Course Specification

Medical Physics, Plan 19

Kingdom of Saudi Arabia

The National Commission for Academic Accreditation and Assessment

Course Specification

(1) General Physics 403101

Course Specification

For Guidance on the completion of this template, please refer to Handbook 2 Internal Quality Assurance Arrangements

Institution: Umm AL-Qura University

College/Department :- College of Sciences / Physics Department

A Course Identification and General Information

1. Course title and code: Physics 101 (PH 403101)

2. Credit hours: 4 Cr. Hrs

3. Program(s) in which the course is offered. (If general elective available in many

programs indicate this rather than list programs) B.Sc Degree in Physics

4. Name of faculty member responsible for the course:

5. Level/year at which this course is offered: 1th Level-1th year

6. Pre-requisites for this course (if any):

7. Co-requisites for this course (if any):

8. Location if not on main campus: University Campus

B Objectives

Summary of the main learning outcomes for students enrolled in the course.

Physics 101 is an introductory physics course for non-science majors. This course focuses on basic physics concepts and connections to everyday life. Course topics include Newtonian mechanics, properties of matter, fluids, heat, light and sound,. Connections to everyday life and society include energy conservation, global warming, the origin of the universe, pseudoscience, and the search for extraterrestrial life. While advanced mathematics is not required for this course, basic math with some trigonometry and simple algebra is utilized. Proportional reasoning, estimating, and graphing skills are emphasized throughout the course. Overall goals of this course include students' gaining an appreciation for the physical world, improved critical thinking and reasoning skills, and improved scientific literacy for a better-informed public that can make intelligent voting decisions. Concurrent enrolment in a Physics 101 lab is required since the lab grade is included in the 4-credit hour course grade.

The main learning outcomes are as follows:

Measurement:

The physical quantities, units and standards of units: the international system of unit, standard of time, standard of mass, standard of length and dimensional analysis Vectors:

vector and scalar quantities, components of vectors, adding vectors, multiplying vectors, scalar product and vector product

Properties of Matter:

Elasticity and fluid mechanics:

Fluid statics:

Pressure and density, fluid at rest, variation of pressure with the height in static fluid Pascal's principle, Archimedes principle, pressure measurements and surface tension Fluid Dynamics

Bernoulli's equation, streamlines and continuity equation, Bernoulli's equation application of Bernoulli's equation, continuity equation and viscosity Heat:

Temperature, macro-and microscopic description, thermal equilibrium, measurements of temperature, the ideal gas temperature scale and thermal expansion, heat as a form of energy, quantity of heat and specific heat, thermal conductivity, the mechanical equivalent of heat, heat and work

Optics:

Visible light, speed of light, geometrical and wave optics, reflection and refraction, deriving the law of reflection, total internal reflection, spherical marries, spherical reflection surface, thin lenses, optical instruments

- 1. The students should be trained on physical and generic skills (knowledge cognitive interpersonal communication problem solving IT)
- 2. To describe, in words, the ways in which various concepts in electromagnetism come into play in particular situations; to represent these electromagnetic phenomena and fields mathematically in those situations; and to predict outcomes in other similar situations.
- 3. The day life applications in the domain of these electromagnetic phenomena
- 4. To analyse electric systems using a required basics
- 5. To understanding behaviour of components with direct and with alternating current.
- 6. The overall goal is to use the scientific method to come to understand the enormous variety of electromagnetic phenomena in terms of a few relatively simple laws

Briefly describe any plans for developing and improving the course that are being implemented. (eg increased use of IT or web based reference material, changes in content as a result of new research in the field)

- 1. Explain strategy of the course in the beginning of the semester
- 2. Outlines of the physical laws, principles and the associated proofs.
- 3. Highlighting the day life applications whenever exist.
- 4. Encourage the students to see more details in the international web sites and reference books in the library.
- 5. Discussing some selected problems in each chapter.
- 6. Cooperate with different institution to find how they deal with the subject
- 7. Renew the course references frequently
- 8. Frequently check for the latest discovery in science

