates are less than a
coordinate of +5 m. A plus sign for a coordinate need not be shown, but a minus
sign must always be shown.

A change from position x; to position x, is called a displacement Ax, where

Ax = Xy — Xq. (2-1)

(The symbol A, the Greek uppercase delta, represents a change in a quantity, and
it means the final value of that quantity minus the initial value.) When numbers
are inserted for the position values x; and x, in Eq. 2-1, a displacement in the
positive direction (to the right in Fig. 2-1) always comes out positive, and a dis-
placement in the opposite direction (left in the figure) always comes out negative.
For example, if the particle moves from x; = 5 m to x, = 12 m, then the displace-
ment is Ax = (12 m) — (5 m) = +7 m. The positive result indicates that the mo-
tion is in the positive direction. If, instead, the particle moves from x; = 5 m to
X, = 1 m, then Ax = (1 m) — (5 m) = —4 m. The negative result indicates that
the motion is in the negative direction.

The actual number of meters covered for a trip is irrelevant; displacement in-
volves only the original and final positions. For example, if the particle moves
from x = 5 m out to x = 200 m and then back to x = 5 m, the displacement from
start to finishis Ax = (Sm) — (5 m) = 0.

A plus sign for a displacement need not be shown, but a minus sign must
always be shown. If we ignore the sign (and thus the direction) of a displacement,
we are left with the magnitude (or absolute value) of the displacement. For exam-
ple, a displacement of Ax = —4 m has a magnitude of 4 m.

Displacement is an example of a vector quantity, which is a quantity that has
both a direction and a magnitude. We explore vectors more fully in Chapter 3 (in
fact, some of you may have already read that chapter), but here all we need is the
idea that displacement has two features: (1) Its magnitude is the distance (such as
the number of meters) between the original and final positions. (2) Its direction,
from an original position to a final position, can be represented by a plus sign or a
minus sign if the motion is along a single axis.

What follows is the first of many checkpoints you will see in this book. Each
consists of one or more questions whose answers require some reasoning or a
mental calculation, and each gives you a quick check of your understanding
of a point just discussed. The answers are listed in the back of the book.

\' CHECKPOINT 1

Here are three pairs of initial and final positions, respectively, along an x axis. Which
pairs give a negative displacement: (a) =3 m, +5 m; (b) =3 m, =7 m; (¢) 7 m, =3 m?

2-4 Average Velocity and Average Speed

A compact way to describe position is with a graph of position x plotted as a func-
tion of time t—a graph of x(¢). (The notation x(¢) represents a function x of ¢, not
the product x times ¢.) As a simple example, Fig. 2-2 shows the position function
x(¢) for a stationary armadillo (which we treat as a particle) over a 7 s time inter-
val. The animal’s position stays atx = —2 m.

Figure 2-3 is more interesting, because it involves motion. The armadillo is
apparently first noticed at t = 0 when it is at the position x = —5 m. It moves
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This is a graph

of position x x (m)
versus time ¢
for a stationary\‘ +1
Fig. 2-2 The graph of object. ol 1 2 3 1 ‘W@
x(#) for an armadillo that -1
is stationary atx = —2 m.
The value of x is —2 m for Same position x(2)
all times ¢. for any time.

toward x = 0, passes through that point at ¢ = 3 s, and then moves on to increas-
ingly larger positive values of x. Figure 2-3 also depicts the straight-line motion of
the armadillo (at three times) and is something like what you would see. The
graph in Fig. 2-3 is more abstract and quite unlike what you would see, but it is
richer in information. It also reveals how fast the armadillo moves.

Actually, several quantities are associated with the phrase “how fast.” One of
them is the average velocity v,,,, which is the ratio of the displacement Ax that oc-
curs during a particular time interval At to that interval:

Ax Xy — X
The notation means that the position is x; at time ¢, and then x, at time #,. A com-
mon unit for v,,, is the meter per second (m/s). You may see other units in the
problems, but they are always in the form of length/time.

On a graph of x versus 7, v,,, is the slope of the straight line that connects two
particular points on the x(f) curve: one is the point that corresponds to x, and 1,
and the other is the point that corresponds to x; and 7. Like displacement, v,
has both magnitude and direction (it is another vector quantity). Its magnitude is
the magnitude of the line’s slope. A positive v,,, (and slope) tells us that the line
slants upward to the right; a negative v,,, (and slope) tells us that the line slants
downward to the right. The average velocity v,,, always has the same sign as the
displacement Ax because At in Eq.2-2 is always positive.

This is a graph
of position x
versus time ¢
for a moving
object.

At x=2mwhent=4s. &")

Plotted here.

It is at position x=-5m
when time t =0 s.
That data is plotted here.

At x=0 m when t=38s.
Plotted here.

0s

Fig. 2-3 The graph of x(¢) for a moving armadillo. The path associated with the graph is also
shown, at three times.
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This is a graph

of position x 4
versus time t. 3 Vyyg = slope of this line
_rise _Ax
2 Trun Al End of interval
To find average velocity, 1

first draw a straight line,
start to end, and then
find the slope of the
line.

This vertical distance is how far
it moved, start to end:

Fig. 2-4 Calculation of the Ax=2m-(-4m)=6m
average velocity betweent = 1 s
and ¢ = 4 s as the slope of the line
that connects the points on the

x(?) curve representing those times.

|
T~ This horizontal distance is how long
it took, start to end:

At=4s-1s=3s

Start of interval

Figure 2-4 shows how to find v,, in Fig. 2-3 for the time interval = 1 stot = 4 s.
We draw the straight line that connects the point on the position curve at the be-
ginning of the interval and the point on the curve at the end of the interval. Then
we find the slope Ax/At of the straight line. For the given time interval, the aver-

age velocity is 6m

Vavg = ? = 2m/s.

Average speed s,,, is a different way of describing “how fast” a particle
moves. Whereas the average velocity involves the particle’s displacement Ax, the
average speed involves the total distance covered (for example, the number of
meters moved), independent of direction; that is,

total distance

Savg = Af (2'3)

Because average speed does not include direction, it lacks any algebraic sign.
Sometimes s,,, is the same (except for the absence of a sign) as v,,,. However, the
two can be quite different.

Sample Problem

Average velocity, beat-up pickup truck

You drive a beat-up pickup truck along a straight road for
8.4 km at 70 km/h, at which point the truck runs out of gaso-
line and stops. Over the next 30 min, you walk another 2.0 km
farther along the road to a gasoline station.

Calculation: From Eq.2-1, we have
Ax = x, — x; = 104 km — 0 = 10.4 km. (Answer)

Thus, your overall displacement is 10.4 km in the positive

) ) direction of the x axis.
(a) What is your overall displacement from the beginning

of your drive to your arrival at the station?

KEY IDEA

Assume, for convenience, that you move in the positive di-

(b) What is the time interval Af from the beginning of your
drive to your arrival at the station?

KEY IDEA

rection of an x axis, from a first position of x; = 0 to a second
position of x, at the station. That second position must be at
X, = 8.4 km + 2.0 km = 10.4 km. Then your displacement Ax
along the x axis is the second position minus the first position.

We already know the walking time interval Az, (= 0.50 h),
but we lack the driving time interval At;. However, we
know that for the drive the displacement Ax,, is 8.4 km and
the average velocity v, g4 i 70 km/h. Thus, this average



velocity is the ratio of the displacement for the drive to the
time interval for the drive.

Calculations: We first write

v . AX dr
avg,dr A far .
Rearranging and substituting data then give us
Axgy 8.4 km
Aty = — = = 0.12 h.
“ Vyear  70km/h
SO, At = Atdr ar Atwlk

=0.12h + 0.50 h = 0.62 h. (Answer)

(c) What is your average velocity v,,, from the beginning of
your drive to your arrival at the station? Find it both numer-
ically and graphically.

KEY IDEA

From Eq. 2-2 we know that v,,, for the entire trip is the ratio
of the displacement of 10.4 km for the entire trip to the time in-
terval of 0.62 h for the entire trip.

Calculation: Here we find
_ £ _ 10.4km
Yae T AT T T062h

= 16.8 km/h = 17 km/h. (Answer)

To find v,,, graphically, first we graph the function x(z) as
shown in Fig. 2-5, where the beginning and arrival points on
the graph are the origin and the point labeled as “Station.”
Your average velocity is the slope of the straight line connect-
ing those points; that is, v, is the ratio of the rise (Ax = 10.4
km) to the run (At = 0.62 h), which gives us v,,, = 16.8 km/h.

(d) Suppose that to pump the gasoline, pay for it, and walk
back to the truck takes you another 45 min. What is your
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average speed from the beginning of your drive to your
return to the truck with the gasoline?

KEY IDEA

Your average speed is the ratio of the total distance you
move to the total time interval you take to make that move.

Calculation: The total distance is 8.4 km + 2.0 km + 2.0
km = 12.4 km. The total time interval is 0.12 h + 0.50 h +
0.75 h = 1.37 h. Thus, Eq. 2-3 gives us

12.4 km
Swe = T a7p 9.1 km/h. (Answer)
Driving ends, walking starts.
X
12
Smicom Slope of this
_ 10 [ line gives
—i 8 : average
g ) ! velocity.
= !
é = How far:
4 [ Ax =10.4 km
2 ]
|
|
00 0.2 0.4 0.6 !
Time (h)
How long:
At =0.62 h

Fig. 2-5 The lines marked “Driving” and “Walking” are
the position—time plots for the driving and walking stages.
(The plot for the walking stage assumes a constant rate of
walking.) The slope of the straight line joining the origin
and the point labeled “Station” is the average velocity for
the trip, from the beginning to the station.

PWleJBS Additional examples, video, and practice available at WileyPLUS

2-5 Instantaneous Velocity and Speed

You have now seen two ways to describe how fast something moves: average
velocity and average speed, both of which are measured over a time interval At.
However, the phrase “how fast” more commonly refers to how fast a particle is
moving at a given instant—its instantaneous velocity (or simply velocity) v.

The velocity at any instant is obtained from the average velocity by shrinking
the time interval At closer and closer to 0. As Az dwindles, the average velocity ap-

proaches a limiting value, which is the velocity at that instant:

Av _ dx
dt’

(24)
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Note that v is the rate at which position x is changing with time at a given instant;
that is, v is the derivative of x with respect to . Also note that v at any instant is
the slope of the position—time curve at the point representing that instant.
Velocity is another vector quantity and thus has an associated direction.

Speed is the magnitude of velocity; that is, speed is velocity that has been
stripped of any indication of direction, either in words or via an algebraic sign.
(Caution: Speed and average speed can be quite different.) A velocity of +5 m/s
and one of —5 m/s both have an associated speed of 5 m/s. The speedometer in a

car measures speed, not velocity (it cannot determine the direction).

\'CH ECKPOINT 2

The following equations give the position x(z) of a particle in four situations (in each
equation, x is in meters, ¢ is in seconds, and > 0): (1) x =3t — 2; (2) x = =412 = 2;
(3) x = 2/t*; and (4) x = —2. (a) In which situation is the velocity v of the particle con-
stant? (b) In which is v in the negative x direction?

Sample Problem

Velocity and slope of x versus t, elevator cab

Figure 2-6a is an x(¢) plot for an elevator cab that is initially
stationary, then moves upward (which we take to be the pos-
itive direction of x), and then stops. Plot v(¢).

KEY IDEA

We can find the velocity at any time from the slope of the
x(¢) curve at that time.

Calculations: The slope of x(¢), and so also the velocity, is
zero in the intervals from 0 to 1 s and from 9 s on, so then
the cab is stationary. During the interval bc, the slope is con-
stant and nonzero, so then the cab moves with constant veloc-
ity. We calculate the slope of x(¢) then as

Ax 24m — 4.0 m

=y =

— = +4.0 m/s.
At 80s — 30s 40 m/s

(2-5)
The plus sign indicates that the cab is moving in the positive
x direction. These intervals (where v = 0 and v = 4 m/s) are
plotted in Fig. 2-6b. In addition, as the cab initially begins to

move and then later slows to a stop, v varies as indicated in
the intervals 1s to 3s and 8s to 9 s. Thus, Fig. 2-6b is the
required plot. (Figure 2-6¢ is considered in Section 2-6.)

Given a v(f) graph such as Fig. 2-6b, we could “work
backward” to produce the shape of the associated x(¢) graph
(Fig. 2-6a). However, we would not know the actual values
for x at various times, because the v(¢) graph indicates only
changes in x. To find such a change in x during any interval,
we must, in the language of calculus, calculate the area
“under the curve” on the v(f) graph for that interval. For
example, during the interval 3 s to 8 s in which the cab has a
velocity of 4.0 m/s, the change in x is

Ax = (4.0 m/s)(8.0s — 3.0s) = +20 m. (2-6)

(This area is positive because the v(f) curve is above the
t axis.) Figure 2-6a shows that x does indeed increase by 20
m in that interval. However, Fig. 2-6b does not tell us the
values of x at the beginning and end of the interval. For that,
we need additional information, such as the value of x at
some instant.

2-6 Acceleration

When a particle’s velocity changes, the particle is said to undergo acceleration (or
to accelerate). For motion along an axis, the average acceleration a,,, over a time
interval At is

v, — vy Av

T oA

tz - tl (2-7)

aavg =

where the particle has velocity v, at time ¢; and then velocity v, at time ¢,. The
instantaneous acceleration (or simply acceleration) is

_dv

- (2-8)
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In words, the acceleration of a particle at any instant is the rate at which its velocity
is changing at that instant. Graphically, the acceleration at any point is the slope of
the curve of v(¢) at that point. We can combine Eq.2-8 with Eq.2-4 to write

_dv d ( dx ) d’x

— == 2-
dt dt? (2-9)

dt dt
In words, the acceleration of a particle at any instant is the second derivative of
its position x(¢) with respect to time.

A common unit of acceleration is the meter per second per second: m/(s - s)
or m/s>. Other units are in the form of length/(time-time) or length/time?.
Acceleration has both magnitude and direction (it is yet another vector quan-
tity). Its algebraic sign represents its direction on an axis just as for displacement
and velocity; that is, acceleration with a positive value is in the positive direction
of an axis, and acceleration with a negative value is in the negative direction.

i i What you would feel.

Additional examples, video, and practice available at WileyPLUS
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Fig. 2-7 Colonel J. P. Stapp in a rocket
sled as it is brought up to high speed (accel-
eration out of the page) and then very
rapidly braked (acceleration into the page).
(Courtesy U.S. Air Force)

Figure 2-6 gives plots of the position, velocity, and acceleration of an elevator
moving up a shaft. Compare the a(¢) curve with the v(¢) curve—each point on the
a(t) curve shows the derivative (slope) of the v(f) curve at the corresponding time.
When v is constant (at either 0 or 4 m/s), the derivative is zero and so also is the ac-
celeration. When the cab first begins to move, the v(¢) curve has a positive derivative
(the slope is positive), which means that a(¢) is positive. When the cab slows to a stop,
the derivative and slope of the v(¢) curve are negative; that is, a(¢) is negative.

Next compare the slopes of the v(¢) curve during the two acceleration peri-
ods. The slope associated with the cab’s slowing down (commonly called “decel-
eration”) is steeper because the cab stops in half the time it took to get up to
speed. The steeper slope means that the magnitude of the deceleration is larger
than that of the acceleration, as indicated in Fig. 2-6c¢.

The sensations you would feel while riding in the cab of Fig. 2-6 are indicated
by the sketched figures at the bottom. When the cab first accelerates, you feel as
though you are pressed downward; when later the cab is braked to a stop, you
seem to be stretched upward. In between, you feel nothing special. In other
words, your body reacts to accelerations (it is an accelerometer) but not to
velocities (it is not a speedometer). When you are in a car traveling at 90 km/h or
an airplane traveling at 900 km/h, you have no bodily awareness of the motion.
However, if the car or plane quickly changes velocity, you may become keenly
aware of the change, perhaps even frightened by it. Part of the thrill of an amuse-
ment park ride is due to the quick changes of velocity that you undergo (you pay
for the accelerations, not for the speed). A more extreme example is shown in the
photographs of Fig. 2-7, which were taken while a rocket sled was rapidly acceler-
ated along a track and then rapidly braked to a stop. =N

Large accelerations are sometimes expressed in terms of g units, with

1g = 9.8 m/s? (g unit). (2-10)

(As we shall discuss in Section 2-9, g is the magnitude of the acceleration of a
falling object near Earth’s surface.) On a roller coaster, you may experience brief
accelerations up to 3g, which is (3)(9.8 m/s?), or about 29 m/s?, more than enough
to justify the cost of the ride.

In common language, the sign of an acceleration has a nonscientific meaning:
positive acceleration means that the speed of an object is increasing, and negative
acceleration means that the speed is decreasing (the object is decelerating).
In this book, however, the sign of an acceleration indicates a direction, not
whether an object’s speed is increasing or decreasing. For example, if a car with
an initial velocity v = —25 m/s is braked to a stop in 5.0 s, then a,,, = +5.0 m/s.
The acceleration is positive, but the car’s speed has decreased. The reason is the
difference in signs: the direction of the acceleration is opposite that of the velocity.

Here then is the proper way to interpret the signs:

If the signs of the velocity and acceleration of a particle are the same, the speed of the
particle increases. If the signs are opposite, the speed decreases.
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A wombat moves along an x axis. What is the sign of its acceleration if it is moving
(a) in the positive direction with increasing speed, (b) in the positive direction with de-
creasing speed, (c) in the negative direction with increasing speed, and (d) in the nega-

tive direction with decreasing speed?

Sample Problem

Acceleration and dv/dt

A particle’s position on the x axis of Fig.2-1 is given by
x=4-=27t+ 83,

with x in meters and 7 in seconds.

(a) Because position x depends on time ¢, the particle must

be moving. Find the particle’s velocity function v(¢) and ac-
celeration function a(z).

KEY IDEAS

(1) To get the velocity function v(t), we differentiate the po-
sition function x(¢) with respect to time. (2) To get the accel-
eration function a(t), we differentiate the velocity function
v(r) with respect to time.

Calculations: Differentiating the position function, we find

v =27+ 3% (Answer)

with v in meters per second. Differentiating the velocity
function then gives us
a = +6t,

with a in meters per second squared.

(Answer)

(b) Isthere ever a time when v = 0?

Calculation: Setting v(¢) = 0 yields
0= —27 + 3¢3,

which has the solution

t= *3s. (Answer)

Thus, the velocity is zero both 3 s before and 3 s after the
clock reads 0.

(c) Describe the particle’s motion for ¢ = 0.

Reasoning: We need to examine the expressions for x(¢),
v(¢), and a().

At t = 0, the particle is at x(0) = +4 m and is moving
with a velocity of v(0) = —27 m/s—that is, in the negative
direction of the x axis. Its acceleration is a(0) = 0 because just
then the particle’s velocity is not changing.

For 0 <t < 3 s, the particle still has a negative velocity, so
it continues to move in the negative direction. However, its
acceleration is no longer 0 but is increasing and positive.
Because the signs of the velocity and the acceleration are
opposite, the particle must be slowing.

Indeed, we already know that it stops momentarily at
t = 3 s. Just then the particle is as far to the left of the origin
in Fig. 2-1 as it will ever get. Substituting ¢t = 3 s into the
expression for x(¢), we find that the particle’s position just then
isx = —50 m. Its acceleration is still positive.

For t > 3 s, the particle moves to the right on the axis.
Its acceleration remains positive and grows progressively
larger in magnitude. The velocity is now positive, and it too
grows progressively larger in magnitude.

PL U°s Additional examples, video, and practice available at WileyPLUS
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Fig. 2-8 (a) The position x(¢) of a particle
moving with constant acceleration. (b) Its
velocity v(¢), given at each point by the
slope of the curve of x(¢). (¢) Its (constant)
acceleration, equal to the (constant) slope
of the curve of v(z).

2-7 Constant Acceleration: A Special Case

In many types of motion, the acceleration is either constant or approximately so.
For example, you might accelerate a car at an approximately constant rate when
a traffic light turns from red to green. Then graphs of your position, velocity, and
acceleration would resemble those in Fig. 2-8. (Note that a(¢) in Fig. 2-8c is con-
stant, which requires that v(¢) in Fig. 2-8b have a constant slope.) Later when you
brake the car to a stop, the acceleration (or deceleration in common language)
might also be approximately constant.

Such cases are so common that a special set of equations has been derived
for dealing with them. One approach to the derivation of these equations is given
in this section. A second approach is given in the next section. Throughout both
sections and later when you work on the homework problems, keep in mind that
these equations are valid only for constant acceleration (or situations in which you
can approximate the acceleration as being constant).

When the acceleration is constant, the average acceleration and instantaneous ac-
celeration are equal and we can write Eq.2-7, with some changes in notation, as

V=

t—0°
Here v is the velocity at time ¢ = 0 and v is the velocity at any later time . We can
recast this equation as

a = Uoyy =

v =+ at. (2-11)

As a check, note that this equation reduces to v = vy for t = 0, as it must. As a fur-
ther check, take the derivative of Eq.2-11. Doing so yields dv/dt = a, which is the
definition of a. Figure 2-8b shows a plot of Eq.2-11, the v(¢) function; the function
is linear and thus the plot is a straight line.
In a similar manner, we can rewrite Eq. 2-2 (with a few changes in notation) as
X=X
Vavg - i—0

Position

Slope varies

Xo
t
0 Slopes of the position
(a) graph are plotted on
v the velocity graph.
V(1)
By
g
§ Slope = a
Vo
t .
0 Slope of the velocity
(® graph is plotted on the
- a acceleration graph.
g a(i)
g Slope =0
g
<0 t

(0)
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and then as
X = Xg t+ Vayels (2-12)

in which x, is the position of the particle at = 0 and v,,, is the average velocity
between ¢ = 0 and a later time .

For the linear velocity function in Eq.2-11, the average velocity over any time
interval (say, from ¢ = 0 to a later time 7) is the average of the velocity at the be-
ginning of the interval (= v,) and the velocity at the end of the interval (= v). For
the interval from ¢ = 0 to the later time ¢ then, the average velocity is

Ve = 3 (Vg + V). (2-13)
Substituting the right side of Eq.2-11 for v yields, after a little rearrangement,
Vavg = Vo T Lat. (2-14)

Finally, substituting Eq.2-14 into Eq. 2-12 yields
X = Xo = vot + 2at? (2-15)

As a check, note that putting t = 0 yields x = x,, as it must. As a further check,
taking the derivative of Eq. 2-15 yields Eq. 2-11, again as it must. Figure 2-8a
shows a plot of Eq. 2-15; the function is quadratic and thus the plot is curved.

Equations 2-11 and 2-15 are the basic equations for constant acceleration; they
can be used to solve any constant acceleration problem in this book. However, we
can derive other equations that might prove useful in certain specific situations.
First, note that as many as five quantities can possibly be involved in any problem
about constant acceleration—namely, x — X, v, f, a, and v,. Usually, one of these
quantities is not involved in the problem, either as a given or as an unknown. We are
then presented with three of the remaining quantities and asked to find the fourth.

Equations 2-11 and 2-15 each contain four of these quantities, but not the
same four. In Eq. 2-11, the “missing ingredient” is the displacement x — x,. In Eq.
2-15, it is the velocity v. These two equations can also be combined in three ways
to yield three additional equations, each of which involves a different “missing
variable.” First, we can eliminate ¢ to obtain

v2 =v}+ 2a(x — xp). (2-16)

This equation is useful if we do not know ¢ and are not required to find it. Second,
we can eliminate the acceleration a between Egs. 2-11 and 2-15 to produce an
equation in which a does not appear:

x — Xy = 3(vy + VL. (2-17)
Finally, we can eliminate v, obtaining
x — xg = vt — jat’. (2-18)

Note the subtle difference between this equation and Eq. 2-15. One involves the
initial velocity vy; the other involves the velocity v at time ¢.

Table 2-1 lists the basic constant acceleration equations (Eqgs. 2-11 and 2-15)
as well as the specialized equations that we have derived. To solve a simple con-
stant acceleration problem, you can usually use an equation from this list (if you
have the list with you). Choose an equation for which the only unknown variable
is the variable requested in the problem. A simpler plan is to remember only Egs.
2-11 and 2-15, and then solve them as simultaneous equations whenever needed.

\' CHECKPOINT 4

The following equations give the position x(7) of a particle in four situations: (1) x =
3t—4;(2) x = =563+ 42 + 6; (3) x = 2/t> — 4/t; (4) x = 5¢* — 3. To which of these
situations do the equations of Table 2-1 apply?

Equations for Motion with Constant
Acceleration’

Equation Missing
Number Equation Quantity
2-11 v =y, + at X — Xg

215 X — Xo = vt + sar’

2-16 v:=v}+ 2a(x — xp) t
2-17 x —xo = 3(vy + W)t a
2-18 X — xo = vt — 3ar? Vo

“Make sure that the acceleration is indeed
constant before using the equations in this table.
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Sample Problem

Constant acceleration, graph of v versus x

Figure 2-9 gives a particle’s velocity v versus its position asit  two such pairs: (1) v = 8 m/s and x = 20 m, and (2) v = 0 and
moves along an x axis with constant acceleration. What isits ~ x = 70 m. For example, we can write Eq.2-16 as

velocity at position x = 0? (8m/s)? = v3 + 2a(20m — 0). (2-19)

However, we know neither v, nor a.
KEY IDEA

We can use the constant-acceleration equations; in particu-
lar, we can use Eq. 2-16 (v> = v} + 2a(x — x,)), which relates
velocity and position.

Second try: Instead of directly involving the requested
variable, let’s use Eq. 2-16 with the two pairs of known data,
identifying vy =8 m/s and x, =20 m as the first pair and
v = 0m/s and x = 70 m as the second pair. Then we can write

First try: Normally we want to use an equation that includes 0m/s) = (8 m/s)? + 2a(70 m — 20
the requested variable. In Eq. 2-16, we can identify x, as 0 and (O m/s) = (8 mis) a(70m m),
vy as being the requested variable. Then we can identify asec-  which gives us a = —0.64 m/s’. Substituting this value into

ond pair of values as being v and x. From the graph, we have ~ Eq. 2-19 and solving for v, (the velocity associated with the
position of x = 0), we find

Vo = 9.5 m/s. (Answer)
The velocity is 8 m/s when
the position is 20 m.

Comment: Some problems involve an equation that in-
cludes the requested variable. A more challenging problem
L requires you to first use an equation that does not include
the requested variable but that gives you a value needed to
find it. Sometimes that procedure takes physics courage be-
cause it is so indirect. However, if you build your solving

The velocity is 0 when the
skills by solving lots of problems, the procedure gradually

0 position is 70 m. i -
b 70 requires less courage and may even become obvious.
x (m) . . . .
Solving problems of any kind, whether physics or social, re-
Fig. 2-9 Velocity versus position. quires practice.

PW‘LEYU"S Additional examples, video, and practice available at WileyPLUS

2-8 Another Look at Constant Acceleration*

The first two equations in Table 2-1 are the basic equations from which the others
are derived. Those two can be obtained by integration of the acceleration with
the condition that a is constant. To find Eq. 2-11, we rewrite the definition of ac-
celeration (Eq.2-8) as

dv = adt.

We next write the indefinite integral (or antiderivative) of both sides:

[P

Since acceleration a is a constant, it can be taken outside the integration. We obtain

[

or v=at+ C. (2-20)

To evaluate the constant of integration C, we let ¢ = 0, at which time v = v,,.
Substituting these values into Eq. 2-20 (which must hold for all values of ¢,

*This section is intended for students who have had integral calculus.
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including ¢t = 0) yields
vo=(a)(0) + C=C.

Substituting this into Eq.2-20 gives us Eq. 2-11.
To derive Eq.2-15, we rewrite the definition of velocity (Eq.2-4) as

dx =vdt
and then take the indefinite integral of both sides to obtain

[

Next, we substitute for v with Eq.2-11:

de = f(v(J + at) dt.

Since v, is a constant, as is the acceleration a, this can be rewritten as

fdx = vofdt + aft dt.

X = vt + %atz + C, (2-21)

Integration now yields

where C' is another constant of integration. At time ¢ = 0, we have x = x,,.
Substituting these values in Eq. 2-21 yields x, = C’. Replacing C" with x, in Eq.
2-21 gives us Eq. 2-15.

2-9 Free-Fall Acceleration

If you tossed an object either up or down and could somehow eliminate the
effects of air on its flight, you would find that the object accelerates downward at
a certain constant rate. That rate is called the free-fall acceleration, and its magni-
tude is represented by g. The acceleration is independent of the object’s charac-
teristics, such as mass, density, or shape; it is the same for all objects.

Two examples of free-fall acceleration are shown in Fig. 2-10, which is a series
of stroboscopic photos of a feather and an apple. As these objects fall, they
accelerate downward—both at the same rate g. Thus, their speeds increase at the
same rate, and they fall together.

The value of g varies slightly with latitude and with elevation. At sea level in
Earth’s midlatitudes the value is 9.8 m/s? (or 32 ft/s?), which is what you should
use as an exact number for the problems in this book unless otherwise noted.

The equations of motion in Table 2-1 for constant acceleration also apply to
free fall near Earth’s surface; that is, they apply to an object in vertical flight,
either up or down, when the effects of the air can be neglected. However, note
that for free fall: (1) The directions of motion are now along a vertical y axis
instead of the x axis, with the positive direction of y upward. (This is important
for later chapters when combined horizontal and vertical motions are examined.)
(2) The free-fall acceleration is negative —that is, downward on the y axis, toward
Earth’s center—and so it has the value —g in the equations.

The free-fall acceleration near Earth’s surface isa = —g = —9.8 m/s?, and the
magnitude of the acceleration is g = 9.8 m/s>. Do not substitute —9.8 m/s?for g.

Suppose you toss a tomato directly upward with an initial (positive) velocity v,
and then catch it when it returns to the release level. During its free-fall flight (from
just after its release to just before it is caught), the equations of Table 2-1 apply to its

Fig. 2-10 A feather and an apple free
fall in vacuum at the same magnitude of ac-
celeration g. The acceleration increases the
distance between successive images. In the
absence of air, the feather and apple fall to-
gether. (Jim Sugar/Corbis Images)
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motion. The acceleration is always a = —g = —9.8 m/s?, negative and thus down-
ward. The velocity, however, changes, as indicated by Egs. 2-11 and 2-16: during the
ascent, the magnitude of the positive velocity decreases, until it momentarily be-
comes zero. Because the tomato has then stopped, it is at its maximum height.
During the descent, the magnitude of the (now negative) velocity increases.

\'CH ECKPOINT 5
(a) If you toss a ball straight up, what is the sign of the ball’s displacement for the as-
cent, from the release point to the highest point? (b) What is it for the descent, from the
highest point back to the release point? (c) What is the ball’s acceleration at its highest

point?

Sample Problem

Time for full up-down flight, baseball toss

In Fig. 2-11, a pitcher tosses a baseball up along a y axis, with
an initial speed of 12 m/s. =N

(a) How long does the ball take to reach its maximum
height?

KEY IDEAS

(1) Once the ball leaves the pitcher and before it returns to
his hand, its acceleration is the free-fall acceleration a = —g.
Because this is constant, Table 2-1 applies to the motion. (2)
The velocity v at the maximum height must be 0.

Calculation: Knowing v, a, and the initial velocity
vo = 12 m/s, and seeking ¢, we solve Eq. 2-11, which contains

I
I
I
highest point | |
I
!
dl
dl
h
I
I
: \¥ During
4 descent,
During ascent,—~_| a=-=g
a= _g’g ™ speed

increases,
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I
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+ more
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I
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| negative
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Fig. 2-11 A pitcher tosses a nol 50

baseball straight up into the air.
The equations of free fall apply
for rising as well as for falling
objects, provided any effects
from the air can be neglected.
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those four variables. This yields
vV — VO

- ~ 0—12m/s
a —9.8 m/s?

=12s. (Answer)
(b) What is the ball’s maximum height above its release
point?

Calculation: We can take the ball’s release point to be
vo = 0. We can then write Eq.2-16 in y notation,sety — y, =
y and v = 0 (at the maximum height), and solve for y. We
get

2

vi—vj 0- (12m/s)>

20 2(-98m/s?)

y = 7.3 m. (Answer)

(c) How long does the ball take to reach a point 5.0 m above
its release point?

Calculations: We know v, a = —g, and displacement y —
vo = 5.0 m, and we want ¢, so we choose Eq. 2-15. Rewriting
it for y and setting y, = 0 give us

y = vot = 381%,
or 50m = (12 m/s)t — (3)(9.8 m/s?)¢2.

If we temporarily omit the units (having noted that they are
consistent), we can rewrite this as

492 =12t + 5.0 = 0.
Solving this quadratic equation for ¢ yields
t=053s and r=19s. (Answer)

There are two such times! This is not really surprising
because the ball passes twice through y = 5.0 m, once on the
way up and once on the way down.

PLUS Additional examples, video, and practice available at WileyPLUS
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2-10 Graphical Integration in Motion Analysis

When we have a graph of an object’s acceleration versus time, we can integrate
on the graph to find the object’s velocity at any given time. Because acceleration
a is defined in terms of velocity as a = dv/dt, the Fundamental Theorem of
Calculus tells us that

a1
V= vy = f adt. (2-22)
ly

The right side of the equation is a definite integral (it gives a numerical result
rather than a function), v, is the velocity at time ), and v, is the velocity at later time
t,. The definite integral can be evaluated from an a(¢) graph, such as in Fig. 2-124. In
particular,

(2-23)

h r area between acceleration curve
a = . .
W and time axis, from #,to ¢

If a unit of acceleration is 1 m/s*> and a unit of time is 1 s, then the corre-
sponding unit of area on the graph is

(1 m/s?)(1s) = 1 m/s,

which is (properly) a unit of velocity. When the acceleration curve is above the
time axis, the area is positive; when the curve is below the time axis, the area is
negative.

Similarly, because velocity v is defined in terms of the position x as v = dx/dt,
then

L
X, — Xy = f v dt, (2-24)
Iy

where x, is the position at time ¢, and x; is the position at time ¢;. The definite

integral on the right side of Eq. 2-24 can be evaluated from a v(f) graph, like that
shown in Fig. 2-12b. In particular,

i _ (area between velocity curve)

J:O vdt = ( and time axis, from fto ¢, /° (2-25)

If the unit of velocity is 1 m/s and the unit of time is 1 s, then the corre-
sponding unit of area on the graph is

(1m/s)(1s)=1m,

which is (properly) a unit of position and displacement. Whether this area is posi-
tive or negative is determined as described for the a(¢) curve of Fig. 2-12a.

5]
&
I
S

1 This area gives the
I 1 change in velocity.

Fig. 2-12 The area between a plotted h Area
curve and the horizontal time axis, from

time ¢, to time ¢, is indicated for (a) a graph

of acceleration a versus ¢ and (b) a graph of lo g
velocity v versus t. (0)

This area gives the
change in position.
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Sample Problem

Graphical integration a versus £, whiplash injury

“Whiplash injury” commonly occurs in a rear-end collision
where a front car is hit from behind by a second car. In the
1970s, researchers concluded that the injury was due to the
occupant’s head being whipped back over the top of the seat
as the car was slammed forward. As a result of this finding,
head restraints were built into cars, yet neck injuries in rear-
end collisions continued to occur.

In a recent test to study neck injury in rear-end collisions,
a volunteer was strapped to a seat that was then moved
abruptly to simulate a collision by a rear car moving at
10.5 km/h. Figure 2-13a gives the accelerations of the volun-
teer’s torso and head during the collision, which began at time
t = 0. The torso acceleration was delayed by 40 ms because
during that time interval the seat back had to compress
against the volunteer. The head acceleration was delayed by
an additional 70 ms. What was the torso speed when the head
began to accelerate? -

KEY IDEA

We can calculate the torso speed at any time by finding an
area on the torso a(t) graph.

Calculations: We know that the initial torso speed is vy = 0
at time ¢, = 0, at the start of the “collision.” We want the
torso speed v, at time #; = 110 ms, which is when the head
begins to accelerate.

100

50

a (m/s%)

Torso

Combining Eqgs. 2-22 and 2-23, we can write

area between acceleration curve
W=y = . .
v and time axis, from ¢, to t,

). (2-26)

For convenience, let us separate the area into three regions
(Fig. 2-13b). From 0 to 40 ms, region A has no area:

areay = 0.

From 40 ms to 100 ms, region B has the shape of a triangle,
with area

area = 3(0.060 s)(50 m/s?) = 1.5 m/s.

From 100 ms to 110 ms, region C has the shape of a rectan-
gle, with area

area. = (0.010 s)(50 m/s2) = 0.50 m/s.
c=( )

Substituting these values and v, = 0 into Eq. 2-26 gives us

vy —0=0+ 1.5m/s + 0.50 m/s,

or vy = 2.0 m/s = 7.2 km/h. (Answer)
Comments: When the head is just starting to move forward,
the torso already has a speed of 7.2 km/h. Researchers argue
that it is this difference in speeds during the early stage of a
rear-end collision that injures the neck. The backward whip-
ping of the head happens later and could, especially if there is
no head restraint, increase the injury.

Head

|
|
|
|
|
T
100 110

120 160

The total area gives the
C change in velocity.

40
©®)

Fig. 2-13 (a) The a(¢) curve of the torso and head of a volunteer in a
simulation of a rear-end collision. (b) Breaking up the region between the
plotted curve and the time axis to calculate the area.
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Position The position x of a particle on an x axis locates the
particle with respect to the origin, or zero point, of the axis. The
position is either positive or negative, according to which side of
the origin the particle is on, or zero if the particle is at the ori-
gin. The positive direction on an axis is the direction of increas-
ing positive numbers; the opposite direction is the negative
direction on the axis.

Displacement The displacement Ax of a particle is the change
in its position:

Ax = Xy — Xq. (2-1)

Displacement is a vector quantity. It is positive if the particle has
moved in the positive direction of the x axis and negative if the
particle has moved in the negative direction.

Average Velocity When a particle has moved from position x,
to position x, during a time interval At = t, — ¢, its average velocity
during that interval is

Ax X, — X
Vavg = K = 271 (2'2)

L=t
The algebraic sign of v,,, indicates the direction of motion (v, is a
vector quantity). Average velocity does not depend on the actual
distance a particle moves, but instead depends on its original and
final positions.

On a graph of x versus ¢, the average velocity for a time interval
At is the slope of the straight line connecting the points on the curve
that represent the two ends of the interval.

Average Speed The average speed s,,, of a particle during a
time interval At depends on the total distance the particle moves in
that time interval:

total distance
Savg = T (2—3)
Instantaneous Velocity The instantaneous velocity (or sim-
ply velocity) v of a moving particle is
Ax  dx

v= lim —

=2 2-4
Aar—0 At dt’ ( )

1 Figure 2-14 gives the velocity of v

a particle moving on an x axis. What
are (a) the initial and (b) the final di-
rections of travel? (c) Does the par-
ticle stop momentarily? (d) Is the ac-
celeration positive or negative? (e)
Is it constant or varying?

/

Fig. 2-14 Question 1.

2 Figure 2-15 gives the accelera-
tion a(f) of a Chihuahua as it chases
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where Ax and At are defined by Eq. 2-2. The instantaneous velocity
(at a particular time) may be found as the slope (at that particular
time) of the graph of x versus t. Speed is the magnitude of instanta-
neous velocity.

Average Acceleration Average acceleration is the ratio of a
change in velocity Av to the time interval Af in which the change

occurs:
Av

aavg = Tl‘

()
The algebraic sign indicates the direction of a,y,.

Instantaneous Acceleration Instantaneous acceleration (or
simply acceleration) «a is the first time derivative of velocity v(f)
and the second time derivative of position x(z):

_dv dx

e (2-8,2-9)

On a graph of v versus ¢, the acceleration a at any time ¢ is the slope
of the curve at the point that represents .

Constant Acceleration The five equations in Table 2-1
describe the motion of a particle with constant acceleration:

v =, + at, (2-11)
X — Xo = vt + lat?, (2-15)
v2 = v} + 2a(x — x), (2-16)
X — X = 2(vy + V), (2-17)
X — Xy = vt — ar’, (2-18)

These are not valid when the acceleration is not constant.

Free-Fall Acceleration An important example of straight-
line motion with constant acceleration is that of an object rising or
falling freely near Earth’s surface. The constant acceleration equa-
tions describe this motion, but we make two changes in notation:
(1) we refer the motion to the vertical y axis with +y vertically up;
(2) we replace a with —g, where g is the magnitude of the free-fall
acceleration. Near Earth’s surface, g = 9.8 m/s? (= 32 ft/s?).

B

/\ ,

c Ibl E
Fig. 2-15 Question 2.
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a German shepherd along an axis. In
which of the time periods indicated o
does the Chihuahua move at con- 9
stant speed? >

3 Figure 2-16 shows four paths 4
along which objects move from a C )
starting point to a final point, all in
the same time interval. The paths
pass over a grid of equally spaced
straight lines. Rank the paths ac-
cording to (a) the average velocity
of the objects and (b) the average
speed of the objects, greatest first. x

Fig. 2-16 Question 3.

4 Figure 2-17 is a graph of a parti-
cle’s position along an x axis versus |
time. (a) At time ¢ = 0, what is the
sign of the particle’s position? Is
the particle’s velocity positive, neg-
ative,or 0 at (b) t=1s,(c) t =25,
and (d) r=3s? (e) How many
times does the particle go through
the point x = 0?

t(s)

=)
ro
N

Fig. 2-17 Question 4.

5 Figure 2-18 gives the velocity of
a particle moving along an axis.
Point 1 is at the highest point on the
curve; point 4 is at the lowest point;
and points 2 and 6 are at the same
height. What is the direction of
travel at (a) time ¢ = 0 and (b) point
4?7 (c) At which of the six numbered 2 6
points does the particle reverse its y
direction of travel? (d) Rank the six ‘ 3N/ D

points according to the magnitude 4

of the acceleration, greatest first.

\

Fig. 2-18 Question 5.

6 At t=0, a particle moving along V

an x axis is at position x, = —20 m. B
The signs of the particle’s initial veloc-
ity v, (at time ¢;) and constant acceler-
ation a are, respectively, for four situa-
tions: (1) +, +;(2) +, —;(3) —, +;(4)
—, —. In which situations will the par-
ticle (a) stop momentarily, (b) pass
through the origin, and (c) never pass

through the origin?
. - N
7 Hanging over the railing of a PN \'\D
brid d initial ve- Loon s o
ridge, you drop an egg (no initial ve c hposp M

locity) as you throw a second egg
downward. Which curves in Fig. 2-19
give the velocity v(f) for (a) the
dropped egg and (b) the thrown egg? (Curves
A and B are parallel;so are C, D, and E;so are !
Fand G.)

8 The following equations give the velocity
v(¢) of a particle in four situations: (a) v = 3;
®)v=4>+2t—6;,(c) v =3t—4; (d) v=
5> — 3. To which of these situations do the
equations of Table 2-1 apply?

Fig. 2-19 Question 7.

9 In Fig. 2-20, a cream tangerine is thrown
directly upward past three evenly spaced
windows of equal heights. Rank the windows
according to (a) the average speed of
the cream tangerine while passing them, (b)
the time the cream tangerine takes to pass 43
them, (c) the magnitude of the acceleration
of the cream tangerine while passing them,
and (d) the change Av in the speed of the
cream tangerine during the passage, greatest Fig. 2-20
first. Question 9.

N | IIIIII /Bl proBLEMS BB A0S | B

Tutoring problem available (at instructor's discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual
e~ Number of dots indicates level of problem difficulty

WWW Worked-out solution is at
ILW Interactive solution is at

http://www.wiley.com/college/halliday

<%0 Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

sec.2-4 Average Velocity and Average Speed

*1  During a hard sneeze, your eyes might shut for 0.50 s. If you
are driving a car at 90 km/h during such a sneeze, how far does the
car move during that time?

*2 Compute your average velocity in the following two cases: (a)
You walk 73.2 m at a speed of 1.22 m/s and then run 73.2m at a
speed of 3.05 m/s along a straight track. (b) You walk for 1.00 min
at a speed of 1.22 m/s and then run for 1.00 min at 3.05 m/s along a
straight track. (¢) Graph x versus ¢ for both cases and indicate how
the average velocity is found on the graph.

°3 SSM  WWW An automobile travels on a straight road for 40
km at 30 km/h. It then continues in the same direction for another
40 km at 60 km/h. (a) What is the average velocity of the car during
the full 80 km trip? (Assume that it moves in the positive x direc-

tion.) (b) What is the average speed? (c) Graph x versus ¢ and indi-
cate how the average velocity is found on the graph.

°4 A car travels up a hill at a constant speed of 40 km/h and re-
turns down the hill at a constant speed of 60 km/h. Calculate the
average speed for the round trip.

*5 ssm The position of an object moving along an x axis is given
by x = 3t — 41> + 3, where x is in meters and ¢ in seconds. Find the
position of the object at the following values of #: (a) 1 s, (b) 2 s, (¢)
3s,and (d) 4 s. (¢) What is the object’s displacement between ¢ = 0
and r = 4 s? (f) What is its average velocity for the time interval
fromt =2stot=4s? (g) Graph x versus ¢ for 0 = =< 4 s and in-
dicate how the answer for (f) can be found on the graph.

*6 The 1992 world speed record for a bicycle (human-powered
vehicle) was set by Chris Huber. His time through the measured


http://www.wiley.com/college/halliday

200 m stretch was a sizzling 6.509 s, at which he commented,
“Cogito ergo zoom!” (I think, therefore I go fast!). In 2001, Sam
Whittingham beat Huber’s record by 19.0 km/h. What was
Whittingham’s time through the 200 m?

*7 Two trains, each having a speed of 30 km/h, are headed at
each other on the same straight track. A bird that can fly 60 km/h
flies off the front of one train when they are 60 km apart and heads
directly for the other train. On reaching the other train, the bird
flies directly back to the first train, and so forth. (We have no idea
why a bird would behave in this way.) What is the total distance the
bird travels before the trains collide?

o8 == (@ Panic escape. Figure 2-21 shows a general situation
in which a stream of people attempt to escape through an exit door
that turns out to be locked. The people move toward the door at
speed v, = 3.50 m/s, are each d = 0.25 m in depth, and are separated
by L = 1.75 m. The arrangement in Fig. 2-21 occurs at time ¢ = 0. (a)
At what average rate does the layer of people at the door increase?
(b) At what time does the layer’s depth reach 5.0 m? (The answers
reveal how quickly such a situation becomes dangerous.)

|~—r1—

L P
-l = l# o
t 3
—~|dl= /
Locked

door

Problem 8.

~—rL— [~—L—

~ldl~ —ldl~

Fig. 2-21

*9 LW In 1 km races, runner 1 on track 1 (with time 2 min, 27.95
s) appears to be faster than runner 2 on track 2 (2 min, 28.15 s).
However, length L, of track 2 might be slightly greater than length
L, of track 1. How large can L, — L, be for us still to conclude that
runner 1 is faster?

*10 =% To set a speed record in a measured (straight-line)
distance d, a race car must be driven first in one direction (in time
t;) and then in the opposite direction (in time #,). (a) To eliminate
the effects of the wind and obtain the car’s speed v, in a windless
situation, should we find the average of d/t; and d/t, (method 1) or
should we divide d by the average of #; and #,? (b) What is the frac-
tional difference in the two methods when a steady wind blows
along the car’s route and the ratio of the wind speed v,, to the car’s
speed v, is 0.0240?7

*e11 You are to drive to an interview in another town, at a dis-
tance of 300 km on an expressway. The interview is at 11:15 A.m.
You plan to drive at 100 km/h, so you leave at 8:00 A.M. to allow
some extra time. You drive at that speed for the first 100 km, but
then construction work forces you to slow to 40 km/h for 40 km.
What would be the least speed needed for the rest of the trip to ar-
rive in time for the interview?

eee12 =45 Traffic shock wave. An abrupt slowdown in concen-
trated traffic can travel as a pulse, termed a shock wave, along the
line of cars, either downstream (in the traffic direction) or up-
stream, or it can be stationary. Figure 2-22 shows a uniformly
spaced line of cars moving at speed v = 25.0 m/s toward a uni-
formly spaced line of slow cars moving at speed v, = 5.00 m/s.
Assume that each faster car adds length L = 12.0 m (car length
plus buffer zone) to the line of slow cars when it joins the line, and
assume it slows abruptly at the last instant. (a) For what separation
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distance d between the faster cars does the shock wave remain sta-
tionary? If the separation is twice that amount, what are the (b)
speed and (c) direction (upstream or downstream) of the shock
wave?

<L} d <L} d < L—>f<L—><L—]
RN N
v Car Buffer Vs

Fig. 2-22 Problem 12.

*ee13 1LW You drive on Interstate 10 from San Antonio to
Houston, half the fime at 55 km/h and the other half at 90 km/h.
On the way back you travel half the distance at 55 km/h and the
other half at 90 km/h. What is your average speed (a) from San
Antonio to Houston, (b) from Houston back to San Antonio, and
(c) for the entire trip? (d) What is your average velocity for the en-
tire trip? (e) Sketch x versus 7 for (a), assuming the motion is all in
the positive x direction. Indicate how the average velocity can be
found on the sketch.

sec.2-5 Instantaneous Velocity and Speed

*14 @ An electron moving along the x axis has a position given
by x = 16te™" m, where ¢ is in seconds. How far is the electron from
the origin when it momentarily stops?

*15 @ (a) If a particle’s position is given by x = 4 — 12¢ + 3¢?
(where ¢ is in seconds and x is in meters), what is its velocity at
t = 1s? (b) Is it moving in the positive or negative direction of x
just then? (c) What is its speed just then? (d) Is the speed
increasing or decreasing just then? (Try answering the next two
questions without further calculation.) (e) Is there ever an instant
when the velocity is zero? If so, give the time #; if not, answer no. (f)
Is there a time after t = 3 s when the particle is moving in the nega-
tive direction of x? If so, give the time #; if not, answer no.

*16 The position function x(¢) of a particle moving along an x axis
is x = 4.0 — 6.0¢2, with x in meters and ¢ in seconds. (a) At what
time and (b) where does the particle (momentarily) stop? At what
(c) negative time and (d) positive time does the particle pass
through the origin? (e) Graph x versus ¢ for the range —5sto +5s.
(f) To shift the curve rightward on the graph, should we include the
term +20¢ or the term —20¢ in x(¢)? (g) Does that inclusion in-
crease or decrease the value of x at which the particle momentarily
stops?

*17 The position of a particle moving along the x axis is given in
centimeters by x = 9.75 + 1.50#3, where ¢ is in seconds. Calculate
(a) the average velocity during the time interval t = 2.00s to ¢t =
3.00 s; (b) the instantaneous velocity at ¢t = 2.00 s; (c) the instanta-
neous velocity at r = 3.00 s; (d) the instantaneous velocity at ¢t =
2.50 s; and (e) the instantaneous velocity when the particle is mid-
way between its positions at t = 2.00 s and ¢ = 3.00 s. (f) Graph x
versus ¢ and indicate your answers graphically.

sec.2-6 Acceleration

*18 The position of a particle moving along an x axis is given by
x = 12¢? — 2¢3, where x is in meters and ¢ is in seconds. Determine
(a) the position, (b) the velocity, and (c) the acceleration of the
particle at t = 3.0 s. (d) What is the maximum positive coordinate
reached by the particle and (e) at what time is it reached? (f) What
is the maximum positive velocity reached by the particle and (g) at
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what time is it reached? (h) What is the acceleration of the particle
at the instant the particle is not moving (other than at = 0)?
(i) Determine the average velocity of the particle between ¢ = 0
andt =3s.

*19 ssm At a certain time a particle had a speed of 18 m/s in
the positive x direction, and 2.4 s later its speed was 30 m/s in the
opposite direction. What is the average acceleration of the particle
during this 2.4 s interval?

*20 (a) If the position of a particle is given by x = 20t — 5¢°,
where x is in meters and ¢ is in seconds, when, if ever, is the parti-
cle’s velocity zero? (b) When is its acceleration a zero? (c) For
what time range (positive or negative) is a negative? (d) Positive?
(e) Graph x(z), v(t), and a(?).

21 From =0 to t=5.00 min, a man stands still, and from
t = 5.00 min to ¢ = 10.0 min, he walks briskly in a straight line at a
constant speed of 2.20 m/s. What are (a) his average velocity v,,,
and (b) his average acceleration a,,, in the time interval 2.00 min to
8.00 min? What are (c) v,y, and (d) a,,, in the time interval 3.00 min
to 9.00 min? (e) Sketch x versus ¢ and v versus ¢, and indicate how
the answers to (a) through (d) can be obtained from the graphs.

*22 The position of a particle moving along the x axis depends
on the time according to the equation x = ct> — b3, where x is in
meters and ¢ in seconds. What are the units of (a) constant ¢ and (b)
constant b? Let their numerical values be 3.0 and 2.0, respectively.
(c) At what time does the particle reach its maximum positive x po-
sition? From ¢ = 0.0 s to ¢ = 4.0 s, (d) what distance does the parti-
cle move and (e) what is its displacement? Find its velocity at times
(f) 1.0s, (g) 2.0s, (h) 3.0s, and (i) 4.0 s. Find its acceleration at
times (j) 1.0 s, (k) 2.0 s, (1) 3.0 s,and (m) 4.0 s.

sec.2-7 Constant Acceleration: A Special Case
*23 ssM An electron with an initial velocity v, = 1.50 X 10° m/s
enters a region of length L = 1.00

cm where it is electrically acceler- Nonaccelerating Accelerating

ated (Fig. 2-23). It emerges with region resion
v = 5.70 X 10° m/s. What is its ac-
celeration, assumed constant? ~— L —
24 == Catapulting mush- ——————— > — T -
rooms. Certain mushrooms launch Path of

electron

their spores by a catapult mecha-
nism. As water condenses from the
air onto a spore that is attached to
the mushroom, a drop grows on
one side of the spore and a film
grows on the other side. The spore is bent over by the drop’s
weight, but when the film reaches the drop, the drop’s water sud-
denly spreads into the film and the spore springs upward so rapidly
that it is slung off into the air. Typically, the spore reaches a speed
of 1.6 m/s in a 5.0 um launch; its speed is then reduced to zero in
1.0 mm by the air. Using that data and assuming constant accelera-
tions, find the acceleration in terms of g during (a) the launch and
(b) the speed reduction.

Fig. 2-23 Problem 23.

*25 An electric vehicle starts from rest and accelerates at a rate
of 2.0 m/s? in a straight line until it reaches a speed of 20 m/s. The
vehicle then slows at a constant rate of 1.0 m/s? until it stops. (a)
How much time elapses from start to stop? (b) How far does the
vehicle travel from start to stop?

°26 A muon (an elementary particle) enters a region with a
speed of 5.00 X 10° m/s and then is slowed at the rate of 1.25 X

10'* m/s?. (a) How far does the muon take to stop? (b) Graph x
versus t and v versus ¢ for the muon.

*27 An electron has a constant acceleration of +3.2 m/s>. At a
certain instant its velocity is +9.6 m/s. What is its velocity (a) 2.5 s
earlier and (b) 2.5 s later?

°28 Onadryroad,a car with good tires may be able to brake with a
constant deceleration of 4.92 m/s?. (a) How long does such a car, ini-
tially traveling at 24.6 m/s, take to stop? (b) How far does it travel in
this time? (c) Graph x versus ¢ and v versus ¢ for the deceleration.

°29 ILW A certain elevator cab has a total run of 190 m and a max-
imum speed of 305 m/min, and it accelerates from rest and then
back to rest at 1.22 m/s?. (a) How far does the cab move while ac-
celerating to full speed from rest? (b) How long does it take to
make the nonstop 190 m run, starting and ending at rest?

*30 The brakes on your car can slow you at a rate of 5.2 m/s. (a)
If you are going 137 km/h and suddenly see a state trooper, what is
the minimum time in which you can get your car under the 90
km/h speed limit? (The answer reveals the futility of braking to
keep your high speed from being detected with a radar or laser
gun.) (b) Graph x versus ¢ and v versus ¢ for such a slowing.

°31 ssm Suppose a rocket ship in deep space moves with con-
stant acceleration equal to 9.8 m/s?, which gives the illusion of nor-
mal gravity during the flight. (a) If it starts from rest, how long will
it take to acquire a speed one-tenth that of light, which travels at
3.0 X 10% m/s? (b) How far will it travel in so doing?

*32 <%= A world’s land speed record was set by Colonel John
P. Stapp when in March 1954 he rode a rocket-propelled sled that
moved along a track at 1020 km/h. He and the sled were brought to
astopin 1.4 s. (See Fig.2-7.) In terms of g, what acceleration did he
experience while stopping?

°33 SSM ILW A car traveling 56.0 km/h is 24.0 m from a barrier
when the driver slams on the brakes. The car hits the barrier 2.00 s
later. (a) What is the magnitude of the car’s constant acceleration
before impact? (b) How fast is the car traveling at impact?

34 (@ InFig 2-24,ared car and a green car, identical except for the
color, move toward each other in adjacent lanes and parallel to an x
axis. At time ¢ = 0, the red car is at x, = 0 and the green car is at x, =
220 m. If the red car has a constant velocity of 20 km/h, the cars pass
each other at x = 44.5 m, and if it has a constant velocity of 40 km/h,
they pass each other at x = 76.6 m. What are (a) the initial velocity
and (b) the constant acceleration of the green car?

5 -~
e %

car

Fig. 2-24 Problems 34 and 35.

*35 Figure 2-24 shows a red car

and a green car that move toward %0
each other. Figure 2-25 is a graph of

their motion, showing the positions
Xg0=270m and x,, = —35.0m at
time ¢ = 0. The green car has a con- 0
stant speed of 20.0 m/s and the red 0 12
car begins from rest. What is the ac- t(s)
celeration magnitude of the red car?  Fig. 2-25 Problem 35.

x (m)




*36 A car moves along an x axis through a distance of 900 m,
starting at rest (at x =0) and ending at rest (at x = 900 m).
Through the first i of that distance, its acceleration is +2.25 m/s2.
Through the rest of that distance, its acceleration is —0.750 m/s%.
What are (a) its travel time through the 900 m and (b) its maxi-
mum speed? (c) Graph position x, velocity v, and acceleration a
versus time ¢ for the trip.

*37 Figure 2-26 depicts the motion
of a particle moving along an x axis
with a constant acceleration. The fig-
ure’s vertical scaling is set by x, = 6.0
m.What are the (a) magnitude and (b)
direction of the particle’s acceleration?

x (m)

*38 (a) If the maximum acceleration
that is tolerable for passengers in a 0 L(s)
subway train is 1.34 m/s”> and subway
stations are located 806 m apart, what
is the maximum speed a subway train
can attain between stations? (b) What is
the travel time between stations? (c) If a subway train stops for 20 s
at each station, what is the maximum average speed of the train, from
one start-up to the next? (d) Graph x, v, and a versus ¢ for the interval
from one start-up to the next.

Fig. 2-26 Problem 37.

*39 Cars A and B move in the same direction in adjacent lanes. The
position x of car A is given in Fig. 2-27, from time t = 0 to t = 7.0 s. The
figure’s vertical scaling is set by x, = 32.0 m. At ¢t = 0,car Bisatx = 0,
with a velocity of 12 m/s and a negative constant acceleration ag. (a)
What must az be such that the cars are (momentarily) side by side
(momentarily at the same value of x) at t = 4.0 s? (b) For that value of
ag, how many times are the cars side by side? (c) Sketch the position x
of car B versus time ¢ on Fig. 2-27. How many times will the cars be side
by side if the magnitude of acceleration aj is (d) more than and (e) less
than the answer to part (a)?

x (m)

t(s)
Fig. 2-27 Problem 39.

40 =% You are driving toward a traffic signal when it turns
yellow. Your speed is the legal speed limit of v, = 55 km/h; your
best deceleration rate has the magnitude a = 5.18 m/s%. Your best
reaction time to begin braking is 7 = 0.75 s. To avoid having the
front of your car enter the intersection after the light turns red,
should you brake to a stop or continue to move at 55 km/h if the
distance to the intersection and the duration of the yellow light are
(a) 40 m and 2.8, and (b) 32 m and 1.8 s? Give an answer of
brake, continue, either (if either strategy works), or neither (if nei-
ther strategy works and the yellow duration is inappropriate).

*41 As two trains move along a track, their conductors suddenly
notice that they are headed toward each other. Figure 2-28 gives their
velocities v as functions of time ¢ as the conductors slow the trains.
The figure’s vertical scaling is set by v, = 40.0 m/s. The slowing
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processes begin when the trains v,

are 200m apart. What is their

separation when both trains have =

stopped? £y
>

*ee42 You are arguing over a
cell phone while trailing an
unmarked police car by 25 m;
both your car and the police
car are traveling at 110 km/h.
Your argument diverts your attention from the police car for 2.0 s
(long enough for you to look at the phone and yell, “I won’t do
that!”). At the beginning of that 2.0 s, the police officer begins
braking suddenly at 5.0 m/s>. (a) What is the separation between
the two cars when your attention finally returns? Suppose that you
take another 0.40 s to realize your danger and begin braking. (b) If
you too brake at 5.0 m/s?, what is your speed when you hit the po-
lice car?

6t(s)

Fig. 2-28 Problem 41.

e043 (@ When a high-speed passenger train traveling at
161 km/h rounds a bend, the engineer is shocked to see that a
locomotive has improperly entered onto the track from a siding
and is a distance D = 676 m ahead (Fig. 2-29). The locomotive is
moving at 29.0 km/h. The engineer of the high-speed train immedi-
ately applies the brakes. (a) What must be the magnitude of the re-
sulting constant deceleration if a collision is to be just avoided? (b)
Assume that the engineer is at x = 0 when, at ¢ = 0, he first spots
the locomotive. Sketch x(¢) curves for the locomotive and high-
speed train for the cases in which a collision is just avoided and is
not quite avoided.

train

Fig. 2-29 Problem 43.

sec. 2-9 Free-Fall Acceleration

*44  When startled, an armadillo will leap upward. Suppose it
rises 0.544 m in the first 0.200 s. (a) What is its initial speed as it
leaves the ground? (b) What is its speed at the height of 0.544 m?
(c) How much higher does it go?

°45 ssm Www (a) With what speed must a ball be thrown verti-
cally from ground level to rise to a maximum height of 50 m?
(b) How long will it be in the air? (c) Sketch graphs of y, v, and a
versus ¢ for the ball. On the first two graphs, indicate the time at
which 50 m is reached.

*46 Raindrops fall 1700 m from a cloud to the ground. (a) If they
were not slowed by air resistance, how fast would the drops be
moving when they struck the ground? (b) Would it be safe to walk
outside during a rainstorm?

°47 ssM At a construction site a pipe wrench struck the ground
with a speed of 24 m/s. (a) From what height was it inadvertently
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dropped? (b) How long was it falling? (c) Sketch graphs of y, v,
and a versus ¢ for the wrench.

°48 A hoodlum throws a stone vertically downward with an ini-
tial speed of 12.0 m/s from the roof of a building, 30.0 m above the
ground. (a) How long does it take the stone to reach the ground?
(b) What is the speed of the stone at impact?

°49 ssMm A hot-air balloon is ascending at the rate of 12 m/s and
is 80 m above the ground when a package is dropped over the side.
(a) How long does the package take to reach the ground? (b) With
what speed does it hit the ground?

50 Attime ¢ = 0,apple 1 is dropped from a bridge onto a road-
way beneath the bridge; somewhat later, apple 2 is thrown down
from the same height. Figure 2-30 gives the vertical positions y of
the apples versus ¢ during the falling, until both apples have hit the
roadway. The scaling is set by ¢, = 2.0 s. With approximately what
speed is apple 2 thrown down?

Fig. 2-30 Problem 50.

51 As a runaway scientific bal- v
loon ascends at 19.6 m/s, one of its
instrument packages breaks free of a
harness and free-falls. Figure 2-31

z t(s)

gives the vertical velocity of the 20N\
package versus time, from before it

breaks free to when it reaches the

ground. (a) What maximum height

above the break-free point does it  Fig. 2-31 Problem 51.

rise? (b) How high is the break-free
point above the ground?

52 @ A bolt is dropped from a bridge under construction,
falling 90 m to the valley below the bridge. (a) In how much time
does it pass through the last 20% of its fall? What is its speed (b)
when it begins that last 20% of its fall and (c) when it reaches the
valley beneath the bridge?

53 ssM ILW A key falls from a bridge that is 45 m above the
water. It falls directly into a model boat, moving with constant
velocity, that is 12 m from the point of impact when the key is re-
leased. What is the speed of the boat?

*54 A stone is dropped into a river from a bridge 43.9 m above
the water. Another stone is thrown vertically down 1.00 s after the
first is dropped. The stones strike the water at the same time. (a)
What is the initial speed of the second stone? (b) Plot velocity ver-
sus time on a graph for each stone, taking zero time as the instant
the first stone is released.

55 ssm A ball of moist clay falls 15.0 m to the ground. It is
in contact with the ground for 20.0 ms before stopping. (a) What is
the magnitude of the average acceleration of the ball during the time
it is in contact with the ground? (Treat the ball as a particle.) (b) Is the
average acceleration up or down?

*56 @ Figure 2-32 shows the speed v versus height y of a ball
tossed directly upward, along a y axis. Distance d is 0.40 m.The
speed at height y, is v,. The speed at height y; is %VA. What is
speed v, ?

Fig. 2-32 Problem 56.

*57 To test the quality of a tennis ball, you drop it onto the floor
from a height of 4.00 m. It rebounds to a height of 2.00 m. If the ball
is in contact with the floor for 12.0 ms, (a) what is the magnitude of
its average acceleration during that contact and (b) is the average
acceleration up or down?

*e58 An object falls a distance 4 from rest. If it travels 0.50/4 in
the last 1.00s, find (a) the time and (b) the height of its fall. (c)
Explain the physically unacceptable solution of the quadratic
equation in ¢ that you obtain.

*59 Water drips from the nozzle of a shower onto the floor 200
cm below. The drops fall at regular (equal) intervals of time, the
first drop striking the floor at the instant the fourth drop begins to
fall. When the first drop strikes the floor, how far below the nozzle
are the (a) second and (b) third drops?

*60 A rock is thrown vertically upward from ground level at time
t =0.Att= 1.5 s it passes the top of a tall tower, and 1.0 s later it
reaches its maximum height. What is the height of the tower?

es61 @ A steel ball is dropped from a building’s roof and passes
a window, taking 0.125 s to fall from the top to the bottom of the
window, a distance of 1.20 m. It then falls to a sidewalk and
bounces back past the window, moving from bottom to top in 0.125
s. Assume that the upward flight is an exact reverse of the fall. The
time the ball spends below the bottom of the window is 2.00 s. How
tall is the building?

00052 A basketball player grabbing a rebound jumps
76.0 cm vertically. How much total time (ascent and descent) does
the player spend (a) in the top 15.0 cm of this jump and (b) in the
bottom 15.0 cm? Do your results explain why such players seem to
hang in the air at the top of a jump?

P
a__’k -

63 (@ A drowsy cat spots a flow- Js
erpot that sails first up and then down
past an open window. The pot is in
view for a total of 0.50 s, and the top- =
to-bottom height of the window
is 2.00 m. How high above the window

top does the flowerpot go?

*64 A ball is shot vertically up-
ward from the surface of another o 1 2 3 4 5
planet. A plot of y versus ¢ for the ball L(s)

is shown in Fig. 2-33, where y is the  Fig. 2-33 Problem 64.




height of the ball above its starting point and 7 = 0 at the instant
the ball is shot. The figure’s vertical scaling is set by y, = 30.0 m.
What are the magnitudes of (a) the free-fall acceleration on the
planet and (b) the initial velocity of the ball?

sec.2-10 Graphical Integration in Motion Analysis

*65 %= Figure 2-13a gives the acceleration of a volunteer’s
head and torso during a rear-end collision. At maximum head ac-
celeration, what is the speed of (a) the head and (b) the torso?

*66 % In a forward punch in karate, the fist begins at rest at
the waist and is brought rapidly forward until the arm is fully ex-
tended. The speed v() of the fist is given in Fig. 2-34 for someone
skilled in karate. The vertical scaling is set by v, = 8.0 m/s. How far
has the fist moved at (a) time ¢ = 50 ms and (b) when the speed of
the fist is maximum?

