

Course Specifications

Institution:	Date:
College/Department :	
A. Course Identification and Gener	al Information
1. Course title and code: General Chem	nistry 1, 4021011-4
2. Credit hours: Four (3 theoretical + 1	· /
3. Program(s) in which the course is of	
•••	rograms indicate this rather than list programs)
Chemistry Ludustrial Chemistry	
Industrial ChemistryPhysics	
Medical Physics	
Biology	
Microbiology	
Mathematics	
Preparatory year	
4. Name of faculty member responsible	e for the course: : Prof. Mohamed Ismail Awad
5. Level/year at which this course is of	fered: 1 st / 1
6. Pre-requisites for this course (if any)	
7. Co-requisites for this course (if any)	:
8. Location if not on main campus:	
9. Mode of Instruction (mark all that ap	oply):
a. traditional classroom	`80 What percentage?
b. blended (traditional and online)	20 What percentage?
c. e-learning	What percentage?
d. correspondence	What percentage?
f. other	What percentage?

Comments:

B Objectives

1. Summary of the main learning outcomes for students enrolled in the course.

This course is an introductory chemistry course designed to prepare students for college level chemistry courses. The course introduces some basic principles of physicl, organic and inorganic chemistry.

2.Briefly describe any plans for developing and improving the course that are being implemented. (eg increased use of IT or web based reference material, changes in content as a result of new research in the field).

- The use of teaching intelligent classes for lectures.
- Encourage students to prepare reports in general topics in chemistry.
- The use of information technology or the Internetin order to increase awareness of the concepts of chemistry.

C. Course Description (Note: General description in the form used in Bulletin or handbook)

Course Description:

1. Topics to be Covered		
Topic	No of	Contact
	Weeks	hours
Units of measurements; SI- units, intensive and extensive properties, uncertainty	1	3
in measurements (precision and accuracy).		
Significant figures: Rounding significant figures, Using significant figures in	1	3
addition, subtraction, multiplication and divisions.		
States of matter and measurement, molecules and molecular compounds.	2	6
The periodic table, nomenclature, electronic structure of atoms, simple periodic	2	6
properties of the elements.		
Chemical bonding, molecular geometry, and properties of various states of	1	3
matter.		
Ions and ionic compounds, chemical reaction types.	1	3
Stoichiometry, atomic and molecular weights.	1	3
The mole, simple quantitative calculations with chemical reactions.	1	3
Basics of chemical equilibrium.	1	3
Acids and bases.	1	3
Thermochemistry.	1	3
Hydrocarbons, nomenclature and simple reactions.	1	3

Laboratory Experiments Outline

Topics to be Covered		
List of Experiments	No of	Contact
The practical part includes the following experiments:	Weeks	hours
Introduction	1	3
Density and viscosity of liquids.	1	3
Compound type (polar – nonpolar – ionic).	1	3
Chemical reactions.	1	3
Acids and bases and pH measurements and calculations.	1	3
Titration of vinegar.	1	3
Oxidation-reduction reactions.	1	3
Molar mass of acid.	1	3
Qualitative analysis (acidic and basic radicals).	1	3
Collegative properties (determination of molecular weight).	1	3
Determination of the heat capacity of the calorimeter.	1	3
Determination of the critical solution temperature of phenol - water system	1	3
Review	1	3
Final Exam.	1	3

2. Course con	nponents (total contact	hours and cr	edits per semes	ter):		
		Lecture	Tutorial	Laboratory/ Studio	Practical	Other:	Total
Contact	Planed	42			42		42
Hours	Actual	42			42		42
Credit	Planed	3			1		
Clean	Actual	3			1		

3. Additional private study/learning hours expected for students per week.

4. Course Learning Outcomes in NQF Domains of Learning and Alignment with Assessment Methods and Teaching Strategy

On the table below are the five NQF Learning Domains, numbered in the left column.

First, insert the suitable and measurable course learning outcomes required in the appropriate learning domains (see suggestions below the table). **Second**, insert supporting teaching strategies that fit and align with the assessment methods and intended learning outcomes. **Third**, insert appropriate assessment methods that accurately measure and evaluate the learning outcome. Each course learning outcomes, assessment method, and teaching strategy ought to reasonably fit and flow together as an integrated learning and teaching process. (Courses are not required to include learning outcomes from each domain.)