C. Course Description (Note: General description in the form to be used for the Bulletin or Handbook should be attached)

	Topics to be Covered	No of weeks	Contact
	Topics		Hours
	Measurement	2 weeks	6 hrs
1.	The physical quantities		
2.	Units and standards of units		
3.	The international system of unit		
4.	Standard of time		
5.	Standard of mass		
6.	Standard of length		
7.	Dimensional analysis		
	Vectors	2 weeks	6hrs
1.	Vector and scalar quantities		
2.	Components of vectors		
3.	Adding vectors		
4.	Multiplying vectors		
5.	Scalar product		
6.	Vector product		
	Properties of Matter	1 weeks	3hr
	Elasticity and fluid mechanics		
	Fluid statics		
1.	Pressure and density	2 weeks	6
2.	Fluid at rest		
3.	Variation of pressure with the height in static		
	fluid		
4.	Pascal's principle		
5.	Archimedes principle		
6.	Pressure measurements		
7.	Surface tension		

Fluid Dynamics		
1. Bernoulli's equation	2 weeks	6
2. Streamlines and continuity equation		
3. Bernoulli's equation		
4. Application of Bernoulli's equation		
5. Continuity equation and viscosity		
Heat	3 weeks	
1. Temperature		
2. Macro-and microscopic description		
3. Thermal equilibrium		
4. Measurements of temperature		
5. The ideal gas temperature scale		
6. Thermal expansion		
7. Heat as a form of energy		
8. Quantity of heat and specific heat		
9. Thermal conductivity		
10. The mechanical equivalent of heat		
11. Heat and work		
Optics		
1. Visible light,	3 weeks	
2. Speed of light, ,		
3. Geometrical and wave optics,		
4. Reflection and refraction,		
5. Deriving the law of reflection,		
6. Total internal reflection,		
7. Spherical marries,		
8. Spherical reflection surface,		
9. Thin lenses,		
10. Optical instruments		

2 Course components	s (total contact hours p	er semester):	
Lecture: 45 hrs	Tutorial: 30 hr	Practical/Fieldwork /Internship:	Other: Office hours : 32 hr

3. Additional private study/learning hours expected for students per week. (This should be an average: for the semester not a specific requirement in each week)

1.	A brief summary of the knowledge or skill the course is intended to develop;
2.	A description of the teaching strategies to be used in the course to develop that knowledge or skill;
3.	The methods of student assessment to be used in the course to evaluate learnin outcomes in the domain concerned.
Kne	owledge
1.	Knowledge that students should know and understand when they complete the course is as follow:
2.	Learning fundamentals in physics theory
3.	Understanding the physics low and their applications mentioned in the text.
4.	Improving logical thinking.
5.	To use mathematical formulation to describe the physical principle or phenomena
6.	Ability to explain how things work.
	Teaching strategies to be used to develop that knowledge
1.	Demonstrating the basic information and principles through lectures and the achieved applications
2.	Discussing phenomena with illustrating pictures and diagrams
3.	Lecturing method:
	a. Blackboard
	b. Power point
4.	c. e-learning Tutorials
	Revisit concepts
6.	Discussions
7.	Brain storming sessions
8.	Start each chapter by general idea and the benefit of it
9.	Learn the student background of the subject
10.	Show the best ways to deal with problem
11.	Keep the question "why" or "how" to explain always there
	• • •

(iii) Methods of assessment of knowledge acquired

- 1. Solve some example during the lecture.
- 2. Exams:
- a) Quizzes
- b) Short exams (mid term exams)
- c) Long exams (final)
- d) Oral exams
- 3. Discussions with the students.
- 4. Ask the student to clear the misunderstanding of some physical principle.
- 5. Ask quality question.

b. Cognitive Skills

(i) Cognitive skills to be developed

- 1. How to use physical laws and principles to understand the subject
- 2. How to simplify problems and analyze phenomena
- 3. Analyse and explain natural phenomena.
- 4. Ability to explain the idea with the student own words.
- 5. Represent the problems mathematically.

(ii) Teaching strategies to be used to develop these cognitive skills

- 1. Preparing main outlines for teaching
- 2. Following some proofs
- 3. Define duties for each chapter
- 4. Home work assignments
- 5. Encourage the student to look for the information in different references
- 6. Ask the student to attend lectures for practice solving problem
- 7. Ask the student to do small research.