Vv (m/s)
|

0 50 100 140
t (ms)

Fig. 2-34 Problem 66.

*e67 When a soccer ball is kicked toward a player and the player
deflects the ball by “heading” it, the acceleration of the head dur-
ing the collision can be significant. Figure 2-35 gives the measured
acceleration a(f) of a soccer player’s head for a bare head and a
helmeted head, starting from rest. The scaling on the vertical axis is
set by a, = 200 m/s?. At time ¢ = 7.0 ms, what is the difference in
the speed acquired by the bare head and the speed acquired by the
helmeted head?

a

Bare

a (m/s2)

t (ms)

Fig. 2-35 Problem 67.

68 %= A salamander of the genus Hydromantes captures
prey by launching its tongue
as a projectile: The skeletal

part of the tongue is shot for- e I
ward, unfolding the rest of @ .
the tongue, until the outer g |
portion lands on the prey, = aj----— / !
sticking to it. Figure 2-36 L I

0 10 20 30 40

shows the acceleration mag-
nitude a versus time ¢ for the
acceleration phase of the

t (ms)
Fig. 2-36 Problem 68.
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launch in a typical situation. The indicated accelerations are a, = 400
m/s? and a; = 100 m/s>. What is the outward speed of the tongue at
the end of the acceleration

phase?

*69 1LW How far does the run-
ner whose velocity—time graph is
shown in Fig. 2-37 travel in 16 s?
The figure’s vertical scaling is set
by v, = 8.0 m/s.

*e70 Two particles move

along an x axis. The position of

particle 1 is given by x = 6.00 t(s)

+ 3.00¢ + 2.00 (in meters and Fig. 2-37 Problem 69.

seconds); the acceleration of

particle 2 is given by a = —8.00¢ (in meters per second squared and
seconds) and, at t = 0, its velocity is 20 m/s. When the velocities of
the particles match, what is their velocity?

Additional Problems

71 In an arcade video game, a spot is programmed to move
across the screen according to x = 9.00¢ — 0.750¢%, where x is dis-
tance in centimeters measured from the left edge of the screen and
t is time in seconds. When the spot reaches a screen edge, at either
x = 0orx =150 cm, ¢is reset to 0 and the spot starts moving again
according to x(7). (a) At what time after starting is the spot instan-
taneously at rest? (b) At what value of x does this occur? (c) What
is the spot’s acceleration (including sign) when this occurs? (d) Is it
moving right or left just prior to coming to rest? (e) Just after? (f)
At what time ¢ > 0 does it first reach an edge of the screen?

72 A rock is shot vertically upward from the edge of the top of a
tall building. The rock reaches its maximum height above the top
of the building 1.60 s after being shot. Then, after barely missing
the edge of the building as it falls downward, the rock strikes the
ground 6.00 s after it is launched. In SI units: (a) with what upward
velocity is the rock shot, (b) what maximum height above the top of
the building is reached by the rock, and (c) how tall is the building?

73 @ At the instant the traffic light turns green, an automobile
starts with a constant acceleration a of 2.2 m/s?. At the same instant
a truck, traveling with a constant speed of 9.5 m/s, overtakes and
passes the automobile. (a) How far beyond the traffic signal will
the automobile overtake the truck? (b) How fast will the automo-
bile be traveling at that instant?

74 A pilot flies horizontally at 1300 km/h, at height # =35 m
above initially level ground. However, at time ¢ = 0, the pilot be-
gins to fly over ground sloping wupward at angle
0 = 4.3° (Fig. 2-38). If the pilot does not change the airplane’s
heading, at what time ¢ does the plane strike the ground?

Fig. 2-38 Problem 74.

75 To stop a car, first you require a certain reaction time to begin
braking; then the car slows at a constant rate. Suppose that the to-
tal distance moved by your car during these two phases is 56.7 m
when its initial speed is 80.5 km/h, and 24.4 m when its initial speed
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is 48.3 km/h. What are (a) your reaction time and (b) the magni-
tude of the acceleration?

76 %= Figure 2-39 shows part of a street where traffic flow is to
be controlled to allow a platoon of cars to move smoothly along
the street. Suppose that the platoon leaders have just reached in-
tersection 2, where the green appeared when they were distance d
from the intersection. They continue to travel at a certain speed v,
(the speed limit) to reach intersection 3, where the green appears
when they are distance d from it. The intersections are separated
by distances D,; and D,. (a) What should be the time delay of the
onset of green at intersection 3 relative to that at intersection 2 to
keep the platoon moving smoothly?

Suppose, instead, that the platoon had been stopped by a red
light at intersection 1. When the green comes on there, the leaders
require a certain time ¢, to respond to the change and an additional
time to accelerate at some rate a to the cruising speed v,. (b) If the
green at intersection 2 is to appear when the leaders are distance d
from that intersection, how long after the light at intersection 1
turns green should the light at intersection 2 turn green?

1 2 3
DD

Fig. 2-39 Problem 76.

77 ssm A hot rod can accelerate from 0 to 60 km/h in 5.4 s.
(a) What is its average acceleration, in m/s?, during this time? (b)
How far will it travel during the 5.4 s, assuming its acceleration is
constant? (c) From rest, how much time would it require to go a
distance of 0.25 km if its acceleration could be maintained at the
value in (a)?

78 A red train traveling at 72 km/h and a green train traveling at
144 km/h are headed toward each other along a straight, level
track. When they are 950 m apart, each engineer sees the other’s
train and applies the brakes. The brakes slow each train at the rate
of 1.0 m/s% Is there a collision? If so, answer yes and give the speed
of the red train and the speed of the green train at impact, respec-
tively. If not, answer no and give the separation between the trains
when they stop.

79 At time =0, a rock
climber accidentally allows a
piton to fall freely from a high
point on the rock wall to the val-
ley below him. Then, after a
short delay, his climbing partner,
who is 10 m higher on the wall,
throws a piton downward. The
positions y of the pitons versus ¢ t(s)

during the falling are given in Fig. 2-40 Problem 79.
Fig. 2-40. With what speed is the

second piton thrown?

80 A train started from rest and moved with constant accelera-
tion. At one time it was traveling 30 m/s, and 160 m farther on it
was traveling 50 m/s. Calculate (a) the acceleration, (b) the time re-

quired to travel the 160 m mentioned, (c) the time required to at-
tain the speed of 30 m/s, and (d) the distance moved from rest to
the time the train had a speed of 30 m/s. (¢) Graph x versus ¢ and v
versus ¢ for the train, from rest.

81 ssm A particle’s acceleration along an x axis is a = 5.0¢, with ¢
in seconds and a in meters per second squared. At ¢t = 2.0 s, its ve-
locity is +17 m/s. What is its velocity at t = 4.0 s?

82 Figure 2-41 gives the acceleration a versus time ¢ for a parti-
cle moving along an x axis. The g-axis scale is set by a, = 12.0 m/s?.
Attt = —2.0 s, the particle’s velocity is 7.0 m/s. What is its velocity
atr = 6.0s?

a (m/s?)

N

2 J\Gt(s)

Fig. 2-41 Problem 82.

83 Figure 2-42 shows a simple device for measuring your
reaction time. It consists of a cardboard strip marked with a scale
and two large dots. A friend holds the strip vertically, with thumb
and forefinger at the dot on the right in Fig. 2-42. You then posi-
tion your thumb and forefinger at the other dot (on the left in
Fig. 2-42), being careful not to touch the strip. Your friend re-
leases the strip, and you try to pinch it as soon as possible after
you see it begin to fall. The mark at the place where you pinch the
strip gives your reaction time. (a) How far from the lower dot
should you place the 50.0 ms mark? How much higher should
you place the marks for (b) 100, (c) 150, (d) 200, and (e) 250 ms?
(For example, should the 100 ms marker be 2 times as far from
the dot as the 50 ms marker? If so, give an answer of 2 times. Can
you find any pattern in the answers?)

Reaction time (ms)

L | | |0>
S W —_ — no no
== = ot (=3 ot

(=] (= (=] (=

Fig. 2-42 Problem 83.

84 =% A rocket-driven sled running on a straight, level track is
used to investigate the effects of large accelerations on humans.
One such sled can attain a speed of 1600 km/h in 1.8 s, starting
from rest. Find (a) the acceleration (assumed constant) in terms of
g and (b) the distance traveled.

85 A mining cart is pulled up a hill at 20 km/h and then pulled
back down the hill at 35 km/h through its original level. (The time
required for the cart’s reversal at the top of its climb is negligible.)
What is the average speed of the cart for its round trip, from its
original level back to its original level?

86 A motorcyclist who is moving along an x axis directed to-
ward the east has an acceleration given by a = (6.1 — 1.2¢) m/s?



for 0 =t = 6.0 s. Att = 0, the velocity and position of the cyclist
are 2.7 m/s and 7.3 m. (a) What is the maximum speed achieved
by the cyclist? (b) What total distance does the cyclist travel be-
tweent = 0 and 6.0 s?

87 ssm When the legal speed limit for the New York Thruway
was increased from 55 mi/h to 65 mi/h, how much time was saved
by a motorist who drove the 700 km between the Buffalo entrance
and the New York City exit at the legal speed limit?

88 A car moving with constant acceleration covered the distance
between two points 60.0 m apart in 6.00 s. Its speed as it passed the
second point was 15.0 m/s. (a) What was the speed at the first
point? (b) What was the magnitude of the acceleration? (c) At
what prior distance from the first point was the car at rest? (d)
Graph x versus r and v versus ¢ for the car, from rest (¢ = 0).

89 ssm =% A certain juggler usually tosses balls vertically to
a height H.To what height must they be tossed if they are to spend
twice as much time in the air?

90 A particle starts from the ori- v
gin at + =0 and moves along the
positive x axis. A graph of the veloc-
ity of the particle as a function of the
time is shown in Fig. 2-43; the v-axis
scale is set by v, = 4.0 m/s. (a) What
is the coordinate of the particle at 0 1 2 3 4 5 6
t = 5.0 s? (b) What is the velocity of {(s)

the particle at = 5.0 s? (c) What is
the acceleration of the particle at
t = 5.0 s? (d) What is the average velocity of the particle between
t =1.0sand ¢ = 5.0s? (e) What is the average acceleration of the
particle betweent = 1.0 sand r = 5.0 s?

Vv (m/s)

Fig. 2-43 Problem 90.

91 A rock is dropped from a 100-m-high cliff. How long does it
take to fall (a) the first 50 m and (b) the second 50 m?

92 Two subway stops are separated by 1100 m. If a subway train
accelerates at +1.2 m/s? from rest through the first half of the dis-
tance and decelerates at —1.2 m/s? through the second half, what
are (a) its travel time and (b) its maximum speed? (c) Graph x, v,
and a versus ¢ for the trip.

93 A stone is thrown vertically upward. On its way up it passes
point A with speed v, and point B, 3.00 m higher than A, with
speed 3 v. Calculate (a) the speed v and (b) the maximum height
reached by the stone above point B.

94 A rock is dropped (from rest) from the top of a 60-m-tall
building. How far above the ground is the rock 1.2s before it
reaches the ground?

95 ssm An iceboat has a constant velocity toward the east when
a sudden gust of wind causes the iceboat to have a constant accel-
eration toward the east for a period of 3.0 s. A plot of x versus ¢ is
shown in Fig. 2-44, where ¢ = 0 is taken to be the instant the wind
starts to blow and the positive x axis is toward the east. (a) What is
the acceleration of the iceboat during the 3.0 s interval? (b) What
is the velocity of the iceboat at the end of the 3.0 s interval? (c) If
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the acceleration remains constant for an additional 3.0 s, how far
does the iceboat travel during this second 3.0 s interval?

30
25
20
E s
* 10
5

0

0 0.5 1 1.5 2 2.5 3
L (s)
Fig. 2-44 Problem 95.

96 A lead ball is dropped in a lake from a diving board 5.20 m
above the water. It hits the water with a certain velocity and then
sinks to the bottom with this same constant velocity. It reaches the
bottom 4.80 s after it is dropped. (a) How deep is the lake? What
are the (b) magnitude and (c) direction (up or down) of the aver-
age velocity of the ball for the entire fall? Suppose that all the wa-
ter is drained from the lake. The ball is now thrown from the diving
board so that it again reaches the bottom in 4.80 s. What are the (d)
magnitude and (e) direction of the initial velocity of the ball?

97 The single cable supporting an unoccupied construction ele-
vator breaks when the elevator is at rest at the top of a 120-m-high
building. (a) With what speed does the elevator strike the ground?
(b) How long is it falling? (c) What is its speed when it passes the
halfway point on the way down? (d) How long has it been falling
when it passes the halfway point?

98 Two diamonds begin a free fall from rest from the same
height, 1.0 s apart. How long after the first diamond begins to fall
will the two diamonds be 10 m apart?

99 A ball is thrown vertically downward from the top of a 36.6-
m-tall building. The ball passes the top of a window that is 12.2 m
above the ground 2.00 s after being thrown. What is the speed of
the ball as it passes the top of the window?

100 A parachutist bails out and freely falls 50 m. Then the para-
chute opens, and thereafter she decelerates at 2.0 m/s?. She reaches
the ground with a speed of 3.0 m/s. (a) How long is the parachutist
in the air? (b) At what height does the fall begin?

101 A ball is thrown down vertically with an initial speed of v,
from a height of A. (a) What is its speed just before it strikes the
ground? (b) How long does the ball take to reach the ground?
What would be the answers to (c) part a and (d) part b if the ball
were thrown upward from the same height and with the same ini-
tial speed? Before solving any equations, decide whether the an-
swers to (c) and (d) should be greater than, less than, or the same
asin (a) and (b).

102 The sport with the fastest moving ball is jai alai, where mea-
sured speeds have reached 303 km/h. If a professional jai alai player

faces a ball at that speed and involuntarily blinks, he blacks out the
scene for 100 ms. How far does the ball move during the blackout?
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Fig. 3-1 (a) All three arrows have the
same magnitude and direction and thus
represent the same displacement. (b) All
three paths connecting the two points cor-
respond to the same displacement vector.

VECTORS

WHAT IS PHYSICS?

Physics deals with a great many quantities that have both size and direc-
tion, and it needs a special mathematical language —the language of vectors—to
describe those quantities. This language is also used in engineering, the other
sciences, and even in common speech. If you have ever given directions such as
“Go five blocks down this street and then hang a left,” you have used the language
of vectors. In fact, navigation of any sort is based on vectors, but physics and engi-
neering also need vectors in special ways to explain phenomena involving rotation
and magnetic forces, which we get to in later chapters. In this chapter, we focus on
the basic language of vectors.

3-2 Vectors and Scalars

A particle moving along a straight line can move in only two directions. We can
take its motion to be positive in one of these directions and negative in the other.
For a particle moving in three dimensions, however, a plus sign or minus sign is no
longer enough to indicate a direction. Instead, we must use a vector.

A vector has magnitude as well as direction, and vectors follow certain
(vector) rules of combination, which we examine in this chapter. A vector
quantity is a quantity that has both a magnitude and a direction and thus can be
represented with a vector. Some physical quantities that are vector quantities are
displacement, velocity, and acceleration. You will see many more throughout this
book, so learning the rules of vector combination now will help you greatly in
later chapters.

Not all physical quantities involve a direction. Temperature, pressure, energy,
mass, and time, for example, do not “point” in the spatial sense. We call such
quantities scalars, and we deal with them by the rules of ordinary algebra. A sin-
gle value, with a sign (as in a temperature of —40°F), specifies a scalar.

The simplest vector quantity is displacement, or change of position. A vec-
tor that represents a displacement is called, reasonably, a displacement vector.
(Similarly, we have velocity vectors and acceleration vectors.) If a particle
changes its position by moving from A to B in Fig. 3-1a, we say that it undergoes
a displacement from A to B, which we represent with an arrow pointing from A
to B. The arrow specifies the vector graphically. To distinguish vector symbols
from other kinds of arrows in this book, we use the outline of a triangle as the
arrowhead.

In Fig. 3-1a, the arrows from A to B, from A’ to B’, and from A” to B” have
the same magnitude and direction. Thus, they specify identical displacement vec-
tors and represent the same change of position for the particle. A vector can be
shifted without changing its value if its length and direction are not changed.

The displacement vector tells us nothing about the actual path that the parti-
cle takes. In Fig. 3-1b, for example, all three paths connecting points A and B cor-
respond to the same displacement vector, that of Fig. 3-1a. Displacement vectors
represent only the overall effect of the motion, not the motion itself.
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3-3 Adding Vectors Geometrically

Suppose that, as in the vector diagram of Fig. 3-2a, a particle moves from A to B
and then later from B to C. We can represent its overall displacement (no matter
what its actual path) with two successive displacement vectors, AB and BC.
The net displacement of these two displacements is a single displacement from A
to C. We call AC the vector sum (or resultant) of the vectors AB and BC. This
sum is not the usual algebraic sum.

In Fig. 3-2b, we redraw the vectors of Fig. 3-2a and relabel them in the way
that we shall use from now on, namely, with an arrow over an italic symbol, as
in d.If we want to indicate only the magnitude of the vector (a quantity that lacks
a sign or direction), we shall use the italic symbol, as in a, b, and s. (You can use
just a handwritten symbol.) A symbol with an overhead arrow always implies
both properties of a vector, magnitude and direction.

We can represent the relation among the three vectors in Fig. 3-2b with the
vector equation

S=4d+0, (3-1)
which says that the vector s is the vector sum of vectors @ and b.The symbol + in
Eq. 3-1 and the words “sum” and “add” have different meanings for vectors than
they do in the usual algebra because they involve both magnitude and direction.

Figure 3-2 suggests a procedure for adding two-dimensional vectors @ and b
geometrically. (1) On paper, sketch vector @ to some convenient scale and at the
proper angle. (2) Sketch vector b to the same scale, with its tail at the head of vec-
tor d, again at the proper angle. (3) The vector sum s is the vector that extends
from the tail of @ to the head of b.

Vector addition, defined in this way, has two important properties. First, the
order of addition does not matter. Adding @ to b gives the same result as adding
b to @ (Fig. 3-3); that is,

i+b=b+4d (commutative law). (3-2)
Second, when there are more than two vectors, we can group them in any order
as we add them. Thus, if we want to add vectors @, b, and ¢, we can add @ and b
first and then add their vector sum to ¢. We can also add b and ¢ first and then
add that sum to d. We get the same result either way, as shown in Fig. 3-4. That is,
(a + E) +¢=d+ (F + ¢)  (associative law). (3-3)

The vector —b is a vector with the same magnitude as b but the opposite

direction (see Fig. 3-5). Adding the two vectors in Fig. 3-5 would yield

b+ (=b)=0.

You get the same vector

result for any order of
N . adding the vectors.
a a
e
+
S
o\ o
X@\ N
x X
~\ N
R4

Fig. 3-4 The three vectors @, b, and € can be grouped in any way as they are added; see
Eq.3-3.

Actual
path

¢ C
Net displacement
is the vector sum

(@)

To add Zand b,
draw them
head to tail.

@l

)\ This is the
resulting vector,
from tail of @
to head of b.

Fig. 3-2 (a) ACis the vector sum of the
vectors AB and BC. (b) The same vectors
relabeled.

QY
s

Vector sum

Start Finish

You get the same vector
result for either order of
adding vectors.

Fig. 3-3 The two vectors @ and b can be
added in either order;see Eq. 3-2.

—

—-b

v

Fig. 3-5 The vectors b and —b have the
same magnitude and opposite directions.
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e Thus, adding —b has the effect of subt_r)acting E._)We use this property to define
the difference between two vectors:let d = @ — b.Then

QY

Nt

—

@ d=4d-b=3d+ (—F) (vector subtraction); (3-4)
a

' that is, we find the difference vector d by adding the vector —b to the vector a.

Note head-to-tail Figure 3-6 shows how this is done geometrically.
—> arrangement for . .

- addition As in the usual algebra, we can move a term that includes a vector symbol
from one side of a vector equation to the other, but we must change its sign.
For example, if we are given Eq. 3-4 and need to solve for @, we can rearrange the
equation as

d+b=d or d=d+D.

()

Remember that, although we have used displacement vectors here, the rules

Fig. 3-6 (a) Vectors d, b,and —b. (b) To for addition and subtraction hold for vectors of all kinds, whether they represent
subtract vector b from vector d@,add vector velocities, accelerations, or any other vector quantity. However, we can add
—b tovectord. only vectors of the same kind. For example, we can add two displacements, or two

velocities, but adding a displacement and a velocity makes no sense. In the arith-
metic of scalars, that would be like trying to add 21 s and 12 m.

\'CHECKPOINT 1
The magnitudes of displacements @ and b are 3m and 4 m, respectively, and

—

¢ = @ + b.Considering various orientations of @ and b, what is (a) the maximum pos-
sible magnitude for ¢ and (b) the minimum possible magnitude?

Sample Problem

Adding vectors in a drawing, orienteering

In an orienteering class, you have the goal of moving as far a
(straight-line distance) from base camp as possible by mak- a —
ing three straight-line moves. You may use the following N > )
displacements in any order: (a) @, 2.0 km due east (directly b 30° debem
toward the east); (b) b,2.0 km 30° north of east (at anangle ~~ ~ "~~~ """ 77T 7°
of 30° toward the north from due east); (c) ¢, 1.0 km due 4?_ ?D This is the vector result
west. Alternatively, you may substitute either —b for b or for adding those three
—¢ for ¢. What is the greatest distance you can be from base Sc_ale% vectors in any order.
camp at the end of the third displacement? 0 1 2

(a) (b)

Reasoning: Using a convenient scale, we draw vectors @, 3,
¢, —b,and —¢ as in Fig. 3-7a. We then mentally slide the
vectors over the page, connecting three of them at a time in
head-to-tail arrangements to find their vector sum d. The
tail of the first vector represents base camp. The head of the
third vector represents the point at which you stop. The vec- o )
tor sum d extends from the tail of the first vector to the head ~ The order shown in Fig. 3-7b is for the vector sum
of the third vector. Its magnitude d is your distance from d=0b+3d+(-0).
base camp. ) o

We find that distance d is greatest for a head-to-tail U§1ng the scale givenin Fig.3-7a, we measure the length d of
arrangement of vectors @, b, and —¢. They can be in any this vector sum, finding
order, because their vector sum is the same for any order. d=48m. (Answer)

Fig. 3-7 (a) Displacement vectors; three are to be used. (b) Your
distance from base camp is greatest if you undergo displacements
d,b,and —¢,in any order.

PW‘IL_EYU"S Additional examples, video, and practice available at WileyPLUS
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3-4 Components of Vectors

Adding vectors geometrically can be tedious. A neater and easier technique
involves algebra but requires that the vectors be placed on a rectangular coordi-
nate system. The x and y axes are usually drawn in the plane of the page, as shown
in Fig. 3-8a. The z axis comes directly out of the page at the origin; we ignore it for
now and deal only with two-dimensional vectors.

A component of a vector is the projection of the vector on an axis. In Fig.
3-8a, for example, a, is the component of vector @ on (or along) the x axis and a,
is the component along the y axis. To find the projection of a vector along an axis,
we draw perpendicular lines from the two ends of the vector to the axis, as shown.
The projection of a vector on an x axis is its x component, and similarly the pro-
jection on the y axis is the y component. The process of finding the components of
a vector is called resolving the vector.

A component of a vector has the same direction (along an axis) as the vector.
In Fig. 3-8, a, and a, are both positive because @ extends in the positive direction
of both axes. (Note the small arrowheads on the components, to indicate their di-
rection.) If we were to reverse vector @, then both components would be negative
and their arrowheads would point toward negative x and y. Resolving vector b in
Fig. 3-9 yields a positive component b, and a negative component b,.

In general, a vector has three components, although for the case of Fig. 3-8a
the component along the z axis is zero. As Figs. 3-8a and b show, if you shift a vec-
tor without changing its direction, its components do not change.

— This is the y component ——
of the vector.

y
y
‘ <]
— ! —
a } a a a,
|
6 /N
,,,,, L]
| 1 ay The components and the
— x | L x (¢ vector form a right triangle.
Ay 0
()

This is the x component
of the vector.

Fig. 3-8 (a) The components a, and a, of vector @. (b) The components are unchanged if the
vector is shifted, as long as the magnitude and orientation are maintained. (c¢) The components
form the legs of a right triangle whose hypotenuse is the magnitude of the vector.

We can find the components of @ in Fig. 3-8a geometrically from the right tri-
angle there:

a,=acosf and a,=asiné, (3-5)
where 6 is the angle that the vector @ makes with the positive direction of the
x axis, and a is the magnitude of @. Figure 3-8¢ shows that @ and its x and y com-
ponents form a right triangle. It also shows how we can reconstruct a vector from
its components: we arrange those components head to tail. Then we complete a
right triangle with the vector forming the hypotenuse, from the tail of one com-
ponent to the head of the other component.

Once a vector has been resolved into its components along a set of axes, the
components themselves can be used in place of the vector. For example, @ in

This is the x component
of the vector.

~———This is the y component
of the vector.

Fig. 3-9 The component of b on the x
axis is positive, and that on the y axis is
negative.
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Fig. 3-8a is given (completely determined) by a and 6. It can also be given by its
components a, and a,. Both pairs of values contain the same information. If we
know a vector in component notation (a, and a,) and want it in magnitude-angle

notation (a and ), we can use the equations

to transform it.

In the more general three-dimensional case, we need a magnitude and two

a
a="\a}+a} and tanf=— (3-6)

ay

angles (say, a, 6, and ¢) or three components (a,, a,,and a.) to specify a vector.

\.CH ECKPOINT 2

In the figure, which of the indicated methods for combining the x and y components
of vector @ are proper to determine that vector?

=
=
=

ax ax ax
x x x
ay ay @y
a a a
(a) (b) ()
) b b
ax ax
x x ‘ x
|
R a a
a ay y > } / y
! a
a |
(d) (e) f)

Sample Problem

Finding components, airplane flight

A small airplane leaves an airport on an overcast day and is
later sighted 215 km away, in a direction making an angle of
22° east of due north. How far east and north is the airplane
from the airport when sighted?

KEY IDEA

We are given the magnitude (215 km) and the angle (22°
east of due north) of a vector and need to find the compo-
nents of the vector.

Calculations: We draw an xy coordinate system with the
positive direction of x due east and that of y due north (Fig.
3-10). For convenience, the origin is placed at the airport.
The airplane’s displacement d points from the origin to
where the airplane is sighted.

200

Distance (km)
—
o
S

0
L0 100
Distance (km)

Fig. 3-10 A plane takes off from an airport at the origin and is
later sighted at P,



To find the components of d, we use Eq. 3-5 with § =
68° (= 90° — 22°):
d, = dcos 6 = (215 km)(cos 68°)

= 81 km (Answer)
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d, = dsin § = (215 km)(sin 68°)
=199 km =~ 2.0 X 10> km. (Answer)

Thus, the airplane is 81 km east and 2.0 X 10?> km north of
the airport.

Problem-Solving Tactics

Angles, trig functions, and inverse trig functions

Tactic 1: Angles—Degrees and Radians Angles that are
measured relative to the positive direction of the x axis are positive
if they are measured in the counterclockwise direction and nega-
tive if measured clockwise. For example, 210° and —150° are the
same angle.

Angles may be measured in degrees or radians (rad). To relate
the two measures, recall that a full circle is 360° and 27 rad. To con-
vert, say, 40° to radians, write

. 2arrad
360°

Tactic 2: Trig Functions You need to know the definitions
of the common trigonometric functions—sine, cosine, and tan-
gent—because they are part of the language of science and engi-
neering. They are given in Fig. 3-11 in a form that does not depend
on how the triangle is labeled.

You should also be able to sketch how the trig functions vary
with angle, as in Fig. 3-12, in order to be able to judge whether a
calculator result is reasonable. Even knowing the signs of the func-
tions in the various quadrants can be of help.

40

= (.70 rad.

<in 6= leg opposite 6
hypotenuse
) Hypotenuse Leg
cos 0= leg adjacent to 6 opposite 8
hypotenuse 0
o leg opposite 6 Leg adjacent to 6

tan o= leg adjacent to 0
Fig. 3-11 A triangle used to define the trigonometric functions.
See also Appendix E.
Tactic 3: Inverse Trig Functions When the inverse trig

functions sin™!, cos™!, and tan~! are taken on a calculator, you must
consider the reasonableness of the answer you get, because there is
usually another possible answer that the calculator does not give.
The range of operation for a calculator in taking each inverse trig
function is indicated in Fig. 3-12. As an example, sin~! 0.5 has asso-
ciated angles of 30° (which is displayed by the calculator, since 30°
falls within its range of operation) and 150°. To see both values,
draw a horizontal line through 0.5 in Fig. 3-12a and note where it
cuts the sine curve. How do you distinguish a correct answer? It is
the one that seems more reasonable for the given situation.

Tactic 4: Measuring Vector Angles The equations for
cos # and sin #in Eq. 3-5 and for tan 6 in Eq. 3-6 are valid only if

e o
PLUS

the angle is measured from the positive direction of the x axis. If it
is measured relative to some other direction, then the trig func-
tions in Eq. 3-5 may have to be interchanged and the ratio in Eq.
3-6 may have to be inverted. A safer method is to convert the angle
to one measured from the positive direction of the x axis.

Quadrants
v I 11 111 v

+1
sin

-90° 90° 180° 270° 360°

-1

(a)

+1
-\ Ccos

-90° 0

96%30" 270°  360°
-1

(0)

+2 tan
+1
-90° 90° 180° 270° 360°
-1
=2

(9)
Fig. 3-12 Three useful curves to remember. A calculator’s range
of operation for taking inverse trig functions is indicated by the
darker portions of the colored curves.

Additional examples, video, and practice available at WileyPLUS
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The unit vectors point
along axes.

=

Fig. 3-13 Unit vectors f, j, and k define

the directions of a right-handed coordinate

system.

This is the y vector
component.

This is the x vector
(@) component.

— X
[
[
[
[
[
[

()

Fig. 3-14 (a) The vector components of

vector d. (b) The vector components
of vector b.

3-5 Unit Vectors

A unit vector is a vector that has a magnitude of exactly 1 and points in a particu-
lar direction. It lacks both dimension and unit. Its sole purpose is to point— that
is, to specify a direction. The unit vectors in the positive directions of the x, y, and
z axes are labeled 1, i, and k, where the hat " is used instead of an overhead arrow
as for other vectors (Fig. 3-13). The arrangement of axes in Fig. 3-13 is said to be a
right-handed coordinate system. The system remains right-handed if it is rotated
rigidly. We use such coordinate systems exclusively in this book.

Unit vectors are very useful for expressing other vectors; for example, we can
express a@ and b of Figs. 3-8 and 3-9 as

=ai+ ayi (3-7)

2~

= b + b]. (3-8)

S ]

and

These two equations are illustrated in Fig. 3-14. The quantities a,1 and ayi are vec-
tors, called the vector components of @. The quantities a, and a, are scalars, called
the scalar components of @ (or, as before, simply its components).

3-6 Adding Vectors by Components

Using a sketch, we can add vectors geometrically. On a vector-capable calculator,
we can add them directly on the screen. A third way to add vectors is to combine
their components axis by axis, which is the way we examine here.

To start, consider the statement

F=4d+b, (3-9)

which says that the vector 7 is the same as the vector (d + B) Thus, each
component of 7 must be the same as the corresponding component of (@ + b):

r.=a,+ b, (3-10)
r,=a,+b, (3-11)
r,=a,+b,. (3-12)

In other words, two vectors must be equal if their corresponding components are
equal. Equations 3-9 to 3-12 tell us that to add vectors @ and b, we must (1) re-
solve the vectors into their scalar components; (2) combine these scalar compo-
nents, axis by axis, to get the components of the sum 7; and (3) combine
the components of 7 to get 7 itself. We have a choice in step 3. We can express 7
in unit-vector notation or in magnitude-angle notation.

This procedure for adding vectors by components also applies to vector
subtractions. Recall that a subtraction such as d = @ — b can be rewritten as an
addition d = @ + (—b).To subtract, we add @ and —b by components, to get

d,=a,—b,, d,=a,—b, and d,=a,— b,

where d=dai+dj+dk (3-13)
\.CHECKPOINT 3 y
(a) In the figure here, what are the signs of the x com- }
ponents of d; and d,? (b) What are the signs of the y 3
components of d; and d,? _()c) What are the signs of d } 2

the x and y components of d; + 07;?
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Sample Problem

Adding vectors, unit-vector components

Figure 3-15a shows the following three vectors:
@ = (42m)i — (1.5 m)j,
b = (—1.6m)i + (2.9 m)j,
and ¢ = (=3.7m)j.

What is their vector sum 7 which is also shown?

y
b To add these vectors,
2| find their net x component
. and their net y component.
B3 2 2 3 4 |
= -
a
=2
=
-3
Y?
(a)
Then arrange the net
y ~ components head to tail.
2.61
B 2 A 1T 23 2 |F
=7 N
o ? —2.3]
=3

(0) —This is the result of the addition.

Fig. 3-15 Vector 7 is the vector sum of the other three vectors.

KEY IDEA

We can add the three vectors by components, axis by axis,
and then combine the components to write the vector
sum 7.

galculations: For the x axis, we add the x components of @,
b, and ¢, to get the x component of the vector sum 7:

rx = aX + bX + cx
=42m—1.6m+ 0=2.6m.
Similarly, for the y axis,
r,=a,+b,+c
=—-15m+29m—-37m=-23m.

We then combine these components of 7 to write the vector
in unit-vector notation:

7 = (2.6 m)i — (2.3 m)j, (Answer)

where (2.6 m)i is the vector component of 7 along the x axis
and —(2.3 m)j is that along the y axis. Figure 3-15b shows
one way to arrange these vector components to form 7.
(Can you sketch the other way?)

We can also answer the question by giving the magnitude
and an angle for 7. From Eq. 3-6, the magnitude is

r=V(@26m)?+ (—23m)>~35m (Answer)
and the angle (measured from the +x direction) is
—23m
= -1 = ) = o
6 = tan < 26m > 41°, (Answer)

where the minus sign means clockwise.

Sample Problem

Adding vectors by components, desert ant

The desert ant Cataglyphis fortis lives in the plains of the
Sahara desert. When one of the ants forages for food, it
travels from its home nest along a haphazard search path,
over flat, featureless sand that contains no landmarks. Yet,
when the ant decides to return home, it turns and then runs
directly home. According to experiments, the ant keeps
track of its movements along a mental coordinate system.
When it wants to return to its home nest, it effectively sums
its displacements along the axes of the system to calculate a
vector that points directly home. As an example of the cal-
culation, let’s consider an ant making five runs of 6.0 cm
each on an xy coordinate system, in the directions shown in

Fig. 3-16a, starting from home. At the end of the fifth run,
what are the magnitude and angle of the ant’s net displace-
ment vector d,, and what are those of the homeward vec-
tor Zi)home that extends from the ant’s final position back
to home? In a real situation, such vector calculations might
involve thousands of such runs. g 3

KEY IDEAS

(1) To find the net displacement Zl)net, we need to sum the
five individual displacement vectors:

dy=d +d,+d,+d, +ds.
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(2) We evaluate this sum for the x components alone,

dnet,x = dlx + dlx + d3x + d4x + des (3'14)
and for the y components alone,
dnel,y = dly + dzy + d3y + d4y + dSy' (3'15)

3) We construct d.., from its x and y components.
net y p

Calculations: To evaluate Eq. 3-14, we apply the x part of
Eq.3-5 to each run:

dy, = (6.0 cm) cos 0° = +6.0 cm
= (6.0 cm) cos 150° = —5.2 cm
ds, = (6.0 cm) cos 180° = —6.0 cm
d,, = (6.0 cm) cos(—120°) = —3.0 cm
= (6.0 cm) cos 90° = 0.
Equation 3-14 then gives us
dyer = +6.0cm + (=52 cm) + (—6.0 cm)

+ (=3.0cm) + 0
= —8.2 cm.

Similarly, we evaluate the individual y components of the
five runs using the y part of Eq. 3-5. The results are shown in
Table 3-1. Substituting the results into Eq. 3-15 then gives us

dpery = +3.8 cm.
Table 3-1

Run d, (cm) d, (cm)
1 +6.0 0

2 =52 +3.0
3 —6.0 0

4 -3.0 -52
5 0 +6.0
net —82 +3.8

Vector anet and its x and y components are shown in
Fig. 3-16b. To find the magnitude and angle of d . from its
components, we use Eq. 3-6. The magnitude is

dpey = 'V dnet F dx21et y
= V/(-82cm)? + (3.8 cm)? = 9.0 cm.

To find the angle (measured from the positive direction of
x),we take an inverse tangent:

6 = tan™! (—d“et’y )
dncl,x

- tan*(%) = —24.86".

(3-16)

To add these vectors,
find their net x component
and their net y component.

Final y

This is the result of the
addition.

Then arrange the net
components head to tail.

/Final Final y
;net Ahome
3.8 cm
5 5
8.2 cm
Home Home

(®) (©)

Fig. 3-16 (a) A search path of five runs. (b) The x and y compo-
nents of d,. (c) Vector d} . points the way to the home nest.

Caution: Taking an inverse tangent on a calculator may not
give the correct answer. The answer —24.86° indicates that
the direction of Zm is in the fourth quadrant of our xy coor-
dinate system. However, when we construct the vector from
its components (Fig. 3-16b), we see that the direction of d oot
is in the second quadrant. Thus, we must “fix” the calcula-
tor’s answer by adding 180°:

0= —24.86° + 180° = 155.14° =~ 155°. (3-17)

Thus, the ant’s displacement Enet has magnitude and angle

dpe = 9.0 cm at 155°. (Answer)

Vector d directed from the ant to its home has the
same magmtude as d[let but the opposite direction
(Fig. 3-16¢). We already have the angle (—24.86° = —25°)
for the direction opposite d,.,. Thus, d ome Nas magnitude
and angle

net*

= 9.0 cm at —25°. (Answer)

dhome

A desert ant traveling more than 500 m from its home will
actually make thousands of individual runs. Yet, it some-
how knows how to calculate d . (without studying this
chapter).

PL U°s Additional examples, video, and practice available at WileyPLUS



3-7 Vectors and the Laws of Physics

So far, in every figure that includes a coordinate system, the x and y axes are par-
allel to the edges of the book page. Thus, when a vector ¢ is included, its compo-
nents a, and a, are also parallel to the edges (as in Fig. 3-17a). The only reason for
that orientation of the axes is that it looks “proper”; there is no deeper reason.
We could, instead, rotate the axes (but not the vector @) through an angle ¢ as in
Fig. 3-17b, in which case the components would have new values, call them a;, and
ay. Since there are an infinite number of choices of ¢, there are an infinite number
of different pairs of components for .

Which then is the “right” pair of components? The answer is that they are all
equally valid because each pair (with its axes) just gives us a different way of de-
scribing the same vector a; all produce the same magnitude and direction for the
vector. In Fig. 3-17 we have

a=Va+ aj = Va2 + a,? (3-18)

and
0=06 + ¢. (3-19)

The point is that we have great freedom in choosing a coordinate system,
because the relations among vectors do not depend on the location of the ori-
gin or on the orientation of the axes. This is also true of the relations of
physics; they are all independent of the choice of coordinate system. Add to
that the simplicity and richness of the language of vectors and you can see why
the laws of physics are almost always presented in that language: one equation,
like Eq. 3-9, can represent three (or even more) relations, like Egs. 3-10, 3-11,
and 3-12.

Rotating the axes
changes the components
but not the vector.

Fig. 3-17 (a) The vector @
and its components. (b) The
same vector, with the axes of
the coordinate system rotated
through an angle ¢.

3-8 Multiplying Vectors*

There are three ways in which vectors can be multiplied, but none is exactly like
the usual algebraic multiplication. As you read this section, keep in mind that a
vector-capable calculator will help you multiply vectors only if you understand
the basic rules of that multiplication.

Multiplying a Vector by a Scalar

If we multiply a vector @ by a scalar s, we get a new vector. Its magnitude is
the product of the magnitude of @ and the absolute value of s. Its direction is the

*This material will not be employed until later (Chapter 7 for scalar products and Chapter 11 for vec-
tor products), and so your instructor may wish to postpone assignment of this section.

3-8 MULTIPYING VECTORS

PART 1
a7
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direction of @ if s is positive but the opposite direction if s is negative. To divide @
by s, we multiply @ by 1/s.

Multiplying a Vector by a Vector

There are two ways to multiply a vector by a vector: one way produces a scalar
(called the scalar product), and the other produces a new vector (called the vector
product). (Students commonly confuse the two ways.)

The Scalar Product

The scalar product of the vectors @ and b in Fig. 3-18a is written as @-b and
defined to be

@-b = abcos ¢, (3-20)

where a is the magnitude of @, b is the magnitude of b,and d) is the angle between
dandb (or, more properly, between the directions of @ and b).There are actually
two such angles: ¢ and 360° — ¢. Either can be used in Eq. 3-20, because their
cosines are the same.

Note that there are only scalars on the right side of Eq. 3-20 (including the
value of cos ¢) Thus d - b on the left side represents a scalar quantity. Because of
the notation, @ - b is also known as the dot product and is spoken as “a dot b.”

A dot product can be regarded as the product of two quantities: (1) the mag-
nitude of one of the vectors and (2) the scalar component of the second vector
along the direction of the first vector. For example, in Fig. 3-18b, d has a scalar
component a cos ¢ along the direction of b; note that a perpendlcular dropped
from the head of @ onto b determines that component. Similarly, b has a scalar
component b cos ¢ along the direction of .

If the angle ¢ between two vectors is 0°, the component of one vector along the
other is maximum, and so also is the dot product of the vectors. If, instead, ¢ is 90°, the
component of one vector along the other is zero, and so is the dot product.

Equation 3-20 can be rewritten as follows to emphasize the components:

@-b = (acos $)(b) = (a)(bcos ). (3-21)

QY

v
(@)
Component of b

along direction of
3.
ais bcos ¢

Multiplying these gives
the dot product.

b
e Component of @

along direction of
=

Fig. 3-18 (a)Two vectors @

and b, with an angle ¢ between

them. (b) Each vector has a

component along the direction Or multiplying these
of the other vector. gives the dot product.

bis acos ¢
(0)
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The commutative law applies to a scalar product, so we can write

e

d-b=>b-d.
When two vectors are in unit-vector notation, we write their dot product as
@ b= (ai+aj+ak)(bi+ bj+ bk, (3-22)

which we can expand according to the distributive law: Each vector component
of the first vector is to be dotted with each vector component of the second vec-
tor. By doing so, we can show that

@-b=ab, +ab,+ab. (3-23)

\'CH ECKPOINT 4

Vectors C and D have magnitudes of 3 units and 4 units, respectively. What is the
angle between the directions of C and D if C+ D equals (a) zero, (b) 12 units, and
(c) —12 units?

Sample Problem

Angle between two vectors using dot products

What is the angle ¢ between @ = 301 — 4.0) and b=
—2.01 + 3.0k? (Caution: Although many of the following steps
can be bypassed with a vector-capable calculator, you will learn

ing the vectors in unit-vector notation and using the distrib-
utive law:

more about scalar products if, at least here, you use these steps.)

KEY IDEA

The angle between the directions of two vectors is included

@-b=(3.01 — 4.0))-(—2.0i + 3.0k)
= (3.01)- (—2.01) + (3.01) - (3.0k)
+ (—4.07) - (—=2.01) + (—4.0j)- (3.0k).
We next apply Eq. 3-20 to each term in this last expression.

The angle between the unit vectors in the first term (i and i) is
0°, and in the other terms it is 90°. We then have

a-b = —(6.0)(1) + (9.0)(0) + (8.0)(0) — (12)(0)
Calculations: In Eq.3-24, a is the magnitude of @, or = —6.0.

in the definition of their scalar product (Eq. 3-20):

@b = abcos ¢. (3-24)

a=\V3.02+ (-4.0)2 = 5.00, (3-25)  Substituting this result and the results of Egs. 3-25 and 3-26
- into Eq.3-24 yield
and b is the magnitude of b, or o9 yleias
—6.0 = (5.00)(3.61) cos ¢,
b = V(=2.0)% + 3.0% = 3.61. (3-26) e

SO ¢ = cos = 109° =110°. (Answer)

71 -
We can separately evaluate the left side of Eq. 3-24 by writ- (5.00)(3.61)

e
P

LUS Additional examples, video, and practice available at WileyPLUS

The Vector Product

The vector product of @ and b, written @ X b, produces a third vector ¢ whose
magnitude is

¢ = ab sin ¢, (3-27)
where ¢ is the smaller of the two angles between @ and b. (You must use the
smaller of the two angles between the vectors because sin ¢ and sin(360° — ¢)
differ in algebraic sign.) Because of the notation, @ X b is also known as the cross
product, and in speech it is “a cross b.”
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If @ and b are parallel or antiparallel, @ x b = 0.The magnitude of @ X b, which
can be written as [@ X b|,is maximum when @ and b are perpendicular to each other.

The direction of ¢ is perpendicular to the plane that contains @ and b. Figure
3-19a shows how to determine the direction of € = @ x b with what is known as
a right-hand rule. Place the vectors @ and b tail to tail without altering their ori-
entations, and imagine a line that is perpendicular to their plane where they
meet. Pretend to place your right hand around that line in such a way that your
fingers would sweep @ into b through the smaller angle between them. Your out-
stretched thumb points in the direction of €.

The order of the vector multiplication is important. In Fig. 3-19b, we are
determining the direction of ¢’'= b x d,so0the fingers are placed to sweep b into
d through the smaller angle. The thumb ends up in the opposite direction from

ib
a

(

(b)

Fig. 3-19 lllustration of the right-hand rule for vector products. (a) Sweep vector @ into
vector b with the fingers of your right hand. Your outstretched thumb shows the direction
of vector ¢ = @ X b.(b) Showing that b X d is the reverse of @ X b.
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previously, and so it must be that ¢’ = —¢; that is,
bxd=—(dxDb). (3-28)

In other words, the commutative law does not apply to a vector product.
In unit-vector notation, we write

@ xb=(ai+a]+ak) x (bi+b,j+b.k), (3-29)

which can be expanded according to the distributive law; that is, each component
of the first vector is to be crossed with each component of the second vector. The
cross products of unit vectors are given in Appendix E (see “Products of
Vectors”). For example, in the expansion of Eq. 3-29, we have

al x bi=ab(ix1) =0,

because the two unit vectors 1 and 1 are parallel and thus have a zero cross prod-
uct. Similarly, we have

al x byi = axby(i xJj)= ab, k.

In the last step we used Eq. 3-27 to evaluate the magnitude of i X ] as unity.
(These vectors 1 and j each have a magnitude of unity, and the angle between
them is 90°.) Also, we used the right-hand rule to get the direction of i X | as
being in the positive direction of the z axis (thus in the direction of k).
Continuing to expand Eq. 3-29, you can show that
@xb=(ab, - ba)+ (ab, — b.a)j+ (ab, — ba)k.  (3-30)
A determinant (Appendix E) or a vector-capable calculator can also be used.

To check whether any xyz coordinate system is a right-handed coordinate
system, use the right-hand rule for the cross product i X ] = k with that system. If
your fingers sweep i (positive direction of x) into j (positive direction of y) with
the outstretched thumb pointing in the positive direction of z (not the negative
direction), then the system is right-handed.

\.CH ECKPOINT 5

Vectors C and D have magnitudes of 3 units and 4 units, respectively. What is the angle
between the directions of C and D if the magnitude of the vector product Cx Dis (a)
zero and (b) 12 units?

Sample Problem

Cross product, right-hand rule

In Fig. 3-20, vector ¢ lies in the xy plane, has a magnitude of z
18 units and points in a direction 250° from the positive di-
rection of the x axis. Also, vector b has a magnitude of
12 units and points in the posmve direction of the z axis. What
is the vector product ¢ = @ % b?

KEY IDEA

When we have two vectors in magnitude-angle notation, we
find the magnitude of their cross product with Eq. 3-27 and £ Y
the direction of their cross product with the right-hand rule  gig 3.20 Vector @ (in the xy plane) s the vector (or cross)

of Fig. 3-19. product of vectors @ and b.

Sweep Zinto b.

This is the resulting
vector, perpendicular to
both 2and b.
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Calculations: For the magnitude we write

¢ = absin ¢ = (18)(12)(sin 90°) = 216. (Answer)

To determine the direction in Fig. 3-20, imagine placing the
fingers of your right hand around a line perpendicular to the
plane of @ and b (the line on which ¢ is shown) such that
your fingers sweep d@ into b. Your outstretched thumb then

gives the direction of ¢. Thus, as shown in the figure, € lies in
the xy plane. Because its direction is perpendicular to the
direction of @ (a cross product always gives a perpendicular

vector), it is at an angle of
250° — 90° = 160° (Answer)

from the positive direction of the x axis.

Sample Problem

Cross product, unit-vector notation

If@ =31 — 4jand b = —2i + 3k, whatis€ = @ x b?

KEY IDEA

When two vectors are in unit-vector notation, we can find
their cross product by using the distributive law.

Calculations: Here we write
¢ = (31 — 4)) x (—21 + 3k)
=31 X (=21) + 31 x 3k + (—4j) x (=21)
+ (—4j) x 3k.

We next evaluate each term with Eq. 3-27, finding the
direction with the right-hand rule. For the first term here,
the angle ¢ between the two vectors being crossed is 0. For
the other terms, ¢ is 90°. We find

¢ = —6(0) +9(—]) + 8(—k) — 121

= —12i — 9] — 8k. (Answer)

This vector ¢ is perpendicular to both @ and b, a fact you
can check by showing that ¢-d = 0 and ¢- b = 0; that is,
there is no component of ¢ along the direction of either
dorb.

PWI|L.EYU°S Additional examples, video, and practice available at WileyPLUS

Scalars and Vectors Scalars, such as temperature, have mag-
nitude only. They are specified by a number with a unit (10°C) and
obey the rules of arithmetic and ordinary algebra. Vectors, such as
displacement, have both magnitude and direction (5 m, north) and
obey the rules of vector algebra.

Adding Vectors Geometrically Two vectors @ and b may be
added geometrically by drawing them to a common scale and plac-
ing them head to tail. The vector connecting the tail of the first to
the head of the second is the vector sum . To subtract b from 4,
reverse the direction of b to get —75; then add —b to @. Vector ad-
dition is commutative and obeys the associative law.

Components of a Vector The (scalar) components a, and a,
of any two-dimensional vector @ along the coordinate axes are
found by dropping perpendicular lines from the ends of @ onto the

coordinate axes. The components are given by
a,=acosf and a,=asinb,

(3-5)

where 6 is the angle between the positive direction of the x axis
and the direction of @. The algebraic sign of a component indicates

B BB REVIEWasSummary B LD L

its direction along the associated axis. Given its components, we
can find the magnitude and orientation of the vector @ with

a=Val+al and tan6 = %. (3-6)

X

Unit-Vector Notation Unit veciors 1, ], and k have magnitudes
of unity and are directed in the positive directions of the x, y, and z
axes, respectively, in a right-handed coordinate system. We can
write a vector @ in terms of unit vectors as

d=aj+ ayj + ak, (3-7)
in which a,1, ayj, and azﬁ are the vector components of @ and a,
and a, are its scalar components.

gl ay&

Adding Vectors in Component Form To add vectors in

component form, we use the rules
re=a,+b, r,=a,+b, r,=a,+b,. (3-10t0 3-12)

Here @ and b are the vectors to be added, and 7 is the vector sum.
Note that we add components axis by axis.



Product of a Scalar and a Vector The product of a scalar s
and a vector V is a new vector whose magnitude is sv and whose di-
rection is the same as that of V if s is positive, and opposite that of
Vif s is negative. To divide ¥V by s, multiply v by 1/s.

The Scalar Product The scalar (or dot) product of two
vectors @ and b is written @+ b and is the scalar quantity given by

b = abcos ¢, (3-20)

in which ¢ is the angle between the directions of @ and b. A scalar
product is the product of the magnitude of one vector and the
scalar component of the second vector along the direction of the
first vector. In unit-vector notation,

@b = (aj + a, + a.k)-(bd + b,j + b.k), (322

1 Can the sum of the magnitudes of two vectors ever be equal to
the magnitude of the sum of the same two vectors? If no, why not? If
yes,when?

2 The two vectors shown in Fig. 3-21 lie in an xy plane. What are the
signs of the x and y components, respectively, of (a) d; + d,, (b)

— —

d, — dy,and (c)ﬁ; —d;?

)
Lbf
X
4
Fig. 3-21 Question 2.

3 Being part of the “Gators,” the University of Florida golfing
team must play on a putting green with an alligator pit. Figure 3-22
shows an overhead view of one putting challenge of the team; an
xy coordinate system is superimposed. Team members must putt
from the origin to the hole, which is at xy coordinates (8 m, 12 m),
but they can putt the golf ball using only one or more of the follow-

ing displacements, one or more times:
d,=@mi+(6m)j d=(6mj d=@Bm).

The pitis at coordinates (8 m,6 m). If a team member putts the ball

y

X

Fig. 3-22 Question 3.

PART 1

QUESTIONS 53

which may be expanded according to the distributive law. Note
thata-b = b-4.

The Vector Product The vector (or cross) product of two vec-
tors @ and b is written @ X b and is a vector ¢ whose magnitude c is
given by

¢ = absin ¢, (3-27)

in which ¢ is the smaller of the angles between the directions of a
and b. The direction of ¢ is perpendicular to the plane
defined by @ and b and is given by a right-hand rule, as shown in
Fig.3-19.Note that @ X b = —(b X @).In unit-vector notation,

@ xDb=(ad+a,j+ak)x (bi+b,j+bk), (329

which we may expand with the distributive law.

into or through the pit, the member is automatically transferred to
Florida State University, the arch rival. What sequence of displace-
ments should a team member use to avoid the pit?

4 Equation 3-2 shows that the addition of two vectors @ and b is
commutative. Does that mean subtraction is commutative, so that
a—-b=b—-a?

5 Which of the arrangements of axes in Fig. 3-23 can be labeled

“right-handed coordinate system”? As usual, each axis label indi-
cates the positive side of the axis.

z x
x X y
y z y z
(a) (%) (e)
x z
X
z y y
z x
y
(d) (e) )

Fig. 3-23 Question 5.

6 Describe two vectors @ and b such that

(@+b=¢ and a+b=c;

(b)@+b =3 —b;

(©@+b=7¢ and > +b=¢

7 Ifd=3+b +(~7),does(a)d@ + (—d) = + (=b),(b) T =
(=b)+d +7¢,and(c) ¢ + (—d) =da + b?

©
=
sl
S

|

— - —
=d-¢,mustb equal ¢?

9 IfF = q(V % B)) and V is perpendicular to B, then what is the



54 CHAPTER 3 VECTORS

direction of B in the three situations shown in Fig. 3-24 when con-
stant ¢ is (a) positive and (b) negative?

=

Fig. 3-24 Question 9.

10 Figure 3-25 shows vector A and
four other vectors that have the same
magnitude but differ in orientation.
(a) Which of those other four vectors
have the same dot product with A? (b)
Which have a negative dot product
with A?

Fig. 3-25 Question 10.

e B/ rpProBLEMS BB GRS |

@ Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM  Worked-out solution available in Student Solutions Manual
*—ees  Number of dots indicates level of problem difficulty

WWW Worked-out solution is at
ILW Interactive solution is at

http://www.wiley.com/college/halliday

«A7 Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

sec. 3-4 Components of Vectors

*1 ssm What are (a) the x component and (b) the y component of a
vector @ in the xy plane if its direction is 250° counterclockwise from
the positive direction of the x axis and its magnitude is 7.3 m?

—

°2 A displacement vector 7 in the xy »
plane is 15 m long and directed at angle

—

6 =30° in Fig. 3-26. Determine (a) the x P
component and (b) the y component of the 6 x
vector. .

Fig. 3-26

*3 ssm The x component of vector A is
—25.0 m and the y component is +40.0 m.
(a) What is the magnitude of A? (b) What is the angle between the
direction of A and the positive direction of x?

*4  Express the following angles in radians: (a) 20.0°, (b) 50.0°, (c)
100°. Convert the following angles to degrees: (d) 0.330 rad, (e)
2.10rad, (f) 7.70 rad.

°5 A ship sets out to sail to a point 120 km due north. An unex-
pected storm blows the ship to a point 100 km due east of its start-
ing point. (a) How far and (b) in

what direction must it now sail to

reach its original destination? d

°6 In Fig. 3-27, a heavy piece of .“.
machinery is raised by sliding it a
distance d = 12.5m along a plank
oriented at angle 6 = 20.0° to the
horizontal. How far is it moved (a)
vertically and (b) horizontally?

Problem 2.

Fig. 3-27 Problem 6.

7 ssSM  WWwWW A room has di-

mensions 3.00 m (height) X 3.70 m X 4.30 m. A fly starting at one
corner flies around, ending up at the diagonally opposite corner. (a)
What is the magnitude of its displacement? (b) Could the length of
its path be less than this magnitude? (c) Greater? (d) Equal? (e)
Choose a suitable coordinate system and express the components
of the displacement vector in that system in unit-vector notation.
(f) If the fly walks, what is the length of the shortest path? (Hint:
This can be answered without calculus. The room is like a box.
Unfold its walls to flatten them into a plane.)

sec. 3-6 Adding Vectors by Components

°8 A person walks in the following pattern: 3.1 km north, then 2.4
km west, and finally 5.2 km south. (a) Sketch the vector diagram
that represents this motion. (b) How far and (c) in what direction
would a bird fly in a straight line from the same starting point to
the same final point?

°9 Two vectors are given by
@ = (40m) — (3.0m)) + (1.0 m)k
and b = (~1.0m)i + (LOm)] + (4.0 m)k.

In unit-vector notation, find (a) @ + b, (b) @ — b, and (c) a third
vector ¢ suchthatd — b + ¢ = 0.

*10  Find the (a) x, (b) y, and (c) z components of the sum 7 of

the displacements ¢ and d whose components in meters are
¢, ="14,¢c, = —38,c, = —6.1;d, = 44,d, = -2.0,d, = 3.3.

11 ssm (a) In unit-vector notation, what is the sum @ + b if
@ =(40m)i+ (3.0m)] and b = (—~13.0m)i + (7.0 m)j? What
are the (b) magnitude and (c) direction of @ + b?

*12 A caris driven east for a distance of 50 km, then north for 30
km, and then in a direction 30° east of north for 25 km. Sketch the
vector diagram and determine (a) the magnitude and (b) the angle
of the car’s total displacement from its starting point.

*13 A person desires to reach a point that is 3.40 km from her
present location and in a direction that is 35.0° north of east.
However, she must travel along streets that are oriented either
north—south or east—west. What is the minimum distance she
could travel to reach her destination?

*14  You are to make four straight-line moves over a flat desert
floor, starting at the origin of an xy coordinate system and ending
at the xy coordinates (—140 m,30 m). The x component and y com-
ponent of your moves are the following, respectively, in meters: (20
and 60), then (b, and —70), then (—20 and c,), then (—60 and —70).
What are (a) component b, and (b) component c,? What are (c)
the magnitude and (d) the angle (relative to the positive direction
of the x axis) of the overall displacement?

*15 ssm 1w www The two vectors @ and b in Fig. 3-28 have
equal magnitudes of 10.0 m and the angles are 6, = 30° and 6, =


http://www.wiley.com/college/halliday

105°. Find the (a) x and (b) y com- y
ponents of their vector sum 7, (c)
the magnitude of 7, and (d) the an-
gle 7 makes with the positive direc-
tion of the x axis. 0 .

Sl

°16 For the displacement vectors -
4=(30m)i+ (40m)] and b =
(5.0m)i + (—2.0m)j, give @ + b in
(a) unit-vector notation, and as (b) a 6 X
magnitude and (c) an angle (rela- 0

tive to 1). Now give b—din (d) Fig.3-28 Problem 15.
unit-vector notation, and as (e) a

magnitude and (f) an angle.

*17 @ W Three vectors d, b, and € each have a magnitude of
50 m and lie in an xy plane. Their directions relative to the positive
direction of the x axis are 30°,195° and 315°, respectively. What are
(a) the magnitude and (b) the angle of the vector @ + b + ¢, and
(c) the magnitude and (d) the angle of @ — b + ¢? What are the
(e) magnitude and (f) angle of a fourth vector d such that
(@+b)— (C+d)=0?

*18 Inthesum A + B = a vector A has a magnitude of 12.0 m
and is angled 40.0° counterclockwise from the +x direction, and vec-
tor C has a magnitude of 15.0 m and is angled 20.0° counterclock-
wise from the —x direction. What are (a) the magnitude and (b) the
angle (relative to +x) of B?

Sl

*19 In a game of lawn chess, where pieces are moved between the
centers of squares that are each 1.00 m on edge, a knight is moved
in the following way: (1) two squares forward, one square right-
ward; (2) two squares leftward, one square forward; (3) two
squares forward, one square leftward. What are (a) the magnitude
and (b) the angle (relative to “forward”) of the knight’s overall dis-
placement for the series of three moves?

*20 == An explorer is caught in a whiteout (in which the
snowfall is so thick that the ground cannot be distinguished from
the sky) while returning to base camp. He was supposed to travel
due north for 5.6 km, but when the snow clears, he discovers that
he actually traveled 7.8 km at 50° north of due east. (a) How far
and (b) in what direction must he now travel to reach base camp?

21 @ An ant, crazed by the Sun on a hot Texas afternoon, darts
over an xy plane scratched in the dirt. The x and y components of four
consecutive darts are the following, all in centimeters: (30.0, 40.0),
(b, =70.0), (—20.0, ¢,)), (—80.0, —70.0). The overall displacement of
the four darts has the xy components (—140, —20.0). What are (a) b,
and (b) ¢,? What are the (c) magnitude and (d) angle (relative to the
positive direction of the x axis) of the overall displacement?

*22 (a) What is the sum of the following four vectors in unit-
vector notation? For that sum, what are (b) the magnitude, (c) the
angle in degrees, and (d) the angle in radians?

E:6.00mat +0.900 rad  F:5.00 m at —75.0°

G:4.00 m at +1.20 rad H:6.00 m at —210°

«23 If Bis added to C = 3.01 + 4.0j, the result is a vector in the
positive direction of the y axis, with a magnitude equal to that of C.
What is the magnitude of B?

«24  Vector A , which is directed along an x axis, is to be added to
vector B, which has a magnitude of 7.0 m. The sum is a third vector
that is directed along the y axis, with a magnitude that is 3.0 times
that of A. What is that magnitude of A2
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*25 @ Oasis B is 25 km due east of oasis A. Starting from oasis
A, a camel walks 24 km in a direction 15° south of east and then
walks 8.0 km due north. How far is the camel then from oasis B?

*26 What is the sum of the following four vectors in (a) unit-vec-
tor notation, and as (b) a magnitude and (c) an angle?

A = (200m)i + (3.00 m); B:4.00 m, at +65.0°
C=(-400m)i + (—=6.00m)]  D:5.00 m, at —235°

w27 @ Ifd,+ d,=5d;d, — d,=3d; and d;, = 21 + 4j, then
what are, in unit-vector notation, (a) d; and (b) d,?

*28 Two beetles run across flat sand, starting at the same point.
Beetle 1 runs 0.50 m due east, then 0.80 m at 30° north of due east.
Beetle 2 also makes two runs; the first is 1.6 m at 40° east of due
north. What must be (a) the magnitude and (b) the direction of its
second run if it is to end up at the new location of beetle 1?

29 == (@ Typical backyard ants often create a network of
chemical trails for guidance. Extending outward from the nest, a
trail branches (bifurcates) repeatedly, with 60° between the
branches. If a roaming ant chances upon a trail, it can tell the way
to the nest at any branch point: If it is moving away from the nest, it
has two choices of path requiring a small turn in its travel direc-
tion, either 30° leftward or 30° rightward. If it is moving toward the
nest, it has only one such choice. Figure 3-29 shows a typical ant
trail, with lettered straight sections of 2.0 cm length and symmetric
bifurcation of 60°. Path v is parallel to the y axis. What are the (a)
magnitude and (b) angle (relative to the positive direction of the
superimposed x axis) of an ant’s displacement from the nest (find it
in the figure) if the ant enters the trail at point A? What are the (c)
magnitude and (d) angle if it enters at point B?

Fig. 3-29
Problem 29.

30 Here are two vectors:
7=(40m) — (30m) and b = (6.0m)i + (8.0m)j.

What are (a) the magnitude and (b) the angle (relative to 1) of @?
What are (c) the magnitude and (d) the angle of 5? What are (¢) the
magnitude and (f) the angle of @ + b; 2

(g) the magnitude and (h) the angle of
b — @; and (i) the magnitude and (j)
the angle of @ — b? (k) What is the an- a
gle between the directions of b—-d y
andd — b? a a

*=e31 In Fig. 3-30, a cube of edge

length a sits with one corner at the ori- Fig- 3-30 Problem 31.
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gin of an xyz coordinate system. A body diagonal is a line that ex-
tends from one corner to another through the center. In unit-vec-
tor notation, what is the body diagonal that extends from the cor-
ner at (a) coordinates (0, 0, 0), (b) coordinates (a, 0, 0), (c)
coordinates (0, a,0), and (d) coordinates (a, a,0)? (¢) Determine
the angles that the body diagonals make with the adjacent edges.
(f) Determine the length of the body diagonals in terms of a.

sec. 3-7 Vectors and the Laws of Physics

*32 In Fig. 3-31, a vector @ with a magnitude of 17.0m is
directed at angle 6 = 56.0° counterclockwise from the +x axis.
What are the components (a) a, and (b) a, of the vector? A sec-
ond coordinate system is inclined by angle 6’ = 18.0° with respect
to the first. What are the components (c) a, and (d) a; in this
primed coordinate system?
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Fig. 3-31 Problem 32.
sec. 3-8 Multiplying Vectors y

*33 For the vectors in Fig. 3-32, with
a=4,b = 3,and ¢ = 5, what are (a) the
magnitude and (b) the direction of
@ % b, (c) the magnitude and (d) the di-
rection of @ X ¢, and (e) the magnitude x

>

=y

and (f) the direction of b x ¢? (The z ) “
axis is not shown.) Fig. 3-32
Problems 33 and 54.

°34 Two vectors are presented as

@=301+50] and b =20i + 4.0j.

Find (a) @ X b,(b) @+ b,(c) (@ + b)-b,and (d) the component of
@ along the direction of b. (Hint: For (d), consider Eq. 3-20 and
Fig.3-18.)

*35 Two vectors, 7 and ¥, lie in the xy plane. Their magnitudes are
4.50 and 7.30 units, respectively, and their directions are 320° and
85.0°, respectively, as measured counterclockwise from the positive
x axis. What are the values of (a) 7+ 5 and (b) ¥ X 57

*36 Iiﬁl iSi —Ej + 4k and d, = -5 + 2] — k, then what is
(di + dy) - (d; X 4d,)?
37 Three vectors are given by a :AS.Oi + §Oj — 2.0k,
b= —1.01 — 40 + 2.0k, and ¢ =2.01 +2.0j + 1.0k. Find (a)
a-(bx7¢),(b)ya-(b +7¢),and(c)d X (b + 7).
«38 @ For the following three vectors, what is 3C - (24 x B)?

A =2.001 + 3.00] — 4.00k

B = —3.001 + 4.00] + 200k  C = 7.001 — 8.00]

«39 Vector A has a magnitude of 6.00 units, vector B has a mag-
nitude of 7.00 units, and A - B has a value of 14.0. What is the angle
between the directions of A and B?

