

Course Specifications

Course Title:	Introduction to Medical Physics	
Course Code:		
Program:	Medical Path	
Department:	ent: Common First Year Deanship	
College:	Applied of Medical Sciences	
Institution:	Umm Al-Qura University	

Table of Contents

A. Course Identification	
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes	
1. Course Description	3
2. Course Main Objective	3
3. Course Learning Outcomes	4
C. Course Content	
D. Teaching and Assessment7	
1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods	7
2. Assessment Tasks for Students	8
E. Student Academic Counseling and Support8	
F. Learning Resources and Facilities8	
1.Learning Resources	8
2. Facilities Required	9
G. Course Quality Evaluation9	
H. Specification Approval Data9	

A. Course Identification

1. Credit hours:				
2. Course type				
a. University College Department Others				
b. Required Elective				
3. Level/year at which this course is offered: Common First Year				
4. Pre-requisites for this course (if any):				
None				
5. Co-requisites for this course (if any):				
none				

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	75	100%
2	Blended		
3	E-learning		
4	Distance learning		
5	Other		

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	45
2	Laboratory/Studio	20
3	Tutorial	10
4	Others (specify)	
	Total	75

B. Course Objectives and Learning Outcomes

1. Course Description

The course aims to provides student with the basic concepts and skills of physics and to be aware of the role of physics in medicine. The course help students to understand how work some parts of the human body systems, such as the forces on muscles, bones and joints, the circulation of blood inside arteries and capillaries, the role of gravity on the blood circulation, the mechanism of human vision, the correction of the eye defects with lenses, the resting of radioactive substances in human organs and the ionizing radiation. This course, also, can help students in medicine to understand how to use some sophisticated techniques and instruments in diagnosis, therapy and surgery, such as medical imaging, radiation equipment and endoscopic surgery.

2. Course Main Objective

- Help students to realize the connection between physics and medicine.

- Recognize the role of physics in diagnosis and therapy through the investigation of some techniques such as X-rays, MRI, endoscope, ...

- Learn how to apply physics modeling to some parts of the human body
- Develop problem-solving and critical- thinking skills
- Improve laboratory methodology and skills in writing reports
- Acquire good communication skills in scientific presentations
- Educate students on the principles of scientific ethics.

3. Course Learning Outcomes

	Aligned PLOs	
1	Knowledge and Understanding	
1.1	Define physical quantities and their standard units	
1.2	Convert quantities from a unit system to another unit system	
1.3	Identify the different types of motion	
1.4	Describe the motion from the kinematics point of view	
1.5	Solve problems of motion from the dynamics point of view, using the newton's laws of motion	
1.6	Calculate the velocity and the acceleration as vector quantities	
1.7	Calculate the range of a projectile	
1.8	State the conditions of equilibrium for a rigid body system	
1.9	Calculate the torque of a force about a pivot	
1.10	Estimate the intensity of the force applied on muscles and joints in the equilibrium conditions	
1.11	Analyze the stability of equilibrium of a rigid body	
1.12	Find the position of the center of gravity of any rigid body	
1.13	Recognize the effect of force on the shape and the size of a body	
1.15	Distinguish the main properties of fluids	
1.16	Calculate the static pressure exerted by a fluid on a solid surface	
1.17	Estimate the magnitude of the buoyant force	
1.18	Apply the continuity equation to calculate the flow rate and the velocity of fluid	
1.19	Write Bernoulli's equation and define pressure, velocity and static pressure	
1.20	Understand the effect of gravity and acceleration on the blood pressure	
1.21	Calculate viscous forces applied in fluids	
1.22	Use Poiseuille's law to estimate pressure drop in the circulatory system	
1.23	Estimate the fluid resistance in vessels and airways	
1.24	State the difference between laminar and turbulent flow.	
1.25	Recall the properties of thin lenses	
1.26	Draw the image of an object by a thin lens	
1.27	Identify the eye as an optical system	
1.28	Understand the main eye defects	
1.29	9 Find the appropriate power to correct an eye defect and calculate the power	
	of the lens used to correct the defect	
1.30	Characterize the structure of the nucleus	
1.31	Explain the phenomenon of magnetic resonance of the nucleus	
1.32	Identify the different types of radioactive decay	

1.33	Calculate the effective half-life of a radionuclide in the body	
1.34	Use the exponential law to estimate radiation fractions	
1.35	Discuss the role of nuclear radiation in therapy	
1.36	Explain the interaction of radiation with tissues and biological systems	
1.37	Categorize the different types of ionizing radiation	
1.38	Specify the units of measurement in radioactivity	
1.39	Explain the meaning of source activity of a radionuclide sample	
1.40	Estimate the biological equivalent absorbed dose caused by radiations	
2	Skills:	
2.1	Perform experimental setups	
2.2	Record experimental measurements	
2.3	Plot scientific graphs	
2.4	Analyze experimental findings	
2.5	Interpret graphical illustrations	
2.6	Estimate experimental errors	
2.7	Perform accurate calculations	
2.8	Apply physics models	
2.9	Write laboratory reports	
2.10	Apply the methodology of solving problems	
3	Values:	
3.1	Appreciate the role of physics in medicine	
3.2	Build self-confidence through education	
3.3	Gain the qualities of honesty	
3.4	Develop creativity in students	