(iii) Methods of assessment of students cognitive skills

- 1. Midterm's exam. Exams, short quizzes
- 2. Asking about physical laws previously taught
- 3. Writing reports on selected parts of the course
- 4. Discussions of how to simplify or analyze some phenomena

c. Interpersonal Skills and Responsibility

(i) Description of the interpersonal skills and capacity to carry responsibility to be developed

- 1. Work independently.
- 2. The students learn independently and take up responsibility.

(ii) Teaching strategies to be used to develop these skills and abilities				
1. Learn how to search the internet and use the library.				
2. Learn how to cover missed lectures.				
3. Learn how to summarize lectures or to collect materials of the course.				
4. Learn how to solve difficulties in learning: solving problems – enhance				
educational skills.				
5. Develop her interest in Science through :(lab work, field trips, visits to				
scientific and research.				
6. Encourage the student to attend lectures regularly by:				
i. Giving bonus marks for attendance				
ii. Assigning marks for attendance.				
iii. Give students tasks of duties				
(iii) Methods of assessment of students interpersonal skills and capacity to carry				
responsibility				
1. Quizzes on the previous lecture				
 Checking report on internet use and trips 				
3. Discussion				
4. The accuracy of the result gained by each group will indicate good group work				
5. Presenting the required research on time and the degree of the quality will show the sense of responsibility.				
d. Communication, Information Technology and Numerical Skills				
(i) Description of the skills to be developed in this domain.				
1. Computation				
2. Problem solving				
3. Data analysis and interpretation.				
4. Feeling physical reality of results				

(ii) Teach	ing strategies to be used to develop these skills			
1.	Know the basic mathematical principles.			
2.	Use the web for research.			
3.	Discuss with the student.			
4.	Exams to measure the mathematical skill.			
5.	Clear the weakness point that should be eliminated.			
6.	Encourage the student to ask for help if needed.			
7.	Computational analysis.			
8.	Data representation.			
	Focusing on some real results and its physical meaning.			
10.	Lectures for problem solution.			
11.	Encourage the student to ask good question to help solve the problem.			
12.	Display the lecture note and homework assignment at the web.			
(iii) Meth	ods of assessment of students numerical and communication skills			
1.	Their interaction with the lectures and discussions.			
2.	The reports of different asked tasks.			
3.	Homework, Problem solutions assignment and exam should focus on the understanding.			
4.	Results of computations and analysis.			
5.	Comments on some resulting numbers.			
6.	Research.			
e. Psycho	motor Skills (if applicable)			
(i) Descri	ption of the psychomotor skills to be developed and the level of performance			
required				
(ii) Teach	(ii) Teaching strategies to be used to develop these skills			
(iii) Meth	(iii) Methods of assessment of students psychomotor skills			

5. Schedule of Assessment Tasks for Students During the Semester

Assessment	Assessment task (eg. essay, test, Week due		Proportion
	group project, examination etc.)		of Final
			Assessment
1	Midterm 1	5 th week	10
2	Midterm 2	10 th week	10
3	In-Class Problem Solving	13 th ,7 th week	10

4	Homework	Every week	10
5	Experimental	End of semester	20
6	Final exam	End of semester	40

D. Student Support

1. Arrangements for availability of faculty for individual student consultations and academic advice. (include amount of time faculty are available each week)

8 office hours per week

E Learning Resources

1. Required Text(s)

2. Essential References

3- Recommended Books and Reference Material (Journals, Reports, etc) (Attach List)

[1] Physics by : Halliday, D and Resnick, Krane

[2] Physics for student of science and Engineering by A.L.Stanford and J.M. Tanner

[3] Physics, by J. Walker, fourth Ed.

[4] Fundamentals of Physics, by Halliday, Resnick and Walker

4-.Electronic Materials, Web Sites etc

1. http://www.physicsclassroom.com

2. <u>http://www.eskimo.com</u>

5- Other learning material such as computer-based programs/CD, professional standards/regulations

Wikipedia

F. Facilities Required

Indicate requirements for the course including size of classrooms and laboratories (ie number of seats in classrooms and laboratories, extent of computer access etc.)