*»40 Displacement le is in the yz plane 63.0° from the positive di-
rection of the y axis, has a positive z component, and has a magni-
tude of 4.50 m. Displacement d, is in the xz plane 30.0° from the
positive direction of the x axis, has a positive z component, and has
magnitude 1.40 m. What are (a) d,+dy, (b) d, X dy,and (c) the an-
gle between dl and d2

"41 ssm 1w www Use the definition of scalar product,
@+b = ab cos 6,and the fact that @+ b = a,b, + a,b, + a.b, to cal-
culate the angle between the two vectors given by a=30+
3.0] + 3.0k and b =201 + 1.0] + 3.0k.
"42 In a meeting of mimes, mime 1 goes through a displacement
= (4.0 m)i + (5.0 m)j and mime 2 goes through a displacement
= ( 30m)1 + (4.0 m)j. What are (a) d, X dy, (b) d,+d,, (c)
\ + dy) - d», and (d) the component of d, along the direction of
d,? (Hint: For (d), see Eq.3-20 and Fig. 3-18.)

*43 ssm ILw The three vectors N y
in Fig. 3-33 have magnitudes a =3.00 ¢

m, b =4.00m, and ¢ = 10.0m and

angle § = 30.0°. What are (a) the x

component and (b) the y compo-

VQ ¢§~1

nent of @; (c) the x component and b
(d) the y component of b; and (e) 0
the x component and (f) the y com- = 7 X

ponent of ¢? If ¢ = pa@ + gb, what

are the values of (g) p and (h) ¢? Fig. 3-33 Problem 43.

44 @ Inthe product F = gV x B,takeq = 2,
V¥ =201 +4.0] + 60k and F=4.0i —20] + 12k.
What then is B in unit-vector notation if B, =B)?

Additional Problems

45 Vectors A and B lie in an
xy plane. A has magnitude
8.00 and angle 130° B has
components B, = —7.72 and
B, = —920. (a) What is
SA-B? What is 4A X 3B in
(b) unit-vector notation and
(c) magnitude-angle notation
with spherical coordinates (see
Fig. 3-34)? (d) What is the an-
gle between the directions of A and 44 x 3B? (Hint: Think a bit
before you resort to a calculation.) What is A + 3.00k in (e) unit-
vector notation and (f) magnitude-angle notation with spherical
coordinates?

Fig. 3-34 Problem 45.

46 Vector a has a magnitude of 5.0 m and is directed east. Vector
b has a magnitude of 4.0 m and is directed 35° west of due north.
What are (a) the magnitude and (b) the direction of @ + b? What
are (c) the magnitude and (d) the direction of b — @? () Draw a
vector diagram for each combination.

47 Vectors A and B lie in an xy plane. A has magnitude 8.00
and angle 130°; B has components B, = —7.72 and B, = —9.20.
What are the angles between the negative direction of the y axis
and (a) the direction of A, (b) the direction of the product
A x B,and (c) the direction of A x (B + 3.00k)?

48 Two vectors @ and b have the components, in meters, a, = 3.2,
a, = 1.6,b, = 0.50, b, = 4.5. (a) Find the angle between the direc-
tions of @ and b. There are two vectors in the xy plane that are



perpendicular to @ and have a magnitude of 5.0 m. One, vector ¢,
has a positive x component and the other, vector d,a negative x
component. What are (b) the x component and (c) the y compo-
nent of vector ¢, and (d) the x component and (e) the y component
of vector d?

49 ssm A sailboat sets out from the U.S. side of Lake Erie for a
point on the Canadian side, 90.0 km due north. The sailor, how-
ever, ends up 50.0 km due east of the starting point. (a) How far
and (b) in what direction must the sailor now sail to reach the orig-
inal destination?

50 Vector 31 is in the negative direction of a y axis, and vector 32
is in the positive direction of an x axis. What are the directions of
(a) dy/4 and (b) d,/(—4)? What are the magnitudes of products (c)
d,~d,and (d) d, - (d,/4)? What is the direction of the vector result-
ing from (¢) d, x d,and (f) d, X d,? What is the magnitude of the
vector product in (g) part (e) and (h) part (f)? What are the (i)
magnitude and (j) direction of d; X (d,/4)?

51 Rock faults are ruptures along which opposite faces of rock
have slid past each other. In Fig. 3-35, points A and B coincided be-
fore the roc&n the foreground slid down to the right. The net dis-
placement AB is along the plane of the fault. The horizontal compo-
nent of AB is the strike-slip AC. The component of AB that is
directed down the plane of the fault is the dip-slip AD. (a) What s the
magnitude of the net displacement AB  if the strike-slip is 22.0 m and
the dip-slip is 17.0 m? (b) If the plane of the fault is inclined at angle
¢ = 52.0° to the horizontal, what is the vertical component of AB ?

Strike-slip

Fault plane

Fig. 3-35 Problem 51.

52 Here are three displacements, each measured in meters:
d, =401 +50] — 60k, d,=-10i +20j +3.0k, and d;=
401 + 3.0] + 2.0k. (a) What is 7 = d, — d, + d;? (b) What is the
angle between 7 and the positive z axis? (c) What is the compo-
nent of 31 along the direction of 32? (d) What is the component of
d, that is perpendicular to the direction of d, and in the plane of d
and d,? (Hint: For (c), consider Eq.3-20 and Fig. 3-18; for (d), con-
sider Eq.3-27.)

53 ssM A vector @ of magnitude 10 units and another vector b
of magnitude 6.0 units differ in directions by 60°. Find (a) the
scalar product of the two vectors and (b) the magnitude of the vec-
tor product @ X b.

54  For the vectors in Fig. 3-32, witha = 4,b = 3,and ¢ = 5, calcu-
late (a) @+ b,(b)d-¢,and (c) b-C.

55 A particle undergoes three successive displacements in a
plane, as follows: ?ll, 4.00 m southwest; then 32, 5.00 m east; and
finally ds, 6.00 m in a direction 60.0° north of east. Choose a coor-
dinate system with the y axis pointing north and the x axis pointing
east. What are (a) the x component and (b) the y component of
d,? What are (c) the x component and (d) the y component of
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d,? What are () the x component and (f) the y component of d?
Next, consider the net displacement of the particle for the three
successive displacements. What are (g) the x component, (h) the y
component, (i) the magnitude, and () the direction of the net dis-
placement? If the particle is to return directly to the starting point,
(k) how far and (1) in what direction should it move?

56 Find the sum of the following four vectors in (a) unit-vector
notation, and as (b) a magnitude and (c) an angle relative to +x.

P: 10.0 m, at 25.0° counterclockwise from +x
é: 12.0 m, at 10.0° counterclockwise from +y
R: 8.00 m, at 20.0° clockwise from — y

K

: 9.00 m, at 40.0° counterclockwise from —y

57 ssm If Bisadded to A, the result is 6.01 + 1.0J. If B is subtracted
from A, the result is —4.01 + 7.0j.What is the magnitude of A2

58 A vector d has a magnitude of 2.5 m and points north. What
are (a) the magnitude and (b) the direction of 4.04? What are (c)
the magnitude and (d) the direction of ~3.0d?

59 A has the magnitude 12.0 m and is angled 60.0° counterclock-
wise from the positive direction of the x axis of an xy coordinate sys-
tem. Also, B = (12.0 m)i + (8.00 m)j on that same coordinate sys-
tem. We now rotate the system counterclockwise about the origin by
20.0° to form an x'y’ system. On this new system, what are (a) A and
(b) B, both in unit-vector notation?

60 Ifd—b = 2¢,d + b =4¢, and € = 31 + 4j,then what are
(a) @ and (b) b?

61 (a) In unit-vector notation, what is 7 =@ — b + ¢ if
@ =501+ 4.0] — 6.0k, b = —2.01 + 2.0] + 3.0k, and ¢ = 4.01 +
3.0) + 2.0k? (b) Calculate the angle between 7 and the positive z
axis. (c) What is the component of @ along the direction of b? (d)
What is the component of @ perpendicular to the direction of b but
in the plane of @ and b? (Hint: For (c), see Eq. 3-20 and Fig. 3-18;
for (d),see Eq.3-27.)

62 A golfer takes three putts to get the ball into the hole. The
first putt displaces the ball 3.66 m north, the second 1.83 m south-
east, and the third 0.91 m southwest. What are (a) the magnitude
and (b) the direction of the displacement needed to get the ball
into the hole on the first putt?

63 Here are three vectors in meters:

d, = —3.01 + 3.0] + 2.0k
d, = —2.01 — 4.0] + 2.0k
dy =201 + 3.0] + 1.0k.

What results from (a) d, -(32 + 21)3), (b) 31-(32 X Zl}), and
(©) dy X (dy + d3)?

64 Consider two displacements, one of magnitude 3 m and an-
other of magnitude 4 m. Show how the displacement vectors may
be combined to get a resultant displacement of magnitude (a) 7 m,
(b) 1 m,and (c) S m.

65 A protester carries his sign of protest, starting from the origin of
an xyz coordinate system, with the xy plane horizontal. He moves 40
m in the negative direction of the x axis, then 20 m along a perpendic-
ular path to his left,and then 25 m up a water tower. (a) In unit-vector
notation, what is the displacement of the sign from start to end? (b)
The sign then falls to the foot of the tower. What is the magnitude of
the displacement of the sign from start to this new end?
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To locate the
particle, this
is how far
parallel to z.

This is how far
parallel to y.

This is how far

/ parallel to x.
5 mM(Q m)j A
| (3m)i .

Fig. 4-1 The position vector 7 for a parti-

cle is the vector sum of its vector components.

MOTION IN TWO
AND THREE
DIMENSTONS

4_] WHAT IS PHYSICS?

In this chapter we continue looking at the aspect of physics that analyzes
motion, but now the motion can be in two or three dimensions. For example, med-
ical researchers and aeronautical engineers might concentrate on the physics of
the two- and three-dimensional turns taken by fighter pilots in dogfights because a
modern high-performance jet can take a tight turn so quickly that the pilot
immediately loses consciousness. A sports engineer might focus on the physics of
basketball. For example, in a free throw (where a player gets an uncontested shot
at the basket from about 4.3 m), a player might employ the overhand push shot, in
which the ball is pushed away from about shoulder height and then released. Or
the player might use an underhand loop shot, in which the ball is brought upward
from about the belt-line level and released. The first technique is the overwhelm-
ing choice among professional players, but the legendary Rick Barry set the
record for free-throw shooting with the underhand technique. g 3

Motion in three dimensions is not easy to understand. For example, you are
probably good at driving a car along a freeway (one-dimensional motion) but
would probably have a difficult time in landing an airplane on a runway (three-
dimensional motion) without a lot of training.

In our study of two- and three-dimensional motion, we start with position
and displacement.

4-2 Position and Displacement

One general way of locating a particle (or particle-like object) is with a position
vector 7, which is a vector that extends from a reference point (usually the ori-
gin) to the particle. In the unit-vector notation of Section 3-5, 7 can be written
7 =xi+y] + zk, (4-1)
where x1, y}, and zk are the vector components of 7 and the coefficients x, y, and
z are its scalar components.
The coefficients x, y, and z give the particle’s location along the coordinate

axes and relative to the origin; that is, the particle has the rectangular coordinates
(x,y, z). For instance, Fig. 4-1 shows a particle with position vector

7 =(=3m) + 2m)j + (5m)k

and rectangular coordinates (—3 m,2 m, 5 m). Along the x axis the particle is 3 m
from the origin, in the —1 direction. Along the y axis it is 2 m from the origin, in
the +j direction. Along the 7 axis it is 5 m from the origin, in the +k direction.
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As a particle moves, its position vector changes in such a way that the vector
always extends to the particle from the reference point (the origin). If the posi-
tion vector changes—say, from 7, to 7, during a certain time interval— then the
particle’s displacement A7 during that time interval is

— — —
Ar =7r,— 1.

(4-2)

Using the unit-vector notation of Eq. 4-1, we can rewrite this displacement as
A7 = (6l + ya) + k) = (i + yi) + 7k)

or as AT = (6 = x)i + (32 = y)] + (22 — 20k, (4-3)

where coordinates (x,, y;, z;) correspond to position vector 7, and coordinates
(%2, ¥2, 2,) correspond to position vector 7,. We can also rewrite the displacement
by substituting Ax for (x, — x;),Ay for (y, — y;),and Az for (z, — z;):

A7 = Axi + Ay] + Azk.

Sample Problem

Two-dimensional position vector, rabbit run

(44)

A rabbit runs across a parking lot on which a set of y (m)
coordinate axes has, strangely enough, been drawn. The co- 0
ordinates (meters) of the rabbit’s position as functions of
time ¢ (seconds) are given by To locate the
20 rabbit, this is the
X = _03112 + 7.2t + 28 (4'5) e X Component_
= 2 _ —+ - -
and y = 0.22t* — 9.1¢ + 30. (4-6) T 5 40 607 80 ° (m)
(a) Att = 15s,whatis the rabbit’s position vector 7 in unit- }
vector notation and in magnitude-angle notation? 20 i
|
|
The x and y coordinates of the rabbit’s position, as given by _60‘ 7777777777777 ‘
Eqgs. 4-5 and 4-6, are the scalar components of the rabbit’s (a)
position vector 7.
This is the y component.
Calculations: We can write
F(0) = x(0F + y(@0))- (4-7) )
(We write 7(¢) rather than 7 because the components are = —bs
functions of ¢,and thus 7 is also.)
Att = 15 s, the scalar components are 20
x = (—0.31)(15)> + (7.2)(15) + 28 = 66 m
and y = (0.22)(15)2 — (9.1)(15) + 30 = —57 m, 0 g
R R Fig. 4-2
sO 7 = (66 m)i — (57 m)j, (Answer)  (a) Arabbit’s -20
o o . position vector 7
which is drawn in Fig. 4-2a. To get the magnitude and angle i timesr =155 o 1
— : — S
of r , We use Eq 3-6: The scalar com-
_ 2 2 _ 5 — 2 ponents of 7 are -
r=Vx+ y \/(66 m)? + (=57 m) e e 60/ T 155
= 87 m, (Answer)  axes. (b) The (b) 20's
—57m rabbit’s path and

6m ) = —41°.  (Answer)

and 0 = tan! % = tan1<

its position at six
values of t.

This is the path with
various times indicated.
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Check: Although 6 = 139° has the same tangent as —41°, Graphing: We have located the rabbit at one instant, but to
the components of position vector 7 indicate that the de-  see its path we need a graph. So we repeat part (a) for sev-

sired angle is 139° — 180° = —41°.

(b) Graph the rabbit’s path forz = Otot = 25 s.

eral values of ¢ and then plot the results. Figure 4-2b shows
the plots for six values of ¢ and the path connecting them.
We can also plot Egs. 4-5 and 4-6 on a calculator.

PW‘LLEYU S Additional examples, video, and practice available at WileyPLUS

As the particle moves,
the position vector
must change.

Tangent \

This is the
displacement.

)

Path

0

Fig. 4-3 The displacement A7 of a parti-
cle during a time interval At, from position
1 with position vector 7, at time ¢, to posi-
tion 2 with position vector 7, at time #,. The
tangent to the particle’s path at position 1 is
shown.

4-3 Average Velocity and Instantaneous Velocity

If a particle moves from one point to another, we might need to know how fast it
moves. Just as in Chapter 2, we can define two quantities that deal with “how
fast”: average velocity and instantaneous velocity. However, here we must con-
sider these quantities as vectors and use vector notation.

If a particle moves through a displacement A7 in a time interval Az, then its
average velocity v, is
) displacement
average velocity = ————,

time interval
= A7

or Vavg = F (4-8)
This tells us that the direction of V,,, (the vector on the left side of Eq. 4-8) must

be the same as that of the displacement A7 (the vector on the right side). Using
Eq. 4-4, we can write Eq. 4-8 in vector components as

_ Axi +Ay] + Azk  Ax . Ay . Az -

= =—1+—7]+—k 4-9

Vave At AT A T N (4-9)
For example, if a particle moves through displacement (12 m)i + (3.0 m)k in 2.0
s, then its average velocity during that move is
- A7 (12m)i + (3.0m)k
V = =

" Ar 20s

That is, the average velocity (a vector quantity) has a component of 6.0 m/s along
the x axis and a component of 1.5 m/s along the z axis.

When we speak of the velocity of a particle, we usually mean the particle’s in-
stantaneous velocity v at some instant. This V is the value that 7avg approaches in
the limit as we shrink the time interval Az to 0 about that instant. Using the lan-
guage of calculus, we may write v as the derivative

= (6.0m/s)i + (1.5 m/s)k.

dar.
dt’

—
Vv =

(4-10)

Figure 4-3 shows the path of a particle that is restricted to the xy plane. As
the particle travels to the right along the curve, its position vector sweeps to the
right. During time interval At, the position vector changes from 7, to 7, and the
particle’s displacement is A7.

To find the instantaneous velocity of the particle at, say, instant ¢; (when the
particle is at position 1), we shrink interval Az to 0 about ¢,. Three things happen
as we do so. (1) Position vector 7, in Fig. 4-3 moves toward 7, so that A7 shrinks
toward zero. (2) The direction of A¥/Ar (and thus of V,,) approaches the
direction of the line tangent to the particle’s path at position 1. (3) The average
velocity Vavg approaches the instantaneous velocity V at t,.
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In the limit as Ar— 0, we have Vavg — 7V and, most important here,
Vavg takes on the direction of the tangent line. Thus, v has that direction as well:

The direction of the instantaneous velocity v of a particle is always tangent to the
particle’s path at the particle’s position.

The result is the same in three dimensions: v is always tangent to the particle’s path.
To write Eq. 4-10 in unit-vector form, we substitute for 7 from Eq. 4-1:
— d o IS ~ dx - dy P dz -
= —@xi+y +zk)=—1+—] +—k.
R R R T R I

This equation can be simplified somewhat by writing it as

V=vi+v]+ vk, (4-11)

where the scalar components of v are

dx d d
V= WS 7};, and v, = 7? (4-12)
For example, dx/dt is the scalar component of v along the x axis. Thus, we can find
the scalar components of v by differentiating the scalar components of 7.

Figure 4-4 shows a velocity vector Vv and its scalar x and y components.
Note that v is tangent to the particle’s path at the particle’s position. Caution:
When a position vector is drawn, as in Figs. 4-1 through 4-3, it is an arrow that
extends from one point (a “here”) to another point (a “there”). However,
when a velocity vector is drawn, as in Fig. 4-4, it does not extend from one
point to another. Rather, it shows the instantaneous direction of travel of a
particle at the tail, and its length (representing the velocity magnitude) can be
drawn to any scale.

The velocity vector is always
tangent to the path.

Tangent \

These are the x and y
components of the vector

. at this instant.
Fig. 4-4 The velocity v of a

particle, along with the scalar Path
components of V. 0 x

\'CHECKPOINT 1 y
The figure shows a circular path taken by a particle. If
the instantaneous velocity of the particle is
Vv = (2m/s)i — (2m/s)j, through which quadrant is the X
particle moving at that instant if it is traveling (a) clock-
wise and (b) counterclockwise around the circle? For W

both cases, draw v on the figure.
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Sample Problem

Two-dimensional velocity, rabbit run

For the rabbit in the preceding Sample Problem, find the ve-
locity v at time t = 15's.

KEY IDEA

We can find v by taking derivatives of the components of
the rabbit’s position vector.

Calculations: Applying the v, part of Eq. 4-12 to
Eq.4-5, we find the x component of V to be

dx d
=—=— (=031 + 7.2t + 28
= = ar )
= —0.62t + 7.2. (4-13)

At t = 15 s, this gives v, = —2.1 m/s. Similarly, applying the
v, part of Eq.4-12 to Eq. 4-6, we find

dy d
=——=—(0.22¢> — 9.1t + 30
“Ta T dr ( )
= 0441 — 9.1. (4-14)

At 1= 15s, this gives v, = —2.5m/s. Equation 4-11 then
yields

V= (-21m/s)i + (=2.5m/s)], (Answer)

which is shown in Fig. 4-5, tangent to the rabbit’s path and in
the direction the rabbit is running at = 15 s.

To get the magnitude and angle of V, either we use a
vector-capable calculator or we follow Eq. 3-6 to write

WILEY ©

v=V12+ vi= V(-2.1m/s)? + (—2.5m/s)?

=33 m/s (Answer)
v —2.5m/s
d =tan ' ==t 1(—)
an 0 = tan " an 1
= tan"'1.19 = —130°. (Answer)
Check: Is the angle —130° or —130° + 180° = 50°?
y (m)
40
20
0 x (m)

—
-60

These are the x and y
components of the vector
at this instant.

Fig. 4-5 The rabbit’s velocity v ats = 15s.

PLUS Additional examples, video, and practice available at WileyPLUS

4-4 Average Acceleration and Instantaneous Acceleration

When a particle’s velocity changes from v, to v, in a time interval Az, its average
acceleration Zavg during At is

or

average _ change in velocity
acceleration  time interval
— 72 - 71 AV
Apyo = ———— = ——. 4-15
e At At (4-15)

If we shrink At to zero about some instant, then in the limit @,,, approaches the
instantaneous acceleration (or acceleration) @ at that instant; that is,

dv

@=— 4-1
a o (4-16)

If the velocity changes in either magnitude or direction (or both), the particle
must have an acceleration.
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We can write Eq. 4-16 in unit-vector form by substituting Eq. 4-11 for v to obtain

These are the x and y

d . R R components of the vector
4= o (v +v,] + v, k) Y at this instant.
av, . dv, , dv, .
= i+—2]+—Fk
dt ar ) dr
We can rewrite this as
a=adl+a)+ak, (4-17) ’ .
where the scalar components of @ are Fig. 4-6 The acceleration a _o)f a particle
and the scalar components of a.
dv, dv dv
Yy z
a, = , a,=——, and a, = A 4-18
Yoodr Yooode cdr (4-18)

To find the scalar components of @, we differentiate the scalar components of V.
Figure 4-6 shows an acceleration vector @ and its scalar components for a
particle moving in two dimensions. Caution: When an acceleration vector is
drawn, as in Fig. 4-6, it does not extend from one position to another. Rather, it
shows the direction of acceleration for a particle located at its tail, and its length
(representing the acceleration magnitude) can be drawn to any scale.

\'CHECKPOINT 2
Here are four descriptions of the position (in meters) of a puck as it moves in an xy plane:
(1) x=-32+4—2 and y=62—4 (3) 7 =221 — (4 + 3)]
2 x=-33—4 and y=-52+6 (4 7 =4 -20)i +3

Are the x and y acceleration components constant? Is acceleration @ constant?

Sample Problem
Two-dimensional acceleration, rabbit run
For the rabbit in the preceding two Sample Problems, find @ = (—0.62m/s?)i + (0.44m/s?)], (Answer)

the acceleration @ at time t = 15 s. o ) ) o
which is superimposed on the rabbit’s path in Fig. 4-7.

KEY IDEA 9 ()

We can find a by taking derivatives of the rabbit’s velocity 40
components.
Calculations: Applying the a, part of Eq. 4-18 to Eq. 4-13, 20
we find the x component of @ to be
dv d
= —==—(-0.62t + 7.2) = —0.62 m/s.
a, ar " ( ) m/s

Similarly, applying the a, part of Eq. 4-18 to Eq. 4-14 yields
the y component as
_ A

d
a,=—== ar (0.44¢ — 9.1) = 0.44 m/s%.

y dt Fig. 4-7 The acceler-

ation @ of the rabbit at
We see that the acceleration does not vary with time (itisa ;= 15 s. The rabbit

constant) because the time variable t does not appear in the ~ happens to have this
expression for either acceleration component. Equation 4-17  same acceleration at
then yields all points on its path.

These are the x and y
components of the vector
at this instant.
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To get the magnitude and angle of a, either we use a
vector-capable calculator or we follow Eq. 3-6. For the mag-

tor, indicates that @ is directed to the right and downward
in Fig. 4-7. Yet, we know from the components that @ must

nitude we have

a=Va+ a; = V(—0.62 m/s?)? + (0.44 m/s?)?
= 0.76 m/s’.
For the angle we have

a 0.44 m/s?
6=tan ! — = tan! (_m/s) = —35°.
aX

be directed to the left and upward. To find the other angle
that has the same tangent as —35° but is not displayed on a
calculator, we add 180°:

—35° + 180° = 145°.

(Answer)
(Answer)

This is consistent with the components of @ because it gives
a vector that is to the left and upward. Note that @ has the
same magnitude and direction throughout the rabbit’s run
because the acceleration is constant.

—0.62 m/s?

However, this angle, which is the one displayed on a calcula-

PL U"s Additional examples, video, and practice available at WileyPLUS

4-5 Projectile Motion

We next consider a special case of two-dimensional motion: A particle moves in a
vertical plane with some initial velocity v, but its acceleration is always the free-
fall acceleration g, which is downward. Such a particle is called a projectile (mean-
ing that it is projected or launched), and its motion is called projectile motion. A
projectile might be a tennis ball (Fig. 4-8) or baseball in flight, but it is not an air-
plane or a duck in flight. Many sports (from golf and football to lacrosse and rac-
quetball) involve the projectile motion of a ball, and much effort is spent in trying
to control that motion for an advantage. For example, the racquetball player who
discovered the Z-shot in the 1970s easily won his games because the ball’s peculiar
flight to the rear of the court always perplexed his opponents. ¥
Our goal here is to analyze projectile motion using the tools for two-
dimensional motion described in Sections 4-2 through 4-4 and making the
assumption that air has no effect on the projectile. Figure 4-9, which is analyzed in
the next section, shows the path followed by a projectile when the air has no
effect. The projectile is launched with an initial velocity vV, that can be written as

Vo = Vol + VOyj' (4-19)

The components v,, and v, can then be found if we know the angle 6, between v
and the positive x direction:

Vor = Vocos 6, and v, = vgsin 6. (4-20)

During its two-dimensional motion, the projectile’s position vector 7 and velocity
vector v change continuously, but its acceleration vector @ is constant and always
directed vertically downward. The projectile has no horizontal acceleration.

Projectile motion, like that in Figs. 4-8 and 4-9, looks complicated, but we
have the following simplifying feature (known from experiment):

In projectile motion, the horizontal motion and the vertical motion are independent
of each other; that is, neither motion affects the other.

This feature allows us to break up a problem involving two-dimensional motion
into two separate and easier one-dimensional problems, one for the horizontal
motion (with zero acceleration) and one for the vertical motion (with constant
downward acceleration). Here are two experiments that show that the horizontal
motion and the vertical motion are independent.

Fig. 4-8 A stroboscopic photograph of a
yellow tennis ball bouncing off a hard sur-
face. Between impacts, the ball has projec-
tile motion. Source: Richard Megna/
Fundamental Photographs.
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Fig. 4-9 The projectile motion of an object launched into the ﬁ)
air at the origin of a coordinate system and with launch velocity -~

V, at angle 6,. The motion is a combination of vertical motion
(constant acceleration) and horizontal motion (constant veloc-
ity), as shown by the velocity components.

Y Vertical motion + Horizontal motion - ¥ Projectile motion

This vertical motion plus
this horizontal motion
produces this projectile motion.

Vertical velocity

0] 0x
Launch

y y
b7
v, P4
() Speed decreasing v
P— °—~ X X
0 o' Vi Io)
Constant velocity
y y v
Dv=0
v,=0
Stopped at
maximum
height
-
— x x
0 o' 0
Constant velocity
y y
vx
Speed increasing .
Yy MIRNY
vx
— Q- x x
0 o' 0
Constant velocity
y y
V. V.
T Qo . * - *
vy o ] v, 1X6!
Constant velocity }
v
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Fig. 4-10 One ball is released from rest
at the same instant that another ball is shot
horizontally to the right. Their vertical mo-
tions are identical. Source: Richard Megna/
Fundamental Photographs.

Two Golf Balls

Figure 4-10 is a stroboscopic photograph of two golf balls, one simply released
and the other shot horizontally by a spring. The golf balls have the same vertical
motion, both falling through the same vertical distance in the same interval of
time. The fact that one ball is moving horizontally while it is falling has no effect on
its vertical motion; that is, the horizontal and vertical motions are independent of
each other.

A Great Student Rouser

Figure 4-11 shows a demonstration that has enlivened many a physics lecture. It
involves a blowgun G, using a ball as a projectile. The target is a can suspended
from a magnet M, and the tube of the blowgun is aimed directly at the can. The
experiment is arranged so that the magnet releases the can just as the ball leaves
the blowgun.

If g (the magnitude of the free-fall acceleration) were zero, the ball would
follow the straight-line path shown in Fig. 4-11 and the can would float in place
after the magnet released it. The ball would certainly hit the can.

However, g is not zero, but the ball still hits the can! As Fig. 4-11 shows,
during the time of flight of the ball, both ball and can fall the same distance &
from their zero-g locations. The harder the demonstrator blows, the greater is the
ball’s initial speed, the shorter the flight time, and the smaller the value of A.

\.CH ECKPOINT 3

At a certain instant, a fly ball has velocity v = 251 — 4.9] (the x axis is horizontal, the y
axis is upward, and v is in meters per second). Has the ball passed its highest point?

The ball and the can fall
the same distance h.

Fig. 4-11 The projectile ball always hits the . G
falling can. Each falls a distance 4 from where it
would be were there no free-fall acceleration. TS

4-6 Projectile Motion Analyzed

Now we are ready to analyze projectile motion, horizontally and vertically.

The Horizontal Motion

Because there is no acceleration in the horizontal direction, the horizontal
component v, of the projectile’s velocity remains unchanged from its initial value
vo, throughout the motion, as demonstrated in Fig. 4-12. At any time ¢, the projec-
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Fig. 4-12 The vertical component of this
skateboarder’s velocity is changing but not the
horizontal component, which matches the skate-
board’s velocity. As a result, the skateboard stays
underneath him, allowing him to land on it.
Source: Jamie Budge/ Liaison/Getty Images, Inc.

tile’s horizontal displacement x — x,, from an initial position x, is given by Eq.
2-15 with a = 0, which we write as

X — xO = Voxt.
Because vy, = v, cos 6, this becomes
X — Xg = (VO COS 00)t (4'21)

The Vertical Motion

The vertical motion is the motion we discussed in Section 2-9 for a particle in free
fall. Most important is that the acceleration is constant. Thus, the equations of
Table 2-1 apply, provided we substitute —g for a and switch to y notation. Then,
for example, Eq. 2-15 becomes

Y= Yo = vt — 5817
= (v sin )t — 1gt%, (4-22)

where the initial vertical velocity component v, is replaced with the equivalent
Vo sin 6. Similarly, Egs. 2-11 and 2-16 become

Vv, = vysin 6, — gt (4-23)
and vZ = (vosin 6p)* — 2g(y — yp). (4-24)

As is illustrated in Fig. 4-9 and Eq. 4-23, the vertical velocity component be-
haves just as for a ball thrown vertically upward. It is directed upward initially,
and its magnitude steadily decreases to zero, which marks the maximum height of
the path. The vertical velocity component then reverses direction, and its magni-
tude becomes larger with time.

The Equation of the Path

We can find the equation of the projectile’s path (its trajectory) by eliminating
time ¢ between Eqgs. 4-21 and 4-22. Solving Eq. 4-21 for ¢ and substituting into
Eq.4-22, we obtain, after a little rearrangement,

gx?

= (tan G)x — ——>——
y = (tan 6)x 2(vy cos 6,)?

(trajectory). (4-25)

67
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y

60°

SRS AR SRS A SR A SRS A SR SO RSN S
Fig. 4-13 (I) The path of a fly ball calcu-
lated by taking air resistance into account.
(IT) The path the ball would follow in a vac-
uum, calculated by the methods of this
chapter. See Table 4-1 for corresponding
data. (Adapted from “The Trajectory of
a Fly Ball,” by Peter J. Brancazio, The
Physics Teacher, January 1985.)

Two Fly Balls®

Path | Path II
(Air) (Vacuum)
Range 98.5 m 177 m
Maximum
height 53.0 m 76.8 m
Time
of flight 6.6s 79s

“See Fig. 4-13.The launch angle is 60° and the
launch speed is 44.7 m/s.

CHAPTER 4 MOTION IN TWO AND THREE DIMENSIONS

This is the equation of the path shown in Fig. 4-9. In deriving it, for simplicity we
let x, = 0 and y, = 0 in Eqgs. 4-21 and 4-22, respectively. Because g, 6,, and v, are
constants, Eq. 4-25 is of the form y = ax + bx?, in which a and b are constants.
This is the equation of a parabola, so the path is parabolic.

The Horizontal Range

The horizontal range R of the projectile is the horizontal distance the projectile
has traveled when it returns to its initial height (the height at which it is
launched). To find range R,let us put x — x, = Rin Eq.4-21 and y — y, = 0in Eq.
4-22, obtaining

R = (vycos Oyt

and 0 = (v sin Oy)t — 1gt>.

Eliminating ¢ between these two equations yields

V% .
R = Lsin 6, cos 6.
8

Using the identity sin 26, = 2 sin 6§, cos 6, (see Appendix E), we obtain

Vi
R = —sin 26,. (4-20)
4
Caution: This equation does not give the horizontal distance traveled by a projec-
tile when the final height is not the launch height.
Note that R in Eq. 4-26 has its maximum value when sin 26, = 1, which
corresponds to 26, = 90° or 4, = 45°.

The horizontal range R is maximum for a launch angle of 45°.

However, when the launch and landing heights differ, as in shot put, hammer
throw, and basketball, a launch angle of 45° does not yield the maximum horizon-

tal distance. -

The Effects of the Air

We have assumed that the air through which the projectile moves has no effect
on its motion. However, in many situations, the disagreement between our calcu-
lations and the actual motion of the projectile can be large because the air resists
(opposes) the motion. Figure 4-13, for example, shows two paths for a fly ball that
leaves the bat at an angle of 60° with the horizontal and an initial speed of 44.7
m/s. Path I (the baseball player’s fly ball) is a calculated path that approximates
normal conditions of play, in air. Path II (the physics professor’s fly ball) is the
path the ball would follow in a vacuum.

\'CH ECKPOINT 4

A fly ball is hit to the outfield. During its flight (ignore the effects of the air), what hap-
pens to its (a) horizontal and (b) vertical components of velocity? What are the (c) hor-
izontal and (d) vertical components of its acceleration during ascent, during descent,
and at the topmost point of its flight?
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Sample Problem

Projectile dropped from airplane

In Fig. 4-14, a rescue plane flies at 198 km/h (= 55.0 m/s) and
constant height # = 500 m toward a point directly over a
victim, where a rescue capsule is to land.

(a) What should be the angle ¢ of the pilot’s line of sight to
the victim when the capsule release is made?

KEY IDEAS

Once released, the capsule is a projectile, so its horizontal
and vertical motions can be considered separately (we need
not consider the actual curved path of the capsule).

Calculations: In Fig. 4-14, we see that ¢ is given by

¢ = tan! %, (4-27)
where x is the horizontal coordinate of the victim (and of
the capsule when it hits the water) and # = 500 m. We

should be able to find x with Eq. 4-21:

X — Xy = (v cos ). (4-28)

Here we know that x, = 0 because the origin is placed at
the point of release. Because the capsule is released and
not shot from the plane, its initial velocity Vv, is equal to
the plane’s velocity. Thus, we know also that the initial ve-
locity has magnitude v, = 55.0 m/s and angle 6, = 0°
(measured relative to the positive direction of the x axis).
However, we do not know the time ¢ the capsule takes to
move from the plane to the victim.

Fig. 4-14 A plane drops a rescue capsule while moving at con-
stant velocity in level flight. While falling, the capsule remains un-
der the plane.

To find ¢, we next consider the vertical motion and
specifically Eq. 4-22:
y — yo = (vo sin )t — 1gt>. (4-29)

Here the vertical displacement y — y, of the capsule is
—500 m (the negative value indicates that the capsule
moves downward). So,

—500 m = (55.0 m/s)(sin 0°)t — 1(9.8 m/s?)t2. (4-30)

Solving for #, we find ¢ = 10.1 s. Using that value in Eq. 4-28
yields

x — 0= (55.0 m/s)(cos 0°)(10.1 s), (4-31)
or x =5555m.
Then Eq. 4-27 gives us
555.5m
= -1 === _ ©
¢ = tan S00m 48.0°. (Answer)

(b) As the capsule reaches the water, what is its velocity v in
unit-vector notation and in magnitude-angle notation?

KEY IDEAS

(1) The horizontal and vertical components of the capsule’s
velocity are independent. (2) Component v, does not
change from its initial value vy, = v, cos 6, because there is
no horizontal acceleration. (3) Component v, changes from
its initial value vy, = v,sin 6, because there is a vertical
acceleration.

Calculations: When the capsule reaches the water,
v, = vy cos 6y = (55.0 m/s)(cos 0°) = 55.0 m/s.

Using Eq. 4-23 and the capsule’s time of fall # = 10.1 s, we
also find that when the capsule reaches the water,

Vv, = Vysin 6, — gt (4-32)
= (55.0 m/s)(sin 0°) — (9.8 m/s?)(10.1 s)
= —99.0 m/s.
Thus, at the water
V = (55.0m/s)i — (99.0 m/s)]. (Answer)

Using Eq. 3-6 as a guide, we find that the magnitude and the
angle of vV are

v=113m/s and 6= —609°. (Answer)

PW‘LEYU"S Additional examples, video, and practice available at WileyPLUS
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Sample Problem

Cannonball to pirate ship

Figure 4-15 shows a pirate ship 560 m from a fort defending
a harbor entrance. A defense cannon, located at sea level,
fires balls at initial speed v, = 82 m/s.

(a) At what angle 6, from the horizontal must a ball be fired
to hit the ship?

KEY IDEAS

(1) A fired cannonball is a projectile. We want an equation
that relates the launch angle 6, to the ball’s horizontal dis-
placement as it moves from cannon to ship. (2) Because the
cannon and the ship are at the same height, the horizontal
displacement is the range.

y Either launch angle
gives a hit.

R=560 m——‘

Fig. 4-15 A pirate ship under fire.

Calculations: We can relate the launch angle 6, to the
range R with Eq. 4-26 which, after rearrangement, gives

_ 1. gR 1 . (98m/s’)(560 m)
b= 5 sin "5 = 5 s (82 m/s)
1
= sin”! 0816. (4-33)

One solution of sin~! (54.7°) is displayed by a calculator; we
subtract it from 180° to get the other solution (125.3°). Thus,
Eq.4-33 gives us

0, = 27° and 0, = 63°. (Answer)

(b) What is the maximum range of the cannonballs?

Calculations: We have seen that maximum range corre-
sponds to an elevation angle 6, of 45°. Thus,

2 2
7 (82 m/s)? . o
= = X
R " sin 26, o3 m/e St (2 X 45°)
= 686 m =~ 690 m. (Answer)

As the pirate ship sails away, the two elevation angles at
which the ship can be hit draw together, eventually merging
at 6, = 45° when the ship is 690 m away. Beyond that dis-
tance the ship is safe. However, the cannonballs could go
farther if the cannon were higher.

PLUS Additional examples, video, and practice available at WileyPLUS

4-7 Uniform Circular Motion

A particle is in uniform circular motion if it travels around a circle or a circular
arc at constant (uniform) speed. Although the speed does not vary, the particle is
accelerating because the velocity changes in direction.

Figure 4-16 shows the relationship between the velocity and acceleration
vectors at various stages during uniform circular motion. Both vectors have
constant magnitude, but their directions change continuously. The velocity is
always directed tangent to the circle in the direction of motion. The acceleration
is always directed radially inward. Because of this, the acceleration associated
with uniform circular motion is called a centripetal (meaning “center seeking”)
acceleration. As we prove next, the magnitude of this acceleration @ is

2
1%
a—=—— (centripetal acceleration),
r

(4-34)

where ris the radius of the circle and v is the speed of the particle.
In addition, during this acceleration at constant speed, the particle travels the
circumference of the circle (a distance of 27r) in time

27rr

T= - (period). (4-35)
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The acceleration vector
always points toward the
center.

Q v
\
\
—
&

The velocity \VA

vector is always

Fig. 4-16 Velocity and acceleration vec- tangent to the path.

tors for uniform circular motion.

T is called the period of revolution, or simply the period, of the motion. It is, in
general, the time for a particle to go around a closed path exactly once.

Proof of Eq. 4-34

To find the magnitude and direction of the acceleration for uniform circular
motion, we consider Fig. 4-17. In Fig. 4-17a, particle p moves at constant speed
v around a circle of radius r. At the instant shown, p has coordinates x, and y,,.

Recall from Section 4-3 that the velocity v of a moving particle is always tan-
gent to the particle’s path at the particle’s position. In Fig. 4-17a, that means V is
perpendicular to a radius r drawn to the particle’s position. Then the angle 6 that v
makes with a vertical at p equals the angle 6 that radius r makes with the x axis.

The scalar components of v are shown in Fig. 4-17b. With them, we can write
the velocity v as

V =i +vj = (—vsin 6)i + (v cos 0)]. (4-36)

Now, using the right triangle in Fig. 4-17a, we can replace sin 6 with y,/r and

cos O with x,/r to write
— Vyp n pr °
=|-——-)1 + . 4-
v ( r )1 ( r )] (4-37)

To find the acceleration @ of particle p, we must take the time derivative of this
equation. Noting that speed v and radius r do not change with time, we obtain

. dav v dy, >¢ (V dx, >¢
= = —— =2 )] + [ —=2)j. 4-38
dr < rodr )T\ ar ) (4-38)
y y
v v
) : oV,
p v
r Y,
0
x X X
b
(a) (b) (¢)

Fig. 4-17 Particle p moves in counterclockwise uniform circular motion. (@) Its position
and velocity V at a certain instant. (b) Velocity V. (¢) Acceleration a.
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Now note that the rate dy,/dt at which y, changes is equal to the velocity
component v,. Similarly, dx,/dt = v, and, again from Fig. 4-17b, we see that v, =
—vsin fand v, = v cos 6. Making these substitutions in Eq.4-38, we find

(4-39)

= v2 - v? .
a= (——cos 0>i + <—— sin 0>j.
r r

This vector and its components are shown in Fig. 4-17¢. Following Eq. 3-6, we find

2 2

2
a= \/a2+a§=VT\/(COSB)2+(sin0)2=VT 1=VT,

as we wanted to prove. To orient @, we find the angle ¢ shown in Fig. 4-17¢:

tanqb:&:M:tanO
a, —(r)cos 6 '

Thus, ¢ = 6, which means that @ is directed along the radius r of Fig. 4-17a,
toward the circle’s center, as we wanted to prove.

\.CH ECKPOINT 5

An object moves at constant speed along a circular path in a horizontal xy plane, with
the center at the origin. When the object is at x = —2 m, its velocity is —(4 m/s)j. Give
the object’s (a) velocity and (b) acceleration at y = 2 m.

Sample Problem

Top gun pilots in turns

“Top gun” pilots have long worried about taking a turn too
tightly. As a pilot’s body undergoes centripetal acceleration,
with the head toward the center of curvature, the blood
pressure in the brain decreases, leading to loss of brain
function.

There are several warning signs. When the centripetal
acceleration is 2g or 3g, the pilot feels heavy. At about 4g,
the pilot’s vision switches to black and white and narrows to
“tunnel vision.” If that acceleration is sustained or in-
creased, vision ceases and, soon after, the pilot is uncon-
scious—a condition known as g-LOC for “g-induced loss of
consciousness.”

What is the magnitude of the acceleration, in g units, of
a pilot whose aircraft enters a horizontal circular turn with a
velocity of ¥, = (4001 + 500j) m/s and 24.0 s later leaves the
turn with a velocity of Tz’f = (—4001 — 5007) m/s? s

KEY IDEAS

We assume the turn is made with uniform circular mo-
tion. Then the pilot’s acceleration is centripetal and has
magnitude a given by Eq. 4-34 (a = v?/R), where R is the cir-

WILEY ®

cle’s radius. Also, the time required to complete a full circle
is the period given by Eq.4-35 (T = 27R/v).

Calculations: Because we do not know radius R, let’s solve
Eq. 4-35 for R and substitute into Eq. 4-34. We find
4= 2av
T
Speed v here is the (constant) magnitude of the velocity

during the turning. Let’s substitute the components of the
initial velocity into Eq. 3-6:

v = V(400 m/s)? + (500 m/s)? = 640.31 mJs.

To find the period T of the motion, first note that the final
velocity is the reverse of the initial velocity. This means the
aircraft leaves on the opposite side of the circle from the ini-
tial point and must have completed half a circle in the given
24.0 s. Thus a full circle would have taken 7 = 48.0 s.
Substituting these values into our equation for a, we find

_ 2m(640.31 m/s)

= 2 ~
180 s 83.81 m/s* = 8.6g.

(Answer)

PLUS Additional examples, video, and practice available at WileyPLUS
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4-8 Relative Motion in One Dimension

Suppose you see a duck flying north at 30 km/h. To another duck flying alongside,
the first duck seems to be stationary. In other words, the velocity of a particle de-
pends on the reference frame of whoever is observing or measuring the velocity.
For our purposes, a reference frame is the physical object to which we attach our
coordinate system. In everyday life, that object is the ground. For example, the
speed listed on a speeding ticket is always measured relative to the ground. The
speed relative to the police officer would be different if the officer were moving
while making the speed measurement.

Suppose that Alex (at the origin of frame A in Fig. 4-18) is parked by the side
of a highway, watching car P (the “particle”) speed past. Barbara (at the origin of
frame B) is driving along the highway at constant speed and is also watching car
P. Suppose that they both measure the position of the car at a given moment.
From Fig. 4-18 we see that

Xpa = Xpg + Xpa. (4-40)

The equation is read: “The coordinate xp, of P as measured by A is equal to the

coordinate xpyz of P as measured by B plus the coordinate xz, of B as measured

by A.” Note how this reading is supported by the sequence of the subscripts.
Taking the time derivative of Eq.4-40, we obtain

d d d
ar (xpa) = ar (xpg) + ar (xga)-

Thus, the velocity components are related by

Vpa = Vpp aF VBa- (4-41)

This equation is read: “The velocity vp, of P as measured by A is equal to the
velocity vpp of P as measured by B plus the velocity vz, of B as measured by A.”
The term v, is the velocity of frame B relative to frame A.

Here we consider only frames that move at constant velocity relative to each
other. In our example, this means that Barbara (frame B) drives always at con-
stant velocity v, relative to Alex (frame A). Car P (the moving particle), how-
ever, can change speed and direction (that is, it can accelerate).

To relate an acceleration of P as measured by Barbara and by Alex, we take
the time derivative of Eq.4-41:

d d d
ar (vpa) = ar (vpp) + a (Vga)-

Because v, is constant, the last term is zero and we have
dpy = dpp- (4-42)

In other words,

Observers on different frames of reference that move at constant velocity relative to
each other will measure the same acceleration for a moving particle.

Frame B moves past
frame A while both
observe P.
Fig. 4-18 Alex (frame A) and Barbara (frame
B) watch car P, as both B and P move at different
velocities along the common x axis of the two
frames. At the instant shown, x4 is the coordi- or

Frame A Frame B

nate of B in the A frame. Also, P is at coordinate Vg s
Xxpgin the B frame and coordinate xp, = xpp + N > l e

Xp4in the A frame. XpA XpA =Xpp + Xpy

PART 1
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Sample Problem

Relative motion, one dimensional, Alex and Barbara

In Fig. 4-18, suppose that Barbara’s velocity relative to Alex
is a constant vz, = 52 km/h and car P is moving in the nega-
tive direction of the x axis.

(a) If Alex measures a constant vp, = —78 km/h for car P,
what velocity vpz will Barbara measure?

KEY IDEAS

We can attach a frame of reference A to Alex and a frame of
reference B to Barbara. Because the frames move at constant
velocity relative to each other along one axis, we can use
Eq.4-41 (vpy = vpg + vp,) torelate vpg to vp, and viy.

Calculation: We find
=78 km/h = vpp + 52 km/h.
Vpp = —130 km/h

Thus, (Answer)

Comment: If car P were connected to Barbara’s car by a
cord wound on a spool, the cord would be unwinding at
a speed of 130 km/h as the two cars separated.

(b) If car P brakes to a stop relative to Alex (and thus rela-
tive to the ground) in time ¢ = 10 s at constant acceleration,
what is its acceleration ap, relative to Alex?

KEY IDEAS

To calculate the acceleration of car P relative to Alex, we
must use the car’s velocities relative to Alex. Because the

WILEY ®

acceleration is constant, we can use Eq.2-11 (v = v, + af) to
relate the acceleration to the initial and final velocities of P.

Calculation: The initial velocity of P relative to Alex is
vpa = —78 km/h and the final velocity is 0. Thus, the acceler-
ation relative to Alex is
4o =YV _ 0 — (=78 km/h)
A t 10s

= 2.2 m/s%

1 m/s
3.6 km/h
(Answer)

(c) What is the acceleration apg of car P relative to Barbara
during the braking?

KEY IDEA

To calculate the acceleration of car P relative to Barbara, we
must use the car’s velocities relative to Barbara.

Calculation: We know the initial velocity of P relative to
Barbara from part (a) (vpg = —130 km/h). The final velocity of
P relative to Barbara is —52 km/h (this is the velocity of the
stopped car relative to the moving Barbara). Thus,

g =YV _ —52km/h — (—130km/h) 1 m/s
e t 10s 3.6 km/h
= 2.2 m/s?. (Answer)

Comment: We should have foreseen this result: Because
Alex and Barbara have a constant relative velocity, they
must measure the same acceleration for the car.

PLUS Additional examples, video, and practice available at WileyPLUS

, 4-9 Relative Motion in Two Dimensions
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Fig. 4-19 Frame B has the constant two-
dimensional velocity V4 relative to frame
A. The position vector of B relative to A is
7 34 The position vectors of particle P are
7 parelative to A and 7 pg relative to B.

Our two observers are again watching a moving particle P from the origins of refer-
ence frames A and B, while B moves at a constant velocity Vv, relative to A. (The
corresponding axes of these two frames remain parallel.) Figure 4-19 shows a cer-
tain instant during the motion. At that instant, the position vector of the origin of B
relative to the origin of A is 7 5 4. Also, the position vectors of particle P are 7 p, rela-
tive to the origin of A and 7 4 relative to the origin of B. From the arrangement of
heads and tails of those three position vectors, we can relate the vectors with

7PA = 7PB ar 7BA' (4-43)

By taking the time derivative of this equation, we can relate the velocities Vp,
and V pg of particle P relative to our observers:

— _ = —
Vpa = Vpp + Vpa-

(4-44)
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By taking the time derivative of this relation, we can relate the accelerations dp,
and dpg of the particle P relative to our observers. However, note that because
V4 is constant, its time derivative is zero. Thus, we get

dpy = dpp. (4-45)

As for one-dimensional motion, we have the following rule: Observers on differ-
ent frames of reference that move at constant velocity relative to each other will
measure the same acceleration for a moving particle.

Sample Problem

Relative motion, two dimensional, airplanes

In Fig. 4-20a, a plane moves due east while the pilot points  Similarly, for the x components we find
the plane somewhat south of east, toward a steady wind that
blows to the northeast. The plane has velocity v py, relative
to the wind, with an airspeed (speed relative to the wind)  Here, because Vp is parallel to the x axis, the component
of 215 km/h, directed at angle 0 south of east. The wind  vpg, is equal to the magnitude vps. Substituting this nota-
has velocity vy relative to the ground with speed 65.0  tion and the value 6 = 16.5°, we find

km/h, directed 20.0° east of north. What is the magnitude of Ve = (215 km/h)(cos 16.5°) + (65.0 km/h)(sin 20.0°)

the velocity Vp; of the plane relative to the ground, and
what is 6?2 = 228 km/h. (Answer)

VpGx = Vewx T VWG,x

SEREDE A N This is the plane's actual

The situation is like the one in Fig. 4-19. Here the moving par- direction of travel.
ticle P is the plane, frame A is attached to the ground (call it o
G),and frame B is “attached” to the wind (call it W). We need \\ < > .

a vector diagram like Fig. 4-19 but with three velocity vectors.

N
o : o
Calculations: First we construct a sentence that relates the Th_'s Its :'he plane’s e Ve
three vectors shown in Fig. 4-20b: orientation.
velocity of plane  _ velocity of plane velocity of wind T.hls 'S the wind
relative to ground  relative towind ~ relative to ground. direction.
(PG) (PW) (WG) (a)
This relation is written in vector notation as .
= — = y Y
Ve = Vew T Vwe- (4-46) 0 i
We need to resolve the vectors into components on the co- Ve Ve

ordinate system of Fig. 4-20b and then solve Eq. 4-46 axis by

axis. For the y components, we find o
The actual direction

VeGy = Vewy t Vwaey is the vector sum of
or 0= —(215 km/h) sin 6 + (65.0 km/h)(cos 20.0°). the other two vectors

Solving for 6 gives us (head-to-tail arrangement).

., (65.0 km/h)(cos 20.0°)
= 1 — o
S 215 km/h 165" (Answer) Fig. 4-20 A plane flying in a wind.

(b)
0

PW‘IL_EYU"S Additional examples, video, and practice available at WileyPLUS
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Position Vector The location of a particle relative to the ori-
gin of a coordinate system is given by a position vector ¥, which in
unit-vector notation is

F=xi+y] + zk. (4-1)

Here xi- y], and zk are the vector components of position vector 7,
and x, y, and z are its scalar components (as well as the coordinates
of the particle). A position vector is described either by a magni-
tude and one or two angles for orientation, or by its vector or
scalar components.

Displacement If a particle moves so that its position vector
changes from 7, to 7, the particle’s displacement AT is

A7 = 72 - 71. (4-2)
The displacement can also be written as

AF = (= x)i + (3 = y)j + (22— 2k (4-3)
= Axi + Ay] + Azk. (4-4)

Average Velocity and Instantaneous Velocity If a parti-
cle undergoes a displacement A7 in time interval Az, its average ve-
locity Vavg for that time interval is

-
- Ar

Vag = 2 (4-8)

As At in Eq. 4-8 is shrunk to 0, Vavg reaches a limit called either the
velocity or the instantaneous velocity v

o dr
Vv =—", 4-10
o (4-10)
which can be rewritten in unit-vector notation as
V=vi+wn]+ vk, (4-11)

where v, = dx/dt, v, = dyldt, and v, = dz/dt. The instantaneous
velocity V of a particle is always directed along the tangent to the
particle’s path at the particle’s position.

Average Acceleration and Instantaneous Acceleration
If a particle’s velocity changes from v, to v, in time interval At, its
average acceleration during At is

— 72 - 71 A7

Apyo = ———— = ——. 4-15
ave At At ( )
As At in Eq. 4-15 is shrunk to 0, ?iavg reaches a limiting value called
either the acceleration or the instantaneous acceleration a:

dv
a=—. 4-16
a=— (4-16)
In unit-vector notation,
@=ai+aj+ak, (4-17)

where a, = dv,/dt, a, = dv,/dt, and a, = dv_/dL.

B B REVIEW&sSummary B LD L L

Projectile Motion Projectile motion is the motion of a parti-
cle that is launched with an initial velocity V. During its flight, the
particle’s horizontal acceleration is zero and its vertical accelera-
tion is the free-fall acceleration —g. (Upward is taken to be a posi-
tive direction.) If v, is expressed as a magnitude (the speed v,)
and an angle 6§, (measured from the horizontal), the particle’s
equations of motion along the horizontal x axis and vertical y axis
are

x — xog = (vycos 61, (4-21)
y = ¥o = (vgsin 6p)t — 1gt?, (4-22)
Vv, = vysin 6, — gt, (4-23)
vi = (vsin 6p)* — 28(y — ). (4-24)

The trajectory (path) of a particle in projectile motion is parabolic
and is given by
gx?

= (tan G)x — =————
y = (tan 6)x 2(vy cos 6,)%’

(4-25)
if x, and y, of Eqs. 4-21 to 4-24 are zero. The particle’s horizontal
range R, which is the horizontal distance from the launch point to
the point at which the particle returns to the launch height, is

2

R = V?Osin 20y, (4-26)

Uniform Circular Motion If a particle travels along a circle
or circular arc of radius r at constant speed v, it is said to be in
uniform circular motion and has an acceleration @ of constant
magnitude

(4-34)

a = —.
r

The direction of @ is toward the center of the circle or circular arc,
and d is said to be centripetal. The time for the particle to complete
acircle is

T="— (4-35)

T is called the period of revolution, or simply the period, of the
motion.

Relative Motion When two frames of reference A and B are
moving relative to each other at constant velocity, the velocity of a
particle P as measured by an observer in frame A usually differs
from that measured from frame B. The two measured velocities are

related by
(4-44)

- - -
Vpa = Vpp T Vg,

where Vj, is the velocity of B with respect to A. Both observers
measure the same acceleration for the particle:

- >
dpy = Qpp-

(4-45)



1 Figure 4-21 shows the path taken
by a skunk foraging for trash food,
from initial point i. The skunk took the
same time 7 to go from each labeled
point to the next along its path. Rank
points a, b, and ¢ according to the mag-
nitude of the average velocity of the
skunk to reach them from initial point
i, greatest first.

Fig. 4-21 Question 1.

2 Figure 4-22 shows the initial position i and the final position f of
a particle. What are the (a) initial position vector 7; and (b) final
position vector 77, both in unit-vector notation? (c) What is the x
component of displacement A7?

Fig. 4-22 Question 2.

3 =% When Paris was shelled from 100 km away with the WWI
long-range artillery piece “Big Bertha,” the shells were fired at an
angle greater than 45° to give them a greater range, possibly even
twice as long as at 45°. Does that result mean that the air density at
high altitudes increases with altitude or decreases?

4 You are to launch a rocket, from just above the ground, with
one of the following initial velocity vectors: (1) v, = 20i + 70j, (2)
Vo = —201 + 70, (3) ¥, = 20i — 70j, (4) ¥, = —20i — 70].In your
coordinate system, x runs along level ground and y increases upward.
(a) Rank the vectors according to the launch speed of the projectile,
greatest first. (b) Rank the vectors according to the time of flight of the
projectile, greatest first.

5 Figure 4-23 shows three situations in which identical projectiles
are launched (at the same level) at identical initial speeds and an-
gles. The projectiles do not land on the same terrain, however.
Rank the situations according to the final speeds of the projectiles

just before they land, greatest first.

4\ L=

(a) (0) (0
Fig. 4-23 Question 5.

6 The only good use of a fruitcake is in catapult practice. Curve 1
in Fig. 4-24 gives the height y of a catapulted fruitcake versus the
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angle 6 between its velocity vector and

its acceleration vector during flight. (a)

Which of the lettered points on that 2

curve corresponds to the landing of the

fruitcake on the ground? (b) Curve 2 is 1

a similar plot for the same launch speed

but for a different launch angle. Does

the fruitcake now land farther away or 4 3 0
closer to the launch point?

. . . Fig. 4-24 Question 6.
7 An airplane flying horizontally at

a constant speed of 350 km/h over level ground releases a bundle
of food supplies. Ignore the effect of the air on the bundle. What
are the bundle’s initial (a) vertical and (b) horizontal components
of velocity? (c) What is its horizontal component of velocity just
before hitting the ground? (d) If the airplane’s speed were, instead,
450 km/h, would the time of fall be longer, shorter, or the same?

8 In Fig. 4-25, a cream tangerine is thrown up past windows 1, 2,
and 3, which are identical in size and regularly spaced vertically.
Rank those three windows according to (a) the time the cream tan-
gerine takes to pass them and (b) the average speed of the cream
tangerine during the passage, greatest first.

The cream tangerine then moves down past windows 4, 5, and
6, which are identical in size and irregularly spaced horizontally.
Rank those three windows according to (c) the time the cream tan-
gerine takes to pass them and (d) the average speed of the cream
tangerine during the passage, greatest first.

9 Figure 4-26 shows three paths
for a football kicked from ground
level. Ignoring the effects of air,
rank the paths according to (a) time
of flight, (b) initial vertical velocity
component, (c) initial horizontal
velocity component, and (d) initial
speed, greatest first.

Fig. 4-26 Question 9.

10 A ballis shot from ground level R

over level ground at a certain initial .
speed. Figure 4-27 gives the range R

of the ball versus its launch angle 6,. c
Rank the three lettered points on
the plot according to (a) the total
flight time of the ball and (b) the

6y
Fig. 4-27 Question 10.
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ball’s speed at maximum height, great-
est first.

11 Figure 4-28 shows four tracks (ei-
ther half- or quarter-circles) that can be
taken by a train, which moves at a con-
stant speed. Rank the tracks according
to the magnitude of a train’s accelera-
tion on the curved portion, greatest
first.

12 In Fig. 4-29, particle P is in uni-
form circular motion, centered on the
origin of an xy coordinate system. (a)

Fig. 4-28 Question 11.

At what values of @is the vertical com- y
ponent r, of the position vector greatest
in magnitude? (b) At what values of is
the vertical component v, of the parti-
cle’s velocity greatest in magnitude? (c)
At what values of @ is the vertical com-
ponent a, of the particle’s acceleration
greatest in magnitude?

-

13 (a) Is it possible to be accelerating
while traveling at constant speed? Is it
possible to round a curve with (b) zero
acceleration and (c) a constant magnitude of acceleration?

Fig. 4-29 Question 12.

N | IIIIII /B pProBLEMS B ||| A0S | B |

Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual
e — e Number of dots indicates level of problem difficulty

WWW Worked-out solution is at
ILW Interactive solution is at

http://www.wiley.com/college/halliday

<%0 Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

sec.4-2 Position and Displacement

*1 The position vector for an electron is 7 = (5.0 m)i —
(3.0m)j + (2.0 m)k. (a) Find the magnitude of 7. (b) Sketch the
vector on a right-handed coordinate system.

°2 A watermelon seed has the following coordinates: x = —5.0 m,
y = 8.0 m,and z = 0 m. Find its position vector (a) in unit-vector no-
tation and as (b) a magnitude and (c) an angle relative to the positive
direction of the x axis. (d) Sketch the vector on a right-handed coor-
dinate system. If the seed is moved to the xyz coordinates (3.00 m,
0 m, 0 m), what is its displacement (e) in unit-vector notation and as
(f) a magnitude and (g) an angle relative to the positive x direction?

*3 A positron undergoes a displacement A7 = g.Oi - 3.0 + 6.0k,
ending with the position vector 7 = 3.0j — 4.0k, in meters. What
was the positron’s initial position vector?

*e4  The minute hand of a wall clock measures 10 cm from its tip to
the axis about which it rotates. The magnitude and angle of the dis-
placement vector of the tip are to be determined for three time inter-
vals. What are the (a) magnitude and (b) angle from a quarter after
the hour to half past, the (c) magnitude and (d) angle for the next half
hour, and the (e) magnitude and (f) angle for the hour after that?

sec.4-3 Average Velocity and Instantaneous Velocity

°5 SsM A train at a constant 60.0 km/h moves east for 40.0 min,
then in a direction 50.0° east of due north for 20.0 min, and then
west for 50.0 min. What are the (a) magnitude and (b) angle of its
average velocity during this trip?

*6 An electron’s position is given by 7 = 3.00¢1 —
4.00tzj + 2.00k, with ¢ in seconds and 7 in meters. (a) In unit-vector
notation, what is the electron’s velocity V(¢)? At ¢ = 2.00 s, what is
v (b) in unit-vector notation and as (c) a magnitude and (d) an an-
gle relative to the positive direction of the x axis?

*7 An ion’s position vector is initially 7 = 5.01 — 6.0] + 2.0k,
and 10 s later it is 7 = —2.01 + 8.0j — 2.0k, all in meters. In unit-
vector notation, what is its V,,, during the 10 s?

*8 A plane flies 483 km east from city A to city B in 45.0 min and
then 966 km south from city B to city Cin 1.50 h. For the total trip,

what are the (a) magnitude and (b) direction of the plane’s dis-
placement, the (c) magnitude and (d) direction of its average ve-
locity, and (e) its average speed?
9 Figure 4-30 gives the
path of a squirrel moving
about on level ground, from
point A (at time 7= 0), to
points B (at ¢t = 5.00 min), C
(at t = 10.0 min), and finally
D (at t = 15.0 min). Consider
the average velocities of the 95 50
squirrel from point A to each Ae €C

of the other three points. Of _o5
them, what are the (a) magni-

tude and (b) angle of the one

with the least magnitude and _5oL_
the (c) magnitude and (d) an-

gle of the one with the great-

est magnitude?

y (m)
50 —

25—

Fig. 4-30 Problem 9.

e»10 The position vector
7 =5.00t + (et + ft?)j lo- 90° -
cates a particle as a function

of time ¢ Vector 7 is in me- o

ters, ¢ is in seconds, and fac- 0° t {
tors e and f are constants. 16 20
Figure 4-31 gives the angle 6

of the particle’s direction of ~ —20°[~

travel as a function of ¢ (6 is £(s)

measured from the positive x
direction). What are (a) e
and (b) f,including units?

Fig. 4-31 Problem 10.

sec.4-4 Average Acceleration and Instantaneous
Acceleration

*11 @ The position 7 of a particle moving in an xy plane is given
by 7 = (2.00£* — 5.000)i + (6.00 — 7.00¢%)j, with 7 in meters and ¢
in seconds. In unit-vector notation, calculate (a) 7, (b) v, and (c) @
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for r = 2.00 s. (d) What is the angle between the positive direction
of the x axis and a line tangent to the particle’s path at t = 2.00 s?

*12 At one instant a bicyclist is 40.0 m due east of a park’s flag-
pole, going due south with a speed of 10.0 m/s. Then 30.0 s later, the
cyclist is 40.0 m due north of the flagpole, going due east with a
speed of 10.0 m/s. For the cyclist in this 30.0 s interval, what are the
(a) magnitude and (b) direction of the displacement, the (c) magni-
tude and (d) direction of the average velocity, and the (e) magni-
tude and (f) direction of the average acceleration?

*13 ssm A particle moves so that its position (in meters) as
a function of time (in seconds) is 7 = =i+ 4t] + tk. Write expres-
sions for (a) its velocity and (b) its acceleration as functions of time.

14 A proton 1n1tlally has Vv = 4. 01 - 2. 0] +3.0k and then
4.0s later has v = —2.0i — 2. 0] + 5.0k (in meters per second) For
that 4.0 s, what are (a) the proton’s average acceleration @ 4y I UNIL-
vector notation, (b) the magnitude of @, and (c) the angle between
d,y, and the positive direction of the x axis?

15 ssm ILW A particle leaves the origin with an initial veloc-
ity ¥ = (3.001) m/s and a constant acceleration @ = (—1.001 —
0.5007) m/s2. When it reaches its maximum x coordinate, what are
its (a) velocity and (b) position vector?

16 @ The velocity v of a particle moving in the xy plane is
given by v = (6.0t — 4.0%)i + 8.0j, with vV in meters per second
and ¢ ( > 0) in seconds. (a) What is the acceleration when ¢ = 3.0
s? (b) When (if ever) is the acceleration zero? (c) When (if ever) is
the velocity zero? (d) When (if ever) does the speed equal 10 m/s?

*17 A cartis propelled over an xy plane with acceleration compo-
nents a, = 4.0 m/s?> and a, = —2.0 m/s”. Its initial velocity has com-
ponents vy, = 8.0 m/s and v, = 12 m/s. In unit-vector notation, what
is the velocity of the cart when it reaches its greatest y coordinate?

*18 A moderate wind accelerates a pebble over a horizontal xy
plane with a constant acceleration @ = (5.00 m/s?)i + (7.00 m/s2)].
At time ¢ = 0, the velocity is (4.00 m/s)i. What are the (a) magni-
tude and (b) angle of its velocity when it has been displaced by 12.0
m parallel to the x axis?

*»»19  The acceleration of a particle moving only on a horizontal
xy plane is given by @ = 31 + 4], where @ is in meters per second-
squared and ¢ is in seconds. At 7= 0, the position vector
7 = (20.0m)i + (40.0 m)j locates the particle, which then has the
velocity vector v = (5.00 m/s)i + (2.00 m/s)j. Att = 4.00 s, what are
(a) its position vector in unit-vector notation and (b) the angle be-
tween its direction of travel and the

positive direction of the x axis? b

ee20 In Fig.4-32, particle A moves N

along the line y = 30 m with a con- 4 @Y
stant velocity v of magnitude 3.0
m/s and parallel to the x axis. At the

instant particle A passes the y axis, 0

particle B leaves the origin with a \

zero initial speed and a constant a

acceleration @ of magnitude 0.40 pg() x

m/s?>. What angle 6 between ¢ and
the positive direction of the y axis
would result in a collision?