		0	
	NQF Learning Domains	Course Teaching	Course Assessment
	And Course Learning Outcomes	Strategies	Methods
1.0			
1.1	Knows International system of units	Lectures	Exams
1.2	Familiar with the laws that describe the behavior of ideal	Scientific discussion	portfolios
	gases.	Library visits	long and short essays
1.3	Knows atom structure	Web-based study	posters lab manuals
1.4	Describe types of solids.	-	
1.5	Mention the first law of thermodynamics.		
1.6	List the factors affecting equilibrium position and equilibrium concentration.		
2.0	Cognitive Skills	I	
2.1	Summarize gases laws	Lectures	1. Midterm exam
2.2	Compare between ideal and real gases	Scientific discussion	2.quizzes
2.3	Apply Hess's law for the calculation of heat of reaction.	homework assignment	3.Final exam
	Apply Faraday's laws for calculating the amount	containing problem thinking	
2.4	deposited at electrodes	activities	
2.5	Predict the spontaneity of chemical reaction.		
3.0	Interpersonal Skills & Responsibility		
	1 1 7		
	Manage resources, time and collaborate with members	Team work groups	Assessment of the solution
	of the group.	General discussion with	problems submitted by the
•	Ability to work independently to handle Chemicals	students for solving a	students.
	and perform laboratory illustrations safely.	problrm.	
•	Ability to communicate results of work to classmates.		
•	• Ability to work in a team to perform a specific task		
4.0	Communication, Information Technology, Nume	erical	
•	Work effectively both in a team, and independently on	Write a Report	Evaluation of the report
	solving chemistry problems.	Use libraries	presented
•	Communicate effectively with his lecturer and		
	colleagues		
•	Use university library and web search engines for		
	collecting information and search about different		
	topics .		
5.0	Developmentor		
5.0	Psychomotor		
5.1	NOT APPLICABLE		
		1	1

Course Specifications

ſ	5.2		

5. Schedule of Assessment Tasks for Students During the Semester

Assessment	Assessment task (eg. essay, test,	Week due	Proportion of Final
	group project, examination etc.)		Assessment
1	Class activities, Attendances and	Throughout the	10%
	Duties	Term	
2	Mid-Term Exam (s)	5-14	20%
3	Lab Activity and Final Exam on	Throughout the	30%
	Lab	Term	
4	Final Exam.(2 hours exam)	End of the Term	40%
5	Total		100%

D. Student Academic Counseling and Support

1. Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice. (include amount of time teaching staff are expected to be available each week)

E. Learning Resources

1. List Required Textbooks

P. Atkins and *J. de Paula*, Physical Chemistry, 10th ed., 2006, New York.

2. List Essential References Materials (Journals, Reports, etc.)

Steven S. Zumdahl, Susan A. Zumdahl, 9th ed., 2009, New York.

3. List Electronic Materials, Web Sites, Facebook, Twitter, etc.

Chemistry, R. Chang, 10th Edition, McGraw-Hill Higher Education, 2011.

4. Other learning material such as computer-based programs/CD, professional standards or regulations and software.

F. Facilities Required

Indicate requirements for the course including size of classrooms and laboratories (ie number of seats in classrooms and laboratories, extent of computer access etc.)

1. Accommodation (Lecture rooms, laboratories, etc.)

Classroom capacity (60) students.

To supply the classrooms with the appropriate educational means.

2. Computing resources

Hall is equipped with a computer and Data Show and TV.

3. Other resources (specify --eg. If specific laboratory equipment is required, list requirements or attach list)

None

G. Course Evaluation and Improvement Processes

1 Strategies for Obtaining Student Feedback on Effectiveness of Teaching Complete thequestionnaireevaluation of the coursein particular.

Assess the progress of the operation by the students using the evaluation forms or group discussion in order to reach weaknesses and processed.

2 Other Strategies for Evaluation of Teaching by the Program/Department Instructor **Observationsandthe assistance of colleagues.**

Independent evaluation forextent toachieve students the standards.

Iindependent adviceof the duties and tasks.

- 3 Processes for Improvement of Teaching
 - Workshopsforteaching methods.
 - Continuous trainingofmember staff.
 - Review of strategies proposed.
 - Providing new tools for learning.
 - The application of e-learning.
 - Exchange of experiences internal and external.

4. Processes for Verifying Standards of Student Achievement (e.g. check marking by an independent member teaching staff of a sample of student work, periodic exchange and remarking of tests or a sample of assignments with staff at another institution)

- Check marking of a sample of example papers, or student work.
- Exchange corrected sample of assignments or exam basis with another staff member for the same course in other faculty.

5 Describe the planning arrangements for periodically reviewing course effectiveness and planning for improvement.

- Periodic Reviewof thecontents of the syllabusand modify the negatives.
- Consultotherstaff of the course.
- Hostinga visiting staffto evaluate of thecourse.
- Workshopsfor teachers of the course.

Course Coordinator: Professor Mohamed Ismail Awad