1. Accommodation (Lecture rooms, laboratories, etc.)

- 1. Lecture room for 30 students
- 2. Library
- 3. Laboratory for Physics (there is a special course for laboratory related to general physics)

2. Computing resources

1. Computer room

2. Scientific calculator.

3. Other resources (specify --eg. If specific laboratory equipment is required, list requirements or attach list)

G Course Evaluation and Improvement Processes

1 Strategies for Obtaining Student Feedback on Effectiveness of Teaching

- 1. Midterm and final exam.
- 2. Quiz.

2 Other Strategies for Evaluation of Teaching by the Instructor or by the Department

3 Processes for Improvement of Teaching

- (a) Course report
- (b) Program report
- (c) Program self study
 - Fortification of the student learning.

Handling the weakness point.

4. Processes for Verifying Standards of Student Achievement (eg. check marking by an independent faculty member of a sample of student work, periodic exchange and remarking of a sample of assignments with a faculty member in another institution)

- 1. The instructors of the course are checking together and put a unique process of evaluation
- 2. Check marking of a sample of papers by others in the department.
- **3.** Feedback evaluation of teaching from independent organization.

5 Describe the planning arrangements for periodically reviewing course effectiveness and planning for improvement.

- 1- The following points may help to get the course effectiveness
 - Student evaluation
 - Course report
 - Program report
 - Program Self study
- 2- According to point 1 the plan of improvement should be given.
- 3- Contact the college to evaluate the course and the benefit it add to other courses.
- 4- Add some subject and cut off others depending on the new discoveries in physics.

Kingdom of Saudi Arabia

The National Commission for Academic Accreditation & Assessment

Course Specification

(2) General Physics 403102

Course Specification

Institution : Umm Al-Qura University

College/Department : Physics

A Course Identification and General Information

1. Course title and code: General Physics 403102-4

2. Credit hours: 3

- 3. Program(s) in which the course is offered. (If general elective available in many programs indicate this rather than list programs) :To engineering students
- 4. Name of faculty member responsible for the course : Dr. LOULOU Mehrez
- 5. Level/year at which this course is offered: 2nd level
- 6. Pre-requisites for this course (if any): 101 Phys
- 7. Co-requisites for this course (if any):102 math
- 8. Location if not on main campus :on campus

B Objectives

1. Summary of the main learning outcomes for students enrolled in the course.

The basic concepts of electricity and magnetism are taught in this course. Electrostatic, electric field, electric current and magnetic field are briefly covered. By the end of this course the student should have a reasonable understanding of electricity and magnetism, which represents the background of several other courses.

2. Briefly describe any plans for developing and improving the course that are being implemented. (eg increased use of IT or web based reference material, changes in content as a result of new research in the field)

There is a plan to update all the experiments for this course.

C. Course Description (Note: General description in the form to be used for the Bulletin or Handbook should be attached)

1 Topics to be Covered

List of Topics	No of	Contac
	Weeks	thours
Electromagnetism, electric charge, conductors and insulators,		
Coulomb's law and conservation of charge	2	6
Electric field, charge distribution, point charges and electric dipoles		
	2	6
Electric flux, Gauss's law, charges in conductors and applications of		
Gauss's law	2	6
Electrostatic and gravitational forces, electric potential, electric		
potential energy, potential due to charge distributions and	2	6
equipotential surfaces		
Capacitance, capacitors in parallel and series, energy stored in		
capacitors, energy stored in electric fields, dielectrics and capacitors		
with dielectrics	2	6
	_	
Electric currents, current density, resistance and resistivity, Ohm's	2	6
law and DC circuits (Kirchoff's laws and RC circuits)		
Magnetic field, magnetic force, magnetic force and electric currents,		
Ampere's law and magnetic fields due to electric loops	2	6

2 Course compon	ents (total contac	et hours per sem	ester):	
Lecture: 42	Tutorial: 14	Laboratory: 12	Practical/Field work/Internshi p	Other:

3. Additional private study/learning hours expected for students per week. (This should be an average :for the semester not a specific requirement in each week)

4-6 hours/week for homework and lab reports

4. Development of Learning Outcomes in Domains of Learning

For each of the domains of learning shown below indicate:

- A brief summary of the knowledge or skill the course is intended to develop;
- A description of the teaching strategies to be used in the course to develop that knowledge or skill;
- The methods of student assessment to be used in the course to evaluate learning outcomes in the domain concerned.