Fig. 4-32 Problem 20.

sec.4-6 Projectile Motion Analyzed
°21 A dart is thrown horizontally with an initial speed of
10 m/s toward point P, the bull’s-eye on a dart board. It hits at

PART 1
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point O on the rim, vertically below P,0.19 s later. (a) What is the
distance PQ? (b) How far away from the dart board is the dart
released?

°22 A small ball rolls horizontally off the edge of a tabletop that
is 1.20 m high. It strikes the floor at a point 1.52 m horizontally
from the table edge. (a) How long is the ball in the air? (b) What is
its speed at the instant it leaves the table?

°23 A projectile is fired horizontally from a gun that is
45.0 m above flat ground, emerging from the gun with a speed of
250 m/s. (a) How long does the projectile remain in the air? (b) At
what horizontal distance from the firing point does it strike the
ground? (c) What is the magnitude of the vertical component of its
velocity as it strikes the ground?

*24 =% In the 1991 World Track and Field Championships in
Tokyo, Mike Powell jumped 8.95 m, breaking by a full 5 cm the 23-
year long-jump record set by Bob Beamon. Assume that Powell’s
speed on takeoff was 9.5 m/s (about equal to that of a sprinter) and
that g = 9.80 m/s? in Tokyo. How much less was Powell’s range
than the maximum possible range for a particle launched at the
same speed?

*25 %= The current world-record motorcycle jump is 77.0 m, set
by Jason Renie. Assume that he left the take-off ramp at 12.0° to the
horizontal and that the take-off and landing heights are the same.
Neglecting air drag, determine his take-off speed.

°26 A stone is catapulted at time ¢ = 0, with an initial velocity of
magnitude 20.0 m/s and at an angle of 40.0° above the horizontal.
What are the magnitudes of the (a) horizontal and (b) vertical
components of its displacement from the catapult site at ¢ = 1.10
s? Repeat for the (c) horizontal and (d) vertical components at
t = 1.80 s, and for the (e) horizontal and (f) vertical components at
t=5.00s.

*27 ILW A certain airplane has a
speed of 290.0 km/h and is diving at
an angle of # = 30.0° below the hor-
izontal when the pilot releases a
radar decoy (Fig. 4-33). The hori-
zontal distance between the release
point and the point where the decoy
strikes the ground is d = 700 m. (a)
How long is the decoy in the air? (b)
How high was the release point?

e

o, -n\"b‘ AN AN O AR O AN O LA o

+28 In Fig. 4-34, a stone is pro- Fig. 4-33 Problem 27.

jected at a cliff of height &

with an initial speed of 42.0 m/s directed at angle 6, = 60.0° above
the horizontal. The stone strikes at A, 5.50 s after launching. Find
(a) the height 4 of the cliff, (b) the speed of the stone just before
impact at A, and (c) the maximum height H reached above the
ground.

Fig. 4-34 Problem 28.
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*29 A projectile’s launch speed is five times its speed at maxi-
mum height. Find launch angle 6.

30 @ A soccer ball is kicked from the ground with an initial
speed of 19.5 m/s at an upward angle of 45°. A player 55 m away in
the direction of the kick starts running to meet the ball at that in-
stant. What must be his average speed if he is to meet the ball just
before it hits the ground?

*31 =% Inajump spike, a volleyball player slams the ball from
overhead and toward the opposite floor. Controlling the angle of the
spike is difficult. Suppose a ball is spiked from a height of 2.30 m
with an initial speed of 20.0 m/s at a downward angle of 18.00°. How
much farther on the opposite floor would it have landed if the down-
ward angle were, instead, 8.00°?

32 @ You throw a ball toward a
wall at speed 25.0 m/s and at angle
0, = 40.0° above the horizontal (Fig.
4-35). The wall is distance d = 22.0
m from the release point of the ball.
(a) How far above the release point
does the ball hit the wall? What are
the (b) horizontal and (c) vertical
components of its velocity as it hits the wall? (d) When it hits, has it
passed the highest point on its trajectory?

33 ssm A plane, diving with constant speed at an angle of
53.0° with the vertical, releases a projectile at an altitude of 730 m.
The projectile hits the ground 5.00 s after release. (a) What is the
speed of the plane? (b) How far does the projectile travel horizon-
tally during its flight? What are the (c) horizontal and (d) vertical
components of its velocity just before striking the ground?

*e34 =4I A trebuchet was a hurling machine built to attack the
walls of a castle under siege. A large stone could be hurled against a
wall to break apart the wall. The machine was not placed near the
wall because then arrows could reach it from the castle wall. Instead,
it was positioned so that the stone hit the wall during the second half
of its flight. Suppose a stone is launched with a speed of v, = 28.0 m/s
and at an angle of §, = 40.0°. What is the speed of the stone if it hits
the wall (a) just as it reaches the top of its parabolic path and (b)
when it has descended to half that height? (c) As a percentage, how
much faster is it moving in part (b) than in part (a)?

35 ssm A rifle that shoots bullets at 460 m/s is to be aimed at
a target 45.7 m away. If the center of the target is level with the ri-
fle, how high above the target must the rifle barrel be pointed so
that the bullet hits dead center?

*36 During a tennis match, a player serves the ball at
23.6 m/s, with the center of the ball leaving the racquet horizon-
tally 2.37 m above the court surface. The net is 12 m away and 0.90
m high. When the ball reaches the net, (a) does the ball clear it and
(b) what is the distance between the center of the ball and the top
of the net? Suppose that, instead, the ball is served as before but
now it leaves the racquet at 5.00° below the horizontal. When the
ball reaches the net, (c) does the ball clear it and (d) what now is
the distance between the center of the ball and the top of the net?

37 ssMm  Www A lowly high diver pushes off horizontally with
a speed of 2.00 m/s from the platform edge 10.0 m above the sur-
face of the water. (a) At what horizontal distance from the edge is
the diver 0.800 s after pushing off? (b) At what vertical distance
above the surface of the water is the diver just then? (c) At what
horizontal distance from the edge does the diver strike the water?

*38 A golf ball is struck at v,
ground level. The speed of
the golf ball as a function of
the time is shown in Fig. 4-36,
where ¢ = 0 at the instant the
ball is struck. The scaling on
the vertical axis is set by
v, = 19m/s and v, = 31 m/s. 0 1 2
(a) How far does the golf
ball travel horizontally be-
fore returning to ground
level? (b) What is the maximum height above ground level at-
tained by the ball?

*39 In Fig. 4-37, a ball is thrown leftward from the left edge of the
roof, at height # above the ground. The ball hits the ground 1.50 s
later, at distance d = 25.0 m from the building and at angle 6 = 60.0°
with the horizontal. (a) Find 4.

Vv (m/s)

4

(&34

3
t(s)
Fig. 4-36 Problem 38.

(Hint: One way is to reverse

the motion, as if on video.) . D D D T
What are the (b) magnitude ,’ h
and (c) angle relative to the 0 D D D

horizontal of the velocity at
which the ball is thrown? (d)
Is the angle above or below
the horizontal?

—

Fig. 4-37 Problem 39.

*e4(0 %= Suppose that a shot putter can put a shot at the world-
class speed v, = 15.00 m/s and at a height of 2.160 m. What horizontal
distance would the shot travel if the launch angle 6, is (a) 45.00° and
(b) 42.00°? The answers indicate that the angle of 45°, which maxi-
mizes the range of projectile motion, does not maximize the horizon-
tal distance when the launch and landing are at different heights.

w4l @

o
-

Upon spotting

an insect on a twig overhanging ,-f)?lsi‘i,tig
water, an archer fish squirts water //

drops at the insect to knock it into d

the water (Fig. 4-38). Although the .~

fish sees the insect along a straight- /\q&

line path at angle ¢ and distance d, 718

a drop must be launched at a differ- 4 Archer fish
ent angle 6, if its parabolic path is

to intersect the insect. If ¢ = 36.0°
and d = 0.900 m, what launch angle 6, is required for the drop to be
at the top of the parabolic path when it reaches the insect?

w042 =45 In 1939 or 1940, Emanuel Zacchini took his human-
cannonball act to an extreme: After being shot from a cannon, he
soared over three Ferris wheels and into a net (Fig. 4-39). Assume that

Fig. 4-38 Problem 41.
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Fig. 4-39 Problem 42.



he is launched with a speed of 26.5 m/s and at an angle of 53.0°.
(a) Treating him as a particle, calculate his clearance over the first
wheel. (b) If he reached maximum height over the middle wheel,
by how much did he clear it? (c) How far from the cannon should
the net’s center have been positioned (neglect air drag)?

**43 1LW A ball is shot from the ground into the air. At a height
of 9.1 m, its velocity is vV = (7.61 + 6.1j) m/s, with 1 horizontal and j
upward. (a) To what maximum height does the ball rise? (b) What
total horizontal distance does the ball travel? What are the (c)
magnitude and (d) angle (below the horizontal) of the ball’s veloc-
ity just before it hits the ground?

*44 A baseball leaves a pitcher’s hand horizontally at a speed of
161 km/h. The distance to the batter is 18.3 m. (a) How long does
the ball take to travel the first half of that distance? (b) The second
half? (c) How far does the ball fall freely during the first half? (d)
During the second half? (¢) Why aren’t the quantities in (c) and
(d) equal?

«45 In Fig. 4-40, a ball is i
launched with a velocity of % dy
magnitude 10.0 m/s, at an angle Ball _L

of 50.0° to the horizontal. The
launch point is at the base of a
ramp of horizontal length d; =
6.00 m and height d, = 3.60 m.
A plateau is located at the top of the ramp. (a) Does the ball land
on the ramp or the plateau? When it lands, what are the (b) magni-
tude and (c) angle of its displacement from the launch point?

F—a—

Fig. 4-40 Problem 45.

*46 @ =% Inbasketball, hang is an illusion in which a player
seems to weaken the gravitational acceleration while in midair.
The illusion depends much on a skilled player’s ability to rapidly
shift the ball between hands during the flight, but it might also be
supported by the longer horizontal distance the player travels in the
upper part of the jump than in the lower part. If a player jumps with
an initial speed of v, = 7.00 m/s at an angle of 4, = 35.0°, what per-
cent of the jump’s range does the player spend in the upper half of
the jump (between maximum height and half maximum height)?

47 sSsM WWW A batter hits a pitched ball when the center of
the ball is 1.22 m above the ground. The ball leaves the bat at an
angle of 45° with the ground. With that launch, the ball should have
a horizontal range (returning to the launch level) of 107 m. (a)
Does the ball clear a 7.32-m-high fence that is 97.5 m horizontally
from the launch point? (b) At the fence, what is the distance be-
tween the fence top and the ball center?

*48 @ In Fig. 4-41, a ball is
thrown up onto a roof, landing
4.00 s later at height & = 20.0
m above the release level. The
ball’s path just before landing
is angled at 6 = 60.0° with the
roof. (a) Find the horizontal
distance d it travels. (See the |
hint to Problem 39.) What are | d \
the (b) magnitude and (c) an-
gle (relative to the horizontal)
of the ball’s initial velocity?

Fig. 4-41 Problem 48.

ee49 ssm A football kicker can give the ball an initial speed of
25 m/s. What are the (a) least and (b) greatest elevation angles at
which he can kick the ball to score a field goal from a point 50 m in
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front of goalposts whose horizontal bar is 3.44 m above the
ground?

es50 @ Two seconds after being projected from ground level, a
projectile is displaced 40 m horizontally and 53 m vertically above
its launch point. What are the (a) horizontal and (b) vertical com-
ponents of the initial velocity of the projectile? (c) At the instant
the projectile achieves its maximum height above ground level,
how far is it displaced horizontally from the launch point?

51 %= A skilled skier knows to jump upward before reach-
ing a downward slope. Consider a jump in which the launch speed
is vy = 10 m/s, the launch angle is 6, = 9.0°, the initial course is ap-
proximately flat, and the steeper track has a slope of 11.3°. Figure
4-42a shows a prejump that allows the skier to land on the top por-
tion of the steeper track. Figure 4-42b shows a jump at the edge of
the steeper track. In Fig. 4-424, the skier lands at approximately the
launch level. (a) In the landing, what is the angle ¢ between the
skier’s path and the slope? In Fig. 4-42b, (b) how far below the
launch level does the skier land and (c) what is ¢? (The greater fall
and greater ¢ can result in loss of control in the landing.)

A\ é S

(a) (b)
Fig. 4-42 Problem 51.

*e52 A ball is to be shot from level ground toward a wall at dis-
tance x (Fig. 4-43a). Figure 4-43b shows the y component v, of the
ball’s velocity just as it would reach the wall, as a function of that
distance x. The scaling is set by v,; = 5.0 m/s and x, = 20 m.What is
the launch angle?

y

.

(a)

v, (m/s)
(=}

x (m)
(0)
Fig. 4-43 Problem 52.

*e53 In Fig. 4-44, a baseball is hit at a height # = 1.00 m and then
caught at the same height. It travels alongside a wall, moving up
past the top of the wall 1.00 s after it is hit and then down past the
top of the wall 4.00 s later, at distance D = 50.0 m farther along the
wall. (a) What horizontal distance is traveled by the ball from hit to
catch? What are the (b) magnitude and (c) angle (relative to the
horizontal) of the ball’s velocity just after being hit? (d) How high
is the wall?

Fig. 4-44 Problem 53.
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ee54 A ball is to be shot from level
ground with a certain speed. Figure 200
4-45 shows the range R it will have
versus the launch angle 6,. The value
of 6, determines the flight time; let
Imax Tepresent the maximum flight
time. What is the least speed the ball
will have during its flight if 6, is cho-
sen such that the flight time is
0.500¢ 047

max *

R (m)

100

6o
Fig. 4-45 Problem 54.

eee55 SSM A ball rolls horizontally off the top of a stairway with
a speed of 1.52 m/s. The steps are 20.3 cm high and 20.3 cm wide.
Which step does the ball hit first?

sec.4-7 Uniform Circular Motion

°56 An Earth satellite moves in a circular orbit 640 km above
Earth’s surface with a period of 98.0 min. What are the (a) speed
and (b) magnitude of the centripetal acceleration of the satellite?

*57 A carnival merry-go-round rotates about a vertical axis at a
constant rate. A man standing on the edge has a constant speed of
3.66 m/s and a centripetal acceleration @ of magnitude 1.83 m/s?.
Position vector 7 locates him relative to the rotation axis. (a) What
is the magnitude of 7? What is the direction of 7 when @ is di-
rected (b) due east and (c) due south?

°58 A rotating fan completes 1200 revolutions every minute.
Consider the tip of a blade, at a radius of 0.15 m. (a) Through what
distance does the tip move in one revolution? What are (b) the
tip’s speed and (c) the magnitude of its acceleration? (d) What is
the period of the motion?

°59 I1LW A woman rides a carnival Ferris wheel at radius 15 m,
completing five turns about its horizontal axis every minute. What
are (a) the period of the motion, the (b) magnitude and (c) direc-
tion of her centripetal acceleration at the highest point, and the (d)
magnitude and (e) direction of her centripetal acceleration at the
lowest point?

°60 A centripetal-acceleration addict rides in uniform circular
motion with period 7 = 2.0 s and radius » = 3.00 m. At ¢, his accel-
eration is @ = (6.00 m/s2)i + (—4.00 m/s?)j. At that instant, what
are the values of (a) v+ @ and (b) 7 X a?

°61 When alarge star becomes a supernova, its core may be com-
pressed so tightly that it becomes a neutron star, with a radius of
about 20 km (about the size of the San Francisco area). If a neutron
star rotates once every second, (a) what is the speed of a particle on
the star’s equator and (b) what is the magnitude of the particle’s cen-
tripetal acceleration? (c) If the neutron star rotates faster, do the an-
swers to (a) and (b) increase, decrease, or remain the same?

°62 What is the magnitude of the acceleration of a sprinter run-
ning at 10 m/s when rounding a turn of radius 25 m?

63 @ At =2.00s, the acceleration of a particle in counter-
clockwise circular motion is (6.00 m/s%)i + (4.00 m/s?)}. It moves at
constant speed. At time £, = 5.00 s, the particle’s acceleration is
(4.00 m/s?)i + (—6.00 m/s?)j. What is the radius of the path taken
by the particle if , — ¢, is less than one period?

64 (@ A particle moves horizontally in uniform circular
motion, over a horizontal xy plane. At one instant, it moves
through the point at coordinates (4.00 m, 4.00 m) with a velocity of
—5.00i m/s and an acceleration of +12.5] m/s2. What are the (a) x
and (b) y coordinates of the center of the circular path?

*65 A purse at radius 2.00 m and a wallet at radius 3.00 m travel
in uniform circular motion on the floor of a merry-go-round as the
ride turns. They are on the same radial line. At one instant, the ac-
celeration of the purse is (2.00 m/s?)i + (4.00 m/s?)]. At that instant
and in unit-vector notation, what is the acceleration of the wallet?

66 A particle moves along a circular path over a horizontal xy
coordinate system, at constant speed. At time #; = 4.00 s, it is at point
(5.00m, 6.00 m) with velocity (3.00 m/s)] and acceleration in the
positive x direction. At time #, = 10.0 s, it has velocity (—3.00 m/s)i
and acceleration in the positive y direction. What are the (a) x and
(b) y coordinates of the center of the circular path if ¢, — #, is less
than one period?

*s67 SSM WWW A boy whirls a stone in a horizontal circle of
radius 1.5m and at height 2.0 m above level ground. The string
breaks, and the stone flies off horizontally and strikes the ground af-
ter traveling a horizontal distance of 10 m. What is the magnitude of
the centripetal acceleration of the stone during the circular motion?

*68 (@ A cat rides a merry-go-round turning with uniform cir-
cular motion. At time # =2.00s, the cat’s velocity is V| =
(3.00 m/s)i + (4.00 m/s)j, measured on a horizontal xy coordinate
system. At 1, = 500, the cat’s velocity is v, = (=3.00 m/s)i +
(—4.00 m/s)j. What are (a) the magnitude of the cat’s centripetal
acceleration and (b) the cat’s average acceleration during the time
interval t, — ¢, which is less than one period?

sec.4-8 Relative Motion in One Dimension

°69 A cameraman on a pickup truck is traveling westward at 20
km/h while he records a cheetah that is moving westward 30 km/h
faster than the truck. Suddenly, the cheetah stops, turns, and then
runs at 45 km/h eastward, as measured by a suddenly nervous crew
member who stands alongside the cheetah’s path. The change in the
animal’s velocity takes 2.0 s. What are the (a) magnitude and (b) di-
rection of the animal’s acceleration according to the cameraman and
the (c) magnitude and (d) direction according to the nervous crew
member?

°70 A boat is traveling upstream in the positive direction of an x
axis at 14 km/h with respect to the water of a river. The water is
flowing at 9.0 km/h with respect to the ground. What are the (a)
magnitude and (b) direction of the boat’s velocity with respect to
the ground? A child on the boat walks from front to rear at 6.0
km/h with respect to the boat. What are the (c) magnitude and (d)
direction of the child’s velocity with respect to the ground?

*e71 A suspicious-looking man runs as fast as he can along a
moving sidewalk from one end to the other, taking 2.50 s. Then se-
curity agents appear, and the man runs as fast as he can back along
the sidewalk to his starting point, taking 10.0 s. What is the ratio of
the man’s running speed to the sidewalk’s speed?

sec.4-9 Relative Motion in Two Dimensions

°72 A rugby player runs with the ball directly toward his
opponent’s goal, along the positive direction of an x axis. He can
legally pass the ball to a teammate as long as the ball’s velocity
relative to the field does not have a positive x component.
Suppose the player runs at speed 4.0 m/s relative to the field while
he passes the ball with velocity vV relative to himself. If v, has
magnitude 6.0 m/s, what is the smallest angle it can have for the
pass to be legal?

*73 Two highways intersect as shown in Fig. 4-46. At the instant
shown, a police car P is distance dp = 800 m from the intersection



and moving at speed v = 80 km/h. Motorist M is distance d,, = 600
m from the intersection and moving at speed v,, = 60 km/h. (a) In
unit-vector notation, what is the velocity of the motorist with respect
to the police car? (b) For the instant shown in Fig. 4-46, what is the
angle between the velocity found in (a) and the line of sight between
the two cars? (c) If the cars maintain their velocities, do the answers
to (a) and (b) change as the cars move nearer the intersection?

Vi

M

dp

Fig. 4-46 Problem 73.

*74  After flying for 15 min in a wind blowing 42 km/h at an angle
of 20° south of east, an airplane pilot is over a town that is 55 km
due north of the starting point. What is the speed of the airplane
relative to the air?

75 ssm A train travels due south at 30 m/s (relative to the
ground) in a rain that is blown toward the south by the wind. The
path of each raindrop makes an angle of 70° with the vertical, as
measured by an observer stationary on the ground. An observer on
the train, however, sees the drops fall perfectly vertically.
Determine the speed of the raindrops relative to the ground.

*76 A light plane attains an airspeed of 500 km/h. The pilot sets
out for a destination 800 km due north but discovers that the plane
must be headed 20.0° east of due north to fly there directly. The
plane arrives in 2.00 h. What were the (a) magnitude and (b) direc-
tion of the wind velocity?

*77 ssm Snow is falling vertically at a constant speed of 8.0 m/s.
At what angle from the vertical do the snowflakes appear to be
falling as viewed by the driver of a car traveling on a straight, level
road with a speed of 50 km/h?

*78 In the overhead view of
Fig. 4-47, Jeeps P and B race N

along straight lines, across flat 1
1)
E

terrain, and past stationary bor-
0, A
/ :
B

der guard A. Relative to the

guard, B travels at a constant

speed of 20.0m/s, at the angle

6, = 30.0°. Relative to the guard,

P has accelerated from rest at a

constant rate of 0.400 m/s? at the

angle 6, = 60.0°. At a certain Fig. 4-47 Problem78.
time during the acceleration, P

has a speed of 40.0 m/s. At that time, what are the (a) magnitude and
(b) direction of the velocity of P relative to B and the (c) magnitude
and (d) direction of the acceleration of P relative to B?
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79 ssm ILW Two ships, A and B, leave port at the same time.
Ship A travels northwest at 24 knots, and ship B travels at 28 knots
in a direction 40° west of south. (1 knot = 1 nautical mile per hour;
see Appendix D.) What are the (a) magnitude and (b) direction of
the velocity of ship A relative to B? (c) After what time will the
ships be 160 nautical miles apart? (d) What will be the bearing of B
(the direction of B’s position) relative to A at that time?

80 @ A 200-m-wide river flows due east at a uniform speed of
2.0 m/s. A boat with a speed of 8.0 m/s relative to the water leaves
the south bank pointed in a direction 30° west of north. What are
the (a) magnitude and (b) direction of the boat’s velocity relative
to the ground? (c) How long does the boat take to cross the
river?

*e81 Ship A is located 4.0 km north and 2.5 km east of ship B.
Ship A has a velocity of 22 km/h toward the south, and ship B has a
velocity of 40 km/h in a direction 37° north of east. (a) What is the
velocity of A relative to B in unit-vector notation with i toward the
east? (b) Write an expression (in terms of 1 and j) for the position
of A relative to B as a function of #, where ¢t = 0 when the ships are
in the positions described above. (c) At what time is the separation
between the ships least? (d) What is that least separation?

ee82 A 200-m-wide river has a uniform flow speed of 1.1 m/s
through a jungle and toward the east. An explorer wishes to leave a
small clearing on the south bank and cross the river in a powerboat
that moves at a constant speed of 4.0 m/s with respect to the water.
There is a clearing on the north bank 82 m upstream from a point
directly opposite the clearing on the south bank. (a) In what direc-
tion must the boat be pointed in order to travel in a straight line
and land in the clearing on the north bank? (b) How long will the
boat take to cross the river and land in the clearing?

Additional Problems

83 A woman who can row a boat at 6.4 km/h in still water faces a
long, straight river with a width of 6.4 km and a current of 3.2 km/h.
Let i point directly across the river and j point directly down-
stream. If she rows in a straight line to a point directly opposite her
starting position, (a) at what angle to 1 must she point the boat and
(b) how long will she take? (c) How long will she take if, instead,
she rows 3.2km down the river and then back to her starting
point? (d) How long if she rows 3.2 km up the river and then back
to her starting point? (e) At what angle to 1 should she point the
boat if she wants to cross the river in the shortest possible time? (f)
How long is that shortest time?

84 In Fig.4-48a, a sled moves in the negative x direction at con-
stant speed v, while a ball of ice is shot from the sled with a veloc-
ity Vo = v + v, relative to the sled. When the ball lands, its
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Fig. 4-48 Problem 84.
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horizontal displacement Ax,, relative to the ground (from its
launch position to its landing position) is measured. Figure 4-48b
gives Ax,, as a function of v,. Assume the ball lands at approxi-
mately its launch height. What are the values of (a) v, and (b)
voy? The ball’s displacement Ax,, relative to the sled can also be
measured. Assume that the sled’s velocity is not changed when
the ball is shot. What is Ax,, when v, is (¢) 5.0 m/s and (d) 15 m/s?

85 You are kidnapped by political-science majors (who are upset
because you told them political science is not a real science).
Although blindfolded, you can tell the speed of their car (by the
whine of the engine), the time of travel (by mentally counting off
seconds), and the direction of travel (by turns along the rectangu-
lar street system). From these clues, you know that you are taken
along the following course: 50 km/h for 2.0 min, turn 90° to the
right, 20 km/h for 4.0 min, turn 90° to the right, 20 km/h for 60 s,
turn 90° to the left, 50 km/h for 60 s, turn 90° to the right, 20 km/h
for 2.0 min, turn 90° to the left, 50 km/h for 30 s. At that point, (a)
how far are you from your starting point, and (b) in what direction
relative to your initial direction of travel are you?

86 In Fig. 4-49, a radar station detects an airplane approaching di-
rectly from the east. At first observation, the airplane is at distance
d; =360 m from the station and at angle 6, = 40° above the hori-
zon. The airplane is tracked through an angular change A9 = 123°
in the vertical east—west plane; its distance is then d, = 790 m. Find
the (a) magnitude and (b) direction of the airplane’s displacement
during this period.

Airplane
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Fig. 4-49 Problem 86.

87 ssm A baseball is hit at ground level. The ball reaches its
maximum height above ground level 3.0 s after being hit. Then 2.5
s after reaching its maximum height, the ball barely clears a fence
that is 97.5 m from where it was hit. Assume the ground is level. (a)
What maximum height above ground level is reached by the ball?
(b) How high is the fence? (c) How far beyond the fence does the
ball strike the ground?

88 Long flights at midlatitudes in the Northern Hemisphere en-
counter the jet stream, an eastward airflow that can affect a plane’s
speed relative to Earth’s surface. If a pilot maintains a certain
speed relative to the air (the plane’s airspeed), the speed relative to
the surface (the plane’s ground speed) is more when the flight is in
the direction of the jet stream and less when the flight is opposite
the jet stream. Suppose a round-trip flight is scheduled between
two cities separated by 4000 km, with the outgoing flight in the di-
rection of the jet stream and the return flight opposite it. The air-
line computer advises an airspeed of 1000 km/h, for which the dif-
ference in flight times for the outgoing and return flights is 70.0
min. What jet-stream speed is the computer using?

89 ssm A particle starts from the origin at r = 0 with a velocity
of 8.0j m/s and moves in the xy plane with constant acceleration

(4.01 + 2.0j) m/s2. When the particle’s x coordinate is 29 m, what
are its (a) y coordinate and (b) speed?

90 At what initial speed
must the basketball player
in Fig. 4-50 throw the ball, at
angle 6, =55° above the
horizontal, to make the foul
shot? The horizontal dis-
tances are d; = 1.0 ft and d,
= 14 ft, and the heights are
hy = 7.0 ftand h, = 10 ft.

91 During volcanic erup-
tions, chunks of solid rock
can be blasted out of the vol-
cano; these projectiles are
called volcanic bombs. Figure 4-51 shows a cross section of Mt.
Fuji, in Japan. (a) At what initial speed would a bomb have to be
ejected, at angle 6, = 35° to the horizontal, from the vent at A in
order to fall at the foot of the volcano at B, at vertical distance & =
3.30 km and horizontal distance d = 9.40 km? Ignore, for the mo-
ment, the effects of air on the bomb’s travel. (b) What would be the
time of flight? (c) Would the effect of the air increase or decrease
your answer in (a)?

Fig. 4-50 Problem 90.
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Fig. 4-51 Problem 91.

92 An astronaut is rotated in a horizontal centrifuge at a radius
of 5.0 m. (a) What is the astronaut’s speed if the centripetal accel-
eration has a magnitude of 7.0g? (b) How many revolutions per
minute are required to produce this acceleration? (c) What is the
period of the motion?

93 ssm Oasis A is 90 km due west of oasis B. A desert camel
leaves A and takes 50 h to walk 75 km at 37° north of due east.
Next it takes 35 h to walk 65 km due south. Then it rests for 5.0 h.
What are the (a) magnitude and (b) direction of the camel’s dis-
placement relative to A at the resting point? From the time the
camel leaves A until the end of the rest period, what are the (c)
magnitude and (d) direction of its average velocity and (e) its aver-
age speed? The camel’s last drink was at A;it must be at B no more
than 120 h later for its next drink. If it is to reach B just in time, what
must be the (f) magnitude and (g) direction of its average velocity
after the rest period?

94 =% Curtain of death. A large metallic asteroid strikes Earth
and quickly digs a crater into the rocky material below ground
level by launching rocks upward and outward. The following table
gives five pairs of launch speeds and angles (from the horizontal)
for such rocks, based on a model of crater formation. (Other rocks,
with intermediate speeds and angles, are also launched.) Suppose
that you are at x = 20 km when the asteroid strikes the ground at



time ¢t = 0 and position x = 0 (Fig. 4-52). (a) At t = 20 s, what are
the x and y coordinates of the rocks headed in your direction from
launches A through E? (b) Plot these coordinates and then sketch
a curve through the points to include rocks with intermediate
launch speeds and angles. The curve should indicate what you
would see as you look up into the approaching rocks and what di-
nosaurs must have seen during asteroid strikes long ago.

Launch  Speed (m/s)  Angle (degrees)
A 520 14.0
B 630 16.0
C 750 18.0
D 870 20.0
E 1000 22.0

y

You
f $— x (km)
0 10 20
Fig. 4-52 Problem 9%4.
95 Figure 4-53 shows the straight path of a parti- B

cle across an xy coordinate system as the particle is
accelerated from rest during time interval Az;. The ac-
celeration is constant. The xy coordinates for point A

are (4.00 m, 6.00 m); those for point B are (12.0 m, A

18.0 m). (a) What is the ratio a,/a, of the acceleration . *
components? (b) What are the coordinates of the Fig. 4-53
particle if the motion is continued for another inter- Problem 95.
val equal to At;?

96 For women'’s volleyball the top of the net is 2.24 m above the
floor and the court measures 9.0 m by 9.0 m on each side of the net.
Using a jump serve, a player strikes the ball at a point that is 3.0 m
above the floor and a horizontal distance of 8.0 m from the net. If
the initial velocity of the ball is horizontal, (a) what minimum mag-
nitude must it have if the ball is to clear the net and (b) what maxi-
mum magnitude can it have if the ball is to strike the floor inside
the back line on the other side of the net?

97 ssm A rifle is aimed horizontally at a target 30 m away. The
bullet hits the target 1.9 cm below the aiming point. What are (a) the
bullet’s time of flight and (b) its speed as it emerges from the rifle?

98 A particle is in uniform circular motion about the origin of an
xy coordinate system, moving clockwise with a period of 7.00 s. At
one instant, its position vector (measured from the origin) is
7 = (2.00m)i — (3.00 m)]. At that instant, what is its velocity in
unit-vector notation?

99 In Fig. 4-54, a lump of wet putty
moves in uniform circular motion as
it rides at a radius of 20.0 cm on the ~ Wheel

rim of a wheel rotating counter- y/& ¥
clockwise with a period of 5.00 ms. Putty h
The lump then happens to fly off the | |
rim at the 5 o’clock position (as if on ' d '
a clock face). It leaves the rim at a

Fig. 4-54 Problem 99.
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height of & = 1.20 m from the floor and at a distance d = 2.50 m
from a wall. At what height on the wall does the lump hit?

100 Aniceboat sails across the surface of a frozen lake with con-
stant acceleration produced by the wind. At a certain instant the
boat’s velocity is (6.30i — 8.42)) m/s. Three seconds later, because
of a wind shift, the boat is instantaneously at rest. What is its aver-
age acceleration for this 3.00 s interval?

101 In Fig. 4-55, a ball is shot di-
rectly upward from the ground with
an initial speed of v, = 7.00 m/s.
Simultaneously, a construction ele-
vator cab begins to move upward
from the ground with a constant
speed of v. = 3.00 m/s. What maxi-
mum height does the ball reach rela-
tive to (a) the ground and (b) the cab floor? At what rate does the
speed of the ball change relative to (c) the ground and (d) the cab
floor?

Fig. 4-55 Problem 101.

102 A magnetic field can force a charged particle to move in a
circular path. Suppose that an electron moving in a circle experi-
ences a radial acceleration of magnitude 3.0 X 10'* m/s? in a partic-
ular magnetic field. (a) What is the speed of the electron if the ra-
dius of its circular path is 15 cm? (b) What is the period of the
motion?

103 In 3.50 h, a balloon drifts 21.5 km north, 9.70 km east, and
2.88 km upward from its release point on the ground. Find (a) the
magnitude of its average velocity and (b) the angle its average ve-
locity makes with the horizontal.

104 A ball is thrown horizontally from a height of 20 m and hits
the ground with a speed that is three times its initial speed. What is
the initial speed?

105 A projectile is launched with an initial speed of 30 m/s at an
angle of 60° above the horizontal. What are the (a) magnitude and
(b) angle of its velocity 2.0 s after launch, and (c) is the angle above
or below the horizontal? What are the (d) magnitude and (e) angle
of its velocity 5.0 s after launch, and (f) is the angle above or below
the horizontal?

106 The position vector for a proton is initially 7=
501 — 6.0) + 2.0k and then lateris 7 = —2.01 + 6.0) + 2.0k, all in
meters. (a) What is the proton’s displacement vector, and (b) to
what plane is that vector parallel?

107 A particle P travels with con- y
stant speed on a circle of radius r =
revolution in 20.0s. The particle \\
passes through O at time t = 0. State /2
the following vectors in magnitude-

angle notation (angle relative to the

positive direction of x). With respect

to O, find the particle’s position vec-

(0]
7.50 s,and (c) 10.0 s.
(d) For the 5.00 s interval from Fig. 4-56 Problem 107.

the end of the fifth second to the end

of the tenth second, find the particle’s displacement. For that inter-
val, find (e) its average velocity and its velocity at the (f) beginning
and (g) end. Next, find the acceleration at the (h) beginning and (i)

3.00 m (Fig.4-56) and completes one
tor at the times ¢ of (a) 5.00s, (b) x
end of that interval.
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108 The fast French train known as the TGV (Train a Grande
Vitesse) has a scheduled average speed of 216 km/h. (a) If the train
goes around a curve at that speed and the magnitude of the accel-
eration experienced by the passengers is to be limited to 0.050g,
what is the smallest radius of curvature for the track that can be
tolerated? (b) At what speed must the train go around a curve with
a 1.00 km radius to be at the acceleration limit?

109 (a) If an electron is projected horizontally with a speed of
3.0 X 10° m/s, how far will it fall in traversing 1.0 m of horizontal
distance? (b) Does the answer increase or decrease if the initial
speed is increased?

110 A person walks up a stalled 15-m-long escalator in 90s.
When standing on the same escalator, now moving, the person is
carried up in 60 s. How much time would it take that person to
walk up the moving escalator? Does the answer depend on the
length of the escalator?

111 (a) What is the magnitude of the centripetal acceleration of
an object on Earth’s equator due to the rotation of Earth? (b)
What would Earth’s rotation period have to be for objects on the
equator to have a centripetal acceleration of magnitude 9.8 m/s??

112 <%= The range of a projectile depends not only on v, and 6,
but also on the value g of the free-fall acceleration, which varies
from place to place. In 1936, Jesse Owens established a world’s
running broad jump record of 8.09 m at the Olympic Games at
Berlin (where g = 9.8128 m/s?). Assuming the same values of v,
and 6, by how much would his record have differed if he had com-
peted instead in 1956 at Melbourne (where g = 9.7999 m/s?)?

113 Figure 4-57 shows the path y
taken by a drunk skunk over level
ground, from initial point i to final dy
point f The angles are 6; = 30.0°, 05
6, = 50.0°, and 6, = 80.0°, and the as 6y
distances are d; = 5.00m, d, = 8.00 ) B, 4
m, and d; = 12.0 m. What are the (a) 7 X
magnitude and (b) angle of the
skunk’s displacement from i to f?

114 The position vector 7 of a
particle moving in the xy plane is .
7 =24 + 2 sin[(w/4 radis)f]j, with ¢/
7 in meters and ¢ in seconds. (a) Fig. 4-57 Problem 113.
Calculate the x and y components

of the particle’s position at ¢ = 0, 1.0, 2.0, 3.0, and 4.0 s and sketch
the particle’s path in the xy plane for the interval 0 =¢ =4.0s.

(b) Calculate the components of the particle’s velocity at ¢ = 1.0,
2.0, and 3.0 s. Show that the velocity is tangent to the path of the
particle and in the direction the particle is moving at each time by
drawing the velocity vectors on the plot of the particle’s path in
part (a). (c) Calculate the components of the particle’s accelera-
tionattr = 1.0,2.0,and 3.0 s.

115 An electron having an initial horizontal velocity of magni-
tude 1.00 X 10° cm/s travels into the region between two horizon-
tal metal plates that are electrically charged. In that region, the
electron travels a horizontal distance of 2.00 cm and has a constant
downward acceleration of magnitude 1.00 X 107 cm/s? due to the
charged plates. Find (a) the time the electron takes to travel the
2.00 cm, (b) the vertical distance it travels during that time, and the
magnitudes of its (c) horizontal and (d) vertical velocity compo-
nents as it emerges from the region.

116 An elevator without a ceiling is ascending with a constant
speed of 10 m/s. A boy on the elevator shoots a ball directly up-
ward, from a height of 2.0 m above the elevator floor, just as the el-
evator floor is 28 m above the ground. The initial speed of the ball
with respect to the elevator is 20 m/s. (a) What maximum height
above the ground does the ball reach? (b) How long does the ball
take to return to the elevator floor?

117 A football player punts the football so that it will have a
“hang time” (time of flight) of 4.5 s and land 46 m away. If the ball
leaves the player’s foot 150 cm above the ground, what must be the
(a) magnitude and (b) angle (relative to the horizontal) of the
ball’s initial velocity?

118 An airport terminal has a moving sidewalk to speed passen-
gers through a long corridor. Larry does not use the moving side-
walk; he takes 150 s to walk through the corridor. Curly, who sim-
ply stands on the moving sidewalk, covers the same distance in 70 s.
Moe boards the sidewalk and walks along it. How long does Moe
take to move through the corridor? Assume that Larry and Moe
walk at the same speed.

119 A wooden boxcar is moving along a straight railroad track at
speed v,. A sniper fires a bullet (initial speed v,) at it from a high-
powered rifle. The bullet passes through both lengthwise walls of
the car, its entrance and exit holes being exactly opposite each
other as viewed from within the car. From what direction, relative
to the track, is the bullet fired? Assume that the bullet is not de-
flected upon entering the car, but that its speed decreases by 20%.
Take v, = 85 km/h and v, = 650 m/s. (Why don’t you need to
know the width of the boxcar?)



FORCE AND
MOTION -1

ﬁ_] WHAT IS PHYSICS?

We have seen that part of physics is a study of motion, including accelera-
tions, which are changes in velocities. Physics is also a study of what can cause an
object to accelerate. That cause is a force, which is, loosely speaking, a push or
pull on the object. The force is said to act on the object to change its velocity. For
example, when a dragster accelerates, a force from the track acts on the rear tires
to cause the dragster’s acceleration. When a defensive guard knocks down a
quarterback, a force from the guard acts on the quarterback to cause the quarter-
back’s backward acceleration. When a car slams into a telephone pole, a force on
the car from the pole causes the car to stop. Science, engineering, legal, and med-
ical journals are filled with articles about forces on objects, including people.

5-2 Newtonian Mechanics

The relation between a force and the acceleration it causes was first understood
by Isaac Newton (1642—1727) and is the subject of this chapter. The study of that
relation, as Newton presented it, is called Newtonian mechanics. We shall focus
on its three primary laws of motion.

Newtonian mechanics does not apply to all situations. If the speeds of the
interacting bodies are very large—an appreciable fraction of the speed of
light—we must replace Newtonian mechanics with Einstein’s special theory of
relativity, which holds at any speed, including those near the speed of light. If
the interacting bodies are on the scale of atomic structure (for example, they
might be electrons in an atom), we must replace Newtonian mechanics with
quantum mechanics. Physicists now view Newtonian mechanics as a special
case of these two more comprehensive theories. Still, it is a very important spe-
cial case because it applies to the motion of objects ranging in size from the
very small (almost on the scale of atomic structure) to astronomical (galaxies
and clusters of galaxies).

5-3 Newton’s First Law

Before Newton formulated his mechanics, it was thought that some influence,
a “force,” was needed to keep a body moving at constant velocity. Similarly, a
body was thought to be in its “natural state” when it was at rest. For a body to
move with constant velocity, it seemingly had to be propelled in some way, by
a push or a pull. Otherwise, it would “naturally” stop moving.

These ideas were reasonable. If you send a puck sliding across a wooden
floor, it does indeed slow and then stop. If you want to make it move across the
floor with constant velocity, you have to continuously pull or push it.

CHAPTER
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Fig. 5-1 A force F on the standard kilo-
gram gives that body an acceleration @.

Send a puck sliding over the ice of a skating rink, however, and it goes a
lot farther. You can imagine longer and more slippery surfaces, over which the
puck would slide farther and farther. In the limit you can think of a long, ex-
tremely slippery surface (said to be a frictionless surface), over which the
puck would hardly slow. (We can in fact come close to this situation by send-
ing a puck sliding over a horizontal air table, across which it moves on a film
of air.)

From these observations, we can conclude that a body will keep moving with
constant velocity if no force acts on it. That leads us to the first of Newton’s three
laws of motion:

Newton’s First Law: If no force acts on a body, the body’s velocity cannot change;
that is, the body cannot accelerate.

In other words, if the body is at rest, it stays at rest. If it is moving, it continues to
move with the same velocity (same magnitude and same direction).

5-4 Force

We now wish to define the unit of force. We know that a force can cause the
acceleration of a body. Thus, we shall define the unit of force in terms of the
acceleration that a force gives to a standard reference body, which we take to
be the standard kilogram of Fig. 1-3. This body has been assigned, exactly and
by definition, a mass of 1 kg.

We put the standard body on a horizontal frictionless table and pull the body
to the right (Fig. 5-1) so that, by trial and error, it eventually experiences a mea-
sured acceleration of 1 m/s?. We then declare, as a matter of definition, that the
force we are exerting on the standard body has a magnitude of 1 newton
(abbreviated N).

We can exert a 2 N force on our standard body by pulling it so that its
measured acceleration is 2 m/s?, and so on. Thus in general, if our standard body
of 1 kg mass has an acceleration of magnitude a, we know that a force F must be
acting on it and that the magnitude of the force (in newtons) is equal to the mag-
nitude of the acceleration (in meters per second per second).

Thus, a force is measured by the acceleration it produces. However, accelera-
tion is a vector quantity, with both magnitude and direction. Is force also a vector
quantity? We can easily assign a direction to a force (just assign the direction of
the acceleration), but that is not sufficient. We must prove by experiment that
forces are vector quantities. Actually, that has been done: forces are indeed vector
quantities; they have magnitudes and directions, and they combine according to
the vector rules of Chapter 3.

This means that when two or more forces act on a body, we can find their net
force, or resultant force, by adding the individual forces vectorially. A single force
that has the magnitude and direction of the net force has the same effect on the
body as all the individual forces together. This fact is called the principle of super-
position for forces. The world would be quite strange if, for example, you and a
friend were to pull on the standard body in the same direction, each with a force
of 1 N,and yet somehow the net pull was 14 N.

In this book, forces are most often represented with a vector symbol such as
F, and a net force is represented with the vector symbol F... As with other vectors,
a force or a net force can have components along coordinate axes. When forces act
only along a single axis, they are single-component forces. Then we can drop the



overhead arrows on the force symbols and just use signs to indicate the directions
of the forces along that axis.

Instead of the wording used in Section 5-3, the more proper statement of
Newton’s First Law is in terms of a net force:

Newton’s First Law: If no net force acts on a body (Foo = 0), the body’s velocity
cannot change; that is, the body cannot accelerate.

There may be multiple forces acting on a body, but if their net force is zero, the
body cannot accelerate.

Inertial Reference Frames

Newton’s first law is not true in all reference frames, but we can always find
reference frames in which it (as well as the rest of Newtonian mechanics) is
true. Such special frames are referred to as inertial reference frames, or simply
inertial frames.

An inertial reference frame is one in which Newton’s laws hold.

For example, we can assume that the ground is an inertial frame provided we can
neglect Earth’s astronomical motions (such as its rotation).

That assumption works well if, say, a puck is sent sliding along a short strip of
frictionless ice—we would find that the puck’s motion obeys Newton’s laws.
However, suppose the puck is sent sliding along a long ice strip extending from
the north pole (Fig. 5-2a). If we view the puck from a stationary frame in space,
the puck moves south along a simple straight line because Earth’s rotation
around the north pole merely slides the ice beneath the puck. However, if we
view the puck from a point on the ground so that we rotate with Earth, the puck’s
path is not a simple straight line. Because the eastward speed of the ground be-
neath the puck is greater the farther south the puck slides, from our ground-
based view the puck appears to be deflected westward (Fig. 5-2b). However, this
apparent deflection is caused not by a force as required by Newton’s laws but by
the fact that we see the puck from a rotating frame. In this situation, the ground is
a noninertial frame. N

In this book we usually assume that the ground is an inertial frame and
that measured forces and accelerations are from this frame. If measurements

N
S ——1

e

|_»—

L

'
|
|
|
|
: Earth's rotation
I causes an

(a) (b) apparent deflection.

Fig. 5-2 (a) The path of a puck sliding from the north pole as seen from a stationary
point in space. Earth rotates to the east. (b) The path of the puck as seen from the ground.
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are made in, say, an elevator that is accelerating relative to the ground, then
the measurements are being made in a noninertial frame and the results can be
surprising.

\. CHECKPOINT 1

Which of the figure’s six arrangements correctly show the vector addition of forces 1?1
and F, to yield the third vector, which is meant to represent their net force F,.?

(@) Fy (b) Fy (¢) Fy

(d) (e)

h-b Mass

Everyday experience tells us that a given force produces different magnitudes of
acceleration for different bodies. Put a baseball and a bowling ball on the floor
and give both the same sharp kick. Even if you don’t actually do this, you know
the result: The baseball receives a noticeably larger acceleration than the bowling
ball. The two accelerations differ because the mass of the baseball differs from
the mass of the bowling ball—but what, exactly, is mass?

We can explain how to measure mass by imagining a series of experiments in
an inertial frame. In the first experiment we exert a force on a standard body,
whose mass m, is defined to be 1.0 kg. Suppose that the standard body acceler-
ates at 1.0 m/s%. We can then say the force on that body is 1.0 N.

We next apply that same force (we would need some way of being certain it
is the same force) to a second body, body X, whose mass is not known. Suppose
we find that this body X accelerates at 0.25 m/s’>. We know that a less massive
baseball receives a greater acceleration than a more massive bowling ball when
the same force (kick) is applied to both. Let us then make the following conjec-
ture: The ratio of the masses of two bodies is equal to the inverse of the ratio of
their accelerations when the same force is applied to both. For body X and the
standard body, this tells us that

my _ a
my,  ay
Solving for my yields
_ay _ 1.0 m/s*
my = my 0 (1.0kg) 0B 4.0 kg.

Our conjecture will be useful, of course, only if it continues to hold when
we change the applied force to other values. For example, if we apply an 8.0 N force
to the standard body, we obtain an acceleration of 8.0 m/s>. When the 8.0 N force is
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applied to body X, we obtain an acceleration of 2.0 m/s?. Our conjecture then
gives us

a 8.0 m/s?
my = m a—i = (1.0 kg) Tm/sz =40 kg,
consistent with our first experiment. Many experiments yielding similar results
indicate that our conjecture provides a consistent and reliable means of assigning
amass to any given body.

Our measurement experiments indicate that mass is an intrinsic characteristic
of a body—that is, a characteristic that automatically comes with the existence of
the body. They also indicate that mass is a scalar quantity. However, the nagging
question remains: What, exactly, is mass?

Since the word mass is used in everyday English, we should have some in-
tuitive understanding of it, maybe something that we can physically sense. Is it
a body’s size, weight, or density? The answer is no, although those characteris-
tics are sometimes confused with mass. We can say only that the mass of a body
is the characteristic that relates a force on the body to the resulting acceleration.
Mass has no more familiar definition; you can have a physical sensation of mass
only when you try to accelerate a body, as in the kicking of a baseball or a bowl-
ing ball.

5-6 Newton’s Second Law

All the definitions, experiments, and observations we have discussed so far can be
summarized in one neat statement:

Newton’s Second Law: The net force on a body is equal to the product of the body’s
mass and its acceleration.

In equation form,

-

Fret = ma (Newton’s second law). (5-1)

This equation is simple, but we must use it cautiously. First, we must be
certain about which body we are applying it to. Then F,., must be the vector sum
of all the forces that act on that body. Only forces that act on that body are to be
included in the vector sum, not forces acting on other bodies that might be
involved in the given situation. For example, if you are in a rugby scrum, the net
force on you is the vector sum of all the pushes and pulls on your body. It does
not include any push or pull on another player from you or from anyone else.
Every time you work a force problem, your first step is to clearly state the body to
which you are applying Newton’s law.

Like other vector equations, Eq. 5-1 is equivalent to three component equa-
tions, one for each axis of an xyz coordinate system:

Fherx = ma,, Fy,=ma, and F, = ma,. (5-2)

s
Each of these equations relates the net force component along an axis to the
acceleration along that same axis. For example, the first equation tells us that
the sum of all the force components along the x axis causes the x component a,
of the body’s acceleration, but causes no acceleration in the y and z directions.
Turned around, the acceleration component a, is caused only by the sum of the
force components along the x axis. In general,

PART 1
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The acceleration component along a given axis is caused only by the sum of the force
components along that same axis, and not by force components along any other axis.

Equation 5-1 tells us that if the net force on a body is zero, the body’s
acceleration @ = 0.1If the body is at rest, it stays at rest; if it is moving, it continues
to move at constant velocity. In such cases, any forces on the body balance one
another, and both the forces and the body are said to be in equilibrium.
Commonly, the forces are also said to cancel one another, but the term “cancel” is
tricky. It does not mean that the forces cease to exist (canceling forces is not like
canceling dinner reservations). The forces still act on the body.

For ST units, Eq. 5-1 tells us that

1N =(1kg)(1 m/s?) =1 kg-m/s%. (5-3)

Some force units in other systems of units are given in Table 5-1 and Appendix D.

Table 5-1

Units in Newton’s Second Law (Egs. 5-1 and 5-2)

System Force Mass Acceleration
ST newton (N) kilogram (kg) m/s?
CGS* dyne gram (g) cm/s?
British? pound (Ib) slug ft/s?

“1 dyne = 1 g-cm/s%.
b1 1b = 1slug- ft/s%

To solve problems with Newton’s second law, we often draw a free-body
diagram in which the only body shown is the one for which we are summing
forces. A sketch of the body itself is preferred by some teachers but, to save space
in these chapters, we shall usually represent the body with a dot. Also, each force
on the body is drawn as a vector arrow with its tail on the body. A coordinate sys-
tem is usually included, and the acceleration of the body is sometimes shown with
a vector arrow (labeled as an acceleration).

A system consists of one or more bodies, and any force on the bodies inside
the system from bodies outside the system is called an external force. If the bod-
ies making up a system are rigidly connected to one another, we can treat the sys-
tem as one composite body, and the net force Fnet on it is the vector sum of all
external forces. (We do not include internal forces—that is, forces between two
bodies inside the system.) For example, a connected railroad engine and car form
a system. If, say, a tow line pulls on the front of the engine, the force due to the
tow line acts on the whole engine—car system. Just as for a single body, we can re-
late the net external force on a system to its acceleration with Newton’s second
law, 1_7)net = ma,where m is the total mass of the system.

\'CH ECKPOINT 2

The figure here shows two horizontal forces acting on a block on a frictionless floor. If a
third horizontal force F; also acts on the block,

what are the magnitude and direction of F; when ?;lN_’i'_BDN

the block is (a) stationary and (b) moving to the
left with a constant speed of 5 m/s?
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Sample Problem

One- and two-dimensional forces, puck

Parts A, B, and C of Fig. 5-3 show three situations in which
one or two forces act on a puck that moves over frictionless
ice along an x axis, in one-dimensional motion. The puck’s
mass is m = 0.20 kg. Forces F, and F, are directed along the
axis and have magnitudes F; = 4.0 N and F, = 2.0 N. Force
F, is directed at angle # = 30° and has magnitude F; = 1.0
N. In each situation, what is the acceleration of the puck?

KEY IDEA

In each situation we can relate the acceleration @ to the net
force Fnel acting on the puck with Newton’s second law,
F... = md.However, because the motion is along only the x

A
F The horizontal force
_[=——> |, causes a horizontal
acceleration.
(@)
Puck F This is a free-body
— diagram.
(0)
B
£ 7 The§e forces compete.
_<H==8——>, Their net force causes
a horizontal acceleration.
(¢)
I 1 . Thisis a free-body
< .
diagram.
(d)
C
E Only the horizontal

omponent of F3

. =
X
Fy @ competes with F.

183 This is a free-body
diagram.

Fig. 5-3 In three situations, forces act on a puck that moves
along an x axis. Free-body diagrams are also shown.

WILEY

axis, we can simplify each situation by writing the second
law for x components only:

(5-4)

The free-body diagrams for the three situations are also
given in Fig. 5-3, with the puck represented by a dot.

Fnet,x = max'

Situation A: For Fig. 5-3b, where only one horizontal force
acts, Eq. 5-4 gives us

F, = ma,,
which, with given data, yields

_F, _ 40N

- — = - = 2
a, - 020 ke 20 m/s*.

(Answer)

The positive answer indicates that the acceleration is in the
positive direction of the x axis.

Sltuatlon B: In Fig. 5-3d, two horizontal forces act on the
puck, F, in the positive direction of x and F, in the negative
direction. Now Eq. 5-4 gives us

Fl - FZ = ma,,
which, with given data, yields
F,—F, 40N-20N

= 10 m/s%
m 0.20 kg 0 m/s

a, =

(Answer)
Thus, the net force accelerates the puck in the positive direc-
tion of the x axis.

Situation C: In Fig. 5-3f, force F, is not directed along the
direction of the puck’s acceleration; only x component F; ,
is. (Force F; is two-dimensional but the motion is only one-

dimensional.) Thus, we write Eq. 5-4 as
F3’x - F2 = ma,. (5'5)

From the figure, we see that F;, = F; cos 6. Solving for the
acceleration and substituting for F; , yield

o= F3’X_F2 _ F3C059_F2
* m m
_ (1L.ON)(cos30°) —20N _ 5
020 kg 5.7 m/s*.

(Answer)

Thus, the net force accelerates the puck in the negative di-
rection of the x axis.

PLUS Additional examples, video, and practice available at WileyPLUS
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Sample Problem

Two-dimensional forces, cookie tin

In the overhead view of Fig. 5-4a,a 2.0 kg cookie tin is accel-
erated at 3.0 m/s” in the direction shown by @, over a fric-
tionless horizontal surface. The acceleration is caused by
three horizontal forces, only two of which are shown: F, of
magmtude 10 Nand F. , of magnitude 20 N. What is the third
force F in unit-vector notation and in magnitude-angle
notation?

KEY IDEA

The net force F)ﬂet on the tin is the sum of the three forces
and is related to the acceleration a via Newton’s second law
(F,e. = ma ). Thus,

F)1+F)2+F)3=ma, (5'6)
which gives us
F3—m3—ﬁ1—ﬁ2 (5-7)

Calculations: Because this is a two-dimensional problem,
we cannot find F ; merely by substituting the magnitudes
for the vector quantities on the right side of Eq. 5-7. Instead,
we must vectorially add md, —F, (the reverse of F,), and
—F, (the reverse of F,), as shown in Fig. 5-4b. This addition
can be done directly on a vector-capable calculator because
we know both magnitude and angle for all three vectors.
However, here we shall evaluate the right side of Eq. 5-7 in
terms of components, first along the x axis and then along
the y axis.

X
These aretwo £
of the three
horizontal force

vectors.

vector.

@

> X

30°

This is the resulting
horizontal acceleration

x components: Along the x axis we have
Fiy,=ma,—F,-F,,
= m(a cos 50°) — F; cos(—150°) — F, cos 90°.
Then, substituting known data, we find
= (2.0 kg)(3.0 m/s?) cos 50° — (10 N) cos(—150°)
— (20 N) cos 90°
=125N.

y components: Similarly, along the y axis we find
F3,y = may - Fl,y - Fz’y
= m(a sin 50°) — F, sin(—150°) — F, sin 90°
= (2.0 kg)(3.0 m/s?) sin 50° — (10 N) sin(—150°)
— (20 N) sin 90°
= —104 N.
Vector: In unit-vector notation, we can write

E =F A+ F,]=(125N)i — (104 N)]
~ (13N)i — (10N)j. (Answer)

We can now use a Vectoi-capable calculator to get the mag-
nitude and the angle of F'5. We can also use Eq. 3-6 to obtain
the magnitude and the angle (from the positive direction of

the x axis) as
F,=VF3,+F}, =16N

F
and 0 = tan! —L = —40°.
F3,x

(Answer)

We draw the product
of mass and acceleration
as a vector.

(0)
Then we can add the three

vectors to find the missing
third force vector.

Fig. 5-4 (a) An overhead view of two of three horizontal forces that act on a cookie tin,

. . . =2 g
resulting in acceleration a. F; is not shown. (b) An arrangement of vectors ma,

—F, to find force F;.

WILEY ©
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PLUS Additional examples, video, and practice available at WileyPLUS



5-7 SOME PARTICULAR FORCES

5-7 Some Particular Forces
The Gravitational Force

A gravitational force ﬁg on a body is a certain type of pull that is directed toward
a second body. In these early chapters, we do not discuss the nature of this force
and usually consider situations in which the second body is Earth. Thus, when we
speak of the gravitational force Fg on a body, we usually mean a force that pulls
on it directly toward the center of Earth—that is, directly down toward the
ground. We shall assume that the ground is an inertial frame.

Suppose a body of mass m is in free fall with the free-fall acceleration of
magnitude g. Then, if we neglect the effects of the air, the only force acting on the
body is the gravitational force F;, We can relate this downward force and
downward acceleration with Newton’s second law (F = ma). We place a vertical
y axis along the body’s path, with the positive direction upward. For this axis,
Newton’s second law can be written in the form F,, = ma,, which, in our
situation, becomes

_Fg = m(_g)
or F, = mg. (5-8)

In words, the magnitude of the gravitational force is equal to the product mg.

This same gravitational force, with the same magnitude, still acts on the body
even when the body is not in free fall but is, say, at rest on a pool table or moving
across the table. (For the gravitational force to disappear, Earth would have to
disappear.)

We can write Newton’s second law for the gravitational force in these vector
forms:

Fg = _ng = _mgj = mE’ (5'9)
where ] is the unit vector that points upward along a y axis, directly away from the
ground, and ¢ is the free-fall acceleration (written as a vector), directed downward.

Weight

The weight W of a body is the magnitude of the net force required to prevent the
body from falling freely, as measured by someone on the ground. For example, to
keep a ball at rest in your hand while you stand on the ground, you must provide
an upward force to balance the gravitational force on the ball from Earth.
Suppose the magnitude of the gravitational force is 2.0 N. Then the magnitude of
your upward force must be 2.0 N, and thus the weight W of the ball is 2.0 N. We
also say that the ball weighs 2.0 N and speak about the ball weighing 2.0 N.

A ball with a weight of 3.0 N would require a greater force from you—
namely, a 3.0 N force—to keep it at rest. The reason is that the gravitational force
you must balance has a greater magnitude—namely, 3.0 N. We say that this sec-
ond ball is heavier than the first ball.

Now let us generalize the situation. Consider a body that has an acceleration
a of zero relative to the ground, which we again assume to be an inertial frame.
Two forces act on the body: a downward gravitational force fg and a balancing
upward force of magnitude W. We can write Newton’s second law for a vertical y
axis, with the positive direction upward, as

Fiery = ma,.
In our situation, this becomes

W — F, = m(0) (5-10)

PART 1
95
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s,

v A%

Fyp = my Fop=mpg
Fig. 5-5 An equal-arm balance. When
the device is in balance, the gravitational
force ﬁgL on the body being weighed (on
the left pan) and the total gravitational
force F;R on the reference bodies (on the
right pan) are equal. Thus, the mass m; of
the body being weighed is equal to the total
mass my of the reference bodies.

Scale marked
in either
weight or
mass units

()

.V

F,=mg

Fig. 5-6 A spring scale. The reading is
proportional to the weight of the object on
the pan, and the scale gives that weight if
marked in weight units. If, instead, it is
marked in mass units, the reading is the
object’s weight only if the value of g at the
location where the scale is being used is
the same as the value of g at the location
where the scale was calibrated.

or W=F, (5-11)

(weight, with ground as inertial frame).

This equation tells us (assuming the ground is an inertial frame) that

The weight W of a body is equal to the magnitude F, of the gravitational force on the
body.

Substituting mg for F, from Eq. 5-8, we find

W =mg (weight), (5-12)
which relates a body’s weight to its mass.

To weigh a body means to measure its weight. One way to do this is to place
the body on one of the pans of an equal-arm balance (Fig. 5-5) and then place ref-
erence bodies (whose masses are known) on the other pan until we strike a bal-
ance (so that the gravitational forces on the two sides match). The masses on the
pans then match, and we know the mass of the body. If we know the value of g for
the location of the balance, we can also find the weight of the body with Eq. 5-12.

We can also weigh a body with a spring scale (Fig. 5-6). The body stretches
a spring, moving a pointer along a scale that has been calibrated and marked in
either mass or weight units. (Most bathroom scales in the United States work this
way and are marked in the force unit pounds.) If the scale is marked in
mass units, it is accurate only where the value of g is the same as where the scale
was calibrated.

The weight of a body must be measured when the body is not accelerating
vertically relative to the ground. For example, you can measure your weight on a
scale in your bathroom or on a fast train. However, if you repeat the measure-
ment with the scale in an accelerating elevator, the reading differs from your
weight because of the acceleration. Such a measurement is called an apparent
weight.

Caution: A body’s weight is not its mass. Weight is the magnitude of a force
and is related to mass by Eq. 5-12. If you move a body to a point where the value
of g is different, the body’s mass (an intrinsic property) is not different but the
weight is. For example, the weight of a bowling ball having a mass of 7.2 kgis 71 N
on Earth but only 12 N on the Moon. The mass is the same on Earth and Moon,
but the free-fall acceleration on the Moon is only 1.6 m/s?.

The Normal Force

If you stand on a mattress, Earth pulls you downward, but you remain stationary.
The reason is that the mattress, because it deforms downward due to you, pushes
up on you. Similarly, if you stand on a floor, it deforms (it is compressed, bent, or
buckled ever so slightly) and pushes up on you. Even a seemingly rigid concrete
floor does this (if it is not sitting directly on the ground, enough people on the
floor could break it).

The push on you from the mattress or floor is a normal force F;V The name
comes from the mathematical term normal, meaning perpendicular: The force on
you from, say, the floor is perpendicular to the floor.

When a body presses against a surface, the surface (even a; seemingly rigid
one) deforms and pushes on the body with a normal force Fy that is perpendicular to
the surface.
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)
The normal force Normal force Fy
is the force on a A
the block from the
supporting table. Block Fy
: Block
— X

The gravitational 7 The forces
force on the block /i £ balance.
is due to Earth's v

downward pull. (a) (b)

Fig. 5-7 (a) A block resting on a table experiences a normal force I_;‘)V perpendicular to
the tabletop. (b) The free-body diagram for the block.

Figure 5-7a shows an example. A block of mass m presses down on a table,
deforming it somewhat because of the gravitational force F on the block. The
table pushes up on the block with normal force FN The free- body diagram for the
block is given in Fig. 5-7b. Forces Fg and Fy are the only two forces on the block
and they are both vertical. Thus, for the block we can write Newton’s second law
for a positive-upward y axis (F , = ma,) as

Fy — F, = ma,,.
From Eq. 5-8, we substitute mg for F,, finding
Fy — mg = ma,.
Then the magnitude of the normal force is
Fy=mg + ma, = m(g + a,) (5-13)

for any vertical acceleration a, of the table and block (they might be in an accel-
erating elevator). If the table and block are not accelerating relative to the
ground, then a, = 0 and Eq. 5-13 yields

Fy=mg (5-14)

\.CH ECKPOINT 3
In Fig. 5-7, is the magnitude of the normal force FN greater than, less than, or equal to
mg if the block and table are in an elevator moving upward (a) at constant speed and
(b) at increasing speed?

Friction

If we either slide or attempt to slide a body over a surface, the motion is resisted
by a bonding between the body and the surface. (We discuss this bonding more in
the next chapter.) The resistance is considered to be a single force f called either
the frictional force or simply friction. This force is directed along the surface, op-
posite the direction of the intended motion (Fig. 5-8). Sometimes, to simplify a sit-
uation, friction is assumed to be negligible (the surface is frictionless).

Tension

When a cord (or a rope, cable, or other such object) is attached to a body and
pulled taut, the cord pulls on the body with a force T directed away from the

Direction of
—— attempted
slide

Pe
N

—>

!

Fig. 5-8 A frictional force f opposes the
attempted slide of a body over a surface.
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Fig. 5-9 (a) The cord, pulled taut, is
under tension. If its mass is negligible,
the cord pulls on the body and the hand
with force T, even if the cord runs
around a massless, frictionless pulley as
in (b) and (c).

Book % Crate C

(@)

F;C EZIB
—o o—
B c

) The force on B
due to C has the same
magnitude as the
force on C due to B.

Fig. 5-10 (a) Book B leans against crate
C. (b) Forces Fy (the force on the book
from the crate) and F; (the force on the
crate from the book) have the same magni-
tude and are opposite in direction.

=l
=)
/

=l

~|

The forces at the two ends of
the cord are equal in magnitude.

(a) (b) (¢)

body and along the cord (Fig. 5-9a). The force is often called a tension force
because the cord is said to be in a state of tension (or to be under tension), which
means that it is being pulled taut. The tension in the cord is the magnitude T of the
force on the body. For example, if the force on the body from the cord has magni-
tude T = 50 N, the tension in the cord is 50 N.

A cord is often said to be massless (meaning its mass is negligible compared
to the body’s mass) and unstretchable. The cord then exists only as a connection
between two bodies. It pulls on both bodies with the same force magnitude 7,
even if the bodies and the cord are accelerating and even if the cord runs around
a massless, frictionless pulley (Figs. 5-9b and ¢). Such a pulley has negligible mass
compared to the bodies and negligible friction on its axle opposing its rotation. If
the cord wraps halfway around a pulley, as in Fig. 5-9c, the net force on the pulley
from the cord has the magnitude 27.

\. CHECKPOINT 4

The suspended body in Fig. 5-9¢ weighs 75 N. Is T equal to, greater than, or less than 75
N when the body is moving upward (a) at constant speed, (b) at increasing speed, and
(c) at decreasing speed?

5-8 Newton’s Third Law

Two bodies are said to interact when they push or pull on each other—that is,
when a force acts on each body due to the other body. For example, suppose you
position a book B so it leans against a crate C (Fig. 5-10a). Then the book and
crate interact: There is a horizontal force Fye on the book from the crate (or due
to the crate) and a horizontal force F, cp on the crate from the book (or due to the
book). This pair of forces is shown in Fig. 5-10b. Newton’s third law states that

Newton’s Third Law: When two bodies interact, the forces on the bodies from each
other are always equal in magnitude and opposite in direction.