C. Course Content

No	List of Topics	Contact Hours
1	 Chapter 1: Motion on a straight line 1.1 Measurements, Standards and Units 1.2 Displacements; Average Velocity 1.3 Instantaneous Velocity 1.4 Acceleration 1.5 Finding the Motion of an Object 1.6 The Acceleration of Gravity and Falling Objects 	6
2	 Chapter 2: Motion in two dimensions An introduction to vectors The velocity in two dimensions The acceleration in two dimensions 	3
3	 Chapter 3: Newton's laws of motion 3.1 -Force and weight 3.2- Density 3.3- Newton's 1st law 3.4- Equilibrium 3.5- Newton's 3rd law 3.6- Newton's 2nd law 	6

	3.8- Some Examples of Newton's Laws3.12- Friction	
	Chapter 4: Statics	
	• 4.1 Torque	
	 4.2 Equilibrium of rigid bodies 	_
4	• 4.3 The center of gravity	6
	 4.4 Stability and balance 4.5 Layers and mechanical advantage 	
	- 4.5 Levers and mechanical advantage	
	chapter 5: Work and energy	
_	 5.1 Work 5.2 Kinetic Energy 	2
5	 5.3 Potential Energy and Conservative Forces 	3
	• 5.4 Power	
	Chapter 6: Fluids	
	• 6.1- Pressure in fluids	
	 6.2- Archimedes' Principle 	
6	• 6.3- The equation of continuity, Streamline flow	6
	 6.4- Bernoulli's Equation 6.5- Static consequence of Bernoulli's equation 	
	 6.6- Role of gravity on the blood pressure 	
	 6.7 Blood pressure measurement 	
	Chapter 7: Non-viscous fluids	
7	• 7.1 Viscosity	2
/	 7.2 Flow in circulatory system 	3
	 7.3 Flow resistance 	
	Chapter 8: Mirrors lenses and optical systems (2 weeks)	
	• 8.1 Thin lenses	
8	 8.2 The Power of a Lens 	6
	 8.3 The Human Eye 8.4 Optical Defects of the Eye 	
	- 8.4 Optical Defects of the Eye	
	Chapter 9: Nuclear physics	
9	 9.1 Kauloacuvity 9.2 Half-life 	3
	Chapter 10: Ionizing radiation • 10.1 The interaction of radiation with matter	
10	 10.2 Radiation Units 	3
	Total	45

No	List of Topics- Laboratory	Contact Hours
1	Introduction to laboratory physics	2
2	Units-Standards and conversion	2
3	Measurement of density	2
4	Torque and Rotational equilibrium of a rigid body	2
5	Surface Tension	2
6	The Simple pendulum	2
7	Resonance tube -Speed of sound	2
8	Linear thermal expansion	2
9	Measurement of viscosity	2
10	Focal length of thin lenses	2
Total		

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.0	Knowledge and Understanding		
1.1 1.2 	All CLO's	Lectures Simulation with PowerPoint presentations Tutorial sessions Seminaries	Direct questions in class Homework Short quizzes Exams
		Interactive teaching	
		Team oriented sessions	
2.0	Skills		
2.1	Perform experimental setups		
2.2	Record experimental measurements		
2.3	Plot scientific graphs	Assist practical work	
2.4	Analyze experimental findings	Lectures	Lab reports
2.5	Estimate experimental errors	Tutorial sessions	Quizzes
2.6	Interpret graphical illustrations	Work with small groups	Lab Exams
2.7	Perform accurate calculations	Small searching related	Presentations Solf accomments
2.8	Apply physics models	Animated discussions	Sen-assessments
2.9	Write laboratory reports	i minated discussions	
2.10	Apply the methodology of solving		
	problems		
3.0	Values		
3.1	Appreciate the role of physics in medicine		
3.2	Build self-confidence through education	Animated discussion	Presentations
3.3	Gain the qualities of honesty	Team oriented sessions	Self-assessments
3.4	Develop creativity in students		

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Homework assignments	End of each chapter	5%
2	Short Quizzes	3 to 4 quizzes per semester	10%
3	Lab reports	End of each lab session	5%
4	Lab exam	End of the semester	10%
5	Midterm Exam	Week 8	30%
6	Final Exam	End of the semester	40%

*Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice:

-Students can contact instructors by e-mail and arrange appointments via official online means (blackboard- webex- Zoom,..)

- Students can visit during the office hours.

-Planning Extra lessons for revision

F. Learning Resources and Facilities

1.Learning Resources

Required Textbooks	Physics for biology and medicine, Paul Davidovits, Third Edition, Elsevier Academic Press.		
Essential References Materials	 -General Physics, 2nd Edition, by Morton M. Sternheim, Joseph W. Kane Wiley; (January 1991), ISBN-13: 978-0471522782. -Physics for scientists and engineering by Serway 7th edition, Cengage Learning; (February 20, 2007). -Fundamentals of Physics: Mechanics, Relativity, and Thermodynamics (The Open Yale Courses Series), Yale University Press (December 2, 2013). 		
Electronic Materials	BlackBoard Platform		
Other Learning Materials	https://phet.colorado.edu/ https://www.myphysicslab.com/ https://onlinelabs.in/physics https://www.omnicalculator.com/physics		

2. Facilities Required

Item	Resources
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	
Technology Resources (AV, data show, Smart Board, software, etc.)	
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Effectiveness of teaching	Students	Feedback - surveys
	Staff	Feedback - surveys
Assessments	Faculty and Program Leaders	Statistics analysis
LCOs achievement	Faculty	Direct evaluation
Quality of learning resources	Students and staff	Feedback - surveys

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	Vice Dean of Common First Year for Academic Affairs, Dr Ahmad Fawzi Arbaeen
Reference No.	-
Date	27/3/2022