a. Know	ledge
	5
(i) Descr	iption of the knowledge to be acquired : Basics of electricity and magnetism
(ii) Teach	hing strategies to be used to develop that knowledge
• C	ontinuous evaluation by several quizzes and exams plus homework.
• la	bs and online videos
(iii) Meth	hods of assessment of knowledge acquired
• Q	uizzes every other week, Mid-term exam, Final exam
• La	ab reports (every week), Final lab exam
	iscussions with the students
b. Cogni	itive Skills
(i)	Description of cognitive skills to be developed
• H	ow to use physical laws and principles to understand the subject
• H	ow to simplify problems and analyse phenomena
• A	nalyse and explain natural phenomena
• A	bility to explain the idea with the student own words
• R	epresent the problems mathematically
(ii)	Teaching strategies to be used to develop these cognitive skills
• P1	reparing main outlines for teaching
• Fo	ollowing some proofs
• D	efine duties for each chapter
• H	omework assignments
• Ei	ncourage the student to look for the information in different references
	sk the student to attend lectures for practice solving problem
	sk the student to do small research
(iii) Met	hods of assessment of students cognitive skills
• M	lidterm's exam, Exams, Short quizzes
• A	sking about physical laws previously taught
	riting reports on selected parts of the course
c. Interp	ersonal Skills and Responsibility
(i) Descr developed	iption of the interpersonal skills and capacity to carry responsibility to be
• W	ork independently
	The students learn independently and take up responsibility

(ii) Te	eaching strategies to be used to develop these skills and abilities
• • • (iii	Learn how to search the internet and use the library Learn how to cover missed lectures Learn how to summarize lectures or to collect materials of the course Learn how to solve difficulties in learning: solving problems-enhance educational skills. Develop her interest in science through: lab work, field trips, Encourage the student to attend lectures regularly by giving bonus marks for attendance) Methods of assessment of students interpersonal skills and capacity to carry responsibility Quizzes on the previous lecture
•	Discussion The accuracy of the result gained by each group will indicate good group work
d Co	ommunication, Information Technology and Numerical Skills
u. Ct	minumeation, mormation reenhology and rumerical Skins
(i) De	scription of the skills to be developed in this domain.
•	Problem solving
•	Data analysis and interpretation
•	Feeling physical reality of results
•	Computation
(ii) Te	eaching strategies to be used to develop these skills
•	Use the web for research
•	Discuss with the student
•	Exams to measure the mathematical skill
•	Clear the weakness point that should be eliminated
•	Encourage the student to ask for help if needed
•	Computational analysis
•	Data representation
•	Focusing on some real results and its physical meaning
•	Display the lecture note and homework assignment at the web
(iv) Methods of assessment of students numerical and communication skills
•	Their interaction with the lectures and discussions
•	The reports of different asked tasks
•	Homework, problem solution assignment and exam should focus on the
	understanding
•	Results of computations and analysis
٠	Comments on some resulting numbers

• Research

e. Psychomotor Skills (if applicable)

(i) Description of the psychomotor skills to be developed and the level of performance required

(ii) Teaching strategies to be used to develop these skills

(iii) Methods of assessment of students psychomotor skills

Assess ment	Assessment task (eg. essay, test, group project, examination etc.)	Week due	Proportion of Final
	,		Assessme
			nt
1	Quizzes + homework	Every 2	10%
		weeks	
2	Lab reports	Every	5%
		week	
3	Lab final exam	16th	15%
4	Mid-term exam	8th	30%
5	Final exam	17th	40%

D. Student Support

1. Arrangements for availability of teaching staff for individual student consultations and academic advice. (include amount of time teaching staff are expected to be available each week)

During office hours (6 hours/week). In addition, students can arrange appointments with the lecturer whenever suits them.

E Learning Resources

1. Required Text(s) ; Physics, by J. Walker, fourth Ed.

2. Essential References :Fundamentals of Physics, by Halliday, Resnick and Walker

3- Recommended Books and Reference Material (Journals, Reports, etc) (Attach List) Introduction to Electrodynamics, by Griffiths

4-.Electronic Materials, Web Sites etc

The lecturer prepared some solved exercise for each chapter, which are available on his personal website. Also, students are usually asked to watch some educational videos online about the subjects covered in the course.