For the book and crate, we can write this law as the scalar relation
Fpe = Fep (equal magnitudes)
or as the vector relation
F, BC = ~F, CB (equal magnitudes and opposite directions), (5-15)

where the minus sign means that these two forces are in opposite directions. We
can call the forces between two interacting bodies a third-law force pair. When



Cantaloupe
F,
Cantaloupe C l e
Table T TF ‘o
Earth

Earth E

(a) (¢)

Iy — TFCT (normal force from table)

just happen

“o e BelEreer leE(gravitational force)

()

Fig. 5-11 (a) A cantaloupe lies on a table that stands on Earth. (b) The forces on
the cantaloupe are For and Feg. (c) The third-law force pair for the cantaloupe—Earth
interaction. (d) The third-law force pair for the cantaloupe—table interaction.

any two bodies interact in any situation, a third-law force pair is present. The
book and crate in Fig. 5-10a are stationary, but the third law would still hold if
they were moving and even if they were accelerating.

As another example, let us find the third-law force pairs involving the can-
taloupe in Fig. 5-11a, which lies on a table that stands on Earth. The cantaloupe
interacts with the table and with Earth (this time, there are three bodies whose
interactions we must sort out).

Let’s first focus on the forces acting on the cantaloupe (Fig. 5- 11b) Force
F,; is the normal force on the cantaloupe from the table, and force F,p is the
gravitational force on the cantaloupe due to Earth. Are they a third-law force
pair? No, because they are forces on a single body, the cantaloupe, and not on
two interacting bodies.

To find a third-law pair, we must focus not on the cantaloupe but on the
interaction between the cantaloupe and one other body. In the cantaloupe—
Earth interaction (Fig. 5-11¢), Earth pulls on the cantaloupe with a gravitational
force Fp and the cantaloupe pulls on Earth with a gravitational force Fre. Are
these forces a third-law force pair? Yes, because they are forces on two interact-
ing bodies, the force on each due to the other. Thus, by Newton’s third law,

— —
Fep = —Fge (cantaloupe — Earth interaction).

Next, in the cantaloupe—table interaction, the force on the cantaloupe from
the table is FCT and, conversely, the force on the table from the cantaloupe is F, TC
(Fig. 5-11d). These forces are also a third-law force pair, and so

— —
Fer=—Fre (cantaloupe-—table interaction).

\. CHECKPOINT 5

Suppose that the cantaloupe and table of Fig. 5-11 are in an elevator cab that begins to
accelerate upward. (a) Do the magnitudes of Fycand Fpincrease, decrease, or stay the
same? (b) Are those two forces still equal in magnitude and opposite in direction? (c)
Do the magnitudes of F, cpand F, e increase, decrease, or stay the same? (d) Are those two
forces still equal in magnitude and opposite in direction?

5-8 NEWTON’S THIRD LAW o9

These are
third-law force
pairs.

FCT

= So are these.
Fre

(d)
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5-9 Applying Newton’s Laws

The rest of this chapter consists of sample problems. You should pore over
them, learning their procedures for attacking a problem. Especially important is
knowing how to translate a sketch of a situation into a free-body diagram with
appropriate axes, so that Newton’s laws can be applied.

Sample Problem

Block on table, block hanging

Figure 5-12 shows a block S (the sliding block) with mass
M = 3.3 kg. The block is free to move along a horizontal
frictionless surface and connected, by a cord that wraps over
a frictionless pulley, to a second block H (the hanging
block), with mass m = 2.1 kg. The cord and pulley have neg-
ligible masses compared to the blocks (they are “massless”).
The hanging block H falls as the sliding block S accelerates
to the right. Find (a) the acceleration of block S, (b) the ac-
celeration of block H, and (c) the tension in the cord.

Q What is this problem all about?

You are given two bodies—sliding block and hanging
block—but must also consider Earth, which pulls on both
bodies. (Without Earth, nothing would happen here.) A to-
tal of five forces act on the blocks, as shown in Fig. 5-13:

1. The cord pulls to the right on sliding block § with a force
of magnitude 7.

2. The cord pulls upward on hanging block H with a force
of the same magnitude 7. This upward force keeps block
H from falling freely.

3. Earth pulls down on block S with the gravitational force

F;S, which has a magnitude equal to Mg.

4. Earth pulls down on block H with the gravitational force

=

F,py, which has a magnitude equal to mg.
5. The table pushes up on block S with a normal force F, N-

Sliding
block S

M W_’ =\

Frictionless
surface

Hanging
block H

Fig. 5-12 A block S of mass M is connected to a block H of mass
m by a cord that wraps over a pulley.

A
Fy| Block §

Block H

Fig. 5-13 The forces
acting on the two
blocks of Fig. 5-12.

There is another thing you should note. We assume that
the cord does not stretch, so that if block H falls 1 mm in a
certain time, block S moves 1 mm to the right in that same
time. This means that the blocks move together and their
accelerations have the same magnitude a.

Q How do I classify this problem? Should it suggest a par-
ticular law of physics to me?
Yes. Forces, masses, and accelerations are involved, and
they should suggest Newton’s second law of motion, F)net =
mad.That is our starting Key Idea.

Q IfIapply Newton’s second law to this problem, to which
body should I apply it?

We focus on two bodies, the sliding block and the hanging
block. Although they are extended objects (they are not
points), we can still treat each block as a particle because
every part of it moves in exactly the same way. A second Key
Idea is to apply Newton’s second law separately to each block.

Q What about the pulley?

We cannot represent the pulley as a particle because
different parts of it move in different ways. When we discuss
rotation, we shall deal with pulleys in detail. Meanwhile, we
eliminate the pulley from consideration by assuming its
mass to be negligible compared with the masses of the two
blocks. Its only function is to change the cord’s orientation.

Q OK. Now how do I apply F net = md to the sliding block?

Represent block S as a particle of mass M and draw all
the forces that act on it, as in Fig. 5-14a. This is the block’s
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Fig. 5-14 (a) A free-body diagram for block S of Fig. 5-12.
(b) A free-body diagram for block H of Fig. 5-12.

free-body diagram. Next, draw a set of axes. It makes sense
to draw the x axis parallel to the table, in the direction in
which the block moves.

Q Thanks, but you still haven’t told me how to apply
F . = md to the sliding block. All you’ve done is explain
how to draw a free-body diagram.

You are right, and here’s the third Key ldea: The
expression F net = Md is a vector equation, so we can write
it as three component equations:

Fnet,x = Max Fnet,y = May Fnet,z = Maz (5'16)

in which F ,, Fy,¢( y» and F, , are the components of the net
force along the three axes. Now we apply each component
equation to its corresponding direction. Because block S
does not accelerate vertically, F,., , = Ma, becomes

FN_FgSZO or FN:FgS' (5'17)

Thus in the y direction, the magnitude of the normal force is
equal to the magnitude of the gravitational force.

No force acts in the z direction, which is perpendicular
to the page.

In the x direction, there is only one force component,
which is 7. Thus, F,.; . = Ma, becomes

T = Ma. (5-18)

This equation contains two unknowns, 7 and a; so we cannot
yet solve it. Recall, however, that we have not said anything
about the hanging block.
Q [lagree. How do I apply Foo. = md to the hanging block?
We apply it just as we did for block S: Draw a free-body
diagram for block H, as in Fig. 5-14b. Then apply Fnel = ma
in component form. This time, because the acceleration is
along the y axis, we use the y part of Eq. 5-16 (F, , = ma,)
to write

T — Fyy = ma,. (5-19)
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We can now substitute mg for F,y; and —a for a, (negative
because block H accelerates in the negative direction of the
y axis). We find

T — mg= —ma.

(5-20)

Now note that Egs. 5-18 and 5-20 are simultaneous equa-
tions with the same two unknowns, 7" and a. Subtracting
these equations eliminates 7. Then solving for a yields

m
=—g. 5-21
¢ M+ m & ( )
Substituting this result into Eq. 5-18 yields
Mm
Tr=—-—"-3g. 5-22
M+ m e ( )
Putting in the numbers gives, for these two quantities,
m 2.1kg
= = 9.8 m/s?
= M +m 8 33kg + 21kg OS™S)
= 3.8 m/s’ (Answer)
Mm (3.3 kg)(2.1 kg)
d T= = 9.8 m/s?
an M+m® 33kg+21kg OO
=13N. (Answer)

Q The problem is now solved, right?

That’s a fair question, but the problem is not really fin-
ished until we have examined the results to see whether they
make sense. (If you made these calculations on the job,
wouldn’t you want to see whether they made sense before
you turned them in?)

Look first at Eq. 5-21. Note that it is dimensionally
correct and that the acceleration a will always be less than g.
This is as it must be, because the hanging block is not in free
fall. The cord pulls upward on it.

Look now at Eq. 5-22, which we can rewrite in the form

M

T M+m' ¥
In this form, it is easier to see that this equation is also
dimensionally correct, because both 7 and mg have dimen-
sions of forces. Equation 5-23 also lets us see that the tension
in the cord is always less than mg, and thus is always less
than the gravitational force on the hanging block. That is
a comforting thought because, if T" were greater than mg,
the hanging block would accelerate upward.

We can also check the results by studying special cases,
in which we can guess what the answers must be. A simple
example is to put g = 0, as if the experiment were carried
out in interstellar space. We know that in that case, the
blocks would not move from rest, there would be no forces
on the ends of the cord, and so there would be no tension in
the cord. Do the formulas predict this? Yes, they do. If you
put g = 0 in Eqgs. 5-21 and 5-22, you find a = 0 and 7 = 0.
Two more special cases you might try are M = 0 and m — oo,

(5-23)

PL U"s Additional examples, video, and practice available at WileyPLUS
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Sample Problem

Cord accelerates block up a ramp

In Fig. 5-15a, a cord pulls on a box of sea biscuits up along a
frictionless plane inclined at 6 = 30°. The box has mass m =
5.00 kg, and the force from the cord has magnitude 7" = 25.0
N. What is the box’s acceleration component a along the in-
clined plane?

KEY IDEA

The acceleration along the plane is set by the force compo-
nents along the plane (not by force components perpendicular
to the plane), as expressed by Newton’s second law (Eq. 5-1).

Calculation: For convenience, we draw a coordinate sys-
tem and a free-body diagram as shown in Fig. 5-15b. The
positive direction of the x axis is up the plane. Force T
from the cord is up the plane and has magnitude 7' = 25.0
N. The gravitational force F, is downward and has magni-
tude mg = (5.00 kg)(9.8 m/s?) = 49.0 N. More important, its

Fig. 5-15 (a) A box s pulled up a plane by a cord.
(b) The three forces acting on the box: the cord’s
force 7:"; the gravitational force F;, and the normal
force Fy. (¢)—(i) Finding the force components along
the plane and perpendicular to it.

This is a right
triangle. 90° -6 This is also. 90° -0
S 7

The net of these
forces determines

\ the acceleration. T
mg cos 0 mg sir/
mg

S -7
e~ mg sin 6 -
-~

(8 (h)

The box accelerates.

component along the plane is down the plane and has mag-
nitude mg sin 6 as indicated in Fig. 5-15g. (To see why that
trig function is involved, we go through the steps of Figs.
5-15¢ to h to relate the given angle to the force compo-
nents.) To indicate the direction, we can write the
down-the-plane component as —mg sin 6. The normal force
Fy is perpendicular to the plane (Fig. 5-15/) and thus does
not determine acceleration along the plane.

From Fig. 5-15h, we write Newton’s second law (F;et =
md) for motion along the x axis as

T — mgsin 6 = ma. (5-24)
Substituting data and solving for a, we find
a = 0.100 m/s?, (Answer)

where the positive result indicates that the box accelerates
up the plane.

Cord's pull

Gravitational
force

(@) (b)

Perpendicular

component of Adjacent leg
\ /-?g i (use cos 6)
Fg Hypotenuse

> >
v Parallel v Opposite leg
(e) component of () (usesing)

Z
A\ These forces

merely balance.
X

©)
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Sample Problem

Reading a force graph

Figure 5-16a shows the general arrangement in which two
forces are applied to a 4.00 kg block on a frictionless floor,
but only force F, is indicated. That force has a fixed magni-
tude but can be applied at an adjustable angle 6 to the posi-

When /-?1 is horizontal,
the acceleration is
3.0 m/s2.

tive direction of the x axis. Force F, is horizontal and fixed in ~ 3
both magnitude and angle. Figure 5-16b gives the horizontal B 9
acceleration a, of the block for any given value of 6 from 0° =_10 <

to 90°. What is the value of a, for § = 180°? * % 1

(a)
KEY IDEAS Ue 50

(1) The horizontal acceleration a, depends on the net hori-

zontal force F,, ,, as given by Newton’s second law. (2) The ®
net horizontal force is the sum of the horizontal compo-

nents of forces F, and F.

When l—?1 is vertical,
the acceleration is
0.50 m/s2.

Fig. 5-16 (a) One of the two forces applied to a block is shown.
Its angle 6 can be varied. (b) The block’s acceleration component
a, versus 6.

Calculations: The x component of F)z is F, because the
vector is horizontal. The x component of I_f)l is F; cos 6. Using
these expressions and a mass m of 4.00 kg, we can write
Newton’s second law (F,e, = md) for motion along the x

. From Eq.5-25, we find that when 6 = 0°,
axis as

F, cos 0° + 2.00 = 4.00a,. (5-26)

From the graph we see that the corresponding acceleration
From this equation we see that when 6= 90°, F; cos 6 is3.0 m/s’. From Eq.5-26, we then find that F; = 10 N.

F,cos 0+ F, = 4.00a,. (5-25)

is zero and F, = 4.00a,. From the graph we see that the cor- Substituting F; = 10N, F, = 2.00 N, and 6 = 180° into
responding acceleration is 0.50 m/s%. Thus, F, = 2.00 Nand ~ Eq. 5-25leads to
F, must be in the positive direction of the x axis. a, = —2.00 m/s. (Answer)

Sample Problem

Forces within an elevator cab

In Fig. 5-17a, a passenger of mass m = 72.2 kg stands on 1
a platform scale in an elevator cab. We are concerned with =
the scale readings when the cab is stationary and when it is A Fy
moving up or down.
(a) Find a general solution for the scale reading, whatever
the vertical motion of the cab. !
LPa.ssenger
These forces
(1) The reading is equal to the magnitude of the normal force - compete.
Fy on the passenger from the scale. The only other force act- T € Their net forcg
causes a vertical

ing on the passenger is the gravitational force F)g, as shown in

the free-body diagram of Fig. 5-17b. (2) We can relate the (@) (b)  acceleration.

forces ?n the passenger to hli acceleration a by using Fig. 5-17 (a) A passenger stands on a platform scale that in-
Newton’s §ec0nd law '(F net = Mmd )- However, recall that we dicates either his weight or his apparent weight. (b) The free-
can use this law only in an inertial frame. If the cab acceler- body diagram for the passenger, showing the normal force Fy

ates, then it is not an inertial frame. So we choose the ground on him from the scale and the gravitational force F,.
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to be our inertial frame and make any measure of the passen-
ger’s acceleration relative to it.

Calculations: Because the two forces on the passenger
and his acceleration are all directed vertically, along the y
axis in Fig. 5-17b, we can use Newton’s second law written
for y components (F, , = ma,) to get

Fy — F, = ma

or Fy = F, + ma. (5-27)

This tells us that the scale reading, which is equal to Fy,
depends on the vertical acceleration. Substituting mg for F,
gives us

Fy=m(g + a)

(Answer) (5-28)

for any choice of acceleration a.

(b) What does the scale read if the cab is stationary or
moving upward at a constant 0.50 m/s?

KEY IDEA

For any constant velocity (zero or otherwise), the accelera-
tion a of the passenger is zero.

Calculation: Substituting this and other known values into
Eq.5-28, we find

Fy = (72.2 kg)(9.8 m/s?> + 0) = 708 N.
(Answer)
This is the weight of the passenger and is equal to the mag-
nitude F, of the gravitational force on him.

(c) What does the scale read if the cab accelerates upward
at 3.20 m/s? and downward at 3.20 m/s??

Calculations: For a = 3.20 m/s?, Eq.5-28 gives
Fy = (72.2 kg)(9.8 m/s? + 3.20 m/s?)

=939 N, (Answer)
and for a = —3.20 m/s?, it gives
Fy = (72.2 kg)(9.8 m/s?> — 3.20 m/s?)
=477 N. (Answer)

For an upward acceleration (either the cab’s upward speed
is increasing or its downward speed is decreasing), the scale
reading is greater than the passenger’s weight. That reading
is a measurement of an apparent weight, because it is made
in a noninertial frame. For a downward acceleration (either
decreasing upward speed or increasing downward speed),
the scale reading is less than the passenger’s weight.

(d) During the upward acceleration in part (c), what is the
magnitude F, of the net force on the passenger, and what is
the magnitude a,,;, of Eis acceleration as measured in the
frame of the cab? Does F e = md , c,p?

Calculation: The magnitude F, of the gravitational force
on the passenger does not depend on the motion of the pas-
senger or the cab; so, from part (b), F, is 708 N. From part (c),
the magnitude Fy, of the normal force on the passenger during
the upward acceleration is the 939 N reading on the scale. Thus,
the net force on the passenger is

Foo = Fy— F,= 939N — 708 N = 231 N,

during the upward acceleration. However, his acceleration
Ay, Telative to the frame of the cab is zero. Thus, in the non-
inertial frame of the accelerating cab, F, is not equal to
ma, .., and Newton’s second law does not hold.

(Answer)

Sample Problem

Acceleration of block pushing on block

In Fig. 5-18a, a constant horizontal force I_T)app of magnitude
20 N is applied to block A of mass m, = 4.0 kg, which
pushes against block B of mass mp = 6.0 kg. The blocks
slide over a frictionless surface, along an x axis.

(a) What is the acceleration of the blocks?

Serious Error: Because force Fapp is applied directly
to block A, we use Newton’s second law to relate that
force to the acceleration @ of block A. Because the motion
is along the x axis, we use that law for x components

(Fnel,x = max)7 Writing it as
Fpp =

. . . =
However, this is seriously wrong because F,

ma.

pp 18 MOt the

only horizontal force acting on block A. There is also the
force E, 5 from block B (Fig. 5-18b).

Dead-End Solution: Let us now include force F"A p by writ-
ing, again for the x axis,

Fapp

- FAB = Mmygya.
(We use the minus sign to include the direction of F,p.)
Because F,p is a second unknown, we cannot solve this

equation for a.

Successful Solution: Because of the direction in which

force F’app is applied, the two blocks form a rigidly connected

system. We can relate the net force on the system to the accel-



This force causes the
app A acceleration of the full
two-block system.

These are the two forces
acting on just block A.
Their net force causes

® its acceleration.
B .
2 This is the only force
2A 2 M causing the acceleration
of block B.

(o)

Fig. 5-18 (a) A constant horizontal force F;pp is applied to block
A, which pushes against block B. (b) Two horizontal forces act on
block A. (¢) Only one horizontal force acts on block B.

eration of the system with Newton’s second law. Here, once
again for the x axis, we can write that law as

F,

app = (mA + mB)a’

where now we properly apply F)app to the system with
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total mass m, + mp. Solving for a and substituting known
values, we find

__ Py _ 2N
¢ my +my  40kg + 60kg s

(Answer)

Thus, the acceleration of the system and of each block is
in the positive direction of the x axis and has the magnitude
2.0 m/s%.

(b) What is the (horizontal) force Fz, on block B from
block A (Fig.5-18¢)?

KEY IDEA

We can relate the net force on block B to the block’s accel-
eration with Newton’s second law.

Calculation: Here we can write that law, still for compo-
nents along the x axis, as
Fgy = mga,
which, with known values, gives
Fga = (6.0 kg)(2.0 m/s?) = 12 N.

(Answer)

Thus, force Fyg, is in the positive direction of the x axis and
has a magnitude of 12 N.

PW‘IL_EYU"S Additional examples, video, and practice available at WileyPLUS

Newtonian Mechanics The velocity of an object can change
(the object can accelerate) when the object is acted on by one or
more forces (pushes or pulls) from other objects. Newtonian me-
chanics relates accelerations and forces.

Force Forces are vector quantities. Their magnitudes are de-
fined in terms of the acceleration they would give the standard
kilogram. A force that accelerates that standard body by exactly 1
m/s? is defined to have a magnitude of 1 N. The direction of a force
is the direction of the acceleration it causes. Forces are combined
according to the rules of vector algebra. The net force on a body is
the vector sum of all the forces acting on the body.

Newton’s First Law If there is no net force on a body, the
body remains at rest if it is initially at rest or moves in a straight
line at constant speed if it is in motion.

Inertial Reference Frames Reference frames in which
Newtonian mechanics holds are called inertial reference frames or in-
ertial frames. Reference frames in which Newtonian mechanics does
not hold are called noninertial reference frames or noninertial frames.

Mass The mass of a body is the characteristic of that body that

B REVIEWaSUMMARY B L L

relates the body’s acceleration to the net force causing the acceler-
ation. Masses are scalar quantities.

Newton’s Second Law The net force F,, on a body with
mass m is related to the body’s acceleration @ by

—

Foo, = ma, (5-1)
which may be written in the component versions
Fooox =ma, Fo,=ma, and F,, A =ma,. (5-2)
The second law indicates that in ST units
1N =1kg-m/s%. (5-3)

A free-body diagram is a stripped-down diagram in which only
one body is considered. That body is represented by either a sketch
or a dot. The external forces on the body are drawn, and a coordi-
nate system is superimposed, oriented so as to simplify the solution.

Some Particular Forces A gravitational force F'g on a body
is a pull by another body. In most situations in this book, the other
body is Earth or some other astronomical body. For Earth, the
force is directed down toward the ground, which is assumed to be
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an inertial frame. With that assumption, the magnitude of ﬁg is slides or attempts to slide along a surface. The force is always par-
allel to the surface and directed so as to oppose the sliding. On a

Fg = mg, (-8) frictionless surface, the frictional force is negligible.
where m is the body’s mass and g is the magnitude of the free-fall When a cord is under tension, cach end of the cord pulls on a
acceleration. body. The pull is directed along the cord, away from the point of at-

The weight W of a body is the magnitude of the upward force tachment to the body. For a massless cord (a cord with negligible
needed to balance the gravitational force on the body. A body’s ~ mass), the pulls at both ends of the cord have the same magnitude

weight is related to the body’s mass by T,even if the cord runs around a massless, frictionless pulley (a pul-
ley with negligible mass and negligible friction on its axle to op-
W=mg. (5-12) pose its rotation).
. A n01jmal force Fy is the force on a body from a surface Newton’s Third Law If a force I?BC acts on body B due to body
against which the body presses. The normal force is always perpen- C. then there is a force F-» on bo dy C due to body B:
dicular to the surface. ’ s - -
A frictional force f is the force on a body when the body Fye = —Fep.

1 Figure 5-19 gives the free-body diagram for four situations in agram of Flg 5-20 best represent (a)
which an object is pulled by several forces across a frictionless F 1 and (b) F2 What is the net-force
floor, as seen from overhead. In which situations does the object’s component along (c) the x axis and
acceleration @ have (a) an x component and (b) a y component? (d) the y axis? Into which quadrants
(c) In each situation, give the direction of @ by naming either a do (e) the net-force vector and (f)
quadrant or a direction along an axis. (This can be done with a few the split’s acceleration vector point?

mental calculations.) 3 1In Fig. 5-21, forces F, and F, are
applied to a lunchbox as it slides at

y y constant velocity over a frictionless

7N floor. We are to decrease angle 6

6N v_)vithout changing the magnitude of

F,. For constant velocity, should we
increase, decrease, or maintain the
3N 2N | 3N magnitude of F,?

2N 5N 9N 4 Attime = 0,constant F begins to
4N 4N act on a rock moving through deep
space in the +x direction. (a) For time fg
" @) t>0, which are possible functions
x(f) for the rock’s position: (1) & LT T 7
x=4t—-3, 2) x= -4+ 61— 3,
J (3) x = 412 + 6t — 3? (b) For which
function is F directed opposite the
rock’s initial direction of motion?

Fig. 5-20 Question 2.

Fig. 5-21 Question 3.

9N 5 Figure 5-22 shows overhead views of four situations in which
forces act on a block that lies on a frictionless floor. If the force

4N £
5N E
F. A F.

3) (4) o) Fy @

Fig. 5-19 Question 1.

7 F

= 3

2 Two horizontal forces, f =
— ~ ~ — ~ ~ — 2
F,=(3N)i — (4N)j and F, = —(1N)i — (2N)j ®) Fy &) =

pull a banana split across a frictionless lunch counter. Without us-
ing a calculator, determine which of the vectors in the free-body di- Fig. 5-22 Question 5.



magnitudes are chosen properly, in which situations is it possible
that the block is (a) stationary and (b) moving with a constant
velocity?

6 Figure 5-23 shows the same breadbox in four situations where
horizontal forces are applied. Rank the situations according to the
magnitude of the box’s acceleration, greatest first.

3N 6N 58 N 60 N
<+—F—> <+—f—
(a) Q)
13N 15N 43N 25N
<+—f—> +—f—="

20N

(c) (d)
Fig. 5-23 Question 6.

7 =% July 17, 1981, Kansas City: The newly opened Hyatt
Regency is packed with people listening and dancing to a band
playing favorites from the 1940s. Many of the people are crowded
onto the walkways that hang like bridges across the wide atrium.
Suddenly two of the walkways collapse, falling onto the merrymak-
ers on the main floor.

The walkways were suspended one above another on vertical
rods and held in place by nuts threaded onto the rods. In the origi-
nal design, only two long rods were to be used, each extending
through all three walkways (Fig. 5-24a). If each walkway and the
merrymakers on it have a combined mass of M, what is the total
mass supported by the threads and two nuts on (a) the lowest
walkway and (b) the highest walkway?

Threading nuts on a rod is impossible except at the ends, so
the design was changed: Instead, six rods were used, each connect-
ing two walkways (Fig. 5-24b). What now is the total mass sup-
ported by the threads and two nuts on (c) the lowest walkway, (d)
the upper side of the highest walkway, and (e) the lower side of the
highest walkway? It was this design that failed.

—Nuts
P ——
—

Walkways

(a) (0
Fig. 5-24 Question 7.

8 TFigure 5-25 gives three graphs of velocity component v,(f) and
three graphs of velocity component v,(¢). The graphs are not to
scale. Which v,(#) graph and which v,(¢) graph best correspond to
each of the four situations in Question 1 and Fig. 5-19?
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VX Vx VJC
{ l ]
(a) (0) (¢)
vy vy vy
t \/ t t
(d) (e) N

Fig. 5-25 Question 8.

9 Figure 5-26 shows a train of four blocks being pulled across a
frictionless floor by force F.What total mass is accelerated to the
right by (a) force F, (b) cord 3, and (c) cord 1? (d) Rank the blocks
according to their accelerations, greatest first. (¢) Rank the cords
according to their tension, greatest first.

Cord Cord Cord

1
10 kg | | 3kg | | 5kg | | 2kg

Fig. 5-26 Question 9.

10 Figure 5-27 shows three 10 kg
. . 5 kg

blocks being pushed across a fric- 2 kg

tionless floor by horizontal force F

F. What total mass is accelerated 1 9 3

to the right by (a) force F, (b)
force 1721 on block 2 from block 1,
and (c) force F, on block 3 from
block 2? (d) Rank the blocks ac-
cording to their acceleration magnitudes, greatest first. (¢) Rank
forces F, F)ﬂ, and 7’;2 according to magnitude, greatest first.

Fig. 5-27 Question 10.

11 A vertical force F is applied to a block of mass m that lies on
a floor. What happens to the magnitude of the normal force F, yon
the block from the floor as magnitude F is increased from zero if
force F is (a) downward and (b) upward?

12 Figure 5-28 shows four choices for the direction of a force of
magnitude F to be applied to a block
on an inclined plane. The directions
are either horizontal or vertical.
(For choice b, the force is not enough
to lift the block off the plane.) Rank
the choices according to the magni-
tude of the normal force acting on
the block from the plane, greatest
first. Fig. 5-28 Question 12.

d
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@ Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM  Worked-out solution available in Student Solutions Manual
e — e Number of dots indicates level of problem difficulty

WWW Worked-out solution is at
ILW Interactive solution is at

http://www.wiley.com/college/halliday

<%0 Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

sec.5-6 Newton’s Second Law

*1  Only two horizontal forces act on a 3.0 kg body that can move
over a frictionless floor. One force is 9.0 N, acting due east, and the
other is 8.0 N, acting 62° north of west. What is the magnitude of
the body’s acceleration?

*2 Two horizontal forces act on a 2.0 kg chopping block that can
slide over a frictionless kitchen counter, which lies in an xy plane.
One force is F; = (3.0 N)i + (4.0 N)j. Find the acceleration of the
chopping block in unit-vector notation when the other force is (a)
F, = (=3.0N)i + (—4.0N)j, (b) F, = (=3.0N)i + (40N)j, and
() F, = B.ON)i + (—4.0N)).

3 If the 1 kg standard body has an acceleration of 2.00 m/s? at
20.0° to the positive direction of an x axis, what are (a) the x com-
ponent and (b) the y component of the net force acting on the
body, and (c) what is the net force in unit-vector notation?

*»4  While two forces act on it, a par-
ticle is to move at the constant veloc-
ity v = (3m/s)i — (4 m/s)j. One of
the forces is F; = (2 N)i + (=6 N)].
What is the other force?

*5 (& Three astronauts, propelled
by jet backpacks, push and guide a
120 kg asteroid toward a processing
dock, exerting the forces shown in
Fig. 529, with F; =32 N, F, =55N,
F;=41N, 6,=30° and 6;=60°
What is the asteroid’s acceleration (a)
in unit-vector notation and as (b) a
magnitude and (c) a direction relative
to the positive direction of the x axis?

Fig. 5-29 Problem 5.

6 In a two-dimensional tug-of-
war, Alex, Betty, and Charles pull
horizontally on an automobile tire
at the angles shown in the overhead
view of Fig. 5-30. The tire remains
stationary in spite of the three pulls.
Alex pulls with force Iiof magni-
tude 220 N, and Charles pulls with
force F)c of magnitude 170 N. Note
that the direction of fc is not given.
What is the magnitude of Betty’s
force F; ? y

Fig. 5-30 Problem 6.

*7 ssm There are two forces on
the 2.00 kg box in the overhead view R
of Fig. 5-31, but only one is shown.
For F; =20.0N, a = 12.0 m/s?, and
6
A
Fig. 5-31

D—— x

6 = 30.0°, find the second force (a) in
unit-vector notation and as (b) a
magnitude and (c) an angle relative
to the positive direction of the x axis.

Problem 7.

*8 A 2.00 kg object is subjected to three forces that give it an accel-
eration @ = —(8.00 m/s?)i + (6.00 m/s?)]. If two of the three forces
are F, = (30.0N)i + (16.0N)j and F, = —(12.0 N)i + (8.00 N)j,
find the third force.

9 A 0.340kg particle moves in an xy plane according
to x(f) = —15.00 + 2.00¢ — 4.00# and y(¢r) = 25.00 + 7.00¢ — 9.007,
with x and y in meters and ¢ in seconds. At ¢ = 0.700 s, what are (a)
the magnitude and (b) the angle (relative to the positive direction
of the x axis) of the net force on the particle, and (c) what is the an-
gle of the particle’s direction of travel?

*10 A 0.150kg particle moves along an x axis according
to x(r) = —13.00 + 2.00¢ + 4.002 — 3.00£, with x in meters and ¢ in
seconds. In unit-vector notation, what is the net force acting on the
particle atr = 3.40 s?

*11 A 2.0 kg particle moves along an x axis, being propelled by a
variable force directed along that axis. Its position is given by x =
3.0m + (4.0 m/s)t + > — (2.0 m/s*)£, with x in meters and ¢ in
seconds. The factor c is a constant. At ¢ = 3.0 s, the force on the par-
ticle has a magnitude of 36 N and is in the negative direction of the
axis. What s ¢?

012 @ Two horizontal forces Fl and Fz act on a 4.0 kg disk that
slides over frictionless ice, on

which an xy coordinate system Vi (m/5)

is laid out. Force I_’l is in the 4
positive direction of the x axis 9
and has a magnitude of 7.0 N. | | |
Force F, has a magnitude of 9.0 f | 12(s)
N. Figure 5-32 gives the x com- _9 0 ¥ $
ponent v, of the velocity of the
disk as a function of time ¢ dur-
ing the sliding. What is the an-
gle between the constant direc-
tions of forces Fl and F)z?

—4

Fig. 5-32 Problem 12.

sec.5-7 Some Particular Forces
*13 Figure 5-33 shows an arrangement in which four disks are sus-
pended by cords. The longer, top cord loops
over a frictionless pulley and pulls with a
force of magnitude 98 N on the wall to which
it is attached. The tensions in the three
shorter cords are 7, =588 N, 7, = 49.0 N,
and 75 = 9.8 N. What are the masses of (a)
disk A, (b) disk B, (c) disk C,and (d) disk D?

*14 A block with a weight of 3.0 N is at
rest on a horizontal surface. A 1.0 N upward
force is applied to the block by means of an
attached vertical string. What are the (a)
magnitude and (b) direction of the force of
the block on the horizontal surface?

°15 ssm (a) An 11.0 kg salami is sup-
ported by a cord that runs to a spring scale,

Fig. 5-33
Problem 13.
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which is supported by a cord hung from the ceiling (Fig. 5-34a).
What is the reading on the scale, which is marked in weight units?
(b) In Fig. 5-34b the salami is supported by a cord that runs around
a pulley and to a scale. The opposite end of the scale is attached by
a cord to a wall. What is the reading on the scale? (c) In Fig. 5-34¢
the wall has been replaced with a second 11.0 kg salami, and the
assembly is stationary. What is the reading on the scale?

Spring scale

(b)

Spring scale

(o)
Fig. 5-34 Problem 15.

*16 Some insects can walk below
a thin rod (such as a twig) by hang-
ing from it. Suppose that such an in-
sect has mass m and hangs from a
horizontal rod as shown in Fig. 5-35,
with angle 6 = 40°. Its six legs are all
under the same tension, and the leg
sections nearest the body are hori-
zontal. (a) What is the ratio of the
tension in each tibia (forepart of a leg) to the insect’s weight? (b) If
the insect straightens out its legs somewhat, does the tension in each
tibia increase, decrease, or stay the same?

/- Rod

Leg

joint\ A

_—Tibia

Fig. 5-35 Problem 16.

sec. 5-9 Applying Newton’s Laws
°17 ssm www In Fig. 5-36,
let the mass of the block be 8.5
kg and the angle 6 be 30°. Find
(a) the tension in the cord and
(b) the normal force acting on
the block. (c) If the cord is cut,
find the magnitude of the result-
ing acceleration of the block.

*18 <%= In April 1974, John
Massis of Belgium managed to
move two passenger railroad
cars. He did so by clamping his
teeth down on a bit that was attached to the cars with a rope and
then leaning backward while pressing his feet against the railway
ties. The cars together weighed 700 kN (about 80 tons). Assume

Fig. 5-36 Problem 17.
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that he pulled with a constant force that was 2.5 times his body
weight, at an upward angle 6 of 30° from the horizontal. His mass
was 80 kg, and he moved the cars by 1.0 m. Neglecting any retard-
ing force from the wheel rotation, find the speed of the cars at the
end of the pull.

°19 ssm A 500 kg rocket sled can be accelerated at a constant
rate from rest to 1600 km/h in 1.8 s. What is the magnitude of the
required net force?

°20 A car traveling at 53 km/h hits a bridge abutment. A passen-
ger in the car moves forward a distance of 65 cm (with respect to
the road) while being brought to rest by an inflated air bag. What
magnitude of force (assumed constant) acts on the passenger’s up-
per torso, which has a mass of 41 kg?

21 A constant horizontal force F, pushes a 2.00 kg FedEx pack-
age across a frictionless floor on which an xy coordinate system has
been drawn. Figure 5-37 gives the package’s x and y velocity com-
ponents versus time ¢. What are the (a) magnitude and (b) direc-
tion of F:,?

Vv, (m/s)

10 —

0 1 9 3l

{1 (s)

—10 —

Fig. 5-37 Problem 21.

*22 <%= A customer sits in an amusement park ride in which
the compartment is to be pulled downward in the negative direc-
tion of a y axis with an acceleration magnitude of 1.24g, with g =
9.80 m/s>. A 0.567 g coin rests on the customer’s knee. Once the
motion begins and in unit-vector notation, what is the coin’s accel-
eration relative to (a) the ground and (b) the customer? (c) How
long does the coin take to reach the compartment ceiling, 2.20 m
above the knee? In unit-vector notation, what are (d) the actual
force on the coin and (e) the apparent force according to the cus-
tomer’s measure of the coin’s acceleration?

°23 Tarzan, who weighs 820 N, swings from a cliff at the end of a
20.0 m vine that hangs from a high tree limb and initially makes an
angle of 22.0° with the vertical. Assume that an x axis extends hori-
zontally away from the cliff edge and a y axis extends upward.
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Immediately after Tarzan steps off the cliff, the tension in the vine
is 760 N. Just then, what are (a) the force on him from the vine in
unit-vector notation and the net force on him (b) in unit-vector no-
tation and as (c) a magnitude and (d) an angle relative to the posi-
tive direction of the x axis? What are the (e) magnitude and (f) an-
gle of Tarzan’s acceleration just then?

°24 There are two horizontal I
forces on the 2.0 kg box in the over- D> x
head view of Fig. 5-38 but only one
(of magnitude F; = 20 N) is shown.
The box moves along the x axis. For
each of the following values for the acceleration a, of the box, find the
second force in unit-vector notation: (a) 10 m/s?, (b) 20 m/s?, (c) 0,
(d) —10 m/s?,and (e) —20 m/s%.

*25 Sunjamming. A “sun yacht” is a spacecraft with a large sail
that is pushed by sunlight. Although such a push is tiny in everyday
circumstances, it can be large enough to send the spacecraft out-
ward from the Sun on a cost-free but slow trip. Suppose that the
spacecraft has a mass of 900 kg and receives a push of 20 N. (a)
What is the magnitude of the resulting acceleration? If the craft
starts from rest, (b) how far will it travel in 1 day and (c) how fast
will it then be moving?

Fig. 5-38 Problem 24.

*26 The tension at which a fishing line snaps is commonly called the
line’s “strength.” What minimum strength is needed for a line that is to
stop a salmon of weight 85 N in 11 cm if the fish is initially drifting at
2.8 m/s? Assume a constant deceleration.

*27 ssm An electron with a speed of 1.2 X 107 m/s moves hori-
zontally into a region where a constant vertical force of 4.5 X
1071 N acts on it. The mass of the electron is 9.11 X 107! kg.
Determine the vertical distance the electron is deflected during the
time it has moved 30 mm horizontally.

*28 A car that weighs 1.30 X 10* N is initially moving at
40 km/h when the brakes are applied and the car is brought to a
stop in 15 m. Assuming the force that stops the car is constant,
find (a) the magnitude of that force and (b) the time required for
the change in speed. If the initial speed is doubled, and the car ex-
periences the same force during the braking, by what factors are
(c) the stopping distance and (d) the stopping time multiplied?
(There could be a lesson here about the danger of driving at high
speeds.)

°29 A firefighter who weighs 712 N slides down a vertical pole
with an acceleration of 3.00 m/s?, directed downward. What are
the (a) magnitude and (b) direction (up or down) of the vertical
force on the firefighter from the pole and the (c) magnitude and
(d) direction of the vertical force on the pole from the firefighter?

*30 <%= The high-speed winds around a tornado can drive pro-
jectiles into trees, building walls, and even metal traffic signs. In a
laboratory simulation, a standard wood toothpick was shot by
pneumatic gun into an oak branch. The toothpick’s mass was 0.13
g, its speed before entering the branch was 220 m/s, and its pene-
tration depth was 15 mm. If its speed was decreased at a uniform
rate, what was the magnitude of the force of the branch on the
toothpick?

31 ssm WwWw A block is projected up a frictionless inclined
plane with initial speed v, = 3.50 m/s. The angle of incline is
0 = 32.0°. (a) How far up the plane does the block go? (b) How
long does it take to get there? (c) What is its speed when it gets
back to the bottom?

*32 Figure 5-39 shows an overhead y
view of a 0.0250 kg lemon half and =
two of the three horizontal forces that

act on it as it is on a frictionless table. 61

Force F, has a magnitude of 6.00 N

and is at 6, = 30.0°. Force 1?2 has a 6o\
magnitude of 7.00 N and is at 6, = &
30.0°. In unit-vector notation, what is
the third force if the lemon half (a)
is stationary, (b) has the constant ve-
locity vV = (13.01 — 14.0j) m/s, and (c) has the varying velocity v =
(13.061 — 14.0¢]) m/s>, where fis time?

Fig. 5-39 Problem 32.

*33 An elevator cab and its load have a combined mass of 1600
kg. Find the tension in the supporting cable when the cab, origi-
nally moving downward at 12 m/s, is brought to rest with constant
acceleration in a distance of 42 m.

*34 @ In Fig.5-40, a crate of mass m = 100 kg is pushed at con-
stant speed up a frictionless ramp
(6 = 30.0°) by a horizontal force F.
What are the magnitudes of (a) F
and (b) the force on the crate from
the ramp?

m

=)

*35 The velocity of a 3.00 kg par-

ticle is given by v = (8.007 + 3.00£3)) 0
m/s, with time ¢ in seconds. At the in-
stant the net force on the particle
has a magnitude of 35.0 N, what are
the direction (relative to the positive direction of the x axis) of (a)
the net force and (b) the particle’s direction of travel?

Fig. 5-40 Problem 34.

*36 Holding on to a towrope moving parallel to a frictionless ski
slope, a 50 kg skier is pulled up the slope, which is at an angle of
8.0° with the horizontal. What is the magnitude F,, of the force on
the skier from the rope when (a) the magnitude v of the skier’s ve-
locity is constant at 2.0 m/s and (b) v = 2.0 m/s as v increases at a
rate of 0.10 m/s??

*37 A 40 kg girl and an 8.4 kg sled are on the frictionless ice of a
frozen lake, 15 m apart but connected by a rope of negligible mass.
The girl exerts a horizontal 5.2 N force on the rope. What are the ac-
celeration magnitudes of (a) the sled and (b) the girl? (c) How far
from the girl’s initial position do they meet?

*38 A 40 kg skier skis directly down a frictionless slope angled
at 10° to the horizontal. Assume the skier moves in the negative di-
rection of an x axis along the slope. A wind force with component
F, acts on the skier. What is F, if the magnitude of the skier’s veloc-
ity is (a) constant, (b) increasing at a rate of 1.0 m/s?, and (c) in-
creasing at a rate of 2.0 m/s??

*39 1Lw A sphere of mass 3.0 X 107*kg is suspended from
a cord. A steady horizontal

breeze pushes the sphere so inm/ $)
that the cord makes a con-
stant angle of 37° with the 9l

vertical. Find (a) the push
magnitude and (b) the ten-
sion in the cord. 0 1

40 @ A dated box of dates,
of mass 5.00 kg, is sent sliding
up a frictionless ramp at an
angle of 0 to the horizontal.

{£(s)
3

4 —

Fig. 5-41 Problem 40.
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Figure 5-41 gives, as a function of time ¢, the component v, of the box’s above cab A. Cab A has mass 1700 kg; cab B has mass
velocity along an x axis that extends directly up the ramp. What is the 1300 kg. A 12.0 kg box of catnip lies on the floor of
magnitude of the normal force on the box from the ramp? cab A.The tension in the cable connecting the cabs is

*»41 Using a rope that will snap if the tension in it exceeds 387 N, 1.91 X 10* N. What is the magnitude of the normal
force on the box from the floor?

you need to lower a bundle of old roofing material weighing 449 N =
from a point 6.1 m above the ground. (a) What magnitude of the bun- *49 In Fig. 5-45, a block of mass m = 5.00 kg is
dle’s acceleration will put the rope on the verge of snapping? (b) At pulled along a horizontal frictionless floor by a cord
that acceleration, with what speed would the bundle hit the ground? that exerts a force of magnitude F = 12.0 N at an an-

«42 @ In earlier days, horses pulled barges down canals in the gle '9’: 25.0°. (a) What is the magmtuc?e of th.e B
manner shown in Fig. 5-42. Suppose the horse pulls on the rope block s.acceleratlon? (b). T.he force magmtude Fis
with a force of 7900 N at an angle of § = 18° to the direction of SIOWIY_ 1n'creased. What is its value just before th?
motion of the barge, which is headed straight along the positive ~ block is lifted (completely) off the floor? (C) Whatis  Fig. 5-44
direction of an x axis. The mass of the barge is 9500 kg, and the ~the magnitude of the block’s acceleration just before  problem 48.
magnitude of its acceleration is 0.12 m/s%. What are the (a) magni-  1t1s lifted (completely) off the floor?

tude and (b) direction (relative to positive x) of the force on the

barge from the water?

3
ES
=1

N It
NV
[—= A SRR o
== S e Problems 49 and 60.

Fig. 5-42 Problem 42.

«50 @ In Fig. 5-46, three ballot Al]

*43 ssm In Fig. 5-43, a chain consisting of five AF boxes are connected by cords, one of
links, each of mass 0.100 kg, is lifted vertically which wraps over a pulley having B
with constant acceleration of magnitude a = 2.50 A negligible friction on its axle and %
m/s?. Find the magnitudes of (a) the force on link 5 L negligible mass. The three masses are ¢
1 from link 2, (b) the force on link 2 from link 3, y TE m, = 30.0kg, mp=40.0kg, and Fig. 5-46 Problem 50.
(c) the force on link 3 from link 4, and (d) the i me = 10.0 kg. When the assembly is
force on link 4 from link 5. Then find the magni- 3 released from rest, (a) what is the tension in the
tudes of (e) the force F on the top link from the o ) cord connecting B and C, and (b) how far does A
person lifting the chain and (f) the net force accel- o move in the first 0.250 s (assuming it does not reach
erating each link. 1 U the pulley)?
*e44 A lamp hangs vertically from a cord in a de- Ei 51 @ TFigure 5-47 shows two blocks connected
. ig. 5-43 . .
scending elevator that decelerates at 2.4 m/s%. (a) If Problem 43 by a cord (of negligible mass) that passes over a fric-
the tension in the cord is 89 N, what is the lamp’s ' tionless pulley (also of negligible mass). The
mass? (b) What is the cord’s tension when the elevator ascends with arrangement is known as Arwood’s machine. One
an upward acceleration of 2.4 m/s*? block has mass m; = 1.30 kg; the other has mass m, =

2.80 kg. What are (a) the magnitude of the blocks’ ac-

*45 An elevator cab that weighs 27.8 kN moves upward. What is > At
celeration and (b) the tension in the cord?

the tension in the cable if the cab’s speed is (a) increasing at a rate

. Fig. 5-47
of 1.22 m/s? and (b) decreasing at a rate of 1.22 m/s?? *52 An 85 kg man lowers himself to the ground Prcl)gll)lems 51
46 An elevator cab is pulled upward by a cable. The cab and its ~ {rom a height of 10.0 m by holding onto a rope that and 65.
single occupant have a combined mass of 2000 kg. When that occu- ~ Tuns over a frictionless pulley to a 65 kg sandbag,.
pant drops a coin, its acceleration relative to the cab is 8.00 m/s2 ~ With what speed does the man hit the ground if he
downward. What is the tension in the cable? started from rest?

*53 In Fig. 5-48, three connected blocks are pulled to the right on
a horizontal frictionless table by a force of magnitude 73 = 65.0 N.
If my = 12.0 kg, m, = 24.0 kg, and m; = 31.0 kg, calculate (a) the
magnitude of the system’s acceleration, (b) the tension 7, and (c)
the tension 75.

247 =% The Zacchini family was renowned for their human-
cannonball act in which a family member was shot from a cannon
using either elastic bands or compressed air. In one version of the
act, Emanuel Zacchini was shot over three Ferris wheels to land in
a net at the same height as the open end of the cannon and at a
range of 69 m. He was propelled inside the barrel for 5.2 m and
launched at an angle of 53°. If his mass was 85 kg and he underwent
constant acceleration inside the barrel, what was the magnitude of
the force propelling him? (Hint: Treat the launch as though it were
along a ramp at 53°. Neglect air drag.)

48 (@ In Fig. 5-44, elevator cabs A and B are connected by
a short cable and can be pulled upward or lowered by the cable Fig. 5-48 Problem 53.

Tl T2 T3
my o) g
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54 (@ Figure 5-49 shows four penguins that are being playfully
pulled along very slippery (frictionless) ice by a curator. The masses
of three penguins and the tension in two of the cords are m; = 12 kg,
my =15 kg, my, =20 kg, T, = 111 N, and T, = 222 N. Find the pen-
guin mass 7, that is not given.

Fig. 5-49 Problem 54.

55 ssm ILw  www Two blocks are in m
contact on a frictionless table. A horizon- _ g
tal force is applied to the larger block, as F

shown in Fig. 5-50. (a) If m, =23ks, L=

m, = 1.2 kg, and F = 3.2 N, find the mag-

nitude of the force between the two Fig. 5-50
blocks. (b) Show that if a force of the same Problem 55.

magnitude F is applied to the smaller

block but in the opposite direction, the magnitude of the force be-
tween the blocks is 2.1 N, which is not the same value calculated in
(a). (c) Explain the difference.

*56 In Fig. 5-51a, a constant horizontal force F, is applied to
block A, which pushes against block B with a 20.0 N force directed
horizontally to the right. In Fig. 5-51b, the same force F; is applied
to block B; now block A pushes on block B with a 10.0 N force
directed horizontally to the left. The blocks have a combined mass
of 12.0 kg. What are the magnitudes of (a) their acceleration in
Fig. 5-51a and (b) force F,?

A B B A
L, £,
— —
(a) ()
Fig. 5-51 Problem 56.

*57 1LW A block of mass m; = 3.70
kg on a frictionless plane inclined at
angle 6 = 30.0° is connected by a
cord over a massless, frictionless
pulley to a second block of mass
m, = 2.30 kg (Fig. 5-52). What are
(a) the magnitude of the accelera-
tion of each block, (b) the direction
of the acceleration of the hanging block, and (c) the tension in the
cord?

m
6

Fig. 5-52 Problem 57.

*58 Figure 5-53 shows a man sitting in a bosun’s chair that dan-
gles from a massless rope, which runs over a massless, frictionless
pulley and back down to the man’s hand. The combined mass of
man and chair is 95.0 kg. With what force magnitude must the man
pull on the rope if he is to rise (a) with a constant velocity and (b)
with an upward acceleration of 1.30 m/s?? (Hint: A free-body dia-
gram can really help.) If the rope on the right extends to the

ground and is pulled by a co-
worker, with what force magnitude
must the co-worker pull for the
man to rise (c¢) with a constant ve-
locity and (d) with an upward ac-
celeration of 1.30 m/s?? What is the
magnitude of the force on the ceil-
ing from the pulley system in (e)
part a, (f) part b, (g) part ¢, and (h)
partd?

©

*59 ssm A 10 kg monkey climbs
up a massless rope that runs over a
frictionless tree limb and back
down to a 15 kg package on the
ground (Fig. 5-54). (a) What is the
magnitude of the least acceleration
the monkey must have if it is to lift v P
the package off the ground? If, after P
the package has been lifted, the 'ZZ? —=
monkey stops its climb and holds 1
onto the rope, what are the (b) mag-
nitude and (c) direction of the mon- T
key’s acceleration and (d) the ten-
sion in the rope? Q

|

*60 Figure 5-45 shows a 5.00 kg
block being pulled along a friction-
less floor by a cord that applies a
force of constant magnitude 20.0 N
but with an angle 6(¢) that varies
with time. When angle 6 = 25.0°, at E H
what rate is the acceleration of the

block changing if (a) 6(r) =
(2.00 X 1072 deg/s)t and (b) 6(r) =
—(2.00 X 1072 deg/s)¢? (Hint: The
angle should be in radians.)

Fig. 5-54 Problem 59.

61 ssM ILW A hot-air balloon of mass M is descending vertically
with downward acceleration of magnitude a. How much mass (ballast)
must be thrown out to give the balloon an upward acceleration of mag-
nitude a? Assume that the upward force from the air (the lift) does not
change because of the decrease in mass.

eee62 %= In shot putting, many athletes elect to launch the shot at
an angle that is smaller than the theoretical one (about 42°) at which
the distance of a projected ball at the same speed and height is greatest.
One reason has to do with the speed the athlete can give the shot dur-
ing the acceleration phase of the throw. Assume that a 7.260 kg shot is
accelerated along a straight path of length 1.650 m by a constant ap-
plied force of magnitude 380.0 N, starting with an initial speed of 2.500
m/s (due to the athlete’s preliminary motion). What is the shot’s speed
at the end of the acceleration phase if the angle between the path and
the horizontal is (a) 30.00° and (b) 42.00°? (Hint: Treat the motion as
though it were along a ramp at the given angle.) (c) By what per-
cent is the launch speed decreased if the athlete increases the angle
from 30.00° to 42.00°?

*s63 Figure 5-55 gives, as a function of time ¢, the force compo-
nent F, that acts on a 3.00 kg ice block that can move only along
the x axis. At ¢ = 0, the block is moving in the positive direction of
the axis, with a speed of 3.0 m/s. What are its (a) speed and (b) direc-
tion of travel at# = 11 s?



E, (N)
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Fig. 5-55 Problem 63.

eee64 Figure 5-56 shows a box of mass m, = 1.0 kg on a friction-
less plane inclined at angle 6 = 30°. It is connected by a cord of
negligible mass to a box of mass m; = 3.0 kg on a horizontal fric-
tionless surface. The pulley is frictionless and massless. (a) If the
magnitude of horizontal force Fis23 N, what is the tension in the
connecting cord? (b) What is the largest value the magnitude of F
may have without the cord becoming slack?

m =

>R

Fig. 5-56 Problem 64.

*«65 Figure 5-47 shows Atwood’s machine, in which two contain-
ers are connected by a cord (of negligible mass) passing over a fric-
tionless pulley (also of negligible mass). At time ¢ = 0, container 1
has mass 1.30 kg and container 2 has mass 2.80 kg, but container 1 is
losing mass (through a leak) at the constant rate of 0.200 kg/s. At
what rate is the acceleration magnitude of the containers changing
at (a) t = 0 and (b) t = 3.00 s? (c) When does the acceleration reach
its maximum value?

*ee66 Figure 5-57 shows a section
of a cable-car system. The maxi-
mum permissible mass of each car
with occupants is 2800 kg. The cars,
riding on a support cable, are
pulled by a second cable attached
to the support tower on each car.
Assume that the cables are taut
and inclined at angle 6= 35°.
What is the difference in tension
between adjacent sections of pull
cable if the cars are at the maxi-
mum permissible mass and are be-
ing accelerated up the incline at
0.81 m/s??

eee67 Figure 5-58 shows three
blocks attached by cords that loop B
over frictionless pulleys. Block B

lies on a frictionless table; the

masses are m, = 6.00 kg, mp = 8.00

kg, and mc = 10.0kg. When the AD

blocks are released, what is the
tension in the cord at the right?

Support cable
Pull cable

Fig. 5-57 Problem 66.

[ e

Fig. 5-58 Problem 67.
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*es68 %= A shot putter launches a 7.260 kg shot by pushing it
along a straight line of length 1.650 m and at an angle of 34.10°
from the horizontal, accelerating the shot to the launch speed
from its initial speed of 2.500 m/s (which is due to the athlete’s
preliminary motion). The shot leaves the hand at a height of 2.110
m and at an angle of 34.10°, and it lands at a horizontal distance of
15.90 m. What is the magnitude of the athlete’s average force on
the shot during the acceleration phase? (Hint: Treat the motion
during the acceleration phase as though it were along a ramp at
the given angle.)

Additional Problems

69 In Fig.5-59,4.0 kg block A and 6.0 kg block B are connected by
a string of negligible mass. Force F, = (12 N)i acts on block A; force
F, = (24 N)i acts on block B. What s the tension in the string?

A F, B Fy

- —f

Fig. 5-59 Problem 69.

70 =% An 80 kg man drops to a concrete patio from a window
0.50 m above the patio. He neglects to bend his knees on landing, tak-
ing 2.0 cm to stop. (a) What is his average acceleration from when his
feet first touch the patio to when he stops? (b) What is the magnitude
of the average stopping force exerted on him by the patio?

71 ssm Figure 5-60 shows a

box of dirty money (mass my Mo
m; = 3.0 kg) on a frictionless

plane inclined at angle 6, =

30°. The box is connected via a

cord of negligible mass to a box 6, 0,
of laundered money (mass
m, = 2.0 kg) on a frictionless
plane inclined at angle 6, =
60°. The pulley is frictionless and has negligible mass. What is the
tension in the cord?

Fig. 5-60 Problem 71.

72 Three forces act on a particle that moves with unchanging ve-
locityAV =(2 m/s)f — (7 m/s)j. Two of the forces are F, = (2N)i +
(3N)j + (—2N)k and F, = (=5 N)i + (8 N)] + (=2 N)k.What is
the third force?

73 ssm In Fig. 5-61, a tin of antioxidants (2, = 1.0 kg) on a fric-
tionless inclined surface is connected

to a tin of corned beef (1m, = 2.0 kg).

The pulley is massless and friction- my

less. An upward force of magnitude

F=6.0N acts on the corned beef

tin, which has a downward accelera- B

tion of 5.5 m/s?>. What are (a) the ten-
sion in the connecting cord and (b)
angle 3?

74 The only two forces acting on a ity
body have magnitudes of 20 N and
35N and directions that differ by .
80°. The resulting acceleration has a F
magnitude of 20 m/s%. What is the
mass of the body?

Fig. 5-61 Problem 73.
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75 Figure 5-62 is an overhead

view of a 12 kg tire that is to be

pulled by three horizontal ropes.

One rope’s force (F; = 50 N) is in- F
dicated. The forces from the other
ropes are to be oriented such that
the tire’s acceleration magnitude a is
least. What is that least a if (a) F, =
30N, F;=20N;(b) F,=30N, F; =
10 N;and (c) F, = F; =30 N?

76 A block of mass M is pulled M
along a horizontal frictionless sur-
face by a rope of mass m, as shown
in Fig. 5-63. A horizontal force F
acts on one end of the rope. (a)
Show that the rope must sag, even if only by an imperceptible
amount. Then, assuming that the sag is negligible, find (b) the ac-
celeration of rope and block, (c) the force on the block from the
rope, and (d) the tension in the rope at its midpoint.

Fig. 5-62 Problem 75.

Fig. 5-63 Problem 76.

77 ssm A worker drags a crate across a factory floor by pulling
on a rope tied to the crate. The worker exerts a force of magnitude
F =450 N on the rope, which is inclined at an upward angle 6 =
38° to the horizontal, and the floor exerts a horizontal force of
magnitude f = 125 N that opposes the motion. Calculate the mag-
nitude of the acceleration of the crate if (a) its mass is 310 kg and
(b) its weight is 310 N.

78 In Fig. 5-64, a force F of mag-

nitude 12 N is applied to a FedEx my
box of mass m, = 1.0 kg. The force [ |
is directed up a plane tilted by 6 =
37°. The box is connected by a cord
to a UPS box of mass m; = 3.0 kg
on the floor. The floor, plane, and
pulley are frictionless, and the masses of the pulley and cord are
negligible. What is the tension in the cord?

—

mg ol

Fig. 5-64 Problem 78.

79 A certain particle has a weight of 22 N at a point where
g = 9.8 m/s>. What are its (a) weight and (b) mass at a point where
g = 4.9 m/s?? What are its (c) weight and (d) mass if it is moved to
a point in space where g = 0?

80 An 80 kg person is parachuting and experiencing a down-
ward acceleration of 2.5 m/s’>. The mass of the parachute is
5.0 kg. (a) What is the upward force on the open parachute from
the air? (b) What is the downward force on the parachute from
the person?

81 A spaceship lifts off vertically from the Moon, where g = 1.6
m/s?. If the ship has an upward acceleration of 1.0 m/s? as it lifts off,
what is the magnitude of the force exerted by the ship on its pilot,
who weighs 735 N on Earth?

y

82 In the overhead view of Fig.
5-65, five forces pull on a box of -

. A 5
mass m = 4.0 kg. The force magni- 5 /Z;
tudes are F;=11N, F,=17N, !
F,=30N,F,=14N,and F;=50 <% => X

) F

N, and angle 6, is 30°. Find the box’s
acceleration (a) in unit-vector nota-
tion and as (b) a magnitude and (c) F
an angle relative to the positive di-
rection of the x axis.

Fig. 5-65 Problem 82.

83 ssm A certain force gives an object of mass m, an accelera-
tion of 12.0 m/s? and an object of mass m, an acceleration of 3.30
m/s2. What acceleration would the force give to an object of mass
(a) m, — m; and (b) m, + my?

84  You pull a short refrigerator with a constant force F across a
greased (frictionless) floor, either with F horizontal (case 1) or
with F tilted upward at an angle 6 (case 2). (a) What is the ratio of
the refrigerator’s speed in case 2 to its speed in case 1 if you pull
for a certain time ¢? (b) What is this ratio if you pull for a certain
distance d?

85 A 52 kg circus performer is to slide down a rope that will
break if the tension exceeds 425 N. (a) What happens if the per-
former hangs stationary on the rope? (b) At what magnitude of ac-
celeration does the performer just avoid breaking the rope?

86 Compute the weight of a 75 kg space ranger (a) on Earth, (b)
on Mars, where g = 3.7 m/s?, and (c) in interplanetary space, where
g = 0.(d) What is the ranger’s mass at each location?

87 An object is hung from a spring balance attached to the ceil-
ing of an elevator cab. The balance reads 65 N when the cab is
standing still. What is the reading when the cab is moving upward
(a) with a constant speed of 7.6 m/s and (b) with a speed of 7.6 m/s
while decelerating at a rate of 2.4 m/s*?

88 Imagine a landing craft approaching the surface of Callisto,
one of Jupiter’s moons. If the engine provides an upward force
(thrust) of 3260 N, the craft descends at constant speed; if the en-
gine provides only 2200 N, the craft accelerates downward at 0.39
m/s?. (a) What is the weight of the landing craft in the vicinity of
Callisto’s surface? (b) What is the mass of the craft? (c) What is the
magnitude of the free-fall acceleration near the surface of
Callisto?

89 A 1400 kg jet engine is fastened to the fuselage of a passenger
jet by just three bolts (this is the usual practice). Assume that each
bolt supports one-third of the load. (a) Calculate the force on each
bolt as the plane waits in line for clearance to take off. (b) During
flight, the plane encounters turbulence, which suddenly imparts an
upward vertical acceleration of 2.6 m/s? to the plane. Calculate the
force on each bolt now.

90 An interstellar ship has a mass of 1.20 X 10° kg and is initially at
rest relative to a star system. (a) What constant acceleration is needed
to bring the ship up to a speed of 0.10c (where c is the speed of light,
3.0 X 108 m/s) relative to the star system in 3.0 days? (b) What is that
acceleration in g units? (c) What force is required for the accelera-
tion? (d) If the engines are shut down when 0.10c is reached (the
speed then remains constant), how long does the ship take (start to
finish) to journey 5.0 light-months, the distance that light travels in 5.0
months?

91 ssm A motorcycle and 60.0 kg rider accelerate at 3.0 m/s? up
a ramp inclined 10° above the horizontal. What are the magnitudes
of (a) the net force on the rider and (b) the force on the rider from
the motorcycle?

92 Compute the initial upward acceleration of a rocket of mass
1.3 X 10* kg if the initial upward force produced by its engine (the
thrust) is 2.6 X 10° N. Do not neglect the gravitational force on the
rocket.

93 ssm Figure 5-66a shows a mobile hanging from a ceiling; it
consists of two metal pieces (m; = 3.5 kg and m, = 4.5 kg) that
are strung together by cords of negligible mass. What is the tension



in (a) the bottom cord and (b) the top cord? Figure 5-66b shows a
mobile consisting of three metal pieces. Two of the masses are
ms; = 4.8 kg and ms = 5.5 kg. The tension in the top cord is 199 N.
What is the tension in (c) the lowest cord and (d) the middle cord?

mg
my

my

(a) (b)
Fig. 5-66 Problem 93.

94 For sport, a 12 kg armadillo runs onto a large pond of level,
frictionless ice. The armadillo’s initial velocity is 5.0 m/s along the
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positive direction of an x axis. Take its initial position on the ice as
being the origin. It slips over the ice while being pushed by a wind
with a force of 17 N in the positive direction of the y axis. In unit-vec-
tor notation, what are the animal’s (a) velocity and (b) position vec-
tor when it has slid for 3.0 s?

95 Suppose that in Fig. 5-12, the masses of the blocks are 2.0 kg
and 4.0 kg. (a) Which mass should the hanging block have if the
magnitude of the acceleration is to be as large as possible? What
then are (b) the magnitude of the acceleration and (c) the tension
in the cord?

96 A nucleus that captures a stray neutron must bring the neu-
tron to a stop within the diameter of the nucleus by means of the
strong force. That force, which “glues” the nucleus together, is ap-
proximately zero outside the nucleus. Suppose that a stray neutron
with an initial speed of 1.4 X 107 m/s is just barely captured by a
nucleus with diameter d = 1.0 X 107'* m. Assuming the strong
force on the neutron is constant, find the magnitude of that force.
The neutron’s mass is 1.67 X 10?7 kg.
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CHAPTER

-ORCE AND
MOTION-I

WHAT IS PHYSICS?

In this chapter we focus on the physics of three common types of force:
frictional force, drag force, and centripetal force. An engineer preparing a car for
the Indianapolis 500 must consider all three types. Frictional forces acting on the
tires are crucial to the car’s acceleration out of the pit and out of a curve (if the
car hits an oil slick, the friction is lost and so is the car). Drag forces acting on the
car from the passing air must be minimized or else the car will consume too much
fuel and have to pit too early (even one 14 s pit stop can cost a driver the race).
Centripetal forces are crucial in the turns (if there is insufficient centripetal force,
the car slides into the wall). We start our discussion with frictional forces.

6-2 Friction
Frictional forces are unavoidable in our daily lives. If we were not able to counteract
them, they would stop every moving object and bring to a halt every rotating shaft.
About 20% of the gasoline used in an automobile is needed to counteract friction in
the engine and in the drive train. On the other hand, if friction were totally absent,
we could not get an automobile to go anywhere, and we could not walk or ride a bi-
cycle. We could not hold a pencil, and, if we could, it would not write. Nails and
screws would be useless, woven cloth would fall apart, and knots would untie.

Here we deal with the frictional forces that exist between dry solid surfaces,
either stationary relative to each other or moving across each other at slow
speeds. Consider three simple thought experiments:

1. Send a book sliding across a long horizontal counter. As expected, the book
slows and then stops. This means the book must have an acceleration parallel
to the counter surface, in the direction opposite the book’s velocity. From
Newton’s second law, then, a force must act on the book parallel to the counter
surface, in the direction opposite its velocity. That force is a frictional force.

2. Push horizontally on the book to make it travel at constant velocity along the
counter. Can the force from you be the only horizontal force on the book?
No, because then the book would accelerate. From Newton’s second law, there
must be a second force, directed opposite your force but with the same magni-
tude, so that the two forces balance. That second force is a frictional force,
directed parallel to the counter.

3. Push horizontally on a heavy crate. The crate does not move. From Newton’s
second law, a second force must also be acting on the crate to counteract your
force. Moreover, this second force must be directed opposite your force and
have the same magnitude as your force, so that the two forces balance. That
second force is a frictional force. Push even harder. The crate still does not
move. Apparently the frictional force can change in magnitude so that the two
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forces still balance. Now push with all your strength. The crate begins to slide.
Evidently, there is a maximum magnitude of the frictional force. When you
exceed that maximum magnitude, the crate slides.

Figure 6-1 shows a similar situation. In Fig. 6-1a, a block rests on a tabletop,
with the grav1tat10nal force F balanced by a normal force F, ~- In Fig. 6-1b, you
exert a force F on the block attempting to pull it to the left. In response, a

There is no attempt Fya k.)

at Sh.dlr,]g' UELE; I Frictional force =0
no friction and |
no motion. \L
F,
(a) ¢
Force F attempts -
- ) Fy4
sliding but is balanced |
by the frictional force. F<——t>, Frictional force = F
No motion. *F

. ()
Force F is now

stronger but is still Fy4
bglgnced by the F< I >/, Frictional force = F
frictional force. |
No motion. *F
g
(0)
Force F is now even -
stronger but is still 7 PN? 7
balanced by the < ~>  Frictional force = F
frictional force. VI,-_)
No motion. Fy
(d)
Finally, the applied force = FNA
has overwhelmed the 4;—|—-l>f Weak kinetic
static frictional force. i frictional force
Block slides and Vf
accelerates. () g
Fig. 6-1 (a)The forceson a To maintain the speed, <+ N? X Same weak kinetic
stationary block. (b—d) An external weaken force F to match F<l-—|——l> Ji frictional force
force F,applied to the block, is the weak frictional force. S
balanced by a static frictional force fs F,
As Fisincreased, f; also increases, un- )

til f; reaches a certain maximum value.
(e) The block then “breaks away,” ac-
celerating suddenly in the direction of
F.(f) If the block is now to move
with constant velocity, F must be )
reduced from the maximum value it applied force.
had just before the block broke away. % Breakaway
(g) Some experimental results for the

sequence (a) through (f). (© Time

|—Maximum value of fg

Jiis approximately

constant\ Kinetic frictional force
has only one value

(no matching).

Static frictional force
can only match growing

Magnitude of
frictional force

(=]
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frictional force 7. is directed to the right, exactly balancing your force. The force
f; is called the static frictional force. The block does not move.

Figures 6-1c and 6-1d show that as you increase the magnitude of your
applied force, the magnitude of the static frictional force ]_‘; also increases and
the block remains at rest. When the applied force reaches a certain magnitude,
however, the block “breaks away” from its intimate contact with the tabletop and
accelerates leftward (Fig. 6-1¢). The frictional force that then opposes the motion
is called the kinetic frictional force fk

Usually, the magnitude of the kinetic frictional force, which acts when there
is motion, is less than the maximum magnitude of the static frictional force, which
acts when there is no motion. Thus, if you wish the block to move across the sur-
face with a constant speed, you must usually decrease the magnitude of the
applied force once the block begins to move, as in Fig. 6-1f. As an example,
Fig. 6-1g shows the results of an experiment in which the force on a block was
slowly increased until breakaway occurred. Note the reduced force needed to
keep the block moving at constant speed after breakaway.

A frictional force is, in essence, the vector sum of many forces acting between
the surface atoms of one body and those of another body. If two highly polished
and carefully cleaned metal surfaces are brought together in a very good vacuum
(to keep them clean), they cannot be made to slide over each other. Because the
surfaces are so smooth, many atoms of one surface contact many atoms of the
other surface, and the surfaces cold-weld together instantly, forming a single
piece of metal. If a machinist’s specially polished gage blocks are brought
together in air, there is less atom-to-atom contact, but the blocks stick firmly to
each other and can be separated only by means of a wrenching motion. Usually,
however, this much atom-to-atom contact is not possible. Even a highly polished
metal surface is far from being flat on the atomic scale. Moreover, the surfaces
of everyday objects have layers of oxides and other contaminants that reduce
cold-welding.

When two ordinary surfaces are placed together, only the high points touch
each other. (It is like having the Alps of Switzerland turned over and placed down
on the Alps of Austria.) The actual microscopic area of contact is much less than
the apparent macroscopic contact area, perhaps by a factor of 10. Nonetheless,
many contact points do cold-weld together. These welds produce static friction
when an applied force attempts to slide the surfaces relative to each other.

If the applied force is great enough to pull one surface across the other, there
is first a tearing of welds (at breakaway) and then a continuous re-forming and
tearing of welds as movement occurs and chance contacts are made (Fig. 6-2).
The kinetic frictional force fj that opposes the motion is the vector sum of the
forces at those many chance contacts.

If the two surfaces are pressed together harder, many more points cold-
weld. Now getting the surfaces to slide relative to each other requires a greater
applied force: The static frictional force ]_”; has a greater maximum value. Once

Fig. 6-2 The mechanism of sliding friction. (a) ‘
The upper surface is sliding to the right over the

lower surface in this enlarged view. (b) A detail,

showing two spots where cold-welding has oc-

curred. Force is required to break the welds and

maintain the motion. ()
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the surfaces are sliding, there are many more points of momentary cold-welding,
so the kinetic frictional force fk also has a greater magnitude.

Often, the sliding motion of one surface over another is “jerky” because the
two surfaces alternately stick together and then slip. Such repetitive stick-and-
slip can produce squeaking or squealing, as when tires skid on dry pavement,
fingernails scratch along a chalkboard, or a rusty hinge is opened. It can also
produce beautiful and captivating sounds, as in music when a bow is drawn
properly across a violin string. "2

6-3 Properties of Friction

Experiment shows that when a dry and unlubricated body presses against a sur-
face in the same condition and a force F attempts to slide the body along the sur-
face, the resulting frictional force has three properties:

Property 1. If the body does not move, then the static frictional force ]_”: and
the component of F that is parallel to the surface balance each other. They
are equal in magnitude, and 7. is directed opposite that component of F.

Property 2. The magnitude of fx has a maximum value f .., that is given by
fs,max = ILLSFN7 (6'1)

where u, is the coefficient of static friction and F is the magnitude of the
normal force on the body from the surface. If the magnitude of the compo-
nent of F that is parallel to the surface exceeds f; ,.x, then the body begins to
slide along the surface.

Property 3. If the body begins to slide along the surface, the magnitude of the
frictional force rapidly decreases to a value f; given by

fe = mFy, (6-2)

where w is the coefficient of kinetic friction. Thereafter, during the sliding, a ki-
netic frictional force f; with magnitude given by Eq. 6-2 opposes the motion.

The magnitude Fy of the normal force appears in properties 2 and 3 as a
measure of how firmly the body presses against the surface. If the body presses
harder, then, by Newton’s third law, F), is greater. Properties 1 and 2 are worded
in terms of a single applied force F,but they also hold for the net force of several
applied forces acting on the body. Equations 6-1 and 6-2 are not vector equations;
the direction of fx or fk is always parallel to the surface and opposed to the at-
tempted sliding, and the normal force Fyis perpendicular to the surface.

The coefficients u, and u, are dimensionless and must be determined experi-
mentally. Their values depend on certain properties of both the body and the
surface; hence, they are usually referred to with the preposition “between,” as in
“the value of u, between an egg and a Teflon-coated skillet is 0.04, but that between
rock-climbing shoes and rock is as much as 1.2.” We assume that the value of w;
does not depend on the speed at which the body slides along the surface.

\. CHECKPOINT 1

A block lies on a floor. (a) What is the magnitude of the frictional force on it from the
floor? (b) If a horizontal force of 5 N is now applied to the block, but the block does not
move, what is the magnitude of the frictional force on it? (c) If the maximum value f; ;.
of the static frictional force on the block is 10 N, will the block move if the magnitude of
the horizontally applied force is 8 N? (d) If it is 12 N? (e) What is the magnitude of the
frictional force in part (c)?

PART 1
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Sample Problem

Kinetic friction, constant acceleration, locked wheels

If a car’s wheels are “locked” (kept from rolling) during
emergency braking, the car slides along the road. Ripped-off
bits of tire and small melted sections of road form the “skid
marks” that reveal that cold-welding occurred during the
slide. The record for the longest skid marks on a public road
was reportedly set in 1960 by a Jaguar on the M1 highway in
England (Fig. 6-3a) —the marks were 290 m long! Assuming
that w; = 0.60 and the car’s acceleration was constant dur-
ing the braking, how fast was the car going when the wheels
became locked? g 3

KEY IDEAS

(1) Because the acceleration a is assumed constant, we can
use the constant-acceleration equations of Table 2-1 to find
the car’s initial speed v,. (2) If we neglect the effects of the
air on the car, acceleration a was due only to a kinetic fric-
tional force f, on the car from the road, directed opposite
the direction of the car’s motion, assumed to be in the posi-
tive direction of an x axis (Fig. 6-3b). We can relate this force
to the acceleration by writing Newton’s second law for x
components (F , = ma,) as

(6-3)

—fx = ma,

where m is the car’s mass. The minus sign indicates the di-
rection of the kinetic frictional force.

Calculations: From Eq. 6-2, the frictional force has the
magnitude f; = u,Fy, where Fy is the magnitude of the nor-
mal force on the car from the road. Because the car is not
accelerating vertically, we know from Fig. 6-3b and
Newton’s second law that the magnitude of Fy is equal to
the magnitude of the gravitational force }_7; on the car,
which is mg. Thus, Fy = mg.

Now solving Eq. 6-3 for a and substituting f;, = w,Fy =
g for fy yield

Ji Mg
a=—L£=-_TE° = ¢

. - (6-4)

y
. A7,
This is a free-body Normal force
diagram of the supports the car.
forces on the car.
Car
<t X

Ji
Frictional force
opposes the sliding.

Gravitational force
pulls downward.

Y%
)

Fig. 6-3 (a) A car sliding to the right and finally stopping after a
displacement of 290 m. (b) A free-body diagram for the car.

where the minus sign indicates that the acceleration is in the
negative direction of the x axis, opposite the direction of the
velocity. Next, let’s use Eq. 2-16,

2

(6-5)

from the constant-acceleration equations of Chapter 2. We
know that the displacement x — x;, was 290 m and assume
that the final speed v was 0. Substituting for a from Eq. 6-4
and solving for v, give

V2 =3 + 2a(x — xy),

vo = V2ug(x — xp) (6-6)
= V/(2)(0.60)(9.8 m/s?)(290 m)
= 58 m/s = 210 km/h. (Answer)

We assumed that v = 0 at the far end of the skid marks.
Actually, the marks ended only because the Jaguar left the
road after 290 m. So v, was at least 210 km/h.

Sample Problem

Friction, applied force at an angle

In Fig. 6-4a, a block of mass m = 3.0 kg slides along a floor
while a force F of magnitude 12.0 N is applied to it at an up-
ward angle 6. The coefficient of kinetic friction between the
block and the floor is w;, = 0.40. We can vary 6 from 0 to 90°
(the block remains on the floor). What 6 gives the maximum
value of the block’s acceleration magnitude a?

KEY IDEAS

Because the block is moving, a kinetic frictional force acts
on it. The magnitude is given by Eq. 6-2 (f; = w.Fy, where
Fy is the normal force). The direction is opposite the motion
(the friction opposes the sliding).



Calculating Fy: Because we need the magnitude f; of the
frictional force, we first must calculate the magnitude Fy of
the normal force. Figure 6-4b is a free-body diagram show-
ing the forces along the vertical y axis. The normal force is
upward, the gravitational force F_g with magnitude mg is
downward, and (note) the vertical component F, of the ap-
plied force is upward. That component is shown in Fig. 6-4c,
where we can see that F, = Fsin 6. We can write Newton’s
second law (F,., = ma) for those forces along the y axis as

Fy + Fsin 0 — mg = m(0), (6-7)

where we substituted zero for the acceleration along the y
axis (the block does not even move along that axis). Thus,

Fy=mg — Fsin 6. (6-8)
Calculating acceleration a: Figure 6-4d is a free-body di-
agram for motion along the x axis. The horizontal compo-
nent F, of the applied force is rightward; from Fig. 6-4¢c, we
see that F, = F cos 6. The frictional force has magnitude f;
(= wFy) and is leftward. Writing Newton’s second law for

motion along the x axis gives us
Fcos 6 — wFy = ma. (6-9)

Substituting for Fy from Eq. 6-8 and solving for a lead to

F 5
a = -cos 0 — Mk(g — o Sin 0). (6-10)

This applied force
accelerates block
and helps support it.

Fig. 6-4 (a) A force is applied to a moving
block. (b) The vertical forces. (¢) The components
of the applied force. (d) The horizontal forces and
acceleration.

The applied force
has these components. F = F,
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Finding a maximum: To find the value of 6 that maximizes
a, we take the derivative of a with respect to 6 and set the
result equal to zero:

da

0 (6-11)

/o F
= ——sin 0 + u,—-cos 6 = 0.
m m
Rearranging and using the identity (sin 6)/(cos 6) = tan 0
give us
(6-12)

Solving for # and substituting the given u, = 0.40, we find
that the acceleration will be maximum if

tan 6 = w,.

0= tan"! w; (6-13)

=21.8° = 22° (Answer)
Comment: As we increase 6 from 0, the acceleration
tends to change in two opposing ways. First, more of the
applied force F is upward, relieving the normal force. The
decrease in the normal force causes a decrease in the fric-
tional force, which opposes the block’s motion. Thus, with
the increase in 6, the block’s acceleration tends to increase.
However, second, the increase in 6 also decreases the hori-
zontal component of F, and so the block’s acceleration
tends to decrease. These opposing tendencies produce a
maximum acceleration at 6 = 22°.

Y ____1_3 These vertical forces
balance.

These two horizontal
forces determine the
acceleration.

(¢) (d)

PL U"S Additional examples, video, and practice available at WileyPLUS

6-4 The Drag Force and Terminal Speed

A fluid is anything that can flow —generally either a gas or a liquid. When there is
a relative velocity between a fluid and a body (either because the body moves
through the fluid or because the fluid moves past the body), the body experiences
a drag force D that opposes the relative motion and points in the direction in

which the fluid flows relative to the body.

Here we examine only cases in which air is the fluid, the body is blunt (like
a baseball) rather than slender (like a javelin), and the relative motion is fast
enough so that the air becomes turbulent (breaks up into swirls) behind the body.
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Fig. 6-5 This skier crouches in an “egg
position” so as to minimize her effective
cross-sectional area and thus minimize the
air drag acting on her. (Karl-Josef
Hildenbrand/dpa/Landov LLC)

As the cat's speed
increases, the upward
drag force increases

until it balances the 2
gravitational force.
Falling 5 b
body
\D )
- Fg Fg
ﬁé’
v v

(a) () (¢)

Fig. 6-6 The forces that act on a body
falling through air: (a) the body when it has
just begun to fall and (b) the free-body dia-
gram a little later, after a drag force has
developed. (¢) The drag force has increased
until it balances the gravitational force on
the body. The body now falls at its constant
terminal speed.

Table 6-1

Some Terminal Speeds in Air

Object Terminal Speed (m/s) 95% Distance’ (m)
Shot (from shot put) 145 2500
Sky diver (typical) 60 430
Baseball 42 210
Tennis ball 31 115
Basketball 20 47
Ping-Pong ball 9 10
Raindrop (radius = 1.5 mm) 7 6
Parachutist (typical) 5 3

“This is the distance through which the body must fall from rest to reach 95% of its terminal speed.
Source: Adapted from Peter J. Brancazio, Sport Science, 1984, Simon & Schuster, New York.

In such cases, the magnitude of the drag force D is related to the relative speed v
by an experimentally determined drag coefficient C according to

= 1CpAv?, (6-14)

where p s the air density (mass per volume) and A is the effective cross-sectional
area of the body (the area of a cross section taken perpendicular to the velocity
V). The drag coefficient C (typical values range from 0.4 to 1.0) is not truly a
constant for a given body because if v varies significantly, the value of C can vary
as well. Here, we ignore such complications.

Downbhill speed skiers know well that drag depends on A and v2. To reach
high speeds a skier must reduce D as much as possible by, for example, riding the
skis in the “egg position” (Fig. 6-5) to minimize A.

When a blunt body falls from rest through air, the drag force D is directed
upward; its magnitude gradually increases from zero as the speed of the body
increases. This upward force D opposes the downward gravitational force F on
the body. We can relate these forces to the body’s acceleration by wr1t1ng
Newton’s second law for a vertical y axis (Fye, = ma,) as

D — F, = ma, (6-15)

where m is the mass of the body. As suggested in Fig. 6-6, if the body falls long
enough, D eventually equals F,. From Eq. 6-15, this means that a = 0, and so the
body’s speed no longer increases. The body then falls at a constant speed, called
the terminal speed v,.

To find v,, we set a = 0 in Eq. 6-15 and substitute for D from Eq. 6-14, obtaining

3CpAV? — F, = 0,

2F,
which gives v, = Tpil— (6-16)

Table 6-1 gives values of v, for some common objects.

According to calculations* based on Eq. 6-14, a cat must fall about six floors
to reach terminal speed. Until it does so, F, > D and the cat accelerates down-
ward because of the net downward force. Recall from Chapter 2 that your body is
an accelerometer, not a speedometer. Because the cat also senses the accelera-
tion, it is frightened and keeps its feet underneath its body, its head tucked
in, and its spine bent upward, making A small, v, large, and injury likely.

*W. O. Whitney and C. J. Mehlhaff, “High-Rise Syndrome in Cats.” The Journal of the American
Veterinary Medical Association, 1987.
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However, if the cat does reach v, during a longer fall, the acceleration vanishes
and the cat relaxes somewhat, stretching its legs and neck horizontally outward and
straightening its spine (it then resembles a flying squirrel). These actions increase
area A and thus also, by Eq. 6-14, the drag D.The cat begins to slow because now
D > F, (the net force is upward), until a new, smaller v, is reached. The decrease
in v, reduces the possibility of serious injury on landing. Just before the end of the
fall, when it sees it is nearing the ground, the cat pulls its legs back beneath its
body to prepare for the landing. -

Humans often fall from great heights for the fun of skydiving. However, in
April 1987, during a jump, sky diver Gregory Robertson noticed that fellow sky
diver Debbie Williams had been knocked unconscious in a collision with a third
sky diver and was unable to open her parachute. Robertson, who was well above = F
Williams at the time and who had not yet opened his parachute for the 4 km
plunge, reoriented his body head-down so as to minimize A and maximize his
downward speed. Reaching an estimated v, of 320 km/h, he caught up with
Williams and then went into a horizontal “spread eagle” (as in Fig. 6-7) to
increase D so that he could grab her. He opened her parachute and then, after
releasing her, his own, a scant 10 s before impact. Williams received extensive
internal injuries due to her lack of control on landing but survived. -

Sample Problem

Terminal speed of falling raindrop

Fig. 6-7 Sky divers in a horizontal
“spread eagle” maximize air drag. (Steve
Fitchett/Taxi/Getty Images)

A raindrop with radius R = 1.5 mm falls from a cloud that is
at height 4 = 1200 m above the ground. The drag coefficient
C for the drop is 0.60. Assume that the drop is spherical
throughout its fall. The density of water p,, is 1000 kg/m?,
and the density of air p, is 1.2 kg/m?>.

sity p, and the water density p,,, we obtain

_ \/ 2k _ \/87TR3pwg _ \/8Rpwg
"INCpA  N3CpmR? N 3Cp,

(a) AsTable 6-1 indicates, the raindrop reaches terminal speed
after falling just a few meters. What is the terminal speed?

KEY IDEA

The drop reaches a terminal speed v, when the gravitational
force on it is balanced by the air drag force on it, so its accel-
eration is zero. We could then apply Newton’s second law
and the drag force equation to find v,, but Eq. 6-16 does all
that for us.

Calculations: To use Eq. 6-16, we need the drop’s effective
cross-sectional area A and the magnitude F, of the gravita-
tional force. Because the drop is spherical, A is the area of a
circle (7R?) that has the same radius as the sphere. To find
F,, we use three facts: (1) F, = mg, where m is the drop’s
mass; (2) the (spherical) drop’s volume is V = 7R3 and (3)
the density of the water in the drop is the mass per volume,
or p,, = m/V.Thus, we find

F, = Vp,g = 3mR%,g.

We next substitute this, the expression for A, and the given data
into Eq. 6-16. Being careful to distinguish between the air den-

WILEY ®

[ (8)(1.5 X 107° m)(1000 kg/m?)(9.8 m/s?)
(3)(0.60)(1.2 kg/m?)
= 7.4 m/s = 27 km/h. (Answer)

Note that the height of the cloud does not enter into the
calculation.

(b) What would be the drop’s speed just before impact if
there were no drag force?

KEY IDEA

With no drag force to reduce the drop’s speed during the fall,
the drop would fall with the constant free-fall acceleration g,
so the constant-acceleration equations of Table 2-1 apply.

Calculation: Because we know the acceleration is g, the
initial velocity v, is 0, and the displacement x — x;, is —h, we
use Eq.2-16 to find v:

v = V2gh = V/(2)(9.8 m/s?)(1200 m)
= 153 m/s =~ 550 km/h.

Had he known this, Shakespeare would scarcely have writ-
ten, “it droppeth as the gentle rain from heaven, upon the
place beneath.” In fact, the speed is close to that of a bullet
from a large-caliber handgun!

(Answer)

PLUS Additional examples, video, and practice available at WileyPLUS
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6-5 Uniform Circular Motion

From Section 4-7, recall that when a body moves in a circle (or a circular arc) at
constant speed v, it is said to be in uniform circular motion. Also recall that the
body has a centripetal acceleration (directed toward the center of the circle) of
constant magnitude given by

a=— (centripetal acceleration), (6-17)

where R is the radius of the circle.
Let us examine two examples of uniform circular motion:

1. Rounding a curve in a car. You are sitting in the center of the rear seat of a car
moving at a constant high speed along a flat road. When the driver suddenly
turns left, rounding a corner in a circular arc, you slide across the seat toward
the right and then jam against the car wall for the rest of the turn. What is
going on?

While the car moves in the circular arc, it is in uniform circular motion;
that is, it has an acceleration that is directed toward the center of the circle.
By Newton’s second law, a force must cause this acceleration. Moreover, the
force must also be directed toward the center of the circle. Thus, it is a cen-
tripetal force, where the adjective indicates the direction. In this example, the
centripetal force is a frictional force on the tires from the road; it makes the
turn possible.

If you are to move in uniform circular motion along with the car, there
must also be a centripetal force on you. However, apparently the frictional
force on you from the seat was not great enough to make you go in a circle
with the car. Thus, the seat slid beneath you, until the right wall of the car
jammed into you. Then its push on you provided the needed centripetal force
on you, and you joined the car’s uniform circular motion.

2. Orbiting Earth. This time you are a passenger in the space shuttle Atlantis. As
it and you orbit Earth, you float through your cabin. What is going on?

Both you and the shuttle are in uniform circular motion and have acceler-
ations directed toward the center of the circle. Again by Newton’s second law,
centripetal forces must cause these accelerations. This time the centripetal
forces are gravitational pulls (the pull on you and the pull on the shuttle) ex-
erted by Earth and directed radially inward, toward the center of Earth.

In both car and shuttle you are in uniform circular motion, acted on by a cen-
tripetal force—yet your sensations in the two situations are quite different. In
the car, jammed up against the wall, you are aware of being compressed by the
wall. In the orbiting shuttle, however, you are floating around with no sensation
of any force acting on you. Why this difference?

The difference is due to the nature of the two centripetal forces. In the car,
the centripetal force is the push on the part of your body touching the car wall.
You can sense the compression on that part of your body. In the shuttle, the
centripetal force is Earth’s gravitational pull on every atom of your body. Thus,
there is no compression (or pull) on any one part of your body and no sensation
of a force acting on you. (The sensation is said to be one of “weightlessness,” but
that description is tricky. The pull on you by Earth has certainly not disappeared
and, in fact, is only a little less than it would be with you on the ground.)

Another example of a centripetal force is shown in Fig. 6-8. There a hockey
puck moves around in a circle at constant speed v while tied to a string looped
around a central peg. This time the centripetal force is the radially inward pull on
the puck from the string. Without that force, the puck would slide off in a straight
line instead of moving in a circle.
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The puck moves
in uniform
circular motion
only because

of a toward-the-
center force.

Fig. 6-8 An overhead view of a hockey puck moving with constant speed v in a circular
path of radius R on a horizontal frictionless surface. The centripetal force on the puck is 7,
the pull from the string, directed inward along the radial axis r extending through the puck.

Note again that a centripetal force is not a new kind of force. The name merely
indicates the direction of the force. It can, in fact, be a frictional force, a gravitational
force, the force from a car wall or a string, or any other force. For any situation:

A centripetal force accelerates a body by changing the direction of the body’s
velocity without changing the body’s speed.

From Newton’s second law and Eq. 6-17 (a = v?/R), we can write the magnitude
F of a centripetal force (or a net centripetal force) as

2
1%
F=m ? (magnitude of centripetal force). (6-18)

Because the speed v here is constant, the magnitudes of the acceleration and the
force are also constant.

However, the directions of the centripetal acceleration and force are not con-
stant; they vary continuously so as to always point toward the center of the circle.
For this reason, the force and acceleration vectors are sometimes drawn along a
radial axis r that moves with the body and always extends from the center of the
circle to the body, as in Fig. 6-8. The positive direction of the axis is radially out-
ward, but the acceleration and force vectors point radially inward.

\'CH ECKPOINT 2

When you ride in a Ferris wheel at constant speed, what are the directions of your ac-
celeration @ and the normal force Fy on you (from the always upright seat) as you pass
through (a) the highest point and (b) the lowest point of the ride?

Sample Problem

Vertical circular loop, Diavolo

In a 1901 circus performance, Allo “Dare Devil” Diavolo

introduced the stunt of riding a bicycle in a loop-the-loop
(Fig. 6-9a). Assuming that the loop is a circle with radius
R = 2.7 m, what is the least speed v that Diavolo and his
bicycle could have at the top of the loop to remain in con-
tact with it there? g 3

We can assume that Diavolo and his bicycle travel through
the top of the loop as a single particle in uniform circular
motion. Thus, at the top, the acceleration @ of this particle
must have the magnitude a = v¥R given by Eq. 6-17 and be
directed downward, toward the center of the circular loop.
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(b)

Fig. 6-9 (a) Contemporary advertisement for Diavolo and
(b) free-body diagram for the performer at the top of the loop.
(Photograph in part a reproduced with permission of Circus
World Museum)

Calculations: The forces on the particle when it is at the
top of the loop are shown in the free-body diagram of Fig 6-
9b. The gravitational force F is downward along a y axis; so is
the normal force Fy on the partlcle from the loop; so also is
the centripetal acceleration of the particle. Thus, Newton’s
second law for y components (F,, = ma,) gives us

—Fy— F,=m(—a)

2
and —Fy — mg = m(—%). (6-19)
If the particle has the least speed v needed to remain in
contact, then it is on the verge of losing contact with the loop
(falling away from the loop), which means that Fy = 0 at the
top of the loop (the particle and loop touch but without any
normal force). Substituting 0 for Fy in Eq. 6-19, solving for v,

and then substituting known values give us

v = VgR = V(9.8 m/s?)(2.7 m)
= 5.1 m/s.

(Answer)

Comments: Diavolo made certain that his speed at the top
of the loop was greater than 5.1 m/s so that he did not lose
contact with the loop and fall away from it. Note that this
speed requirement is independent of the mass of Diavolo
and his bicycle. Had he feasted on, say, pierogies before his
performance, he still would have had to exceed only 5.1 m/s
to maintain contact as he passed through the top of the loop.

Sample Problem

Car in flat circular turn

Upside-down racing: A modern race car is designed so
that the passing air pushes down on it, allowing the car to
travel much faster through a flat turn in a Grand Prix without
friction failing. This downward push is called negative lift. Can
arace car have so much negative lift that it could be driven up-
side down on a long ceiling, as done fictionally by a sedan in
the first Men in Black movie?

Figure 6-10a represents a Grand Prix race car of mass
m = 600 kg as it travels on a flat track in a circular arc of
radius R = 100 m. Because of the shape of the car and the
wings on it, the passing air exerts a negative lift F, down-
ward on the car. The coefficient of static friction between
the tires and the track is 0.75. (Assume that the forces on the
four tires are identical.) =N

(a) If the car is on the verge of sliding out of the turn when
its speed is 28.6 m/s, what is the magnitude of the negative
lift F, acting downward on the car?

KEY IDEAS

1. A centripetal force must act on the car because the car
is moving around a circular arc; that force must be
directed toward the center of curvature of the arc (here,
that is horizontally).

2. The only horizontal force acting on the car is a frictional
force on the tires from the road. So the required cen-
tripetal force is a frictional force.

3. Because the car is not sliding, the frictional force must
be a static frictional force 7, (Fig. 6-10a).

4. Because the car is on the verge of sliding, the magnitude
/s is equal to the maximum value f; ,,,, = uFy, where Fy
is the magnitude of the normal force Fy acting on the
car from the track.

Radial calculations: The frictional force ?s is shown in the
free-body diagram of Fig. 6-105b. It is in the negative direc-



tion of a radial axis r that always extends from the center of
curvature through the car as the car moves. The force pro-
duces a centripetal acceleration of magnitude v%/R. We can
relate the force and acceleration by writing Newton’s sec-
ond law for components along the r axis (Fy., = ma,) as

VZ
—fi=m (—?) (6-20)
Substituting f; .. = uFy for f;leads us to
V2
wFy = m <?> (6-21)

Vertical calculations: Next, let’s consider the vertical
forces on the car. The normal force Fy is directed up, in the
positive direction of the y axis in Fig. 6-10b. The gravita-
tional force }Z = mg and the negative lift F, are directed
down. The acceleration of the car along the y axis is zero.
Thus we can write Newton’s second law for components
along the y axis (Fy, = ma,) as

FN_mg_FLZO,

or FN = mg + FL' (6'22)

Combining results: Now we can combine our results along
the two axes by substituting Eq. 6-22 for F in Eq. 6-21. Doing
so and then solving for F; lead to

VZ
F, = -
L=m < R g)
(28.6 m/s)? )
= (600 k) (= _ 9.8 m/s?
(600 ke) ( (0.75)(100 m) s
= 663.7N =~ 660 N. (Answer)

Friction: toward the

center

The toward-the-
center force is (a)
the frictional force.

Track-level view  (b)
of the forces
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(b) The magnitude F; of the negative lift on a car depends
on the square of the car’s speed v, just as the drag force
does (Eq. 6-14). Thus, the negative lift on the car here is
greater when the car travels faster, as it does on a straight
section of track. What is the magnitude of the negative lift
for a speed of 90 m/s?

KEY IDEA

F, is proportional to v2.

Calculations: Thus we can write a ratio of the negative lift
F; g9 at v = 90 m/s to our result for the negative lift /; atv =
28.6 m/s as

Froo  (90m/s)?

F,  (28.6m/s)*

Substituting our known negative lift of F; = 663.7 N and
solving for F g, give us

Fp 99 = 6572 N =~ 6600 N. (Answer)
Upside-down racing: The gravitational force is, of course,
the force to beat if there is a chance of racing upside down:

F, = mg = (600 kg)(9.8 m/s?)
= 5880 N.

With the car upside down, the negative lift is an upward
force of 6600 N, which exceeds the downward 5880 N. Thus,
the car could run on a long ceiling provided that it moves at
about 90 m/s (= 324 km/h = 201 mi/h). However, moving
that fast while right side up on a horizontal track is danger-
ous enough, so you are not likely to see upside-down racing
except in the movies.

A Normal force:
Fy helps support car

Car
)
Gravitational force:
Fg pulls car downward

Negative lift: presses
car downward

Fig. 6-10 (a) A race car moves around a flat curved track at constant speed v. The frictional
force f, provides the necessary centripetal force along a radial axis 7. (b) A free-body diagram (not
to scale) for the car, in the vertical plane containing .

F\,’V‘IL_EYU"S Additional examples, video, and practice available at WileyPLUS
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Sample Problem

Car in banked circular turn

Curved portions of highways are always banked (tilted) to
prevent cars from sliding off the highway. When a highway
is dry, the frictional force between the tires and the road
surface may be enough to prevent sliding. When the high-
way is wet, however, the frictional force may be negligible,
and banking is then essential. Figure 6-11a represents a car
of mass m as it moves at a constant speed v of 20 m/s
around a banked circular track of radius R = 190 m. (It is a
normal car, rather than a race car, which means any verti-
cal force from the passing air is negligible.) If the frictional
force from the track is negligible, what bank angle 6 pre-
vents sliding?

KEY IDEAS

Here the track is banked so as to tilt the normal force F, N on
the car toward the center of the circle (Fig. 6-11b). Thus, Fy
now has a centripetal component of magnitude Fy,, directed
inward along a radial axis ». We want to find the value of the
bank angle 6 such that this centripetal component keeps the
car on the circular track without need of friction.

Radial calculation: As Fig. 6-11b shows (and as you
should verify), the angle that force Fy makes with the ver-
tical is equal to the bank angle 6 of the track. Thus, the ra-
dial component Fy, is equal to Fy sin 6. We can now write
Newton’s second law for components along the r axis
(Fnet,r = mar) as

The toward-the-
center force is due
- to the tilted track.

2
—Fysin 0 = m (—V—> (6-23)
R
We cannot solve this equation for the value of 6 because it

also contains the unknowns Fy and m.

Vertical calculations: We next consider the forces and
acceleration along the y axis in Fig. 6-11b. The vertical com-
ponent of the normal force is Fy, = Fy cos 6, the gravita-
tional force F, on the car has the magnitude mg, and the ac-
celeration of the car along the y axis is zero. Thus we can
write Newton’s second law for components along the y axis

(Fnet,y = may) as

Fycos 0 — mg = m(0),
from which

Fycos 6 = mg. (6-24)
Combining results: Equation 6-24 also contains the
unknowns Fy and m, but note that dividing Eq. 6-23 by
Eq. 6-24 neatly eliminates both those unknowns. Doing so,
replacing (sin 6)/(cos ) with tan 6, and solving for 6 then
yield

2

6 = tan!

2 2
(20 m/s) = 12°. (Answer)

= t -1 =
A 79.8 m/s2)(190 m)

Tilted normal force
supports car and

L provides the toward-
REv ‘FNy the-center force.
[ 0
| Car
‘ r
FNT
= |-
a Fg
Track-level view v The gravitational force
of the forces n pulls car downward.

(a)

Fig. 6-11

(a) A car moves around a curved banked road at constant speed v. The bank angle is exaggerated for clarity. (b) A free-body dia-

gram for the car, assuming that friction between tires and road is zero and that the car lacks negative lift. The radially inward component Fy, of the
normal force (along radial axis r) provides the necessary centripetal force and radial acceleration.

ﬁVIEYUeS Additional examples, video, and practice available at WileyPLUS



Friction When a force F tends to slide a body along a surface, a
frictional force from the surface acts on the body. The frictional force
is parallel to the surface and directed so as to oppose the sliding. It is
due to bonding between the body and the surface.

If the body does not slide, the frictional force is a static fric-
tional force ]_‘; If there is sliding, the frictional force is a kinetic
frictional force fk

1. If a body does not move, the static frictional force )_‘: and the
component of F parallel to the surface are equal in magnitude,
and [, is directed opposite that component. If the component
increases, f; also increases.

2. The magnitude of 7. has a maximum value fs.max glven by
(6-1)

where p, is the coefficient of static friction and Fy is the magni-
tude of the normal force. If the component of F parallel to the
surface exceeds f; .« the body slides on the surface.

fs,max = MSFN7

3. If the body begins to slide on the surface, the magnitude of the
frictional force rapidly decreases to a constant value f; given
by

Jie = mucFns (6‘2)

where w, is the coefficient of kinetic friction.

Drag Force When there is relative motion between air (or
some other fluid) and a body, the body experiences a drag force D
that opposes the relative motion and points in the direction in
which the fluid flows relative to the body. The magnitude of D is

1 InFig 6-12,if the box is stationary and the angle 6 between the hor-
izontal and force F is increased somewhat, do the following quantities
increase, decrease, or remain the same: (a) F,; (b) £i; (¢) Fy: (d) fimax? (€)
If, instead, the box is sliding and 6 is increased, does the magnitude of
the frictional force on the box increase, decrease, or remain the same?

Fig. 6-12 Question 1.

2 Repeat Question 1 for force F angled upward instead of down-
ward as drawn.

3 In Fig. 6-13, horizontal force F, of magnitude 10 N is applied to
a box on a floor, but the box does not slide. Then, as the magnitude
of vertical force }?2 is increased from zero, do the following quanti-
ties increase, decrease, or stay the same: (a) the magnitude of the
frictional force ?X on the box; (b) the magnitude of the normal
force F, v on the box from the floor; (c) the maximum value f; . of
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related to the relative speed v by an experimentally determined
drag coefficient C according to

D = 1CpAv?, (6-14)

where pis the fluid density (mass per unit volume) and A is the ef-
fective cross-sectional area of the body (the area of a cross section
taken perpendicular to the relative velocity V).

Terminal Speed When a blunt object has fallen far enough
through air, the magnitudes of the drag force D and the gravita-
tional force Fg on the body become equal. The body then falls at a
constant terminal speed v, given by

NE
"INTCpA”

Uniform Circular Motion If a particle moves in a circle or a
circular arc of radius R at constant speed v, the particle is said to be
in uniform circular motion. It then has a centripetal acceleration @
with magnitude given by

(6-16)

(6-17)

a = —.

R

This acceleration is due to a net centripetal force on the particle,
with magnitude given by

F=— (6-18)

where m is the particle’s mass. The vector quantities @ and F are di-
rected toward the center of curvature of the particle’s path.

the magnitude of the static frictional force on the box? (d) Does
the box eventually slide?

Fy

Fig. 6-13 Question 3.

4 In three experiments, three different horizontal forces are ap-
plied to the same block lying on the same countertop. The force
magnitudes are F; = 12 N, F, = 8 N, and F; = 4 N. In each experi-
ment, the block remains stationary in spite of the applied force.
Rank the forces according to (a) the magnitude f; of the static fric-
tional force on the block from the countertop and (b) the maximum
value f; ., of that force, greatest first.

5 If you press an apple crate against a wall so hard that the crate
cannot slide down the wall, what is the direction of (a) the static
frictional force f, on the crate from the wall and (b) the normal
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force F, v on the crate from the wall? If you F
increase your push, what happens to (c) f,, /V

(d) FN’ and (e)fs,max?

6 In Fig.6-14,a block of mass m is held sta- U
tionary on a ramp by the frictional force on Fig. 6-14
it from the ramp. A force F, directed up the Question 6.

ramp, is then applied to the block and gradu-

ally increased in magnitude from zero. During the increase, what
happens to the direction and magnitude of the frictional force on
the block?

7 Reconsider Question 6 but with the force F now directed
down the ramp. As the magnitude of F is increased from zero,
what happens to the direction and magnitude of the frictional
force on the block?

8 In Fig. 6-15, a horizontal force of 100 N is to be applied to a 10
kg slab that is initially stationary on a frictionless floor, to accel-
erate the slab. A 10 kg block lies on top of the slab; the coefficient
of friction u between the block and the slab is not known, and the
block might slip. (a) Considering that possibility, what is the pos-

Block
sm;# 100N

Fig. 6-15 Question 8.

sible range of values for the magnitude of the slab’s acceleration
ag.? (Hint: You don’t need written calculations; just consider ex-
treme values for u.) (b) What is the possible range for the magni-
tude ay,, Of the block’s acceleration?

9 Figure 6-16 shows the path of a
park ride that travels at constant 2 3
speed through five circular arcs of 5
radii Ry, 2R, and 3R,. Rank the arcs 1 4

according to the magnitude of the
centripetal force on a rider traveling
in the arcs, greatest first.

Fig. 6-16 Question 9.
10 =% 1In 1987, as a Halloween stunt, two sky divers passed a
pumpkin back and forth between them while they were in free fall
just west of Chicago. The stunt was great fun until the last sky diver
with the pumpkin opened his parachute. The pumpkin broke free
from his grip, plummeted about 0.5 km, ripped through the roof of
a house, slammed into the kitchen floor, and splattered all over the
newly remodeled kitchen. From the sky diver’s viewpoint and from
the pumpkin’s viewpoint, why did the sky diver lose control of the
pumpkin?

11 A person riding a Ferris wheel moves through positions at (1)
the top, (2) the bottom, and (3) midheight. If the wheel rotates at a
constant rate, rank these three positions according to (a) the mag-
nitude of the person’s centripetal acceleration, (b) the magnitude
of the net centripetal force on the person, and (c) the magnitude of
the normal force on the person, greatest first.
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Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual
e —eee Number of dots indicates level of problem difficulty

WWW Worked-out solution is at
ILW Interactive solution is at

http://www.wiley.com/college/halliday

«%0 Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

sec. 6-3 Properties of Friction

*1  The floor of a railroad flatcar is loaded with loose crates hav-
ing a coefficient of static friction of 0.25 with the floor. If the train is
initially moving at a speed of 48 km/h, in how short a distance can
the train be stopped at constant acceleration without causing the
crates to slide over the floor?

*2 In a pickup game of dorm shuffleboard, students crazed by fi-
nal exams use a broom to propel a calculus book along the dorm
hallway. If the 3.5 kg book is pushed from rest through a distance
of 0.90 m by the horizontal 25 N force from the broom and then
has a speed of 1.60 m/s, what is the coefficient of kinetic friction be-
tween the book and floor?

°3 ssM WWwWW A bedroom bureau with a mass of 45 kg, includ-
ing drawers and clothing, rests on the floor. (a) If the coefficient of
static friction between the bureau and the floor is 0.45, what is the
magnitude of the minimum horizontal force that a person must ap-
ply to start the bureau moving? (b) If the drawers and clothing,
with 17 kg mass, are removed before the bureau is pushed, what is
the new minimum magnitude?

°4 A slide-loving pig slides down a certain 35° slide in twice the
time it would take to slide down a frictionless 35° slide. What is the
coefficient of kinetic friction between the pig and the slide?

*5 @ A 2.5 kg block is initially at rest on a horizontal surface. A
horizontal force F of magnitude 6.0 N and a vertical force P are
then applied to the block (Fig. 6-17). The coefficients of friction for
the block and surface are p, = 0.40 and w, = 0.25. Determine the
magnitude of the frictional force acting on the block if the magni-
tude of Pis (a) 8.0 N, (b) 10 N,and (c) 12 N.

G

| F
—_—

Fig. 6-17 Problem 5.

*6 A baseball player with mass m = 79 kg, sliding into second
base, is retarded by a frictional force of magnitude 470 N. What is


http://www.wiley.com/college/halliday

the coefficient of kinetic friction u;, between the player and the
ground?

°7 ssm ILW A person pushes horizontally with a force of 220 N
on a 55 kg crate to move it across a level floor. The coefficient of ki-
netic friction is 0.35. What is the magnitude of (a) the frictional
force and (b) the crate’s acceleration?

°8 =% The mysterious sliding stones. Along the remote
Racetrack Playa in Death Valley, California, stones sometimes
gouge out prominent trails in the desert floor, as if the stones
had been migrating (Fig. 6-18). For years curiosity mounted
about why the stones moved. One explanation was that strong
winds during occasional rainstorms would drag the rough stones
over ground softened by rain. When the desert dried out, the
trails behind the stones were hard-baked in place. According to
measurements, the coefficient of kinetic friction between the
stones and the wet playa ground is about 0.80. What horizontal
force must act on a 20 kg stone (a typical mass) to maintain the
stone’s motion once a gust has started it moving? (Story contin-
ues with Problem 37.)

Fig. 6-18 Problem 8. What moved the stone? (Jerry Schad/

Photo Researchers)

9 @ A 3.5kg block is pushed
along a horizontal floor by a force

F of magnitude 15 N at an angle 4

0 =40° with the horizontal

(Fig. 6-19). The coefficient of ki- 7
netic friction between the block Fig. 6-19

and the floor is 0.25. Calculate the Problems 9 and 32.

magnitudes of (a) the frictional
force on the block from the floor
and (b) the block’s acceleration.

y F
*10 Figure 6-20 shows an initially L /{V
stationary block of mass m on a x ~_ U _
floor. A force of magnitude
0.500mg is then applied at upward
angle = 20°. What is the magni-
tude of the acceleration of the
block across the floor if the friction coefficients are (a) u, = 0.600
and g, = 0.500 and (b) u, = 0.400 and u, = 0.300?

Fig. 6-20 Problem 10.
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°11 ssm A 68 kg crate is dragged across a floor by pulling on
a rope attached to the crate and inclined 15° above the horizontal.
(a) If the coefficient of static friction is 0.50, what minimum force
magnitude is required from the rope to start the crate moving? (b)
If w = 0.35, what is the magnitude of the initial acceleration of the
crate?

*12 In about 1915, Henry Sincosky of Philadelphia suspended
himself from a rafter by gripping the rafter with the thumb of each
hand on one side and the fingers on the opposite
side (Fig. 6-21). Sincosky’s mass was 79 kg. If the
coefficient of static friction between hand and
rafter was 0.70, what was the least magnitude of
the normal force on the rafter from each thumb or
opposite fingers? (After suspending himself,
Sincosky chinned himself on the rafter and then
moved hand-over-hand along the rafter. If you do
not think Sincosky’s grip was remarkable, try to
repeat his stunt.)

*13 A worker pushes horizontally on a 35 kg
crate with a force of magnitude 110 N. The coeffi-
cient of static friction between the crate and the
floor is 0.37. (a) What is the value of f; ,,, under
the circumstances? (b) Does the crate move?
(c) What is the frictional force on the crate from
the floor? (d) Suppose, next, that a second worker
pulls directly upward on the crate to help out.
What is the least vertical pull that will allow the
first worker’s 110 N push to move the crate? (e) If,
instead, the second worker pulls horizontally to
help out, what is the least pull that will get the crate moving?

Fig. 6-21
Problem 12.

*14  Figure 6-22 shows the cross section of a road cut into the side
of a mountain. The solid line AA’ represents a weak bedding plane
along which sliding is possible. Block B directly above the highway
is separated from uphill rock by a large crack (called a joint), so
that only friction between the block and the bedding plane pre-
vents sliding. The mass of the block is 1.8 X 107 kg, the dip angle 6
of the bedding plane is 24°, and the coefficient of static friction be-
tween block and plane is 0.63. (a) Show that the block will not slide
under these circumstances. (b) Next, water seeps into the joint and
expands upon freezing, exerting on the block a force F parallel to
AA’.What minimum value of force magnitude F will trigger a slide
down the plane?

Joint with ice

Fig. 6-22 Problem 14.

*15 The coefficient of static friction between Teflon and scram-
bled eggs is about 0.04. What is the smallest angle from the hori-
zontal that will cause the eggs to slide across the bottom of a
Teflon-coated skillet?
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16 A loaded penguin sled weighing 80 N rests on a plane in-
clined at angle # = 20° to the horizontal (Fig. 6-23). Between the
sled and the plane, the coefficient of static friction is 0.25, and the
coefficient of kinetic friction is 0.15. (a) What is the least magni-
tude of the force F, parallel to the plane, that will prevent the sled
from slipping down the plane? (b) What is the minimum magni-
tude F that will start the sled moving up the plane? (c) What
value of F is required to move the sled up the plane at constant
velocity?

=

Fig. 6-23 Problems 16 and 22.

*17 In Fig. 6-24, a force P acts on a block weighing 45 N. The
block is initially at rest on a plane inclined at angle § = 15° to the
horizontal. The positive direction of the x axis is up the plane. The
coefficients of friction between block and plane are u, = 0.50 and
i = 0.34. In unit-vector notation, what is the frictional force on
the block from the plane when P is (a) (—5.0 N)i, (b) (—8.0 N)i,
and (c) (—15 N)i?

P
0
Fig. 6-24 Problem 17.

*18 You testify as an expert witness in a case involving an acci-
dent in which car A slid into the rear of car B, which was stopped at
a red light along a road headed down a hill (Fig. 6-25). You find
that the slope of the hill is # = 12.0°, that the cars were separated
by distance d = 24.0 m when the driver of car A put the car into a
slide (it lacked any automatic anti-brake-lock system), and that the
speed of car A at the onset of braking was v, = 18.0 m/s. With what
speed did car A hit car B if the coefficient of kinetic friction was (a)
0.60 (dry road surface) and (b) 0.10 (road surface covered with wet
leaves)?

Fig. 6-25 Problem 18.

19 A 12N horizontal force F y
pushes a block weighing 5.0N
against a vertical wall (Fig. 6-26). The
coefficient of static friction between
the wall and the block is 0.60, and
the coefficient of kinetic friction is
0.40. Assume that the block is not

V=l

Fig. 6-26 Problem 19.

moving initially. (a) Will the block move? (b) In unit-vector nota-
tion, what is the force on the block from the wall?

*20 @ In Fig. 6-27, a box of Cheerios (mass mc = 1.0 kg) and a
box of Wheaties (mass my, = 3.0 kg) are accelerated across a hori-
zontal surface by a horizontal force F applied to the Cheerios box.
The magnitude of the frictional force on the Cheerios box is 2.0 N,
and the magnitude of the frictional force on the Wheaties box is 4.0
N. If the magnitude of F is 12 N, what is the magnitude of the force
on the Wheaties box from the Cheerios box?

me

7 |

Fig. 6-27 Problem 20.

*21 An initially stationary box of sand is to be pulled across a
floor by means of a cable in which the tension should not
exceed 1100 N. The coefficient of static friction between the box
and the floor is 0.35. (a) What should be the angle between the
cable and the horizontal in order to pull the greatest possible
amount of sand, and (b) what is the weight of the sand and box
in that situation?

*22 @ In Fig. 6-23, a sled is held on an inclined plane by a cord
pulling directly up the plane. The sled is to be on the verge of mov-
ing up the plane. In Fig. 6-28, the magnitude F required of the
cord’s force on the sled is plotted versus a range of values for the
coefficient of static friction u, between sled and plane: F; = 2.0 N,
F, =5.0N,and u, = 0.50. At what angle 6is the plane inclined?

F
2
K
' U
Fig. 6-28 Problem 22.
2

*23 When the three blocks in Fig.
6-29 are released from rest, they ac-
celerate with a magnitude of 0.500
m/s2. Block 1 has mass M, block 2 !
has 2M, and block 3 has 2M. What is

the coefficient of kinetic friction be-
tween block 2 and the table?

24 A 4.10kg block is pushed
along a floor by a constant applied v
force that is horizontal and has a

o

Fig. 6-29 Problem 23.

magnitude of 40.0 N. Figure 6-30 -+

gives the block’s speed v versus £

time ¢ as the block moves along anx >

axis on the floor. The scale of the fig-

ure’s vertical axis is set by v, = 5.0 0 0f5 1?0
m/s. What is the coefficient of L (s)

kinetic friction between the block

and the floor? Fig. 6-30 Problem 24.



*25 ssm www Block B in Fig.
6-31 weighs 711 N.The coefficient of
static friction between block and
table is 0.25; angle 6 is 30°; assume
that the cord between B and the
knot is horizontal. Find the maxi-
mum weight of block A for which
the system will be stationary.

*26 @ TFigure 6-32 shows three

crates being pushed over a concrete Fig. 6-31 Problem 25.
floor by a horizontal force F of

magnitude 440 N. The masses of the

crates are m; = 30.0 kg, m, = 10.0 my

kg, and mj; = 20.0 kg. The coeffi- my

cient of kinetic friction between the
floor and each of the crates is 0.700.
(a) What is the magnitude F, of the
force on crate 3 from crate 2? (b) If
the crates then slide onto a polished
floor, where the coefficient of kinetic
friction is less than 0.700, is magni-
tude F3, more than, less than, or the Frictionless,

same as it was when the coefficient massless pulley

was 0.700? )
27 Body A in Fig. 6-33 weighs ?

102 N, and body B weighs 32 N. The f
coefficients of friction between A
and the incline are w, = 0.56 and
e = 0.25. Angle 6 is 40°. Let the
positive direction of an x axis be up
the incline. In unit-vector notation,
what is the acceleration of A if A is
initially (a) at rest, (b) moving up the incline, and (c¢) moving
down the incline?

3

—
— —
— —
— —
— —
— —

Fig. 6-32 Problem 26.

&

0

Fig. 6-33
Problems 27 and 28.

%28 In Fig. 6-33, two blocks are connected over a pulley. The
mass of block A is 10 kg, and the coefficient of kinetic friction be-
tween A and the incline is 0.20. Angle 6 of the incline is 30°. Block
A slides down the incline at constant speed. What is the mass of
block B?

*29 In Fig. 6-34, blocks A and B have weights of 44 N and 22 N,
respectively. (a) Determine the minimum weight of block C to
keep A from sliding if u, between A and the table is 0.20. (b) Block
C suddenly is lifted off A. What is the acceleration of block A if
between A and the table is 0.15?

Frictionless,
m massless pulley

Fig. 6-34 Problem 29.

*30 A toy chest and its contents have a combined weight of 180
N. The coefficient of static friction between toy chest and floor is
0.42. The child in Fig. 6-35 attempts to move the chest across the
floor by pulling on an attached rope. (a) If #is 42°, what is the mag-

PART 1

PROBLEMS 133

nitude of the force F that the child must exert on the rope to put
the chest on the verge of moving? (b) Write an expression for the
magnitude F required to put the chest on the verge of moving as a
function of the angle 6. Determine (c) the value of 6 for which F'is
aminimum and (d) that minimum magnitude.

Fig. 6-35 Problem 30.

*31 ssm Two blocks, of weights 3.6 N and 7.2 N, are connected
by a massless string and slide down a 30° inclined plane. The coeffi-
cient of kinetic friction between the lighter block and the plane is
0.10, and the coefficient between the heavier block and the plane is
0.20. Assuming that the lighter block leads, find (a) the magnitude
of the acceleration of the blocks and (b) the tension in the taut
string.

*32 @ A block is pushed across a floor by a constant force that
is applied at downward angle 6 (Fig. 6-19). Figure 6-36 gives the ac-
celeration magnitude a versus a range of values for the coefficient
of kinetic friction u, between block and floor: a; = 3.0 m/s?, u, =
0.20,and w3 = 0.40. What is the value of 6?

a

‘0
—ay

*33 ssM A 1000 kg boat is traveling at 90 km/h when its engine
is shut off. The magnitude of the frictional force f, between boat
and water is proportional to the speed v of the boat: f, = 70v,
where v is in meters per second and f; is in newtons. Find the time
required for the boat to slow to 45 km/h.

=y
#Nkz

Fig. 6-36 Problem 32.

s34 (@ InTFig.6-37,aslab of mass m; = 40 kg rests on a friction-
less floor, and a block of mass m, = 10 kg rests on top of the slab.
Between block and slab, the coefficient of static friction is 0.60, and
the coefficient of kinetic friction is 0.40. A horizontal force F of
magnitude 100 N begins to pull directly on the block, as shown. In
unit-vector notation, what are the resulting accelerations of (a) the
block and (b) the slab?

F mo
p=0-"!

X

Fig. 6-37 Problem 34.
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*ee35 LW The two blocks (m = 16 kg and M = 88 kg) in Fig. 6-38
are not attached to each other. The co-
efficient of static friction between the
blocks is u, = 0.38, but the surface
beneath the larger block is friction- 4 M
less. What is the minimum magnitude ;
of the horizontal force F required to

l’ﬁjl 3

Frictionless

keep the smaller block from slipping

down the larger block? Fig. 6-38 Problem 35.

sec. 6-4 The Drag Force and Terminal Speed

*36 The terminal speed of a sky diver is 160 km/h in the spread-
eagle position and 310 km/h in the nosedive position. Assuming
that the diver’s drag coefficient C does not change from one posi-
tion to the other, find the ratio of the effective cross-sectional area
A in the slower position to that in the faster position.

37 %= Continuation of Problem 8. Now assume that Eq. 6-14
gives the magnitude of the air drag force on the typical 20 kg stone,
which presents to the wind a vertical cross-sectional area of 0.040
m? and has a drag coefficient C of 0.80. Take the air density to be
1.21 kg/m3, and the coefficient of kinetic friction to be 0.80. (a) In
kilometers per hour, what wind speed V along the ground is
needed to maintain the stone’s motion once it has started moving?
Because winds along the ground are retarded by the ground, the
wind speeds reported for storms are often measured at a height of
10 m. Assume wind speeds are 2.00 times those along the ground.
(b) For your answer to (a), what wind speed would be reported for
the storm? (c) Is that value reasonable for a high-speed wind in a
storm? (Story continues with Problem 65.)

*38 Assume Eq. 6-14 gives the drag force on a pilot plus ejection
seat just after they are ejected from a plane traveling horizontally
at 1300 km/h. Assume also that the mass of the seat is equal to the
mass of the pilot and that the drag coefficient is that of a sky diver.
Making a reasonable guess of the pilot’s mass and using the ap-
propriate v, value from Table 6-1, estimate the magnitudes of (a)
the drag force on the pilot + seat and (b) their horizontal deceler-
ation (in terms of g), both just after ejection. (The result of (a)
should indicate an engineering requirement: The seat must in-
clude a protective barrier to deflect the initial wind blast away
from the pilot’s head.)

*39 Calculate the ratio of the drag force on a jet flying at 1000
km/h at an altitude of 10 km to the drag force on a prop-driven
transport flying at half that speed and altitude. The density of air is
0.38 kg/m? at 10 km and 0.67 kg/m? at 5.0 km. Assume that the air-
planes have the same effective cross-sectional area and drag coeffi-
cient C.

40 =% In downhill speed skiing a skier is retarded by both the
air drag force on the body and the kinetic frictional force on the
skis. (a) Suppose the slope angle is 6 = 40.0°, the snow is dry snow
with a coefficient of kinetic friction w, = 0.0400, the mass of the
skier and equipment is m = 85.0 kg, the cross-sectional area of the
(tucked) skier is A = 1.30 m?, the drag coefficient is C = 0.150, and
the air density is 1.20 kg/m>. (a) What is the terminal speed? (b) If a
skier can vary C by a slight amount dC by adjusting, say, the hand
positions, what is the corresponding variation in the terminal
speed?

sec. 6-5 Uniform Circular Motion
°41 A cat dozes on a stationary merry-go-round, at a radius of 5.4
m from the center of the ride. Then the operator turns on the ride

and brings it up to its proper turning rate of one complete rotation
every 6.0 s. What is the least coefficient of static friction between
the cat and the merry-go-round that will allow the cat to stay in
place, without sliding?

°42 Suppose the coefficient of static friction between the road
and the tires on a car is 0.60 and the car has no negative lift. What
speed will put the car on the verge of sliding as it rounds a level
curve of 30.5 m radius?

°43 ILW What is the smallest radius of an unbanked (flat) track
around which a bicyclist can travel if her speed is 29 km/h and the
1, between tires and track is 0.32?

*44 During an Olympic bobsled run, the Jamaican team makes a
turn of radius 7.6 m at a speed of 96.6 km/h. What is their accelera-
tion in terms of g?

45 ssM LW =% A student of weight 667 N rides a steadily
rotating Ferris wheel (the student sits upright). At the highest
point, the magnitude of the normal force Fy on the student from
the seat is 556 N. (a) Does the student feel “light” or “heavy”
there? (b) What is the magnitude of Fy at the lowest point? If the
wheel’s speed is doubled, what is the magnitude Fy at the (c) high-
est and (d) lowest point?

%46 A police officer in hot pursuit drives her car through a circular
turn of radius 300 m with a constant speed of 80.0 km/h. Her mass is
55.0 kg. What are (a) the magnitude and (b) the angle (relative to ver-
tical) of the net force of the officer on the car seat? (Hint: Consider
both horizontal and vertical forces.)

ee47 <%= A circular-motion addict of mass 80 kg rides a Ferris
wheel around in a vertical circle of radius 10 m at a constant speed
of 6.1 m/s. (a) What is the period of the motion? What is the mag-
nitude of the normal force on the addict from the seat when both
go through (b) the highest point of the circular path and (c) the
lowest point?

*48 %= A roller-coaster car has a mass of 1200 kg when fully
loaded with passengers. As the car passes over the top of a circu-
lar hill of radius 18 m, its speed is not changing. At the top of the
hill, what are the (a) magnitude Fy and (b) direction (up or
down) of the normal force on the car from the track if the car’s
speed is v = 11 m/s? What are (c) Fy and (d) the direction if v =
14 m/s?

*49 In Fig. 6-39, a car is driven at constant speed over a circular
hill and then into a circular valley with the same radius. At the top
of the hill, the normal force on the driver from the car seat is 0. The
driver’s mass is 70.0 kg. What is the magnitude of the normal force
on the driver from the seat when the car passes through the bottom

of the valley?
! Radius !
\ //

Fig. 6-39 Problem 49.

*50 An 85.0 kg passenger is made to move along a circular path
of radius r = 3.50 m in uniform circular motion. (a) Figure 6-40a is
a plot of the required magnitude F of the net centripetal force for a
range of possible values of the passenger’s speed v. What is the



plot’s slope at v = 8.30 m/s? (b) Figure 6-40b is a plot of F for a
range of possible values of T, the period of the motion. What is the
plot’s slope at 7= 2.50 s?

Fig. 6-40 Problem 50.

51 ssMm Www An airplane is flying in a horizontal circle at a
speed of 480 km/h (Fig. 6-41). If its wings are tilted at angle § = 40°
to the horizontal, what is the radius of the circle in which the plane is
flying? Assume that the required force is provided entirely by an
“aerodynamic lift” that is perpendicular to the wing surface.

Problem 51.

Fig. 6-41

*52 <%= An amusement park ride consists of a car moving in a
vertical circle on the end of a rigid boom of negligible mass. The
combined weight of the car and riders is 5.0 kN, and the circle’s ra-
dius is 10 m. At the top of the circle, what are the (a) magnitude Fjp
and (b) direction (up or down) of the force on the car from the
boom if the car’s speed is v = 5.0 m/s? What are (c) Fz and (d) the
direction if v = 12 m/s?

*e53 An old streetcar rounds a flat corner of radius 9.1 m, at 16
km/h. What angle with the vertical will be made by the loosely
hanging hand straps?

*e54 =%= In designing circular rides for amusement parks,
mechanical engineers must consider how small variations in cer-
tain parameters can alter the net force on a passenger. Consider a
passenger of mass m riding around a horizontal circle of radius r at
speed v. What is the variation dF in the net force magnitude for (a)
a variation dr in the radius with v held constant, (b) a variation dv
in the speed with r held constant, and (c) a variation d7 in the pe-
riod with r held constant?

*e55 A bolt is threaded onto one end of a thin horizontal rod, and
the rod is then rotated horizontally about its other end. An engi-
neer monitors the motion by flashing a strobe lamp onto the rod
and bolt, adjusting the strobe rate until the bolt appears to be in the
same eight places during each full rotation of the rod (Fig. 6-42). The
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strobe rate is 2000 flashes per second,; Bolt
the bolt has mass 30 g and is at radius
3.5 cm. What is the magnitude of the
force on the bolt from the rod?
56 @ A banked circular highway Strobed
curve is designed for traffic moving positions

at 60 km/h. The radius of the curve is
200 m. Traffic is moving along the
highway at 40 km/h on a rainy day.
What is the minimum coefficient of
friction between tires and road that will allow cars to take the turn
without sliding off the road? (Assume the cars do not have nega-
tive lift.)

57 @ A puck of mass m = 1.50
kg slides in a circle of radius
r=20.0cm on a frictionless table
while attached to a hanging cylinder
of mass M = 2.50 kg by means of a
cord that extends through a hole in
the table (Fig. 6-43). What speed
keeps the cylinder at rest?

Fig. 6-42 Problem 55.

*58 =% Brake or turn? Figure
6-44 depicts an overhead view of a
car’s path as the car travels toward a
wall. Assume that the driver begins
to brake the car when the distance
to the wall is d = 107 m, and take
the car’s mass as m = 1400 kg, its
initial speed as v, = 35 m/s, and the
coefficient of static friction as u, = /
0.50. Assume that the car’s weight is
distributed evenly on the four
wheels, even during braking. (a)
What magnitude of static friction is Wall
needed (between tires and road) to
stop the car just as it reaches the
wall? (b) What is the maximum pos-
sible static friction f; ,..? (c) If the
coefficient of kinetic friction between the (sliding) tires and the
road is u; = 0.40, at what speed will the car hit the wall? To avoid
the crash, a driver could elect to turn the car so that it just barely
misses the wall, as shown in the figure. (d) What magnitude of fric-
tional force would be required to keep the car in a circular path of
radius d and at the given speed v, so that the car moves in a quar-
ter circle and then parallel to the wall? (e) Is the required force
less than f; ., so that a circular path
is possible?

Fig. 6-43
Problem 57.

Car path .~

Fig. 6-44
Problem 58.

eee59 ssm ILW In Fig. 6-45,a 1.34 -
kg ball is connected by means of two

massless strings, each of length L =

1.70 m, to a vertical, rotating rod. d
The strings are tied to the rod with
separation d = 1.70 m and are taut. \
The tension in the upper string is —
35 N. What are the (a) tension in the

lower string, (b) magnitude of the (LI Rotating rod
net force F)ne[ on the ball, and (c)
speed of the ball? (d) What is the di-

; =
rection of F.?

Fig. 6-45 Problem 59.
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Additional Problems

60 In Fig. 6-46, a box of ant aunts (total mass m; = 1.65 kg) and
a box of ant uncles (total mass m, = 3.30 kg) slide down an in-
clined plane while attached by a

massless rod parallel to the plane.

The angle of incline is 6 = 30.0°.

The coefficient of kinetic friction

between the aunt box and the in-

cline is u; = 0.226; that between

the uncle box and the incline is

mo = 0.113. Compute (a) the ten- 0
sion in the rod and (b) the magni-
tude of the common acceleration
of the two boxes. (¢) How would
the answers to (a) and (b) change if the uncles trailed the aunts?

Fig. 6-46 Problem 60.

61 ssm A block of mass m, = 4.0
kg is put on top of a block of mass
m,;, = 5.0 kg. To cause the top block
to slip on the bottom one while the
bottom one is held fixed, a horizon-
tal force of at least 12 N must be ap-
plied to the top block. The assembly
of blocks is now placed on a hori-
zontal, frictionless table (Fig. 6-47). Find the magnitudes of (a) the
maximum horizontal force F that can be applied to the lower block
so that the blocks will move together and (b) the resulting acceler-
ation of the blocks.

my

— F

my

Fig. 6-47 Problem 61.

62 A 5.00 kg stone is rubbed across the horizontal ceiling of a
cave passageway (Fig. 6-48). If the coefficient of kinetic friction is
0.65 and the force applied to the stone is angled at 6 = 70.0°, what
must the magnitude of the force be for the stone to move at constant
velocity?

Stone

Fig. 6-48 Problem 62.

63 =% In Fig. 6-49, a 49 kg rock climber is climbing a “chim-
ney.” The coefficient of static friction between her shoes and the

R
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Fig. 6-49 Problem 63.

rock is 1.2; between her back and the rock is 0.80. She has reduced
her push against the rock until her back and her shoes are on the
verge of slipping. (a) Draw a free-body diagram of her. (b) What is
the magnitude of her push against the rock? (c) What fraction of
her weight is supported by the frictional force on her shoes?

64 A high-speed railway car goes around a flat, horizontal circle
of radius 470 m at a constant speed. The magnitudes of the hori-
zontal and vertical components of the force of the car on a 51.0 kg
passenger are 210 N and 500 N, respectively. (a) What is the magni-
tude of the net force (of a/l the forces) on the passenger? (b) What
is the speed of the car?

65 =% Continuation of Problems 8 and 37. Another explana-
tion is that the stones move only when the water dumped on the
playa during a storm freezes into a large, thin sheet of ice. The
stones are trapped in place in the ice. Then, as air flows across
the ice during a wind, the air-drag forces on the ice and stones
move them both, with the stones gouging out the trails. The magni-
tude of the air-drag force on this horizontal “ice sail” is given by
Dj.. = 4Ci.pAicev?, where Cy. is the drag coefficient (2.0 X 1073), p
is the air density (1.21 kg/m?), A, is the horizontal area of the ice,
and v is the wind speed along the ice.

Assume the following: The ice sheet measures 400 m by 500 m
by 4.0 mm and has a coefficient of kinetic friction of 0.10 with the
ground and a density of 917 kg/m>. Also assume that 100 stones
identical to the one in Problem 8 are trapped in the ice. To main-
tain the motion of the sheet, what are the required wind speeds (a)
near the sheet and (b) at a height of 10 m? (c) Are these reason-
able values for high-speed winds in a storm?

66 @ In Fig. 6-50, block 1 of mass m; = 2.0 kg and block 2 of
mass m, = 3.0 kg are connected by a string of negligible mass and
are initially held in place. Block 2 is on a frictionless surface tilted
at 6 = 30°. The coefficient of kinetic friction between block 1 and
the horizontal surface is 0.25. The pulley has negligible mass and
friction. Once they are released, the blocks move. What then is the
tension in the string?

my
0

Fig. 6-50 Problem 66.

67 In Fig. 6-51, a crate slides down an inclined right-angled
trough. The coefficient of kinetic friction between the crate and the
trough is ;. What is the acceleration of the crate in terms of w, 6,
and g?

90°

0

Fig. 6-51 Problem 67.

68 Engineering a highway curve. If a car goes through a curve too
fast, the car tends to slide out of the curve. For a banked curve with



friction, a frictional force acts on a fast car to oppose the tendency
to slide out of the curve; the force is directed down the bank (in the
direction water would drain). Consider a circular curve of radius
R =200 m and bank angle 6, where the coefficient of static friction
between tires and pavement is u,. A car (without negative lift) is
driven around the curve as shown in Fig. 6-11. (a) Find an expres-
sion for the car speed v,,, that puts the car on the verge of sliding
out. (b) On the same graph, plot v, versus angle 6 for the range 0°
to 50°, first for w,=0.60 (dry pavement) and then for
s = 0.050 (wet or icy pavement). In kilometers per hour, evaluate
Vmay fOT @ bank angle of 6 = 10° and for (c) u, = 0.60 and (d) u, =
0.050. (Now you can see why accidents occur in highway curves
when icy conditions are not obvious to drivers, who tend to drive at
normal speeds.)

69 A student, crazed by final exams, uses a force Pof magnitude
80 N and angle 6 = 70° to push a 5.0 kg block across the ceiling of
his room (Fig. 6-52). If the coefficient of kinetic friction between the
block and the ceiling is 0.40, what is the magnitude of the block’s ac-
celeration?

fF

fo |

Fig. 6-52 Problem 69.

70 Figure 6-53 shows a conical pendulum, in which the bob (the
small object at the lower end of the
cord) moves in a horizontal circle
at constant speed. (The cord
sweeps out a cone as the bob ro-
tates.) The bob has a mass of 0.040
kg, the string has length L = 0.90 m
and negligible mass, and the bob

follows a circular path of circumfer- ~ Cord
ence 0.94 m. What are (a) the ten-

sion in the string and (b) the period

of the motion? L

71 An 8.00 kg block of steel is at
rest on a horizontal table. The co-
efficient of static friction between
the block and the table is 0.450. A
force is to be applied to the block.
To three significant figures, what is N
the magnitude of that applied force
if it puts the block on the verge of
sliding when the force is directed
(a) horizontally, (b) upward at
60.0° from the horizontal, and (c) downward at 60.0° from the
horizontal?

Fig. 6-53 Problem 70.

72 A box of canned goods slides down a ramp from street level
into the basement of a grocery store with acceleration 0.75 m/s? di-
rected down the ramp. The ramp makes an angle of 40° with the
horizontal. What is the coefficient of kinetic friction between the
box and the ramp?

73 In Fig. 6-54, the coefficient of kinetic friction between the
block and inclined plane is 0.20, and angle #is 60°. What are the (a)
magnitude a and (b) direction (up or down the plane) of the

PART 1

PROBLEMS 137

block’s acceleration if the block is sliding down the
plane? What are (c) a and (d) the direction if the
block is sent sliding up the plane?

74 A 110 g hockey puck sent sliding over ice is
stopped in 15 m by the frictional force on it from 0
the ice. (a) If its initial speed is 6.0 m/s, what is the
magnitude of the frictional force? (b) What is the
coefficient of friction between the puck and the ice?

Fig. 6-54
Problem 73.

75 A locomotive accelerates a 25-car train along a level track.
Every car has a mass of 5.0 X 10 kg and is subject to a frictional
force f = 250v, where the speed v is in meters per second and the
force fis in newtons. At the instant when the speed of the train is 30
km/h, the magnitude of its acceleration is 0.20 m/s%. (a) What is the
tension in the coupling between the first car and the locomotive?
(b) If this tension is equal to the maximum force the locomotive
can exert on the train, what is the steepest grade up which the loco-
motive can pull the train at 30 km/h?

76 A house is built on the top of a hill with a nearby slope at angle
0 = 45° (Fig. 6-55). An engineering study indicates that the slope an-
gle should be reduced because the top layers of soil along the slope
might slip past the lower layers. If the coefficient of static friction be-
tween two such layers is 0.5, what is the least angle ¢ through which
the present slope should be reduced to prevent slippage?

New slope

Original slope —

Fig. 6-55 Problem 76.

77 What is the terminal speed of a 6.00 kg spherical ball that has
a radius of 3.00 cm and a drag coefficient of 1.60? The density of
the air through which the ball falls is 1.20 kg/m>.

78 A student wants to determine the coefficients of static fric-
tion and kinetic friction between a box and a plank. She places
the box on the plank and gradually raises one end of the plank.
When the angle of inclination with the horizontal reaches 30°, the
box starts to slip, and it then slides 2.5 m down the plank in 4.0 s
at constant acceleration. What are (a) the coefficient of static fric-
tion and (b) the coefficient of kinetic friction between the box
and the plank?

79 ssm Block A in Fig. 6-56 has mass m, = 4.0 kg, and block B has
mass mp = 2.0 kg. The coefficient of kinetic friction between block B

Frictionless,
massless pulley

Fig. 6-56 Problem 79.
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and the horizontal plane is u;, = 0.50. The inclined plane is frictionless
and at angle 6 = 30°. The pulley serves only to change the direction
of the cord connecting the blocks. The cord has negligible mass.
Find (a) the tension in the cord and (b) the magnitude of the accel-
eration of the blocks.

80 Calculate the magnitude of the drag force on a missile 53 cm
in diameter cruising at 250 m/s at low altitude, where the density of
air is 1.2 kg/m?3. Assume C = 0.75.

81 ssm A bicyclist travels in a circle of radius 25.0 m at a con-
stant speed of 9.00 m/s. The bicycle—rider mass is 85.0 kg. Calculate
the magnitudes of (a) the force of friction on the bicycle from the
road and (b) the net force on the bicycle from the road.

82 In Fig. 6-57, a stuntman drives a car (without negative lift)
over the top of a hill, the cross section of which can be
approximated by a circle of radius R = 250 m. What is the greatest
speed at which he can drive without the car leaving the road at the
top of the hill?

Fig. 6-57 Problem 82.

83 You must push a crate across a floor to a docking bay. The
crate weighs 165 N. The coefficient of static friction between crate
and floor is 0.510, and the coefficient of kinetic friction is 0.32. Your
force on the crate is directed horizontally. (a) What magnitude of
your push puts the crate on the verge of sliding? (b) With what
magnitude must you then push to keep the crate moving at a con-
stant velocity? (c) If, instead, you then push with the same magni-
tude as the answer to (a), what is the magnitude of the crate’s ac-
celeration?

84 In Fig. 6-58, force Fis applied to a crate of mass m on a floor
where the coefficient of static friction between crate and floor is
. Angle 6 is initially 0° but is gradually increased so that the
force vector rotates clockwise in the figure. During the rotation,
the magnitude F of the force is continuously adjusted so that the
crate is always on the verge of sliding. For u, = 0.70, (a) plot the
ratio F/mg versus 0 and (b) determine the angle 6, at which the
ratio approaches an infinite value. (c) Does lubricating the floor
increase or decrease 6, or is the value unchanged? (d) What is 6,
for u, = 0.60?

y
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Fig. 6-58 Problem 84.

85 In the early afternoon, a car is parked on a street that runs
down a steep hill, at an angle of 35.0° relative to the horizontal. Just
then the coefficient of static friction between the tires and the
street surface is 0.725. Later, after nightfall, a sleet storm hits the

area, and the coefficient decreases due to both the ice and a chemi-
cal change in the road surface because of the temperature de-
crease. By what percentage must the coefficient decrease if the car
is to be in danger of sliding down the street?

86 =% A sling-thrower puts a stone (0.250 kg) in the sling’s
pouch (0.010 kg) and then begins to make the stone and pouch
move in a vertical circle of radius 0.650 m. The cord between the
pouch and the person’s hand has negligible mass and will break
when the tension in the cord is 33.0 N or more. Suppose the sling-
thrower could gradually increase the speed of the stone. (a) Will
the breaking occur at the lowest point of the circle or at the highest
point? (b) At what speed of the stone will that breaking occur?

87 ssm A car weighing 10.7 kN and traveling at 13.4 m/s without
negative lift attempts to round an unbanked curve with a radius of
61.0 m. (a) What magnitude of the frictional force on the tires is re-
quired to keep the car on its circular path? (b) If the coefficient of
static friction between the tires and the road is 0.350, is the attempt
at taking the curve successful?

88 In Fig. 6-59, block 1 of mass m; = 2.0 kg and block 2 of mass
m, = 1.0 kg are connected by a string of negligible mass. Block 2 is
pushed by force F of magnitude 20 N and angle 6 = 35°. The coef-
ficient of kinetic friction between each block and the horizontal
surface is 0.20. What is the tension in the string?

Fig. 6-59 Problem 88.

89 ssm A filing cabinet weighing 556 N rests on the floor. The
coefficient of static friction between it and the floor is 0.68, and the
coefficient of kinetic friction is 0.56. In four different attempts to
move it, it is pushed with horizontal forces of magnitudes (a) 222
N, (b) 334 N, (c) 445 N, and (d) 556 N. For each attempt, calculate
the magnitude of the frictional force on it from the floor. (The cabi-
net is initially at rest.) (¢) In which of the attempts does the cabinet
move?

90 In Fig. 6-60, a block weighing 22 N is held at

rest against a vertical wall by a horizontal force F

of magnitude 60 N. The coefficient of static friction 7
between the wall and the block is 0.55, and the co-
efficient of kinetic friction between them is 0.38. In
six experiments, a second force Pis applied to the
block and directed parallel to the wall with these
magnitudes and directions: (a) 34 N, up, (b) 12 N,
up, (c) 48 N, up, (d) 62 N, up, () 10 N, down, and (f)
18 N, down. In each experiment, what is the magni-
tude of the frictional force on the block? In which
does the block move (g) up the wall and (h) down the wall? (i) In
which is the frictional force directed down the wall?

Fig. 6-60
Problem 90.

91 ssm A block slides with constant velocity down an inclined
plane that has slope angle 6. The block is then projected up the
same plane with an initial speed v,. (a) How far up the plane will it
move before coming to rest? (b) After the block comes to rest,
will it slide down the plane again? Give an argument to back your
answer.



92 A circular curve of highway is designed for traffic moving at
60 km/h. Assume the traffic consists of cars without negative lift.
(a) If the radius of the curve is 150 m, what is the correct angle of
banking of the road? (b) If the curve were not banked, what would
be the minimum coefficient of friction between tires and road that
would keep traffic from skidding out of the turn when traveling at
60 km/h?

93 A 1.5 kgboxisinitially at rest on a horizontal surface when at 7 =
0 a horizontal force F = (1.8¢)i N (with ¢in seconds) is applied to the
box. The acceleration of the box as a function of time ¢ is given by
@=0for0=t=28sand @ = (1.2t — 2.4)i m/s? for t >2.8s. (a)
What is the coefficient of static friction between the box and the sur-
face? (b) What is the coefficient of kinetic friction between the box
and the surface?

94 A child weighing 140 N sits at rest at the top of a playground
slide that makes an angle of 25° with the horizontal. The child keeps
from sliding by holding onto the sides of the slide. After letting go
of the sides, the child has a constant acceleration of 0.86 m/s? (down
the slide, of course). (a) What is the coefficient of kinetic friction be-
tween the child and the slide? (b) What maximum and minimum
values for the coefficient of static friction between the child and the
slide are consistent with the infor-

mation given here? [

at an angle 6 with the vertical, and \

m, and wy, are the coefficients of sta-

tic and kinetic friction between the Y
head of the mop and the floor.
Ignore the mass of the handle and
assume that all the mop’s mass m is

95 In Fig. 6-61 a fastidious worker
pushes directly along the handle of
a mop with a force F . The handle is

Fig. 6-61 Problem 95.
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in its head. (a) If the mop head moves along the floor with a con-
stant velocity, then what is F? (b) Show that if 6 is less than a cer-
tain value 6, then F (still directed along the handle) is unable to
move the mop head. Find 6.

96 A child places a picnic basket on the outer rim of a merry-go-
round that has a radius of 4.6 m and revolves once every 30s. (a)
What is the speed of a point on that rim? (b) What is the lowest
value of the coefficient of static friction between basket and merry-
go-round that allows the basket to stay on the ride?

97 ssm A warchouse worker exerts a constant horizontal force
of magnitude 85 N on a 40 kg box that is initially at rest on the hor-
izontal floor of the warehouse. When the box has moved a distance
of 1.4 m, its speed is 1.0 m/s. What is the coefficient of kinetic fric-
tion between the box and the floor?

98 In Fig.6-62,a 5.0 kg block is sent sliding up a plane inclined at
6 = 37° while a horizontal force F of magnitude 50 N acts on it.
The coefficient of kinetic friction between block and plane is 0.30.
What are the (a) magnitude and (b) direction (up or down the
plane) of the block’s acceleration? The block’s initial speed is 4.0
m/s. (c) How far up the plane does the block go? (d) When it
reaches its highest point, does it remain at rest or slide back down
the plane?

=1

0

Fig. 6-62 Problem 98.
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CHAPTER

KINETIC ENERGY
AND WORK

'H WHAT IS PHYSICS?

One of the fundamental goals of physics is to investigate something that
everyone talks about: energy. The topic is obviously important. Indeed, our civi-
lization is based on acquiring and effectively using energy.

For example, everyone knows that any type of motion requires energy:
Flying across the Pacific Ocean requires it. Lifting material to the top floor of
an office building or to an orbiting space station requires it. Throwing a fastball
requires it. We spend a tremendous amount of money to acquire and use en-
ergy. Wars have been started because of energy resources. Wars have been
ended because of a sudden, overpowering use of energy by one side. Everyone
knows many examples of energy and its use, but what does the term energy re-
ally mean?

7-2 What s Energy?

The term energy is so broad that a clear definition is difficult to write. Technically,
energy is a scalar quantity associated with the state (or condition) of one or more
objects. However, this definition is too vague to be of help to us now.

A looser definition might at least get us started. Energy is a number that we
associate with a system of one or more objects. If a force changes one of the
objects by, say, making it move, then the energy number changes. After countless
experiments, scientists and engineers realized that if the scheme by which we
assign energy numbers is planned carefully, the numbers can be used to predict
the outcomes of experiments and, even more important, to build machines, such
as flying machines. This success is based on a wonderful property of our uni-
verse: Energy can be transformed from one type to another and transferred
from one object to another, but the total amount is always the same (energy is
conserved). No exception to this principle of energy conservation has ever been
found.

Think of the many types of energy as being numbers representing money in
many types of bank accounts. Rules have been made about what such money
numbers mean and how they can be changed. You can transfer money numbers
from one account to another or from one system to another, perhaps electroni-
cally with nothing material actually moving. However, the total amount (the
total of all the money numbers) can always be accounted for: It is always
conserved.

In this chapter we focus on only one type of energy (kinetic energy) and on
only one way in which energy can be transferred (work). In the next chapter we
examine a few other types of energy and how the principle of energy conserva-
tion can be written as equations to be solved.



7-3 KINETIC ENERGY 141

7-3 Kinetic Energy

Kinetic energy K is energy associated with the state of motion of an object. The
faster the object moves, the greater is its kinetic energy. When the object is
stationary, its kinetic energy is zero.

For an object of mass m whose speed v is well below the speed of light,

K= %mvz (kinetic energy). (7-1)

For example, a 3.0 kg duck flying past us at 2.0 m/s has a kinetic energy of
6.0 kg - m?/s% that is, we associate that number with the duck’s motion.

The ST unit of kinetic energy (and every other type of energy) is the joule (J),
named for James Prescott Joule, an English scientist of the 1800s. It is defined
directly from Eq.7-1 in terms of the units for mass and velocity:

1joule = 1J = 1kg-m?s%
Thus, the flying duck has a kinetic energy of 6.0 J.

Sample Problem

Kinetic energy, train crash

(7-2)

In 1896 in Waco, Texas, William Crush parked two locomo-
tives at opposite ends of a 6.4-km-long track, fired them up,
tied their throttles open, and then allowed them to crash
head-on at full speed (Fig. 7-1) in front of 30,000 spectators.
Hundreds of people were hurt by flying debris; several were
killed. Assuming each locomotive weighed 1.2 X 10° N and
its acceleration was a constant 0.26 m/s?, what was the total
kinetic energy of the two locomotives just before the
collision? s 2

KEY IDEAS

(1) We need to find the kinetic energy of each locomotive
with Eq. 7-1, but that means we need each locomotive’s
speed just before the collision and its mass. (2) Because we
can assume each locomotive had constant acceleration, we
can use the equations in Table 2-1 to find its speed v just be-
fore the collision.

The aftermath of an 1896 crash of two locomotives.
(Courtesy Library of Congress)

Fig. 7-1

Calculations: We choose Eq.2-16 because we know values We can find the mass of each locomotive by dividing its

for all the variables except v:
v: =3+ 2a(x — x).
With vy = 0 and x — x;, = 3.2 X 10°> m (half the initial sepa-
ration), this yields
v2 =0+ 2(0.26 m/s?)(3.2 X 103 m),
or v =40.8 m/s

(about 150 km/h).

WILEY

given weight by g:
1.2 X 10N
=————— =122 X 10°kg.
T o8 me? 0"ke
Now, using Eq. 7-1, we find the total kinetic energy of
the two locomotives just before the collision as
K =2(mv?) = (1.22 X 10° kg)(40.8 m/s)?
=2.0 X 10%].
This collision was like an exploding bomb.

(Answer)

PLUS Additional examples, video, and practice available at WileyPLUS
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7-4 Work

If you accelerate an object to a greater speed by applying a force to the object,
you increase the kinetic energy K (= % mv?) of the object. Similarly, if you decel-
erate the object to a lesser speed by applying a force, you decrease the kinetic
energy of the object. We account for these changes in kinetic energy by saying
that your force has transferred energy to the object from yourself or from the
object to yourself. In such a transfer of energy via a force, work W is said to be

done on the object by the force. More formally, we define work as follows:

Work Wis energy transferred to or from an object by means of a force acting on
the object. Energy transferred to the object is positive work, and energy transferred
from the object is negative work.

“Work,” then, is transferred energy; “doing work” is the act of transferring the
energy. Work has the same units as energy and is a scalar quantity.

The term transfer can be misleading. It does not mean that anything material
flows into or out of the object; that is, the transfer is not like a flow of water.
Rather, it is like the electronic transfer of money between two bank accounts:
The number in one account goes up while the number in the other account goes
down, with nothing material passing between the two accounts.

Note that we are not concerned here with the common meaning of the word
“work,” which implies that any physical or mental labor is work. For example, if
you push hard against a wall, you tire because of the continuously repeated mus-
cle contractions that are required, and you are, in the common sense, working.
However, such effort does not cause an energy transfer to or from the wall and
thus is not work done on the wall as defined here.

To avoid confusion in this chapter, we shall use the symbol W only for work
and shall represent a weight with its equivalent mg.

7-5 Work and Kinetic Energy
Finding an Expression for Work

Let us find an expression for work by considering a bead that can slide along
a frictionless wire that is stretched along a horizontal x axis (Fig. 7-2). A constant
force F , directed at an angle ¢ to the wire, accelerates the bead along the wire.
We can relate the force and the acceleration with Newton’s second law, written
for components along the x axis:

E\’ = ma, (7_3)

where m is the bead’s mass. As the bead moves through a displacement d, the
force changes the bead’s velocity from an initial value v, to some other value V.
Because the force is constant, we know that the acceleration is also constant.
Thus, we can use Eq. 2-16 to write, for components along the x axis,

v2 =i+ 2a.d. (7-4)
Solving this equation for a,, substituting into Eq. 7-3, and rearranging then give us
Imv? =i} = Ed. (7-5)

The first term on the left side of the equation is the kinetic energy K of the bead
at the end of the displacement d, and the second term is the kinetic energy K; of
the bead at the start of the displacement. Thus, the left side of Eq. 7-5 tells us
the kinetic energy has been changed by the force, and the right side tells us the
change is equal to F,d. Therefore, the work W done on the bead by the force
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(the energy transfer due to the force) is
W=Fd. (7-6)

If we know values for F, and d, we can use this equation to calculate the work W
done on the bead by the force.

To calculate the work a force does on an object as the object moves through some
displacement, we use only the force component along the object’s displacement. The
force component perpendicular to the displacement does zero work.

From Fig. 7-2, we see that we can write F, as F cos ¢, where ¢ is the angle
between the directions of the displacement d and the force F.Thus,

W = Fd cos ¢ (work done by a constant force). (7-7)

Because the right side of this equation is equivalent to the scalar (dot) product
F - d,we can also write

W=Fd (work done by a constant force), (7-8)

where F is the magnitude of F. (You may wish to review the discussion of scalar
products in Section 3-8.) Equation 7-8 is especially useful for calculating the work
when F and d are given in unit-vector notation.

This component

Small initial This force does positive work
does no work.

kinetic energy on the bead, increasing speed
F and kinetic energy.

~ Wire

X

Bead—/ /

This component
does work.

Fig. 7-2 A constant force F directed at . =
angle ¢ to the displacement d of a bead on a Llarg(.er final £
wire accelerates the bead along the wire, kinetic energy I Ks/q)/v
changing the velocity of the bead from v, to V.

A “kinetic energy gauge” indicates the result- >

ing change in the kinetic energy of the bead,
from the value K; to the value K.

e

Displacement d

Cautions: There are two restrictions to using Egs. 7-6 through 7-8 to calculate
work done on an object by a force. First, the force must be a constant force; that —> !’:
is, it must not change in magnitude or direction as the object moves. (Later, we
shall discuss what to do with a variable force that changes in magnitude.) Second, G
the object must be particle-like. This means that the object must be rigid; all parts
of it must move together, in the same direction. In this chapter we consider only Fig. 7-3 A contestant in a bed race. We
particle-like objects, such as the bed and its occupant being pushed in Fig. 7-3. can approximate the bed and its occupant

Signs for work. The work done on an object by a force can be either positive as being a particle for the purpose of calcu-
work or negative work. For example, if angle ¢ in Eq.7-7 is less than 90°, then cos ¢pis  lating the work done on them by the force
positive and thus so is the work. If ¢ is greater than 90° (up to 180°), then cos ¢pis  applied by the student.
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negative and thus so is the work. (Can you see that the work is zero when ¢ = 90°?)
These results lead to a simple rule. To find the sign of the work done by a force, con-
sider the force vector component that is parallel to the displacement:

A force does positive work when it has a vector component in the same direction
as the displacement, and it does negative work when it has a vector component in the
opposite direction. It does zero work when it has no such vector component.

Units for work. Work has the SI unit of the joule, the same as kinetic energy.
However, from Egs. 7-6 and 7-7 we can see that an equivalent unit is the newton-
meter (N-m). The corresponding unit in the British system is the foot-pound
(ft-1b). Extending Eq. 7-2, we have

1J=1kg-m%s?=1N-m = 0.738 ft - Ib. (7-9)

Net work done by several forces. When two or more forces act on an object,
the net work done on the object is the sum of the works done by the individual
forces. We can calculate the net work in two ways. (1) We can find the work
done by each force and then sum those works. (2) Alternatively, we can first
find the net force Fi, of those forces. Then we can use Eq. 7-7, substituting the
magnitude F for F and also the angle between the directions of F. and d
for ¢. Similarly, we can use Eq. 7-8 with F, substituted for F.

Work - Kinetic Energy Theorem

Equation 7-5 relates the change in kinetic energy of the bead (from an initial
K; = 3mv} to a later K; = 3mv?) to the work W (= F,d) done on the bead. For
such particle-like objects, we can generalize that equation. Let AK be the change
in the kinetic energy of the object, and let W be the net work done on it. Then

AK=K;,— K;=W, (7-10)
which says that

<change in the kinetic> B (net work done on)

energy of a particle / the particle

We can also write

K;=K, +W, (7-11)
which says that

kinetic energy after | kinetic energy the net
the net work is done/ = \before the net work work done /)

These statements are known traditionally as the work—Kkinetic energy theorem
for particles. They hold for both positive and negative work: If the net work done
on a particle is positive, then the particle’s kinetic energy increases by the amount
of the work. If the net work done is negative, then the particle’s kinetic energy
decreases by the amount of the work.

For example, if the kinetic energy of a particle is initially 5 J and there is a
net transfer of 2 J to the particle (positive net work), the final kinetic energy is
7 J. If, instead, there is a net transfer of 2 J from the particle (negative net work),
the final kinetic energy is 3 J.

\. CHECKPOINT 1

A particle moves along an x axis. Does the kinetic energy of the particle increase, de-
crease, or remain the same if the particle’s velocity changes (a) from —3 m/s to —2 m/s
and (b) from —2 m/s to 2 m/s? (c) In each situation, is the work done on the particle
positive, negative, or zero?
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Sample Problem

Work done by two constant forces, industrial spies

Figure 7-4a shows two industrial spies sliding an initially
stationary 225 kg floor safe a displacement d  of magnitude
8.50 m, straight toward their truck. The push F, of spy 001 is
12.0 N, directed at an angle of 30.0° downward from the hor-
izontal; the pull Fz of spy 002 is 10.0 N, directed at 40.0°
above the horizontal. The magnitudes and directions of
these forces do not change as the safe moves, and the floor
and safe make frictionless contact.

(a) What is the net work done on the safe by forces F, 1 and
F, during the displacement d?

KEY IDEAS

(1) The net work W done on the safe by the two forces is the
sum of the works they do individually. (2) Because we can
treat the safe as a particle and the forces are constant in
both magnitude and direction, we can use either Eq. 7-7
(W = Fd cos ¢) or Eq. 7-8 (W = F+d) to calculate those
works. Since we know the magnitudes and directions of the
forces, we choose Eq.7-7.

Calculations: From Eq. 7-7 and the free-body diagram for
the safe in Flg 7-4b, the work done by F,is

= Fid cos ¢, = (12.0 N)(8.50 m)(cos 30.0°)
=88.33],

and the work done by F,is

W, = F,d cos ¢, = (10.0 N)(8.50 m)(cos 40.0°)
=65.111J.
Thus, the net work W is
W=W, +W,=8833J + 65.11]
=1534J = 1531. (Answer)

During the 8.50 m displacement, therefore, the spies trans-
fer 153 J of energy to the kinetic energy of the safe.

Fig. 7-4 (a) Two spies move a floor safe through a
displacement d. (b) A free-body diagram for the safe.

WILEY I}
PLUS

(b) During the displacement, what i is the work W, done on
the safe by the gravitational force F and what is the work
Wy done on the safe by the normal force FN from the
floor?

KEY IDEA

Because these forces are constant in both magnitude and di-
rection, we can find the work they do with Eq. 7-7.

Calculations: Thus, with mg as the magnitude of the gravi-
tational force, we write

W, = mgd cos 90° = mgd(0) =
and Wy = Fyd cos 90° = Fyd(0) = 0

We should have known this result. Because these forces are
perpendicular to the displacement of the safe, they do zero
work on the safe and do not transfer any energy to or from it.

(Answer)

(Answer)

(c) The safe is initially stationary. What is its speed vy at the
end of the 8.50 m displacement?

KEY IDEA

The speed of the safe changes because its kinetic energy is
changed when energy is transferred to it by F, 1and F2

Calculations: We relate the speed to the work done by

combining Egs. 7-10 and 7-1:
W =K;— K, = ymv} — jmv2.

The initial speed v; is zero, and we now know that the work
done is 153.4 J. Solving for v, and then substituting known
data, we find that

B \/ZW B \/2(153.4])
“Nm N 225kg

= 1.17 m/s.

(Answer)

Spy 00
py 002 Only force components

parallel to the displacement
do work.

Safe

By

(a)

Additional examples, video, and practice available at WileyPLUS
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Sample Problem

Work done by a constant force in unit-vector notation

During a storm, a crate of crepe is sliding across a slick,
oily parking lot through a displacement d = (—3.0 m)i
while a steady wind pushes against the crate with a force
F = (20N)i + (—6.0N)j. The situation and coordinate
axes are shown in Fig. 7-5.

(a) How much work does this force do on the crate during
the displacement?

KEY IDEA

Because we can treat the crate as a particle and because the
wind force is constant (“steady”) in both magnitude and direc-
tion during the displacement, we can use either Eq. 7-7 (W =
Fd cos ¢) or Eq.7-8 (W = F-d) to calculate the work. Since
we know F and d in unit-vector notation, we choose Eq. 7-8.

Calculations: We write
W=F-d=[20N)i + (=6.0N)j]-[(—3.0 m)i].

Of the possible unit-vector dot products, only -1, j -], and

The parallel force component does
negative work, slowing the crate.

)
Fig. 7-5 Force F H_E_E \L ‘ .
slows a crate during <— M F
displacement d. d

Thus, the force does a negative 6.0 J of work on the crate, trans-
ferring 6.0 J of energy from the kinetic energy of the crate.

(b) If the crate has a kinetic energy of 10 J at the beginning
of displacement d, what is its kinetic energy at the end of d?

KEY IDEA

Because the force does negative work on the crate, it re-
duces the crate’s kinetic energy.

Calculation: Using the work—kinetic energy theorem in

the form of Eq.7-11, we have
K=K, +W=10] + (—-6.0J) =4.01.

k -k are nonzero (see Appendix E). Here we obtain
=(=6.0)(1) +0=—-6.01J.

WILEY ®

PLUS Additional examples, video, and practice available at WileyPLUS

(Answer)

(Answer)  Less kinetic energy means that the crate has been slowed.

7-6 Work Done by the Gravitational Force

We next examine the work done on an object by the gravitational force acting on
it. Figure 7-6 shows a particle-like tomato of mass m that is thrown upward with
initial speed v, and thus with initial kinetic energy K; = mvj. As the tomato
rises, it is slowed b}; a gravitational force I_’;; that is, the tomato’s kinetic energy
decreases because F, does work on the tomato as it rises. Because we can treat
the tomato as a particle, we can use Eq. 7-7 (W = Fd cos ¢) to express the work
done during a displacement d. For the force magnitude F, we use mg as the mag-
nitude of 17;, Thus, the work W, done by the gravitational force Ii, is

1 W

The force does negative

A
Fg
work, decreasing speed
and kinetic energy.

F, W, = mgd cos ¢

S

(7-12)

(work done by gravitational force).

For a rising object, force Fg is directed opposite the displacement d, as indi-
%T cated in Fig. 7-6. Thus, ¢ = 180° and

W, = mgd cos 180° = mgd(—1) = —mgd. (7-13)

Fig. 7-6 Because the gravitational force
F“g acts on it, a particle-like tomato of mass
m thrown upward slows from velocity ¥, to
velocity ¥ during displacement d. A Kinetic
energy gauge indicates the resulting change
in the kinetic energy of the tomato, from

K; (= smv}) to K, (= srv?).

The minus sign tells us that during the object’s rise, the gravitational force acting
on the object transfers energy in the amount mgd from the kinetic energy of the
object. This is consistent with the slowing of the object as it rises.

After the object has reached its maximum height and is falling back down,
the angle ¢ between force F ¢ and displacement d is zero. Thus,

W, = mgd cos 0° = mgd(+1) = +mgd. (7-14)
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The plus sign tells us that the gravitational force now transfers energy in the amount
mgd to the kinetic energy of the object. This is consistent with the speeding up of the
object as it falls. (Actually, as we shall see in Chapter 8, energy transfers associated
with lifting and lowering an object involve the full object—Earth system.)

Work Done in Lifting and Lowering an Object

Now suppose we lift a particle-like object by applying a vertical force F to it.
During the upward displacement, our applied force does positive work W, on the
object while the gravitational force does negative work W, on it. Our applied
force tends to transfer energy to the object while the gravitational force tends to
transfer energy from it. By Eq. 7-10, the change AK in the kinetic energy of the
object due to these two energy transfers is

AK =K, — K, = W, + W, (7-15)

in which K} is the kinetic energy at the end of the displacement and K; is that at
the start of the displacement. This equation also applies if we lower the object,
but then the gravitational force tends to transfer energy fo the object while our
force tends to transfer energy from it.

In one common situation, the object is stationary before and after the lift—
for example, when you lift a book from the floor to a shelf. Then K, and K; are
both zero, and Eq. 7-15 reduces to

W, + W, =0

or W,=—-W,.

(7-16)
Note that we get the same result if K; and K; are not zero but are still equal.
Either way, the result means that the work done by the applied force is the nega-
tive of the work done by the gravitational force; that is, the applied force transfers
the same amount of energy to the object as the gravitational force transfers from

the object. Using Eq. 7-12, we can rewrite Eq. 7-16 as
W, = —mgdcos ¢ (work done in lifting and lowering; K, = K;), (7-17)

with ¢ being the angle between F; and d.If the displacement is vertically upward
(Fig. 7-7a), then ¢ = 180° and the work done by the applied force equals mgd.
If the displacement is vertically downward (Fig. 7-7b), then ¢ = 0° and the work
done by the applied force equals —mgd.

Equations 7-16 and 7-17 apply to any situation in which an object is lifted or
lowered, with the object stationary before and after the lift. They are independent
of the magnitude of the force used. For example, if you lift a mug from the floor to
over your head, your force on the mug varies considerably during the lift. Still,
because the mug is stationary before and after the lift, the work your force does
on the mug is given by Eqgs. 7-16 and 7-17, where, in Eq. 7-17, mg is the weight of
the mug and d is the distance you lift it.

N Does
Fig. 7-7 (a) An applied force F lifts Fi U.pward 7 negative
an object. The object’s displacement d displacement Object—. work
makes an angle ¢ = 180° with the
gravitational force F, on the object. Does fg Does
The applied force does positive worE F  positive positive
on the object. (b) An applied force F work work
lowers an object. The displacement d
of the object makes an angle ¢ = 0° Object Does _| Downward
with.the gravitational for.ce F,. The F, negative ad| g splacement
applied force does negative work on work v

the object. (a) 0
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Sample Problem

Work done on an accelerating elevator cab

An elevator cab of mass m = 500 kg is descending with speed
v; = 4.0 m/s when its supporting cable begins to slip, allowing
it to fall with constant acceleration @ = g/5 (Fig. 7-8a).

(a) During the fall through a distance d = 12 m, what is the
work W, done on the cab by the gravitational force F,?

KEY IDEA

We can treat the cab as a particle and thus use Eq. 7-12
(W, = mgd cos ¢) to find the work W,.

Calculation: From Fig. 7-8b, we see that the angle between
the directions of F, and the cab’s displacement d is 0°.
Then, from Eq.7-12, we find

W, = mgd cos 0° = (500 kg)(9.8 m/s?)(12 m)(1)
=5.88 X 10*J = 59 kI.

(b) During the 12 m fall, what is the work W; done on the
cab by the upward pull 7 of the elevator cable?

KEY IDEAS

(1) We can calculate work W, with Eq.7-7 (W = Fd cos ¢) if
we first find an expression for the magnitude 7 of the cable’s
pull. (2) We can find that expression by writing Newton’s
second law for components along the y axis in Fig. 7-8b
(Fnet,y = may)'

(Answer)

Calculations: We get

T — F, = ma. (7-18)

Solving for 7, substituting mg for F,, and then substituting
the result in Eq. 7-7, we obtain

W= Tdcos ¢ = m(a + g)d cos ¢. (7-19)

Next, substituting —g/5 for the (downward) acceleration a
and then 180° for the angle ¢ between the directions of
forces T'and mg, we find

4
Wr = m(—% F g)dcosqﬁ = ?mgdcosd)

% (500 kg)(9.8 m/s?)(12 m) cos 180°

—4.70 X 10*J = —47KJ.

(Answer)

Caution: Note that Wy is not simply the negative of W,.
The reason is that, because the cab accelerates during the

3
=<

=

PL

c

fall, its speed changes during the fall, and thus its kinetic
energy also changes. Therefore, Eq. 7-16 (which assumes
that the initial and final kinetic energies are equal) does
not apply here.

(c) What is the net work W done on the cab during the fall?

Calculation: The net work is the sum of the works done by
the forces acting on the cab:

W=W,+ W;=588X10*J — 470 X 10*J
=118 X 10*J = 12 kJ.

(d) What is the cab’s kinetic energy at the end of the 12 m
fall?

KEY IDEA

The kinetic energy changes because of the net work done on
the cab, according to Eq. 7-11 (K, = K; + W).

(Answer)

Calculation: From Eq. 7-1, we can write the kinetic energy

at the start of the fall as K; = %mv?. We can then write Eq.

7-11 as
K=K + W= mi}+W
= 1(500 kg)(4.0 m/s)> + 1.18 X 10*7J

=1.58 X 10*]J = 16 kJ. (Answer)
' Elevator
'/cable
_-ﬂi‘t i
Does
T negative
[ Cab\ work
_, Does
= £y positive
d
work
v

(a) (b)

Fig. 7-8 An elevator cab, descending with speed v;, suddenly
begins to accelerate downward. (a) It moves through a displacement
d with constant acceleration @ = g/5. (b) A free-body diagram for
the cab, displacement included.

S Additional examples, video, and practice available at WileyPLUS
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7-7 Work Done by a Spring Force

We next want to examine the work done on a particle-like object by a particular
type of variable force—namely, a spring force, the force from a spring. Many
forces in nature have the same mathematical form as the spring force. Thus, by
examining this one force, you can gain an understanding of many others.

The Spring Force

Figure 7-9a shows a spring in its relaxed state —that is, neither compressed nor
extended. One end is fixed, and a particle-like object—a block, say—is attached
to the other, free end. If we stretch the spring by pulling the block to the right as
in Fig. 7-9b, the spring pulls on the block toward the left. (Because a spring
force acts to restore the relaxed state, it is sometimes said to be a restoring force.)
If we compress the spring by pushing the block to the left as in Fig. 7-9¢, the
spring now pushes on the block toward the right.

To a good approximation for many springs, the force F, from a spring is pro-
portional to the displacement d of the free end from its position when the spring
is in the relaxed state. The spring force is given by

F; = —kd (Hooke’s law), (7-20)

which is known as Hooke’s law after Robert Hooke, an English scientist of the
late 1600s. The minus sign in Eq. 7-20 indicates that the direction of the spring
force is always opposite the direction of the displacement of the spring’s free end.
The constant £ is called the spring constant (or force constant) and is a measure
of the stiffness of the spring. The larger k is, the stiffer the spring; that is, the larger
k is, the stronger the spring’s pull or push for a given displacement. The SI unit for
k is the newton per meter.

In Fig. 7-9 an x axis has been placed parallel to the length of the spring, with
the origin (x = 0) at the position of the free end when the spring is in its relaxed
state. For this common arrangement, we can write Eq.7-20 as

F.= —kx (Hooke’s law), (7-21)

where we have changed the subscript. If x is positive (the spring is stretched
toward the right on the x axis), then F| is negative (it is a pull toward the left). If
x is negative (the spring is compressed toward the left), then F, is positive (it is a
push toward the right). Note that a spring force is a variable force because it is a
function of x, the position of the free end. Thus F, can be symbolized as F(x). Also
note that Hooke’s law is a linear relationship between F, and x.

The Work Done by a Spring Force

To find the work done by the spring force as the block in Fig. 7-9a moves, let us
make two simplifying assumptions about the spring. (1) It is massless; that is, its
mass is negligible relative to the block’s mass. (2) It is an ideal spring; that is, it
obeys Hooke’s law exactly. Let us also assume that the contact between the block
and the floor is frictionless and that the block is particle-like.

We give the block a rightward jerk to get it moving and then leave it alone.
As the block moves rightward, the spring force F, does work on the block,
decreasing the kinetic energy and slowing the block. However, we cannot find
this work by using Eq. 7-7 (W = Fd cos ¢) because that equation assumes a con-
stant force. The spring force is a variable force.

To find the work done by the spring, we use calculus. Let the block’s initial
position be x; and its later position x,. Then divide the distance between those two

Block
attached

X
L srrssr I o spring

—

x positive d

F, negative F’_D
oo TT T

‘—xa‘ x
0
()

x negative

d
FWWE F, positive

—
(0)

Fig. 7-9 (a) A spring in its relaxed state.
The origin of an x axis has been placed at
the end of the spring that is attached to a
block. (b) The block is displaced by d, and
the spring is stretched by a positive amount
x. Note the restoring force F; exerted by the
spring. (¢) The spring is compressed by a
negative amount x. Again, note the restor-
ing force.
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positions into many segments, each of tiny length Ax. Label these segments, start-
ing from x;, as segments 1,2, and so on. As the block moves through a segment,
the spring force hardly varies because the segment is so short that x hardly varies.
Thus, we can approximate the force magnitude as being constant within the seg-
ment. Label these magnitudes as F,; in segment 1, F,, in segment 2, and so on.

With the force now constant in each segment, we can find the work done
within each segment by using Eq. 7-7. Here ¢ = 180°, and so cos ¢ = —1. Then
the work done is —F,; Ax in segment 1, —F,, Ax in segment 2, and so on. The net
work W, done by the spring, from x; to x;, is the sum of all these works:

W, =X —F,Ax, (7-22)

where j labels the segments. In the limit as Ax goes to zero, Eq. 7-22 becomes
W, = f '_F_dx. (7-23)

From Eq. 7-21, the force magnitude F, is kx. Thus, substitution leads to

Xf Xf
W{=J’ —kxdxz—kf X dx

= (0L = (106G — D). (7-24)
Multiplied out, this yields

W, = %kx,? — %kx]% (work by a spring force). (7-25)

This work W, done by the spring force can have a positive or negative value,
depending on whether the net transfer of energy is to or from the block as the
block moves from x; to x;. Caution: The final position x; appears in the second
term on the right side of Eq.7-25. Therefore, Eq. 7-25 tells us:

Work W is positive if the block ends up closer to the relaxed position (x = 0) than
it was initially. It is negative if the block ends up farther away from x = 0. It is zero if
the block ends up at the same distance from x = 0.

If x; = 0 and if we call the final position x, then Eq. 7-25 becomes

W, = —% kx? (work by a spring force). (7-26)

The Work Done by an Applied Force

Now suppose that we displace the block along the x axis while continuing to apply a
force F, to it. During the displacement, our applied force does work W, on the block
while the spring force does work W,. By Eq. 7-10, the change AK in the kinetic en-
ergy of the block due to these two energy transfers is

AK = K, — K; = W, + W,, (7-27)

in which K is the kinetic energy at the end of the displacement and K is that at
the start of the displacement. If the block is stationary before and after the dis-
placement, then K;and K; are both zero and Eq. 7-27 reduces to

W, =W, (7-28)
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If a block that is attached to a spring is stationary before and after a displacement,
then the work done on it by the applied force displacing it is the negative of the work
done on it by the spring force.

Caution: If the block is not stationary before and after the displacement, then this
statement is not true.

\'CH ECKPOINT 2

For three situations, the initial and final positions, respectively, along the x axis for the
block in Fig. 7-9 are (a) —3 cm, 2 cm; (b) 2 cm, 3 cm; and (c) —2 cm, 2 cm. In each situa-
tion, is the work done by the spring force on the block positive, negative, or zero?

Sample Problem

Work done by spring to change kinetic energy

In Fig. 7-10, a cumin canister of mass m = 0.40 kg slides The spring force does

across a horizontal frictionless counter with speed v = 0.50 negative work, decreasing

m/s. It then runs into and compresses a spring of spring con- speed and kinetic energy. 71
stant k =750 N/m. When the canister is momentarily k

stopped by the spring, by what distance d is the spring
compressed?

Frictionless

—a—
KEY IDEAS Stop First touch

1. The work W, done on the canister by the spring force is  Fig. 7-10 A canister of mass 7 moves at velocity v toward a
related to the requested distance d by Eq. 7-26 (W, = spring that has spring constant k.
—1 kx?), with d replacing x.

2. The work Wi is also related to the kinetic energy of the  Substituting according to the third key idea gives us this

canister by Eq 7-10 (Kf - Ki = W) expression
3. The canister’s kinetic energy has an initial value of K = 0—1mv? = —1kd>

1 2 . . g

211V and a value of zero when the canister is momentar Simplifying, solving for d, and substituting known data then

ily at rest. .

give us
Calculations: Putting the first two of these ideas together,
. > . m 0.40 kg
we write the work—kinetic energy theorem for the canister d=v = (0.50 m/s) 750 N/m_
m

as

K;— K; = —Lkd?. 12 X 107?m = 1.2 cm. (Answer)

PW‘LEYU"S Additional examples, video, and practice available at WileyPLUS

7-8 Work Done by a General Variable Force
One-Dimensional Analysis

Let us return to the situation of Fig. 7-2 but now consider the force to be in the
positive direction of the x axis and the force magnitude to vary with position x.
Thus, as the bead (particle) moves, the magnitude F(x) of the force doing work on
it changes. Only the magnitude of this variable force changes, not its direction,
and the magnitude at any position does not change with time.
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Fig. 7-11 (a) A one-dimensional force
F(x) plotted against the displacement x of
a particle on which it acts. The particle
moves from x; to x;. (b) Same as (a) but
with the area under the curve divided into
narrow strips. (c) Same as (b) but with the
area divided into narrower strips. (d) The
limiting case. The work done by the force is
given by Eq.7-32 and is represented by the
shaded area between the curve and the x
axis and between x; and x;.

We can approximate
that area with the area
of these strips.

Work is equal to the
area under the curve.

F(x)

For the best, take the
limit of strip widths
going to zero.

We can do better with
more, narrower strips.

F(x) F(x)

|
|
|
|
|
|
| |
0% ~ T
Ax
(o) (d)

Figure 7-11a shows a plot of such a one-dimensional variable force. We want an
expression for the work done on the particle by this force as the particle moves from
an initial point x; to a final point x;. However, we cannot use Eq.7-7 (W = Fd cos ¢)
because it applies only for a constant force F.Here, again, we shall use calculus. We
divide the area under the curve of Fig. 7-11a into a number of narrow strips of width
Ax (Fig. 7-11b). We choose Ax small enough to permit us to take the force F(x) as
being reasonably constant over that interval. We let Fj,,, be the average value of
F(x) within the jth interval. Then in Fig. 7-11b, F},,, is the height of the jth strip.

With F;,,, considered constant, the increment (small amount) of work AW;
done by the force in the jth interval is now approximately given by Eq. 7-7 and is

AW, = F o, Ax. (7-29)

J,avg
In Fig. 7-11b, AW, is then equal to the area of the jth rectangular, shaded strip.
To approximate the total work W done by the force as the particle moves
from x; to x,, we add the areas of all the strips between x; and x,in Fig. 7-11b:

W =2 AW =X F, Ax.

Equation 7-30 is an approximation because the broken “skyline” formed by the tops
of the rectangular strips in Fig. 7-11b only approximates the actual curve of F(x).

We can make the approximation better by reducing the strip width Ax and
using more strips (Fig. 7-11c¢). In the limit, we let the strip width approach zero;
the number of strips then becomes infinitely large and we have, as an exact result,

W= lim X FE,,Ax. (7-31)

J,avg
Ax—0

(7-30)

This limit is exactly what we mean by the integral of the function F(x) between
the limits x; and x;. Thus, Eq. 7-31 becomes

f
W= J’ F(x) dx  (work:variable force). (7-32)

If we know the function F(x), we can substitute it into Eq. 7-32, introduce the
proper limits of integration, carry out the integration, and thus find the work.
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(Appendix E contains a list of common integrals.) Geometrically, the work is
equal to the area between the F(x) curve and the x axis, between the limits x; and
x; (shaded in Fig. 7-11d).

Three-Dimensional Analysis
Consider now a particle that is acted on by a three-dimensional force
F =Fi+F,j+ Fk, (7-33)

in which the components F,, F,, and F, can depend on the position of the particle;
that is, they can be functions of that position. However, we make three simplifica-
tions: F, may depend on x but not on y or z, F,, may depend on y but not on x or z,
and F, may depend on z but not on x or y. Now let the particle move through an in-
cremental displacement

d7 = dxi + dy] + dzk. (7-34)

The increment of work dW done on the particle by F during the displacement d7
is, by Eq. 7-8,
dW = F-d7 = E dx + E dy + F, dz. (7-35)

The work W done by F while the particle moves from an initial position 7; having
coordinates (x;,y;, z;) to a final position r,having coordinates (x;, y/, z,) is then

7 5 y z
W= fde= ffo dx +fny dy + fsz dz. (7-36)
4] X Yi 25

i

If F has only an x component, then the y and z terms in Eq. 7-36 are zero and the
equation reduces to Eq. 7-32.

Work - Kinetic Energy Theorem with a Variable Force

Equation 7-32 gives the work done by a variable force on a particle in a one-
dimensional situation. Let us now make certain that the work is equal to the
change in kinetic energy, as the work—kinetic energy theorem states.

Consider a particle of mass m, moving along an x axis and acted on by a net
force F(x) that is directed along that axis. The work done on the particle by this
force as the particle moves from position x; to position x;is given by Eq.7-32 as

W= ffF(x) dx = J’fma dx, (7-37)

in which we use Newton’s second law to replace F(x) with ma. We can write the
quantity ma dx in Eq. 7-37 as J
ma dx = m-— dx. (7-38)

dt
From the chain rule of calculus, we have
dv dv dx dv
oA " (7-39)
and Eq. 7-38 becomes

d
madx = m d_: vdx = mvdv. (7-40)

Substituting Eq. 7-40 into Eq. 7-37 yields

W=J/mvdv=mJ/vdv

= Jmv} — Smi. (7-41)

Note that when we change the variable from x to v we are required to express the
limits on the integral in terms of the new variable. Note also that because the
mass m is a constant, we are able to move it outside the integral.

PART 1
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Recognizing the terms on the right side of Eq. 7-41 as kinetic energies allows
us to write this equation as

W =K, — K, = AK,

which is the work —kinetic energy theorem.

Sample Problem

Work calculated by graphical integration

In an epidural procedure, as used in childbirth, a surgeon or
an anesthetist must run a needle through the skin on the pa-
tient’s back, through various tissue layers and into a narrow
region called the epidural space that lies within the spinal
canal surrounding the spinal cord. The needle is intended to
deliver an anesthetic fluid. This tricky procedure requires
much practice so that the doctor knows when the needle has
reached the epidural space and not overshot it, a mistake
that could result in serious complications.

The feel a doctor has for the needle’s penetration is the
variable force that must be applied to advance the needle
through the tissues. Figure 7-12a is a graph of the force mag-
nitude F versus displacement x of the needle tip in a typical
epidural procedure. (The line segments have been straight-
ened somewhat from the original data.) As x increases from
0, the skin resists the needle, but at x = 8.0 mm the force is
finally great enough to pierce the skin, and then the re-
quired force decreases. Similarly, the needle finally pierces
the interspinous ligament at x = 18 mm and the relatively
tough ligamentum flavum at x = 30 mm. The needle then
enters the epidural space (where it is to deliver the anes-
thetic fluid), and the force drops sharply. A new doctor must
learn this pattern of force versus displacement to recognize
when to stop pushing on the needle. (This is the pattern
to be programmed into a virtual-reality simulation of an
epidural procedure.) How much work W is done by the
force exerted on the needle to get the needle to the epidural

KEY IDEAS

(1) We can calculate the work W done by a variable force
F(x) by integrating the force versus position x. Equation
7-32 tells us that

W= f fF(x) dx.

We want the work done by the force during the displace-
ment from x; = 0 to x; = 0.030 m. (2) We can evaluate the
integral by finding the area under the curve on the graph of
Fig.7-12a.

_ (area between force curve
and x axis, from x; to x; /)°

Calculations: Because our graph consists of straight-line
segments, we can find the area by splitting the region below
the curve into rectangular and triangular regions, as shown
in Fig. 7-12b. For example, the area in triangular region A is

area, = 1(0.0080 m)(12 N) = 0.048 N-m = 0.048 J.

Once we’ve calculated the areas for all the labeled regions
in Fig. 7-12b, we find that the total work is

W = (sum of the areas of regions A through K)
= 0.048 + 0.024 + 0.012 + 0.036 + 0.009 + 0.001
+ 0.016 + 0.048 + 0.016 + 0.004 + 0.024

space atx = 30 mm? = 0.238 J. (Answer)
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Fig. 7-12 (a) The force magnitude F versus the displacement x of the needle in an epidural procedure. (b) Breaking up the
region between the plotted curve and the displacement axis to calculate the area.
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Sample Problem

Work, two-dimensional integration

Force F = (3x2N)i + (4 N)j, with x in meters, acts on a
particle, changing only the kinetic energy of the particle.
How much work is done on the particle as it moves from co-
ordinates (2 m, 3 m) to (3 m, 0 m)? Does the speed of the
particle increase, decrease, or remain the same?

KEY IDEA

The force is a variable force because its x component de-
pends on the value of x. Thus, we cannot use Eqs. 7-7 and 7-8

Calculation: We set up two integrals, one along each axis:

3 0 3 0
W=f3x2dx+f4dy=3fx2dx+4fdy
2 3 2 3

=358 + 4y} = [3° — 2°] + 4[0 - 3]

=7.01J. (Answer)

The positive result means that energy is transferred to the
particle by force F'. Thus, the kinetic energy of the particle
increases and, because K = %va, its speed must also

increase. If the work had come out negative, the kinetic
energy and speed would have decreased.

to find the work done. Instead, we must use Eq. 7-36 to inte-
grate the force.

ﬁV‘IL_EYU"S Additional examples, video, and practice available at WileyPLUS

7-9 Power

The time rate at which work is done by a force is said to be the power due to the
force. If a force does an amount of work W in an amount of time Az, the average
power due to the force during that time interval is

P, =— 42
avg At (7 )

(average power).

The instantaneous power P is the instantaneous time rate of doing work, which
we can write as

b AW

r (7-43)

(instantaneous power).

Suppose we know the work W(t) done by a force as a function of time. Then to
get the instantaneous power P at, say, time ¢ = 3.0 s during the work, we would
first take the time derivative of W(¢) and then evaluate the result for ¢ = 3.0 s.

The ST unit of power is the joule per second. This unit is used so often that it has a
special name, the watt (W), after James Watt, who greatly improved the rate at which
steam engines could do work. In the British system, the unit of power is the foot-
pound per second. Often the horsepower is used. These are related by

lwatt=1W =11J/s =0.738 ft - 1b/s
and 1 horsepower = 1 hp = 550 ft-lb/s = 746 W.

(7-44)
(7-45)

Inspection of Eq. 7-42 shows that work can be expressed as power multiplied
by time, as in the common unit kilowatt-hour. Thus,

1 kilowatt-hour = 1 kW -h = (10° W)(3600 s)

=3.60 X 10°J = 3.60 MJ. (7-46)

Perhaps because they appear on our utility bills, the watt and the kilowatt-hour
have become identified as electrical units. They can be used equally well as units
for other examples of power and energy. Thus, if you pick up a book from the
floor and put it on a tabletop, you are free to report the work that you have done
as,say,4 X 107 kW - h (or more conveniently as4 mW - h).
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We can also express the rate at which a force does work on a particle (or
particle-like object) in terms of that force and the particle’s velocity. For a par-
ticle that is moving along a straight line (say, an x axis) and is acted on by a
constant force F directed at some angle ¢ to that line, Eq. 7-43 becomes

P dW _ Fcos ¢ dx =FCOS¢<%>’

dt dt
or P = Fv cos ¢. (7-47)

Reorganizing the right side of Eq. 7-47 as the dot product F-V,we may also write
the equation as

Fig. 7-13 The power due to the truck’s P=F-v (instantaneous power). (7-48)

applied force on the trailing load is the

rate at which that force does work on the For example, the truck in Fig. 7-13 exerts a force F on the trailing load, which
load. (REGLAIN FREDERIC/Gamma- has velocity ¥ at some instant. The instantaneous power due to F is the rate at
Presse, Inc.) which F does work on the load at that instant and is given by Egs. 7-47 and 7-48.

Saying that this power is “the power of the truck” is often acceptable, but keep in
mind what is meant: Power is the rate at which the applied force does work.

\.CH ECKPOINT 3

A block moves with uniform circular motion because a cord tied to the block is an-
chored at the center of a circle. Is the power due to the force on the block from the cord
positive, negative, or zero?

Sample Problem

Power, force, and velocity

Figure 7-14 shows constant forces F,and F, acting on a box
as the box slides rightward across a frictionless floor. Force F,
is horizontal, with magnitude 2.0 N; force F,is angled upward
by 60° to the floor and has magnitude 4.0 N. The speed v of
the box at a certain instant is 3.0 m/s. What is the power due Frictionless
to each force acting on the box at that instant, and what is the
net power? Is the net power changing at that instant?

Negative power. Positive power.
(This force is (This force is
removing energy.) supplying energy.)

o1

1

Fig. 7-14 Two forces l_ﬂ and F; act on a box that slides rightward
KEY IDEA across a frictionless floor. The velocity of the boxis V.

We want an instantaneous power, not an average power
over a time period. Also, we know the box’s velocity (rather  This positive result tells us that force F, is transferring en-
than the work done on it). ergy to the box at the rate of 6.0 J/s.

i = The net power is the sum of the individual powers:
Calculation: We use Eq. 7-47 for each force. For force F,

at angle ¢, = 180° to velocity v, we have P, =P + P,
P, = Fv cos ¢; = (2.0 N)(3.0 m/s) cos 180° = —60W+60W =0, (Answer)
= —6.0 W. (Answer)
This negative result tells us that force F, is transferring en- which tells us that the net rate of transfer of energy to
ergy from the box at the rate of 6.0 J/s. or from the box is zero. Thus, the kinetic energy (K = ; mv?)
For force F,, at angle ¢, = 60° to velocity ¥, we have of the box is not changing, and so the speed of the box will
. remain at 3.0 m/s. With neither the forces F; and F, nor the
Py = Fy cos ¢, = (4.0 N)(3.0 m/s) cos 60 velocity Vv changing, we see from Eq. 7-48 that P, and P, are
=6.0W. (Answer)  constant and thus so is P,.

I;V'IL_EYU"’S Additional examples, video, and practice available at WileyPLUS



Kinetic Energy The kinetic energy K associated with the mo-
tion of a particle of mass m and speed v, where v is well below the
speed of light, is

K =1my?

(kinetic energy). (7-1)

Work Work W is energy transferred to or from an object via a
force acting on the object. Energy transferred to the object is posi-
tive work, and from the object, negative work.

Work Done by a Constant Force The work done on a par-
ticle by a constant force F during displacement d is

W = Fd cos ¢ = F-d (work, constant force), (7-7,7-8)

in which ¢ is the constant angle between the directions of Fandd.
Only the component of F that is along the displacement d can do
work on the object. When two or more forces act on an object,
their net work is the sum of the individual works done by the
forces, which is also equal to the work that would be done on the
object by the net force F:m of those forces.

Work and Kinetic Energy For a particle, a change AK in the
kinetic energy equals the net work W done on the particle:

AK = K;— K; =W (work-kinetic energy theorem), (7-10)

in which K; s the initial kinetic energy of the particle and K is the ki-

netic energy after the work is done. Equation 7-10 rearranged gives us
K=K +W. (7-11)

Work Done by the Gravitational Force The work W,
done by the gravitational force F, on a particle-like object of mass
m as the object moves through a displacement d is given by

W, = mgd cos ¢,

in which ¢ is the angle between F;, and d.

(7-12)

Work Done in Lifting and Lowering an Object The work
W, done by an applied force as a particle-like object is either lifted
or lowered is related to the work W, done by the gravitational
force and the change AK in the object’s kinetic energy by

AK =K, — K; =W, + W, (7-15)
If Ky = K;, then Eq.7-15 reduces to
W,=-W, (7-16)

which tells us that the applied force transfers as much energy to the
object as the gravitational force transfers from it.

Spring Force The force F, from a spring is

F; = —kd (Hooke’s law), (7-20)

1 Rank the following velocities according to the kinetic energy a
particle will have with each velocity, greatest first: (a) v = 41 + 3],
(b) V=—41+3],(c) V=—31+4),(d) V=3 —4(e) V=5,
and (f) v = 5 m/s at 30° to the horizontal.

2 Figure 7-15a shows two horizontal forces that act on a block
that is sliding to the right across a frictionless floor. Figure 7-15b
shows three plots of the block’s kinetic energy K versus time t.
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where d is the displacement of the spring’s free end from its posi-
tion when the spring is in its relaxed state (neither compressed nor
extended), and k is the spring constant (a measure of the spring’s
stiffness). If an x axis lies along the spring, with the origin at the lo-
cation of the spring’s free end when the spring is in its relaxed
state, Eq. 7-20 can be written as

F, = —kx (Hooke’s law). (7-21)

A spring force is thus a variable force: It varies with the
displacement of the spring’s free end.

Work Done by a Spring Force If an object is attached to
the spring’s free end, the work W, done on the object by the spring
force when the object is moved from an initial position x; to a final
position x;is

W, = 3kx? — Skt (7-25)
If x; = 0 and x; = x, then Eq.7-25 becomes
W, = —Lkx2. (7-26)

Work Done by a Variable Force When the force F on a parti-
cle-like object depends on the position of the object, the work done by
F on the object while the object moves from an initial position r; with
coordinates (x;, y;, z;) to a final position 7, with coordinates (x;, y, z;)
must be found by integrating the force. If we assume that component
F, may depend on x but not on y or z, component F, may depend on y
but not on x or z, and component F, may depend on z but not on x or
y,then the work is

Xr Yy 2f
W= | F,dx+ | Fy,dy+ | F.dz. (7-36)
Xi Vi Zi
If F has only an x component, then Eq. 7-36 reduces to
Xy
W= f F(x) dx. (7-32)

Power The power due to a force is the rate at which that force
does work on an object. If the force does work W during a time inter-
val At, the average power due to the force over that time interval is
w
P,

=— 7-42
avg Al ( )

Instantaneous power is the instantaneous rate of doing work:

AW
P=-" (7-43)

For a force F at an angle ¢ to the direction of travel of the instan-
taneous velocity V, the instantaneous power is

P=Fvcosp = F-7V. (7-47,7-48)

Fig. 7-15
Question 2. (a)
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Which of the plots best corresponds to the following three situ-
ations: (a) F, = F,,(b) F; > F,, (c) F; < F,?

3 Is positive or negative work done by a constant force Fona
particle during a straight-line displacement d if (a) the angle be-
tween F and d is 30° (b) the angle is 100°; (c) F=2i— 3] and
d = —41?

4 In three situations, a briefly applied horizontal force changes
the velocity of a hockey puck that slides over frictionless ice. The
overhead views of Fig. 7-16 indicate, for each situation, the puck’s
initial speed v, its final speed vy, and the directions of the corre-
sponding velocity vectors. Rank the situations according to the
work done on the puck by the applied force, most positive first and
most negative last.

4m/s

y y vaz
3_/f:3m/s

ﬁ=2m/s

(a) (b) (o)
Fig. 7-16 Question 4.

5 TFigure 7-17 shows four graphs (drawn to the same scale) of the
x component F, of a variable force (directed along an x axis) versus
the position x of a particle on which the force acts. Rank the graphs
according to the work done by the force on the particle from x = 0
to x = xy, from most positive work first to most negative work last.

Fig. 7-17 Question 5.

6 Figure 7-18 gives the x com-
ponent F, of a force that can act
on a particle. If the particle be- b
gins at rest at x = 0, what is its
coordinate when it has (a) its
greatest kinetic energy, (b) its
greatest speed, and (c) zero
speed? (d) What is the particle’s -
direction of travel after it
reachesx = 6 m?

8x (m)

Fig. 7-18 Question 6.

7 In Fig. 7-19, a greased pig has a choice of three frictionless slides
along which to slide to the ground. Rank the slides according to how
much work the gravitational force does on the pig during the descent,
greatest first.

(a) (b (0

Fig. 7-19 Question 7.

8 Figure 7-20a shows four situations in which a horizontal force acts
on the same block, which is initially at rest. The force magnitudes are
F, = F, = 2F, = 2F;. The horizontal component v, of the block’s ve-
locity is shown in Fig. 7-20b for the four situations. (a) Which plot in
Fig. 7-20b best corresponds to which force in Fig. 7-20a? (b) Which
plot in Fig. 7-20c¢ (for kinetic energy K versus time ) best corre-
sponds to which plot in Fig. 7-20b?

A E o F 7
B E— < <—

X

Fig. 7-20 Question 8.

9 Spring A is stiffer than spring B (k, > k). The spring force of
which spring does more work if the springs are compressed (a) the
same distance and (b) by the same applied force?

10 A glob of slime is launched or dropped from the edge of a
cliff. Which of the graphs in Fig. 7-21 could possibly show how the
kinetic energy of the glob changes during its flight?

K K K K ,
r\t R t V\ t :
(a) (b) (o) (d)
K K K K
L/ t \/ t L/ t V t
(o) ) (9 (h)

Fig. 7-21

Question 10.
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@ Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM  Worked-out solution available in Student Solutions Manual

e —eee  Number of dots indicates level of problem difficulty

WWW Worked-out solution is at
ILW Interactive solution is at

http://www.wiley.com/college/halliday

«%° Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

sec.7-3 Kinetic Energy

*1 ssm A proton (mass m = 1.67 X 107?" kg) is being acceler-
ated along a straight line at 3.6 X 10'> m/s? in a machine. If the pro-
ton has an initial speed of 2.4 X 107 m/s and travels 3.5 cm, what
then is (a) its speed and (b) the increase in its kinetic energy?

*2 If a Saturn V rocket with an Apollo spacecraft attached had a
combined mass of 2.9 X 10° kg and reached a speed of 11.2 km/s,
how much kinetic energy would it then have?

*3 <%= On August 10,1972, a large meteorite skipped across the
atmosphere above the western United States and western Canada,
much like a stone skipped across water. The accompanying fireball
was so bright that it could be seen in the daytime sky and was
brighter than the usual meteorite trail. The meteorite’s mass was
about 4 X 10° kg; its speed was about 15 km/s. Had it entered the
atmosphere vertically, it would have hit Earth’s surface with about
the same speed. (a) Calculate the meteorite’s loss of kinetic energy
(in joules) that would have been associated with the vertical impact.
(b) Express the energy as a multiple of the explosive energy of
1 megaton of TNT, which is 4.2 X 10 J. (c) The energy associated
with the atomic bomb explosion over Hiroshima was equivalent to 13
kilotons of TNT. To how many Hiroshima bombs would the mete-
orite impact have been equivalent?

**4 A bead with mass 1.8 X 1072 kg is moving along a wire in
the positive direction of an x axis. Beginning at time ¢ = 0, when
the bead passes through x = 0 with speed 12 m/s, a constant force
acts on the bead. Figure 7-22 indicates the bead’s position at
these four times: t, =0, ¢, = 1.0 s, t, = 2.0 s, and #; = 3.0s. The
bead momentarily stops at t = 3.0 s. What is the kinetic energy of
the bead att = 10 s?

t
L1 |1|\£ [
5 10
x (m)

Fig. 7-22 Problem 4.

t t t
J[O| L1 ! |2N ! /I3|
0 15 2

0

*5 A father racing his son has half the kinetic energy of the son,
who has half the mass of the father. The father speeds up by 1.0 m/s
and then has the same kinetic energy as the son. What are the origi-
nal speeds of (a) the father and (b) the son?

«6 A force F, is applied to a bead as
the bead is moved along a straight wire
through displacement +5.0cm. The
magnitude of F, is set at a certain value,
but the angle ¢ between F, and the =
bead’s displacement can be chosen.
Figure 7-23 gives the work W done by I_fl

on the bead for a range of ¢ values; W, = 0

25 J. How much work is done by I?a if pis ¢

(a) 64° and (b) 147°? Fig. 7-23 Problem 6.

sec.7-5 Work and Kinetic Energy

°7 A 3.0kg body is at rest on a frictionless horizontal air track
when a constant horizontal force F acting in the positive direction
of an x axis along the track is applied to the body. A stroboscopic
graph of the position of the body as it slides to the right is shown in
Fig. 7-24. The force Fis applied to the body at ¢ = 0, and the graph
records the position of the body at 0.50 s intervals. How much
work is done on the body by the applied force F between r = 0 and
t=2.0s?

0 0.2 0.4 0.6 0.8
x (m)

Fig. 7-24 Problem 7.

*8 Aice block floating in a river is pushed through a displacement
d=(15m)i — (12m)] along a straight embankment by rushing
water, which exerts a force F = (210 N)1 — (150 N)j on the block.
How much work does the force do on the block during the dis-
placement?

°9 The only force acting on a 2.0 kg canister that is moving in an
xy plane has a magnitude of 5.0 N. The canister initially has a veloc-
ity of 4.0 m/s in the positive x direction and some time later has a
velocity of 6.0 m/s in the positive y direction. How much work is
done on the canister by the 5.0 N force during this time?

*10 A coin slides over a frictionless plane and across an xy
coordinate system from the origin to a point with xy coordinates
(3.0 m, 4.0 m) while a constant force acts on it. The force has mag-
nitude 2.0 N and is directed at a counterclockwise angle of 100°
from the positive direction of the x axis. How much work is done
by the force on the coin during the displacement?

11 A 12.0N force with a fixed orientation does work on a
particle as the particle moves through the three-dimensional dis-
placement d = (2.00i — 4.00] + 3.00k) m. What is the angle be-
tween the force and the displacement if the change in the particle’s
kinetic energy is (a) +30.0 J and (b) —30.0 J?

*e12 A can of bolts and nuts is pushed 2.00 m along an x axis by a
broom along the greasy (frictionless) floor of a car repair shop in a
version of shuffleboard. Figure 7-25 gives the work W done on the

wd)

0 1 2
x (m)

Fig. 7-25 Problem 12.
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can by the constant horizontal force from the broom, versus the
can’s position x. The scale of the figure’s vertical axis is set by W, =
6.0 J. (a) What is the magnitude of that force? (b) If the can had an
initial kinetic energy of 3.00 J, moving in the positive direction of
the x axis, what is its kinetic energy at the end of the 2.00 m?

*13 A luge and its rider, with a total mass of 85 kg, emerge from
a downhill track onto a horizontal straight track with an initial
speed of 37 m/s. If a force slows them to a stop at a constant rate of
2.0 m/s?, (a) what magnitude F is required for the force, (b) what
distance d do they travel while slowing, and (c) what work W is
done on them by the force? What are (d) F, (e) d, and (f) W if they,
instead, slow at 4.0 m/s*?

»14 @@ Figure 7-26 shows an overhead view of three horizontal
forces acting on a cargo canister that was initially stationary but
now moves across a frictionless floor. The force magnitudes are
F,=300N,F, =4.00N, and F; = 10.0 N, and the indicated angles
are 6, = 50.0° and 6; = 35.0°. What is the net work done on the can-
ister by the three forces during the first 4.00 m of displacement?

63

et

6y

2

Fig. 7-26 Problem 14.

»15 @@ Figure 7-27 shows three forces applied to a trunk that
moves leftward by 3.00 m over a frictionless floor. The force magni-
tudes are F; =5.00N, F, =9.00N, and F; =3.00 N, and the indi-
cated angle is # = 60.0°. During the displacement, (a) what is the net
work done on the trunk by the three forces and (b) does the kinetic
energy of the trunk increase or decrease?

Fig. 7-27 Problem 15.

16 @ An 8.0 kg object is moving in the positive direction of an
x axis. When it passes through x = 0, a constant force directed
along the axis begins to act on it. Figure 7-28 gives its kinetic en-

K1)

Ky

0 5 (m)

Fig. 7-28 Problem 16.

ergy K versus position x as it moves fromx = 0 tox = 5.0 m; K, =
30.0 J. The force continues to act. What is v when the object moves
back through x = —3.0 m?

sec.7-6 Work Done by the Gravitational Force

*17 ssm www A helicopter lifts a 72 kg astronaut 15 m verti-
cally from the ocean by means of a cable. The acceleration of the
astronaut is g/10. How much work is done on the astronaut by
(a) the force from the helicopter and (b) the gravitational force on
her? Just before she reaches the helicopter, what are her (c) kinetic
energy and (d) speed?

*18 =% (a) In 1975 the roof of Montreal’s Velodrome, with
a weight of 360 kN, was lifted by 10 cm so that it could be centered.
How much work was done on the roof by the forces making the
lift? (b) In 1960 a Tampa, Florida, mother reportedly raised one
end of a car that had fallen onto her son when a jack failed. If her
panic lift effectively raised 4000 N (about % of the car’s weight) by
5.0 cm, how much work did her force do on the car?

19 @ In Fig. 7-29, a block of ice slides down a frictionless ramp
at angle 6 = 50° while an ice worker pulls on the block (via a
rope) with a force F, that has a magnitude of 50 N and is directed
up the ramp. As the block slides through distance d = 0.50 m along
the ramp, its kinetic energy increases by 80 J. How much greater
would its kinetic energy have been if the rope had not been at-
tached to the block?

Fig. 7-29 Problem 19.

*20 A block is sent up a frictionless ramp along which an x axis
extends upward. Figure 7-30 gives the kinetic energy of the block
as a function of position x; the scale of the figure’s vertical axis is
set by K, = 40.0 J. If the block’s initial speed is 4.00 m/s, what is the
normal force on the block?

K

s

~
=
=
s

0 1 2
x (m)

Fig. 7-30 Problem 20.

*21 ssMm A cord is used to vertically lower an initially stationary
block of mass M at a constant downward acceleration of g/4. When
the block has fallen a distance d, find (a) the work done by the
cord’s force on the block, (b) the work done by the gravitational
force on the block, (c) the kinetic energy of the block, and (d) the
speed of the block.

*22 A cave rescue team lifts an injured spelunker directly up-
ward and out of a sinkhole by means of a motor-driven cable. The



lift is performed in three stages, each requiring a vertical distance
of 10.0 m: (a) the initially stationary spelunker is accelerated to a
speed of 5.00 m/s; (b) he is then lifted at the constant speed of 5.00
m/s; (c) finally he is decelerated to zero speed. How much work is
done on the 80.0 kg rescuee by the force lifting him during each
stage?

*23 In Fig. 7-31, a constant force F, of magnitude 82.0 N is applied
to a 3.00 kg shoe box at angle ¢ = 53.0°, causing the box to move up
a frictionless ramp at constant speed. How much work is done on the
box by 17"; when the box has moved through vertical distance /& =
0.150 m?

I
NG
I
I

Fig. 7-31 Problem 23.

*24 @ In Fig. 7-32, a horizontal force E, of magnitude 20.0 N is
applied to a 3.00 kg psychology book as the book slides a distance
d = 0.500 m up a frictionless ramp at angle 6 = 30.0°. (a) During
the displacement, what is the net work done on the book by F,, the
gravitational force on the book, and the normal force on the book?
(b) If the book has zero kinetic energy at the start of the displace-
ment, what is its speed at the end of the displacement?

A

3

-

=
>
I,

0

Fig. 7-32 Problem 24.

<25 (@ In Fig. 7-33, a 0.250 kg block of cheese
lies on the floor of a 900 kg elevator cab that is be-
ing pulled upward by a cable through distance d, =
2.40 m and then through distance d, = 10.5 m. (a)
Through d,, if the normal force on the block from
the floor has constant magnitude Fy = 3.00 N, how
much work is done on the cab by the force from the
cable? (b) Through d,, if the work done on the cab
by the (constant) force from the cable is 92.61 kJ,
what is the magnitude of Fy?

Fig. 7-33
Problem 25.

sec.7-7 Work Done by a Spring Force

*26 In Fig. 7-9, we must apply a force of magnitude 80 N to hold the
block stationary at x = —2.0 cm. From that position, we then slowly
move the block so that our force does +4.0J of work on the
spring—block system; the block is then again stationary. What is the
block’s position? (Hint: There are two answers.)

°27 A spring and block are in the arrangement of Fig. 7-9. When the
block is pulled out to x = +4.0 cm, we must apply a force of magnitude
360 N to hold it there. We pull the block tox = 11 cm and then release
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it. How much work does the spring do on the block as the block
moves fromx; = +5.0cmto (a) x = +3.0 cm, (b) x = —3.0cm, (c) x =
—5.0 cm,and (d) x = —9.0 cm?

°28 During spring semester at MIT, residents of the parallel
buildings of the East Campus dorms battle one another with
large catapults that are made with surgical hose mounted on
a window frame. A balloon filled with dyed water is placed in
a pouch attached to the hose, which is then stretched through the
width of the room. Assume that the stretching of the hose obeys
Hooke’s law with a spring constant of 100 N/m. If the hose is
stretched by 5.00 m and then released, how much work does the
force from the hose do on the balloon in the pouch by the time
the hose reaches its relaxed length?

*29 In the arrangement of Fig. 7-9, we gradually pull the block
from x = 0 to x = +3.0 cm, where it is stationary. Figure 7-34 gives
the work that our force does on the block. The scale of the figure’s
vertical axis is set by W, = 1.0 J. We then pull the block out to x =
+5.0 cm and release it from rest. How much work does the spring
do on the block when the block moves from x; = +5.0 cm to (a)
x = +4.0cm,(b)x = —2.0 cm,and (c) x = —5.0 cm?

wQ)

x (cm)

Fig. 7-34 Problem 29.

30 In Fig. 7-9a, a block of mass m lies on a horizontal
frictionless surface and is attached to one end of a horizontal
spring (spring constant k) whose other end is fixed. The block is ini-
tially at rest at the position where the spring is unstretched (x = 0)
when a constant horizontal force F in the positive direction of the
x axis is applied to it. A plot of the resulting kinetic energy of the
block versus its position x is shown in Fig. 7-35. The scale of the fig-
ure’s vertical axis is set by K; = 4.0 J. (a) What is the magnitude of
F? (b) What is the value of k?

x (m)

Fig. 7-35 Problem 30.

31 ssm www The only force acting on a 2.0 kg body as it
moves along a positive x axis has an x component F, = —6x N,
with x in meters. The velocity at x = 3.0 m is 8.0 m/s. (a) What is the
velocity of the body at x = 4.0 m? (b) At what positive value of x
will the body have a velocity of 5.0 m/s?
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*32 Figure 7-36 gives spring force F, versus position x for the
spring—block arrangement of Fig. 7-9. The scale is set by Fy; = 160.0
N. We release the block at x = 12 cm. How much work does
the spring do on the block when the block moves from x; = +8.0
cmto (a) x = +5.0cm, (b) x = —5.0 cm, (¢) x = —8.0 cm, and (d)
x = —10.0 cm?

Fig. 7-36 Problem 32.

*e33 The block in Fig. 7-9a lies on a horizontal frictionless sur-
face, and the spring constant is 50 N/m. Initially, the spring is at its
relaxed length and the block is stationary at position x = 0. Then
an applied force with a constant magnitude of 3.0 N pulls the block
in the positive direction of the x axis, stretching the spring until the
block stops. When that stopping point is reached, what are (a) the
position of the block, (b) the work that has been done on the block
by the applied force, and (c) the work that has been done on the
block by the spring force? During the block’s displacement, what
are (d) the block’s position when its kinetic energy is maximum
and (e) the value of that maximum kinetic energy?

sec.7-8 Work Done by a General Variable Force

*34 1LWw A 10 kg brick moves along an x axis. Its acceleration as a
function of its position is shown in Fig. 7-37. The scale of the figure’s
vertical axis is set by a, = 20.0 m/s>. What is the net work per-
formed on the brick by the force causing the acceleration as the
brick moves fromx = 0tox = 8.0 m?

a (m/s?)

Fig. 7-37 Problem 34.

*35 ssm Www The force on a particle is directed along an x axis
and given by F = Fy(x/x, — 1). Find the work done by the force in
moving the particle from x = 0 to

x =2x, by (a) plotting F(x) and

measuring the work from the 2z °

graph and (b) integrating F(x). Y 0

*36 A 5.0 kg block moves in a =

straight line on a horizontal fric- _F

tionless surface under the influ- 02 4 6 8

ence of a force that varies with Position (m)

position as shown in Fig. 7-38.  Fig. 7-38 Problem 36.

The scale of the figure’s vertical axis is set by F; = 10.0 N. How
much work is done by the force as the block moves from the origin
tox =8.0m?

*37 Figure 7-39 gives the acceleration of a 2.00 kg particle as an
applied force F; moves it from rest along an x axis from x = 0 to
x = 9.0 m. The scale of the figure’s vertical axis is set by a; = 6.0
m/s%. How much work has the force done on the particle when the
particle reaches (a) x =4.0m, (b) x =7.0m, and (¢) x = 9.0 m?
What is the particle’s speed and direction of travel when it reaches
(d)x =4.0m,(e)x = 7.0 m,and (f) x = 9.0 m?

aS
<
E o \6 w7 *m
N

—-a

Fig. 7-39 Problem 37.

*38 A 1.5 kgblock is initially at rest on a horizontal frictionless sur-
face when a horizontal force along an x axis is applied to the block.
The force is given by F(x) = (2.5 — x?)i N, where x is in meters and
the initial position of the block is x = 0. (a) What is the kinetic energy
of the block as it passes through x = 2.0 m? (b) What is the maximum
kinetic energy of the block between x = 0 and x = 2.0 m?

«39 @ A force F = (cx — 3.00x2)i acts on a particle as the parti-
cle moves along an x axis, with Fin newtons, x in meters, and ¢ a
constant. At x = 0, the particle’s kinetic energy is 20.0 J;at x = 3.00
m,itis 11.0 J. Find c.

*40 A can of sardines is made to move along an x axis from x =
0.25m to x = 1.25m by a force with a magnitude given by F =
exp(—4x?), with x in meters and F in newtons. (Here exp is the ex-
ponential function.) How much work is done on the can by the
force?

*41 A single force acts on a 3.0 kg particle-like object whose po-
sition is given by x = 3.0t — 4.02 + 1.0, with x in meters and ¢ in
seconds. Find the work done on the object by the force from ¢ = 0
tot=4.0s.

ee42 Figure 7-40 shows a cord attached to a cart that can slide
along a frictionless horizontal rail aligned along an x axis. The left
end of the cord is pulled over a pulley, of negligible mass and fric-
tion and at cord height 2 = 1.20 m, so the cart slides from x; = 3.00
m to x, = 1.00 m. During the move, the tension in the cord is a con-
stant 25.0 N. What is the change in the kinetic energy of the cart
during the move?

Fig. 7-40 Problem 42.
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°43 ssm A force of 5.0 N acts on a 15 kg body initially at rest.
Compute the work done by the force in (a) the first, (b) the second,
and (c) the third seconds and (d) the instantaneous power due to
the force at the end of the third second.

*44 A skier is pulled by a towrope up a frictionless ski slope that
makes an angle of 12° with the horizontal. The rope moves parallel
to the slope with a constant speed of 1.0 m/s. The force of the rope
does 900 J of work on the skier as the skier moves a distance of 8.0
m up the incline. (a) If the rope moved with a constant speed of 2.0
m/s, how much work would the force of the rope do on the skier as
the skier moved a distance of 8.0 m up the incline? At what rate is
the force of the rope doing work on the skier when the rope moves
with a speed of (b) 1.0 m/s and (c) 2.0 m/s?

°45 ssm ILW A 100 kg block is pulled at a constant speed of 5.0
m/s across a horizontal floor by an applied force of 122 N directed
37° above the horizontal. What is the rate at which the force does
work on the block?

*46 The loaded cab of an elevator has a mass of 3.0 X 10° kg and
moves 210 m up the shaft in 23 s at constant speed. At what aver-
age rate does the force from the cable do work on the cab?

*47 A machine carries a 4.0 kg package from an initial position
of d; = (0.50 m)i + (0.75 m)j + (0.20 m)k at 7 = 0 to a final posi-
tion of d;= (7.50m)i + (12.0m)j + (720 m)k at ¢ = 12s. The
constant force applied by the machine on the package is
F = (200 N)i + (4.00N)j + (6.00N)k. For that displacement,
find (a) the work done on the package by the machine’s force and
(b) the average power of the machine’s force on the package.

*48 A 0.30 kg ladle sliding on a horizontal frictionless surface is
attached to one end of a horizontal spring (k = 500 N/m) whose
other end is fixed. The ladle has a kinetic energy of 10 J as it passes
through its equilibrium position (the point at which the spring
force is zero). (a) At what rate is the spring doing work on the la-
dle as the ladle passes through its equilibrium position? (b) At
what rate is the spring doing work on the ladle when the spring is
compressed 0.10 m and the ladle is moving away from the equilib-
rium position?

49 ssm A fully loaded, slow-moving freight elevator has a cab
with a total mass of 1200 kg, which is required to travel upward 54
m in 3.0 min, starting and ending at rest. The elevator’s counter-
weight has a mass of only 950 kg, and so the elevator motor must
help. What average power is required of the force the motor exerts
on the cab via the cable?

*50 (a) Ata certain instant, a particle-like object is acted on by a
force F = (4.0 N)i — (2.0 N)] + (9.0 N)k while the object’s veloc-
ityis v = —(2.0 m/s)i + (4.0 m/s)k. What is the instantaneous rate
at which the force does work on the object? (b) At some other
time, the velocity consists of only a y component. If the force is un-
changed and the instantaneous power is —12 W, what is the veloc-
ity of the object?

«51 A force F = (3.00N)i + (7.00N)] + (7.00N)k acts on a
2.00 kg mobile object that moves from an initial position of
d, = (3.00m)i — (2.00m)] + (5.00m)k to a final position of
dy = —(5.00m)i + (4.00m)j + (7.00 m)k in 4.00s. Find (a) the
work done on the object by the force in the 4.00 s interval, (b) the
average power due to the force during that interval, and (c) the an-
gle between vectors d,and ?i)f.
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ee52 A funny car accelerates from rest through a measured track
distance in time 7 with the engine operating at a constant power P.
If the track crew can increase the engine power by a differential
amount dP, what is the change in the time required for the run?

Additional Problems

53 Figure 7-41 shows a cold package of hot dogs sliding right-
ward across a frictionless floor through a distance d = 20.0 cm
while three forces act on the package. Two of them are horizontal
and have the magnitudes F; = 5.00 N and F, = 1.00 N; the third is
angled down by 6 = 60.0° and has the magnitude F; = 4.00 N. (a)
For the 20.0 cm displacement, what is the net work done on the
package by the three applied forces, the gravitational force on the
package, and the normal force on the package? (b) If the package
has a mass of 2.0 kg and an initial kinetic energy of 0, what is its
speed at the end of the displacement?

\ |
N | d \
e Hot Dogs B
\ o
2
Fig. 7-41 Problem 53.

54  The only force acting on a 2.0
kg body as the body moves along an £

X axis varies as shown in Fig. 7-42. N
The scale of the figure’s vertical axis 0
is set by F; = 4.0 N.The velocity of the
body at x =0 is 4.0 m/s. (a) What is -F;
the kinetic energy of the body at x =
3.0 m? (b) At what value of x will the
body have a kinetic energy of 8.0 J?
(c) What is the maximum kinetic energy of the body between x = 0
andx = 5.0m?

Fig. 7-42 Problem 54.

55 ssm A horse pulls a cart with a force of 40 1b at an angle of 30°
above the horizontal and moves along at a speed of 6.0 mi/h. (a) How
much work does the force do in 10 min? (b) What is the average
power (in horsepower) of the force?

56 An initially stationary 2.0 kg object accelerates horizontally
and uniformly to a speed of 10 m/s in 3.0 s. (a) In that 3.0 s interval,
how much work is done on the object by the force accelerating it?
What is the instantaneous power due to that force (b) at the end of
the interval and (c) at the end of the first half of the interval?

57 A 230 kg crate hangs from the end of a rope of length L = 12.0 m.
You push horizontally on the crate witha ———
varying force F to move it distance d =
4.00 m to the side (Fig. 7-43). (a) What is
the magnitude of F when the crate is
in this final position? During the crate’s
displacement, what are (b) the total
work done on it, (c) the work done
by the gravitational force on the crate,
and (d) the work done by the pull on
the crate from the rope? (e) Knowing
that the crate is motionless before and
after its displacement, use the answers to
(b), (c), and (d) to find the work your

Fig. 7-43 Problem 57.
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force F does on the crate. (f) Why is the work of your force not
equal to the product of the horizontal displacement and the an-
swer to (a)?

58 To pull a 50 kg crate across a horizontal frictionless floor, a
worker applies a force of 210 N, directed 20° above the horizontal.
As the crate moves 3.0 m, what work is done on the crate by (a) the
worker’s force, (b) the gravitational force on the crate, and (c) the
normal force on the crate from the floor? (d) What is the total
work done on the crate?

59 =% An explosion at ground level leaves a crater with a di-
ameter that is proportional to the energy of the explosion raised
to the % power; an explosion of 1 megaton of TNT leaves a crater
with a 1 km diameter. Below Lake Huron in Michigan there ap-
pears to be an ancient impact crater with a 50 km diameter. What
was the kinetic energy associated with that impact, in terms of (a)
megatons of TNT (1 megaton yields 4.2 X 10%J) and (b)
Hiroshima bomb equivalents (13 kilotons of TNT each)?
(Ancient meteorite or comet impacts may have significantly al-
tered Earth’s climate and contributed to the extinction of the di-
nosaurs and other life-forms.)

60 A frightened child is restrained by her mother as the child slides
down a frictionless playground slide. If the force on the child from the
mother is 100 N up the slide, the child’s kinetic energy increases by 30 J
as she moves down the slide a distance of 1.8 m. (a) How much work is
done on the child by the gravitational force during the 1.8 m descent?
(b) If the child is not restrained by her mother, how much will the
child’s kinetic energy increase as she comes down the slide that same
distance of 1.8 m?

61 How much work is done by a force F = (2x N)i + (3 N)],
with x in meters, that moves a particle from a Position T =
(2m)i + (3m)j toaposition 7y = —(4m)i — (3m))?

|

62 A 250 g block is dropped onto a relaxed ver-
tical spring that has a spring constant of k = 2.5
N/cm (Fig. 7-44). The block becomes attached to the
spring and compresses the spring 12 cm before mo-
mentarily stopping. While the spring is being com-
pressed, what work is done on the block by (a) the
gravitational force on it and (b) the spring force? (c)
What is the speed of the block just before it hits the = i
spring? (Assume that friction is negligible.) (d) If  Fig. 7-44
the speed at impact is doubled, what is the maxi-  Problem 62.
mum compression of the spring?

63 sswm To push a 25.0 kg crate up a frictionless incline, angled at
25.0° to the horizontal, a worker exerts a force of 209 N parallel to
the incline. As the crate slides 1.50 m, how much work is done on
the crate by (a) the worker’s applied force, (b) the gravitational
force on the crate, and (c) the normal force exerted by the incline
on the crate? (d) What is the total work done on the crate?

64 Boxes are transported from one location to another in a ware-
house by means of a conveyor belt that moves with a constant
speed of 0.50 m/s. At a certain location the conveyor belt moves for
2.0 m up an incline that makes an angle of 10° with the horizontal,
then for 2.0 m horizontally, and finally for 2.0 m down an incline
that makes an angle of 10° with the horizontal. Assume that a 2.0 kg
box rides on the belt without slipping. At what rate is the force of
the conveyor belt doing work on the box as the box moves (a) up
the 10° incline, (b) horizontally, and (c) down the 10° incline?

65 In Fig.7-45, a cord runs around two massless, frictionless pul-
leys. A canister with mass m = 20 kg hangs from one pulley, and
you exert a force F on the free end of the cord. (a) What must be
the magnitude of F if you are to lift the canister at a constant
speed? (b) To lift the canister by 2.0 cm, how far must you pull the
free end of the cord? During that lift, what is the work done on the
canister by (c) your force (via the cord) and (d) the gravitational
force? (Hint: When a cord loops around a pulley as shown, it pulls
on the pulley with a net force that is twice the tension in the cord.)

Fig. 7-45 Problem 65.

66 If a car of mass 1200 kg is moving along a highway at
120 km/h, what is the car’s kinetic energy as determined by some-
one standing alongside the highway?

67 ssm A spring with a pointer attached is hanging next to a
scale marked in millimeters. Three different packages are hung
from the spring, in turn, as shown in Fig. 7-46. (a) Which mark on
the scale will the pointer indicate when no package is hung from
the spring? (b) What is the weight W of the third package?
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Fig. 7-46 Problem 67.

68 Aniceboatis at rest on a frictionless frozen lake when a sudden
wind exerts a constant force of 200 N, toward the east, on the boat.
Due to the angle of the sail, the wind causes the boat to slide in a
straight line for a distance of 8.0 m in a direction 20° north of east.
What is the kinetic energy of the iceboat at the end of that 8.0 m?

69 If a ski lift raises 100 passengers averaging 660 N in weight to
a height of 150 m in 60.0 s, at constant speed, what average power
is required of the force making the lift?



70 A force F = (4.0N)i + ¢ acts on a particle as the particle
goes through displacement d = (3.0 m)i — (2.0 m)]. (Other forces
also act on the particle.) What is ¢ if the work done on the particle
by force Fis(a)0,(b)17J,and (c) —187J?

71 A constant force of magnitude 10 N makes an angle of 150°
(measured counterclockwise) with the positive x direction as it acts
on a 2.0 kg object moving in an xy plane. How much work is done
on the object by the force as the object moves from the origin to
the point having position vector (2.0 m)i — (4.0 m);?

72 In Fig. 7-47a, a 2.0 N force is applied to a 4.0 kg block at a
downward angle 6 as the block moves rightward through 1.0 m
across a frictionless floor. Find an expression for the speed v, of the
block at the end of that distance if the block’s initial velocity is (a)
0 and (b) 1.0 m/s to the right. (¢) The situation in Fig. 7-47b is simi-
lar in that the block is initially moving at 1.0 m/s to the right, but
now the 2.0 N force is directed downward to the left. Find an ex-
pression for the speed v, of the block at the end of the 1.0 m dis-
tance. (d) Graph all three expressions for v, versus downward an-
gle ffor 6 = 0° to 6 = 90°. Interpret the graphs.

ANIA N4
BN A
(a) ()
Fig. 7-47 Problem 72.

73 A force F in the positive direction of an x axis acts on an ob-
ject moving along the axis. If the magnitude of the force is F =
10e~20 N, with x in meters, find the work done by F as the object
moves from x = 0 to x = 2.0 m by (a) plotting F(x) and estimating
the area under the curve and (b) integrating to find the work ana-
lytically.

74 A particle moves along a straight path through displacement
d = (8 m)i + ¢j while force F = (2N)i — (4 N)j acts on it. (Other
forces also act on the particle.) What is the value of c if the work
done by F on the particle is (a) zero, (b) positive, and (c) negative?

75 ssMm An elevator cab has a mass of 4500 kg and can carry
a maximum load of 1800 kg. If the cab is moving upward at full
load at 3.80 m/s, what power is required of the force moving the
cab to maintain that speed?

76 A 45 kg block of ice slides down a frictionless incline 1.5 m
long and 0.91 m high. A worker pushes up against the ice, parallel
to the incline, so that the block slides down at constant speed. (a)
Find the magnitude of the worker’s force. How much work is done
on the block by (b) the worker’s force, (c) the gravitational force
on the block, (d) the normal force on the block from the surface of
the incline, and (e) the net force on the block?

77 As aparticle moves along an x axis, a force in the positive direc-
tion of the axis acts on it. Figure 7-48 shows the magnitude F of the

PART 1

PROBLEMS 165

force versus position x of the particle. The curve is given by F = a/x?,
with @ = 9.0 N-m? Find the work done on the particle by the force
as the particle moves from x = 1.0 m to x = 3.0 m by (a) estimating
the work from the graph and (b) integrating the force function.
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Fig. 7-48 Problem 77.

78 A CD case slides along a floor in the positive direction of an x
axis while an applied force F, acts on the case. The force is directed
along the x axis and has the x component F,, = 9x — 3x?, with x in
meters and F,, in newtons. The case starts at rest at the position
x = 0,and it moves until it is again at rest. (a) Plot the work F, does
on the case as a function of x. (b) At what position is the work max-
imum, and (c) what is that maximum value? (d) At what position
has the work decreased to zero? (e) At what position is the case
again at rest?

79 ssm A 2.0kg lunchbox is sent sliding over a frictionless
surface, in the positive direction of an x axis along the surface.
Beginning at time ¢ = 0, a steady wind pushes on the lunchbox in the
negative direction of the x axis. Figure 7-49 shows the position x of
the lunchbox as a function of time ¢ as the wind pushes on the lunch-
box. From the graph, estimate the kinetic energy of the lunchbox at
(a) t=1.0s and (b) r=5.0s. (c) How much work does the force
from the wind do on the lunchbox from¢ = 1.0stot = 5.0 s?

t(s)
Fig. 7-49 Problem 79.

80 Numerical integration. A breadbox is made to move along an
x axis from x = 0.15 m to x = 1.20 m by a force with a magnitude
given by F = exp(—2x?), with x in meters and F in newtons. (Here
exp is the exponential function.) How much work is done on the
breadbox by the force?



CHAPTER

POTENTIAL ENERGY
AND CONSERVATION
OF ENERGY

WHAT IS PHYSICS?

One job of physics is to identify the different types of energy in the
world, especially those that are of common importance. One general type of en-
ergy is potential energy U. Technically, potential energy is energy that can be as-
sociated with the configuration (arrangement) of a system of objects that exert
forces on one another.

This is a pretty formal definition of something that is actually familiar to you.
An example might help better than the definition: A bungee-cord jumper plunges
from a staging platform (Fig. 8-1). The system of objects consists of Earth and the
jumper. The force between the objects is the gravitational force. The configuration
of the system changes (the separation between the jumper and Earth decreases—
that is, of course, the thrill of the jump). We can account for the jumper’s motion
and increase in kinetic energy by defining a gravitational potential energy U. This

Fig. 8-1 The kinetic energy of a bungee-
cord jumper increases during the free fall,
and then the cord begins to stretch, slowing
the jumper. (KOFUJIWARA/amana images/
Getty Images News and Sport Services)
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is the energy associated with the state of separation between two objects that at-
tract each other by the gravitational force, here the jumper and Earth.

When the jumper begins to stretch the bungee cord near the end of the
plunge, the system of objects consists of the cord and the jumper. The force
between the objects is an elastic (spring-like) force. The configuration of the sys-
tem changes (the cord stretches). We can account for the jumper’s decrease in
kinetic energy and the cord’s increase in length by defining an elastic potential
energy U.This is the energy associated with the state of compression or extension
of an elastic object, here the bungee cord.

Physics determines how the potential energy of a system can be calculated so
that energy might be stored or put to use. For example, before any particular
bungee-cord jumper takes the plunge, someone (probably a mechanical engi-
neer) must determine the correct cord to be used by calculating the gravitational
and elastic potential energies that can be expected. Then the jump is only thrilling
and not fatal.

8-2 Work and Potential Energy

In Chapter 7 we discussed the relation between work and a change in kinetic energy.
Here we discuss the relation between work and a change in potential energy.

Let us throw a tomato upward (Fig. 8-2). We already know that as the tomato
rises, the work W, done on the tomato by the gravitational force is negative
because the force transfers energy from the kinetic energy of the tomato. We can
now finish the story by saying that this energy is transferred by the gravitational
force fo the gravitational potential energy of the tomato—Earth system.

The tomato slows, stops, and then begins to fall back down because of the
gravitational force. During the fall, the transfer is reversed: The work W, done on
the tomato by the gravitational force is now positive—that force transfers energy
from the gravitational potential energy of the tomato—Earth system fo the
kinetic energy of the tomato.

For either rise or fall, the change AU in gravitational potential energy is
defined as being equal to the negative of the work done on the tomato by the
gravitational force. Using the general symbol W for work, we write this as

AU = —W. (8-1)

This equation also applies to a block—spring system, as in Fig. 8-3. If we
abruptly shove the block to send it moving rightward, the spring force acts left-
ward and thus does negative work on the block, transferring energy from the
kinetic energy of the block to the elastic potential energy of the spring—block
system. The block slows and eventually stops, and then begins to move leftward
because the spring force is still leftward. The transfer of energy is then
reversed—it is from potential energy of the spring—block system to kinetic
energy of the block.

Conservative and Nonconservative Forces
Let us list the key elements of the two situations we just discussed:

1. The system consists of two or more objects.

2. A force acts between a particle-like object (tomato or block) in the system and
the rest of the system.

3. When the system configuration changes, the force does work (call it W) on the
particle-like object, transferring energy between the kinetic energy K of the
object and some other type of energy of the system.
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Negative Positive
work done work done
by the by the
gravitational gravitational
force force

A

Fig. 8-2 A tomato is thrown upward.
As it rises, the gravitational force does
negative work on it, decreasing its kinetic
energy. As the tomato descends, the gravi-
tational force does positive work on it,
increasing its kinetic energy.

~

000

(@)

Fig. 8-3 A block, attached to a spring
and initially at rest at x = 0, is set in motion
toward the right. (a) As the block moves
rightward (as indicated by the arrow), the
spring force does negative work on it. (b)
Then, as the block moves back toward x =
0, the spring force does positive work on it.
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4. When the configuration change is reversed, the force reverses the energy
transfer, doing work W, in the process.

In a situation in which W, = —W, is always true, the other type of energy is
a potential energy and the force is said to be a conservative force. As you might
suspect, the gravitational force and the spring force are both conservative (since
otherwise we could not have spoken of gravitational potential energy and elastic
potential energy, as we did previously).

A force that is not conservative is called a nonconservative force. The kinetic
frictional force and drag force are nonconservative. For an example, let us send
a block sliding across a floor that is not frictionless. During the sliding, a kinetic
frictional force from the floor slows the block by transferring energy from its ki-
netic energy to a type of energy called thermal energy (which has to do with the
random motions of atoms and molecules). We know from experiment that this
energy transfer cannot be reversed (thermal energy cannot be transferred back
to kinetic energy of the block by the kinetic frictional force). Thus, although we
have a system (made up of the block and the floor), a force that acts between
parts of the system, and a transfer of energy by the force, the force is not conserv-
ative. Therefore, thermal energy is not a potential energy.

When only conservative forces act on a particle-like object, we can greatly
simplify otherwise difficult problems involving motion of the object. The next sec-
tion, in which we develop a test for identifying conservative forces, provides one
means for simplifying such problems.

8-3 Path Independence of Conservative Forces

The primary test for determining whether a force is conservative or nonconserva-
tive is this: Let the force act on a particle that moves along any closed path, begin-
ning at some initial position and eventually returning to that position (so that the
particle makes a round trip beginning and ending at the initial position). The
force is conservative only if the total energy it transfers to and from the particle
during the round trip along this and any other closed path is zero. In other words:

The net work done by a conservative force on a particle moving around any closed
path is zero.

We know from experiment that the gravitational force passes this closed-
path test. An example is the tossed tomato of Fig. 8-2. The tomato leaves the
launch point with speed v, and kinetic energy 1 mv3. The gravitational force acting
on the tomato slows it, stops it, and then causes it to fall back down. When the
tomato returns to the launch point, it again has speed v, and kinetic energy
Imv}. Thus, the gravitational force transfers as much energy from the tomato
during the ascent as it transfers fo the tomato during the descent back to the
launch point. The net work done on the tomato by the gravitational force during
the round trip is zero.

An important result of the closed-path test is that:

The work done by a conservative force on a particle moving between two points does
not depend on the path taken by the particle.

For example, suppose that a particle moves from point a to point b in Fig. 8-4a
along either path 1 or path 2. If only a conservative force acts on the particle, then
the work done on the particle is the same along the two paths. In symbols, we can
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The force is conservative.
Any choice of path between

“ 2 the points gives the same
amount of work.

Fig. 8-4 (a) Asa conservative force (a)
acts on it, a particle can move from 1 )
point a to point b along either path 1
or path 2. (b) The particle moves in a And a round trip gives
round trip, from point a to point b a 2 a total work of zero.
along path 1 and then back to point a
along path 2. ()
write this result as
Wab,l = Wab,Zs (8-2)

where the subscript ab indicates the initial and final points, respectively, and the
subscripts 1 and 2 indicate the path.

This result is powerful because it allows us to simplify difficult problems
when only a conservative force is involved. Suppose you need to calculate the
work done by a conservative force along a given path between two points, and
the calculation is difficult or even impossible without additional information.
You can find the work by substituting some other path between those two points
for which the calculation is easier and possible.

Proof of Equation 8-2

Figure 8-4b shows an arbitrary round trip for a particle that is acted upon by a single
force. The particle moves from an initial point a to point b along path 1 and then
back to point a along path 2. The force does work on the particle as the particle
moves along each path. Without worrying about where positive work is done and
where negative work is done, let us just represent the work done from a to b along
path 1 as W,,; and the work done from b back to a along path 2 as W,,,,. If the force
is conservative, then the net work done during the round trip must be zero:

Waps + Wyen =0,
and thus
Waps = = Wi (8-3)
In words, the work done along the outward path must be the negative of the work
done along the path back.
Let us now consider the work W,,, done on the particle by the force when

the particle moves from a to b along path 2, as indicated in Fig. 8-4a. If the force is
conservative, that work is the negative of Wy, »:

Wiz = = Wpaa (8-4)
Substituting W, , for —W,,,, in Eq. 8-3, we obtain

Wab,l = Wab,Za
which is what we set out to prove.

\' CHECKPOINT 1

The figure shows three paths connecting points a
and b. A single force F does the indicated work
on a particle moving along each path in the
indicated direction. On the basis of this informa-
tion, is force F conservative?

PART 1
169
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Sample Problem

Equivalent paths for calculating work, slippery cheese

Figure 8-5a shows a 2.0 kg block of slippery cheese that slides
along a frictionless track from point a to point b. The cheese
travels through a total distance of 2.0 m along the track, and a
net vertical distance of 0.80 m. How much work is done on the
cheese by the gravitational force during the slide?

KEY IDEAS

(1) We cannot calculate the work by using Eq. 7-12 (W, =
mgd cos ¢). The reason is that the angle ¢ between the direc-

The gravitational force is conservative.
Any choice of path between the points
gives the same amount of work.

-

Fig. 8-5 (a) A block of cheese slides along a frictionless track from
point a to point b. (b) Finding the work done on the cheese by the
gravitational force is easier along the dashed path than along the ac-
tual path taken by the cheese; the result is the same for both paths.

WILEY ®

(0)

tions of the gravitational force E and the displacement d
varies along the track in an unknown way. (Even if we did
know the shape of the track and could calculate ¢ along it, the
calculation could be very difficult.) (2) Because F:g is a conser-
vative force, we can find the work by choosing some other
path between a and b—one that makes the calculation easy.

Calculations: Let us choose the dashed path in Fig. 8-5b; it
consists of two straight segments. Along the horizontal seg-
ment, the angle ¢ is a constant 90°. Even though we do not
know the displacement along that horizontal segment, Eq. 7-12
tells us that the work W), done there is

W, = mgd cos 90° = 0.

Along the vertical segment, the displacement d is 0.80 m
and, with I_)'“g and d both downward, the angle ¢ is a constant
0°. Thus, Eq. 7-12 gives us, for the work W, done along the
vertical part of the dashed path,

W, = mgd cos 0°
= (2.0kg)(9.8 m/s?)(0.80 m)(1) = 15.7 J.

The total work done on the cheese by 1_7;, as the cheese
moves from point a to point b along the dashed path is then

W=W,+W,=0+157]J =16J. (Answer)

This is also the work done as the cheese slides along the
track froma to b.

PLUS Additional examples, video, and practice available at WileyPLUS

8-4 Determining Potential Energy Values

Here we find equations that give the value of the two types of potential energy
discussed in this chapter: gravitational potential energy and elastic potential
energy. However, first we must find a general relation between a conservative
force and the associated potential energy.

Consider a particle-like object that is part of a system in which a conservative
force F acts. When that force does work W on the object, the change AU in
the potential energy associated with the system is the negative of the work done.
We wrote this fact as Eq. 8-1 (AU = —W). For the most general case, in which the
force may vary with position, we may write the work W as in Eq. 7-32:

W= ijF(x) dx. (8-5)

This equation gives the work done by the force when the object moves from
point x; to point x,, changing the configuration of the system. (Because the force
is conservative, the work is the same for all paths between those two points.)

Substituting Eq. 8-5 into Eq. 8-1, we find that the change in potential energy
due to the change in configuration is, in general notation,

AU = —foF(x) dx. (8-6)

i
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Gravitational Potential Energy

We first consider a particle with mass m moving vertically along a y axis (the
positive direction is upward) As the particle moves from point y; to point Vps the
gravitational force F does work on it. To find the corresponding change in the
gravitational potentlal energy of the particle—Earth system, we use Eq. 8-6 with
two changes: (1) We integrate along the y axis instead of the x axis, because the
gravitational force acts vertically. (2) We substitute —mg for the force symbol F,
because F has the magnitude mg and is directed down the y axis. We then have

Vi Yy Vi
=—| (—-mg)dy = mgf dy = mg[y] ,
Yi

Vi Yi

which yields
AU = mg(y,; — y;) = mgAy. (8-7)

Only changes AU in gravitational potential energy (or any other type of
potential energy) are physically meaningful. However, to simplify a calculation or
a discussion, we sometimes would like to say that a certain gravitational potential
value U is associated with a certain particle—Earth system when the particle is at
a certain height y.To do so, we rewrite Eq. 8-7 as

U—= U =mg(y—y). (8-8)

Then we take U; to be the gravitational potential energy of the system when it is
in a reference configuration in which the particle is at a reference point y;.
Usually we take U; = 0 and y; = 0. Doing this changes Eq. 8-8 to

U(y) = mgy (gravitational potential energy). (8-9)

This equation tells us:

The gravitational potential energy associated with a particle—Earth system depends
only on the vertical position y (or height) of the particle relative to the reference posi-
tion y = 0,not on the horizontal position.

Elastic Potential Energy

We next consider the block—spring system shown in Fig. 8-3, with the block
moving on the end of a spring of spring constant k. As the block moves from
point x; to point x;, the spring force F, = —kx does work on the block. To find the
corresponding change in the elastic potential energy of the block —spring system,
we substitute —kx for F(x) in Eq. 8-6. We then have

Xf Xf Xy
= —f (—kx) dx = kf xdx = ék[xz] ,

or AU = jkx} — Skx?. (8-10)

To associate a potential energy value U with the block at position x, we
choose the reference configuration to be when the spring is at its relaxed length
and the block is at x; = 0. Then the elastic potential energy U, is 0, and Eq. 8-10
becomes

U-0=jkx* -0,
which gives us

Ulx) = %kx2 (elastic potential energy). (8-11)
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\'CH ECKPOINT 2

A particle is to move
along an x axis from
x=0 to x; while
a conservative force,
directed along the x
axis, acts on the parti-
cle. The figure shows

1)

N\

B

X1

X1

(2)

X

(3)

three situations

in

which the x component of that force varies with x. The force has the same maximum mag-
nitude F; in all three situations. Rank the situations according to the change in the associ-
ated potential energy during the particle’s motion, most positive first.

Sample Problem

Choosing reference level for gravitational potential energy, sloth

A 2.0 kg sloth hangs 5.0 m above the ground (Fig. 8-6).

(a) What is the gravitational potential energy U of the
sloth—Earth system if we take the reference point y = 0 to be
(1) at the ground, (2) at a balcony floor that is 3.0 m above
the ground, (3) at the limb, and (4) 1.0 m above the limb?
Take the gravitational potential energy to be zero at y = 0.

KEY IDEA

Once we have chosen the reference point for y = 0, we can
calculate the gravitational potential energy U of the system
relative to that reference point with Eq. 8-9.

Calculations: For choice (1) the slothis at y = 5.0 m,and
U = mgy = (2.0 kg)(9.8 m/s?)(5.0 m)
=981 (Answer)

For the other choices, the values of U are
2) U=mgy =mg(2.0m) =391,
() U=mgy =mg(0) =01,
(4) U= mgy =mg(—1.0m)

=—-19.6] = —201. (Answer)

(b) The sloth drops to the ground. For each choice of refer-
ence point, what is the change AU in the potential energy of
the sloth—Earth system due to the fall?

KEY IDEA

The change in potential energy does not depend on the
choice of the reference point for y = 0; instead, it depends
on the change in height Ay.

WILEY ®

0 -3 —5

| | |
1) (2) (3) (4)

Fig. 8-6 Four choices of reference point y = 0. Each y axis is
marked in units of meters. The choice affects the value of the po-
tential energy U of the sloth—Earth system. However, it does not
affect the change AU in potential energy of the system if the sloth
moves by, say, falling.

Calculation: For all four situations, we have the same Ay =
—5.0 m. Thus, for (1) to (4), Eq. 8-7 tells us that

AU = mg Ay = (2.0 kg)(9.8 m/s?)(—5.0 m)
=-981 (Answer)

PLUS Additional examples, video, and practice available at WileyPLUS
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8-5 Conservation of Mechanical Energy

The mechanical energy E .. of a system is the sum of its potential energy U and
the kinetic energy K of the objects within it:

E..=K+U (mechanical energy). (8-12)

In this section, we examine what happens to this mechanical energy when only
conservative forces cause energy transfers within the system—that is, when
frictional and drag forces do not act on the objects in the system. Also, we shall
assume that the system is isolated from its environment; that is, no external force
from an object outside the system causes energy changes inside the system.

When a conservative force does work W on an object within the system, that
force transfers energy between kinetic energy K of the object and potential
energy U of the system. From Eq. 7-10, the change AK in kinetic energy is

AK =W (8-13)
and from Eq. 8-1, the change AU in potential energy is
AU = —W. (8-14)
Combining Egs. 8-13 and 8-14, we find that
AK = —AU. (8-15)

In words, one of these energies increases exactly as much as the other decreases.
We can rewrite Eq. 8-15 as

K2 - K1 = _(Uz - Ul)a (8'16)

where the subscripts refer to two different instants and thus to two different
arrangements of the objects in the system. Rearranging Eq. 8-16 yields

K,+U,=K, + U, (conservation of mechanical energy). (8-17)

In words, this equation says:

the sum of K and U for\ the sum of K and U for
any state of a system |/ = \any other state of the system /)’

when the system is isolated and only conservative forces act on the objects in the
system. In other words:

In an isolated system where only conservative forces cause energy changes, the
kinetic energy and potential energy can change, but their sum, the mechanical energy
E,.. of the system, cannot change.

This result is called the principle of conservation of mechanical energy. (Now you
can see where conservative forces got their name.) With the aid of Eq. 8-15, we
can write this principle in one more form, as

AE,..= AK + AU = 0. (8-18)

The principle of conservation of mechanical energy allows us to solve prob-
lems that would be quite difficult to solve using only Newton’s laws:

When the mechanical energy of a system is conserved, we can relate the sum of kinetic
energy and potential energy at one instant to that at another instant without considering
the intermediate motion and without finding the work done by the forces involved.

In olden days, a person would be tossed
via a blanket to be able to see farther
over the flat terrain. Nowadays, it is done
just for fun. During the ascent of the per-
son in the photograph, energy is trans-
ferred from kinetic energy to gravita-
tional potential energy. The maximum
height is reached when that transfer is
complete. Then the transfer is reversed
during the fall. (©A P/Wide World Photos)
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Fig. 8-7 A pendulum, with its mass con-
centrated in a bob at the lower end, swings
back and forth. One full cycle of the motion
is shown. During the cycle the values of the
potential and kinetic energies of the pendu-
lum—Earth system vary as the bob rises
and falls, but the mechanical energy £, .. of
the system remains constant. The energy

E .. can be described as continuously shift-
ing between the kinetic and potential
forms. In stages (@) and (e), all the energy is
kinetic energy. The bob then has its greatest
speed and is at its lowest point. In stages (¢)
and (g), all the energy is potential energy.
The bob then has zero speed and is at its
highest point. In stages (), (d), (f),and
(h), half the energy is kinetic energy and
half is potential energy. If the swinging in-
volved a frictional force at the point where
the pendulum is attached to the ceiling, or a
drag force due to the air, then E.. would
not be conserved, and eventually the pen-
dulum would stop.
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Figure 8-7 shows an example in which the principle of conservation of
mechanical energy can be applied: As a pendulum swings, the energy of the
pendulum—Earth system is transferred back and forth between kinetic energy K
and gravitational potential energy U, with the sum K + U being constant. If we
know the gravitational potential energy when the pendulum bob is at its highest
point (Fig. 8-7¢), Eq. 8-17 gives us the kinetic energy of the bob at the lowest
point (Fig. 8-7¢).

For example, let us choose the lowest point as the reference point, with the
gravitational potential energy U, = 0. Suppose then that the potential energy at
the highest point is U; = 20J relative to the reference point. Because the
bob momentarily stops at its highest point, the kinetic energy there is K; = 0.
Putting these values into Eq. 8-17 gives us the kinetic energy K, at the lowest
point:

K,+0=0+20] or K,=20J

Note that we get this result without considering the motion between the highest
and lowest points (such as in Fig. 8-7d) and without finding the work done by any
forces involved in the motion.
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\'CH ECKPOINT 3

The figure shows four AR-
situations—one in which |
an initially stationary |
block is dropped and |
three in which the block !
is allowed to slide down I
frictionless ramps. (a)
Rank the situations ac-

cording to the kinetic 1 @ (3)
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(4)

energy of the block at point B, greatest first. (b) Rank them according to the speed of

the block at point B, greatest first.

Sample Problem

Conservation of mechanical energy, water slide

In Fig. 8-8, a child of mass m is released from rest at the top
of a water slide, at height 7 = 8.5 m above the bottom of the
slide. Assuming that the slide is frictionless because of the
water on it, find the child’s speed at the bottom of the slide.

KEY IDEAS

(1) We cannot find her speed at the bottom by using her ac-
celeration along the slide as we might have in earlier chap-
ters because we do not know the slope (angle) of the slide.
However, because that speed is related to her kinetic en-
ergy, perhaps we can use the principle of conservation of
mechanical energy to get the speed. Then we would not
need to know the slope. (2) Mechanical energy is conserved
in a system if the system is isolated and if only conservative
forces cause energy transfers within it. Let’s check.

Forces: Two forces act on the child. The gravitational
force, a conservative force, does work on her. The normal
force on her from the slide does no work because its direc-
tion at any point during the descent is always perpendicular
to the direction in which the child moves.

.
The total mechanical {
energy at the top -
is equal to the total
at the bottom. —&

Fig. 8-8 A child slides down a water slide as she descends a height /.

System: Because the only force doing work on the child
is the gravitational force, we choose the child—Earth system
as our system, which we can take to be isolated.

Thus, we have only a conservative force doing work in
an isolated system, so we can use the principle of conserva-
tion of mechanical energy.

Calculations: Let the mechanical energy be E,.., when
the child is at the top of the slide and E,,.., when she is at
the bottom. Then the conservation principle tells us

Enecy = Emecy- (8-19)
To show both kinds of mechanical energy, we have
K, +U,=K,+ U, (8-20)
or Imvi + mgy, = tmv? + mgy,.
Dividing by m and rearranging yield
vi = vi + 28(y — )
Putting v, = O and y, — y, = hleads to
v, = V2gh = V(2)(9.8 m/s?)(8.5 m)
= 13 m/s. (Answer)

This is the same speed that the child would reach if she fell
8.5 m vertically. On an actual slide, some frictional forces
would act and the child would not be moving quite so fast.

Comments: Although this problem is hard to solve directly
with Newton’s laws, using conservation of mechanical en-
ergy makes the solution much easier. However, if we were
asked to find the time taken for the child to reach the bot-
tom of the slide, energy methods would be of no use; we
would need to know the shape of the slide, and we would
have a difficult problem.

PW‘IL_EYU"S Additional examples, video, and practice available at WileyPLUS
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8-6 Reading a Potential Energy Curve

Once again we consider a particle that is part of a system in which a conserva-
tive force acts. This time suppose that the particle is constrained to move along
an x axis while the conservative force does work on it. We can learn a lot about
the motion of the particle from a plot of the system’s potential energy U(x).
However, before we discuss such plots, we need one more relationship.

Finding the Force Analytically

Equation 8-6 tells us how to find the change AU in potential energy between two
points in a one-dimensional situation if we know the force F(x). Now we want to
go the other way; that is, we know the potential energy function U(x) and want
to find the force.

For one-dimensional motion, the work W done by a force that acts on a parti-
cle as the particle moves through a distance Ax is F(x) Ax. We can then write
Eq.8-1as

AU(x) = =W = —F(x) Ax. (8-21)

Solving for F(x) and passing to the differential limit yield

~ dU(x)

F(x) = e

(one-dimensional motion), (8-22)
which is the relation we sought.

We can check this result by putting U(x) = %kxz, which is the elastic poten-
tial energy function for a spring force. Equation 8-22 then yields, as expected,
F(x) = —kx, which is Hooke’s law. Similarly, we can substitute U(x) = mgx,
which is the gravitational potential energy function for a particle—Earth system,
with a particle of mass m at height x above Earth’s surface. Equation 8-22 then
yields F' = —mg, which is the gravitational force on the particle.

The Potential Energy Curve

Figure 8-9a is a plot of a potential energy function U(x) for a system in which a
particle is in one-dimensional motion while a conservative force F(x) does work
on it. We can easily find F(x) by (graphically) taking the slope of the U(x) curve at
various points. (Equation 8-22 tells us that F(x) is the negative of the slope of the
U(x) curve.) Figure 8-9b is a plot of F(x) found in this way.

Turning Points

In the absence of a nonconservative force, the mechanical energy E of a system
has a constant value given by

U(x) + K(x) = Eppee. (8-23)

Here K(x) is the kinetic energy function of a particle in the system (this K(x)
gives the kinetic energy as a function of the particle’s location x). We may
rewrite Eq. 8-23 as

K(x) = Epec — U(x). (8-24)

Suppose that E,.. (which has a constant value, remember) happens to be 5.0 J. It
would be represented in Fig. 8-9¢ by a horizontal line that runs through the value
5.0 J on the energy axis. (It is, in fact, shown there.)
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Fig. 8-9 (a) A plot of U(x), the potential energy function of a system containing a
particle confined to move along an x axis. There is no friction, so mechanical energy is
conserved. (b) A plot of the force F(x) acting on the particle, derived from the potential
energy plot by taking its slope at various points. (¢)—(e) How to determine the kinetic en-
ergy. (f) The U(x) plot of (a) with three possible values of E,,.. shown.
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Equation 8-24 and Fig. 8-94 tell us how to determine the kinetic energy K for
any location x of the particle: On the U(x) curve, find U for that location x and
then subtract U from E,... In Fig. 8-9¢ for example, if the particle is at any point
to the right of x5, then K = 1.0 J. The value of K is greatest (5.0 J) when the parti-
cle is at x, and least (0 J) when the particle is at x;.

Since K can never be negative (because v? is always positive), the particle can
never move to the left of x;, where E,,.. — U is negative. Instead, as the particle
moves toward x; from x,, K decreases (the particle slows) until K = 0 at x; (the
particle stops there).

Note that when the particle reaches x;, the force on the particle, given by
Eq. 8-22, s positive (because the slope dU/dx is negative). This means that the par-
ticle does not remain at x; but instead begins to move to the right, opposite its ear-
lier motion. Hence x, is a turning point, a place where K = 0 (because U = F) and
the particle changes direction. There is no turning point (where K = 0) on the right
side of the graph. When the particle heads to the right, it will continue indefinitely.

Equilibrium Points

Figure 8-9f shows three different values for E, .. superposed on the plot of the
potential energy function U(x) of Fig. 8-9a. Let us see how they change the situa-
tion. If E,..=4.0J (purple line), the turning point shifts from x; to a point
between x; and x,. Also, at any point to the right of xs, the system’s mechanical
energy is equal to its potential energy; thus, the particle has no kinetic energy and
(by Eq. 8-22) no force acts on it, and so it must be stationary. A particle at such a
position is said to be in neutral equilibrium. (A marble placed on a horizontal
tabletop is in that state.)

If E...=3.0J (pink line), there are two turning points: One is between
x; and x,, and the other is between x, and xs. In addition, x; is a point at which
K = 0. If the particle is located exactly there, the force on it is also zero, and the
particle remains stationary. However, if it is displaced even slightly in either
direction, a nonzero force pushes it farther in the same direction, and the particle
continues to move. A particle at such a position is said to be in unstable equilib-
rium. (A marble balanced on top of a bowling ball is an example.)

Next consider the particle’s behavior if E,,.. = 1.0 J (green line). If we place
it at x,, it is stuck there. It cannot move left or right on its own because to do so
would require a negative kinetic energy. If we push it slightly left or right,
a restoring force appears that moves it back to x,. A particle at such a position
is said to be in stable equilibrium. (A marble placed at the bottom of a
hemispherical bowl is an example.) If we place the particle in the cup-like poten-
tial well centered at x,, it is between two turning points. It can still move
somewhat, but only partway to x; or xs.

\' CHECKPOINT 4

The figure gives the potential energy function U(x) for a system in which a particle is in
one-dimensional motion. (a) Rank regions AB, BC, and CD according to the magni-
tude of the force on the particle, greatest first. (b) What is the direction of the force
when the particle is in region AB?

U(x) (J)
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Sample Problem

Reading a potential energy graph

A 2.00 kg particle moves along an x axis in one-dimensional
motion while a conservative force along that axis acts on it.
The potential energy U(x) associated with the force is plot-
ted in Fig. 8-10a. That is, if the particle were placed at any
position between x = 0 and x = 7.00 m, it would have the
plotted value of U. At x = 6.5 m, the particle has velocity
vo = (—4.00 m/s)i.

(a) From Fig. 8-10a, determine the particle’s speed at
X1 = 4.5 m.

(1) The particle’s kinetic energy is given by Eq. 7-1
(K = Imv?). (2) Because only a conservative force acts on
the particle, the mechanical energy E,...(= K + U) is con-
served as the particle moves. (3) Therefore, on a plot of U(x)
such as Fig. 8-10a, the kinetic energy is equal to the differ-
ence between E,.. and U.

Calculations: Atx = 6.5 m,the particle has kinetic energy
Ky = mv} = 1(2.00 kg)(4.00 m/s)?
=16.01J.

Because the potential energy there is U = 0, the mechanical
energy is

Epee =Ko+ Uy=1607 +0 = 16017.

This value for E_.. is plotted as a horizontal line in Fig.
8-10a. From that figure we see that at x = 4.5 m, the poten-
tial energy is U; = 7.0 J. The kinetic energy K; is the differ-
ence between E .. and U;:

K, =Ep.— U =160J — 7.0 = 9.07.

Because K; = 1mv}, we find

vy = 3.0 m/s. (Answer)

(b) Where is the particle’s turning point located?

KEY IDEA

The turning point is where the force momentarily stops and
then reverses the particle’s motion. That is, it is where the
particle momentarily has v = 0 and thus K = 0.

Calculations: Because K is the difference between
E... and U, we want the point in Fig. 8-10a where the plot of
U rises to meet the horizontal line of £, as shown in Fig.
8-10b. Because the plot of U is a straight line in Fig. 8-10b,
we can draw nested right triangles as shown and then write

e o
PLUS

20
6 \ Epec =161
_ I
5 ! il Kinetic energy is the difference
s 0

between the total energy and
\ the potential energy.

x (m)
(a)
U (J)
20
Turning point
16 —
The kinetic energy is zero
at the turning point (the
particle speed is zero).
7L — x (m)
1 4
—d—

()

Fig. 8-10 (a) A plot of potential energy U versus position x. (b)
A section of the plot used to find where the particle turns around.

the proportionality of distances

16 -70 20—-70
d 40— 1.0°

which gives us d = 2.08 m. Thus, the turning point is at
x=40m —d=19m.

(c) Evaluate the force acting on the particle when it is in the
region 1.9 m < x <4.0m.

KEY IDEA

The force is given by Eq. 8-22 (F(x) = —dU(x)/dx). The
equation states that the force is equal to the negative of the
slope on a graph of U(x).

(Answer)

Calculations: For the graph of Fig. 8-10b, we see that for
the range 1.0 m < x < 4.0 m the force is

207 — 7.
01=701 _ 5.

F= = om—40m

(Answer)

Thus, the force has magnitude 4.3 N and is in the positive di-
rection of the x axis. This result is consistent with the fact
that the initially leftward-moving particle is stopped by the
force and then sent rightward.

Additional examples, video, and practice available at WileyPLUS
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Fig. 8-12 Positive work Wis done on a
system of a bowling ball and Earth, causing
a change AE,,.. in the mechanical energy of
the system, a change AK in the ball’s kinetic
energy, and a change AU in the system’s
gravitational potential energy.

CHAPTER 8 POTENTIAL ENERGY AND CONSERVATION OF ENERGY

8-7 Work Done on a System by an External Force

In Chapter 7, we defined work as being energy transferred to or from an object
by means of a force acting on the object. We can now extend that definition to an
external force acting on a system of objects.

Work is energy transferred to or from a system by means of an external force acting
on that system.

Figure 8-11a represents positive work (a transfer of energy to a system), and
Fig. 8-11b represents negative work (a transfer of energy from a system). When
more than one force acts on a system, their net work is the energy transferred to
or from the system.

These transfers are like transfers of money to and from a bank account. If a
system consists of a single particle or particle-like object, as in Chapter 7, the
work done on the system by a force can change only the kinetic energy of the
system. The energy statement for such transfers is the work—kinetic energy theo-
rem of Eq. 7-10 (AK = W); that is, a single particle has only one energy account,
called kinetic energy. External forces can transfer energy into or out of that
account. If a system is more complicated, however, an external force can change
other forms of energy (such as potential energy); that is, a more complicated
system can have multiple energy accounts.

Let us find energy statements for such systems by examining two basic situa-
tions, one that does not involve friction and one that does.

No Friction Involved

To compete in a bowling-ball-hurling contest, you first squat and cup your hands
under the ball on the floor. Then you rapidly straighten up while also pulling your
hands up sharply, launching the ball upward at about face level. During your
upward motion, your applied force on the ball obviously does work; that is, it is an
external force that transfers energy, but to what system?

To answer, we check to see which energies change. There is a change AK in
the ball’s kinetic energy and, because the ball and Earth become more sepa-
rated, there is a change AU in the gravitational potential energy of the
ball-Earth system. To include both changes, we need to consider the ball-Earth
system. Then your force is an external force doing work on that system, and the
work is

W = AK + AU, (8-25)

or W = AE,.. (work done on system, no friction involved), (8-26)
where AE,,.. is the change in the mechanical energy of the system. These two
equations, which are represented in Fig. 8-12, are equivalent energy statements

for work done on a system by an external force when friction is not involved.

Friction Involved

We next consider the example in Fig. 8-13a. A constant horizontal force F pulls a
block along an x axis and through a displacement of magnitude d, increasing the
block’s velocity from ¥, to V. During the motion, a constant kinetic frictional
force fk from the floor acts on the block. Let us first choose the block as our
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The applied force supplies energy. So, the work done by the applied

The frictional force transfers some force goes into kinetic energy

of it to thermal energy. and also thermal energy.
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Fig. 8-13 (a) A block is pulled across a floor by force F while a kinetic frictional
force f, opposes the motion. The block has velocity v, at the start of a displacement dand
velocity V at the end of the displacement. (b) Positive work W is done on the block -floor
system by force F, resulting in a change AFE,.. in the block’s mechanical energy and a
change AE,, in the thermal energy of the block and floor.

system and apply Newton’s second law to it. We can write that law for compo-
nents along the x axis (Fy , = ma,) as

F — f, = ma. (8-27)

Because the forces are constant, the acceleration @ is also constant. Thus, we can
use Eq.2-16 to write
v: = vj + 2ad.

Solving this equation for a, substituting the result into Eq. 8-27, and rearranging
then give us
Fd = mv* — tmv} + fid (8-28)

or, because ;mv? — Imv§ = AK for the block,
Fd = AK + f,d. (8-29)

In a more general situation (say, one in which the block is moving up a ramp), there
can be a change in potential energy. To include such a possible change, we general-
ize Eq. 8-29 by writing
Fd = AE, + fi.d. (8-30)

By experiment we find that the block and the portion of the floor along
which it slides become warmer as the block slides. As we shall discuss in
Chapter 18, the temperature of an object is related to the object’s thermal energy
E,, (the energy associated with the random motion of the atoms and molecules in
the object). Here, the thermal energy of the block and floor increases because
(1) there is friction between them and (2) there is sliding. Recall that friction is
due to the cold-welding between two surfaces. As the block slides over the floor,
the sliding causes repeated tearing and re-forming of the welds between the
block and the floor, which makes the block and floor warmer. Thus, the sliding
increases their thermal energy Ej;,.

Through experiment, we find that the increase AEy, in thermal energy is
equal to the product of the magnitudes f; and d:

AEy = fid (increase in thermal energy by sliding). (8-31)

Thus, we can rewrite Eq. 8-30 as
Fd = AE, ..+ AE,,. (8-32)

Fd is the work W done by the external force F (the energy transferred by the
force), but on which system is the work done (where are the energy transfers made)?

PART 1
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To answer, we check to see which energies change. The block’s mechanical energy
changes, and the thermal energies of the block and floor also change. Therefore, the
work done by force F is done on the block —floor system. That work is

W:

AE .. + AEy

(8-33)

(work done on system, friction involved).

This equation, which is represented in Fig. 8-13b, is the energy statement for the
work done on a system by an external force when friction is involved.

\'CH ECKPOINT 5

In three trials, a block is pushed by a horizontal applied force across a floor that is not
frictionless, as in Fig. 8-13a. The magnitudes F of the applied force and the results of the
pushing on the block’s speed are given in the table. In all three trials, the block is
pushed through the same distance d. Rank the three trials according to the change in
the thermal energy of the block and floor that occurs in that distance d, greatest first.

Trial F Result on Block’s Speed
a 5.0N decreases
b 7.0N remains constant
8.0N increases

Sample Problem

Work, friction, change in thermal energy, cabbage heads

A food shipper pushes a wood crate of cabbage heads (total
mass /m = 14kg) across a concrete floor with a constant
horizontal force F of magnitude 40 N. In a straight-line dis-
placement of magnitude d = 0.50 m, the speed of the crate
decreases from v, = 0.60 m/s tov = 0.20 m/s.

(a) How much work is done by force F,and on what system
does it do the work?

KEY IDEA

Because the applied force F is constant, we can calculate
the work it does by using Eq.7-7 (W = Fd cos ¢).

Calculation: Substituting given data, including the fact that
force F and displacement d are in the same direction, we
find

W = Fdcos ¢ =
=201

(40 N)(0.50 m) cos 0°

(Answer)

Reasoning: We can determine the system on which the
work is done to see which energies change. Because the
crate’s speed changes, there is certainly a change AK in
the crate’s kinetic energy. Is there friction between the floor
and the crate, and thus a change in thermal energy? Note
that F and the crate’s velocity have the same direction.

oo
PLUS

Thus, if there is no friction, then F should be accelerating
the crate to a greater speed. However, the crate is slowing, so
there must be friction and a change AE}, in thermal energy
of the crate and the floor. Therefore, the system on which
the work is done is the crate—floor system, because both en-
ergy changes occur in that system.

(b) What is the increase AEy, in the thermal energy of the
crate and floor?

KEY IDEA

We can relate AEy, to the work W done by F with the energy

statement of Eq. 8-33 for a system that involves friction:
W = AE,.. + AE,. (8-34)

Calculations: We know the value of W from (a). The
change AE,.. in the crate’s mechanical energy is just the
change in its kinetic energy because no potential energy
changes occur, so we have

AEmec =

Substituting this into Eq. 8-34 and solving for AE,;, we find
AE, = W — Gmv? — Imv}) = W — tm(v? — v})
=207J — }(14 kg)[(0.20 m/s)* — (0.60 m/s)?]

=222]=22].

= L2 — L2
AK = smv* — smvy.

(Answer)

Additional examples, video, and practice available at WileyPLUS
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8-8 Conservation of Energy

We now have discussed several situations in which energy is transferred to or
from objects and systems, much like money is transferred between accounts.
In each situation we assume that the energy that was involved could always be
accounted for; that is, energy could not magically appear or d