5- Other learning material such as computer-based programs/CD, professional standards/regulations

F. Facilities Required

Indicate requirements for the course including size of classrooms and laboratories (ie number of seats in classrooms and laboratories, extent of computer access etc.)

1. Accommodation (Lecture rooms, laboratories, etc.)

The maximum number of students in each group is 25, which can be conveniently accommodated in all class rooms and labs in the university.

2. Computing resources

3. Other resources (specify --eg. If specific laboratory equipment is required, list requirements or attach list)

A fully equipped lab for demonstrating and conducting experiments for students

G Course Evaluation and Improvement Processes

1 Strategies for Obtaining Student Feedback on Effectiveness of Teaching

Students are required to evaluate the course online (including the lecturer performance, the material .. etc) each semester. The student will not be able to receive his/her own final mark without this evaluation.

2 Other Strategies for Evaluation of Teaching by the Instructor or by the Department

3 Processes for Improvement of Teaching

The consideration of the students' comments and evaluations, plus the continuous update and improvement of the course material

4. Processes for Verifying Standards of Student Achievement (eg. check marking by an independent member teaching staff of a sample of student work, periodic exchange and remarking of tests or a sample of assignments with staff at another institution)

Students have the right to ask for re-marking any exam in case there is any suspicion of the results.

5 Describe the planning arrangements for periodically reviewing course effectiveness and planning for improvement.

Continuous evaluation and consultation with the Faculty of Engineering to match their requirements.

Kingdom of Saudi Arabia

The National Commission for Academic Accreditation & Assessment

Course Specification

(3) Electricity and Magnetism 403121

Course Specification

For Guidance on the completion of this template, please refer to Handbook 2 Internal Quality Assurance Arrangements

Institution:- Umm AL-Qura University

College/Department :- College of Sciences / Physics Department

A Course Identification and General Information

1. Course title and code: Electricity and Magnetism (PH 121)

2. Credit hours: - 4 Cr. Hrs

3. Program(s) in which the course is offered.

(If general elective available in many programs indicate this rather than list programs)

B.Sc Degree in Physics

4. Name of faculty member responsible for the course:

5. Level/year at which this course is offered: First year

6. Pre-requisites for this course (if any) PH 101 + MATH 101

7. Co-requisites for this course (if any) PH 285

8. Location if not on main campus :- Within The University Campus

B Objectives

1. Summary of the main learning outcomes for students enrolled in the course. The objective of this course is to establish the meaning of the ends of the computational and use in communication, and differentiation, integration and applications of it.

The objectives of this course are to tease out the laws of Electricity and Magnetism from our everyday experience by specific examples of how electric and magnetic phenomena manifest themselves.

We want to be able:

The benchmark statement of the main learning outcomes are as follows:

- 1. To understand basic Fundamentals of electricity and magnetism phenomena: Physics of electrostatic Field, electrostatic Energy, and magnetic field.
- 2. The students should be trained on physical and generic skills (knowledge cognitive interpersonal communication problem solving IT)
- 3. To describe, in words, the ways in which various concepts in electricity and magnetism come into play in particular situations; to represent these phenomena and fields mathematically in those situations; and to predict outcomes in other similar situations.
- 4. The day life applications in the domain of these electric and magnetic phenomena
- 5. To analyse electric systems using a required basics
- 6. To understanding behaviour of components with direct current.

The overall goal is to use the scientific method to come to understand the enormous variety of electric and magnetic phenomena in terms of a few relatively simple laws 2. Briefly describe any plans for developing and improving the course that are being

implemented. (eg increased use of IT or web based reference material, changes in content as a result of new research in the field)

- 1- Explain strategy of the course in the beginning of the semester
- 2- Outlines of the physical laws, principles and the associated proofs.
- 3- Highlighting the day life applications whenever exist.
- 4- Encourage the students to see more details in the international web sites and reference books in the library.
- 5- Discussing some selected problems in each chapter.
- 6- Cooperate with different institution to find how they deal with the subject
- 7- Renew the course references frequently
- 8- Frequently check for the latest discovery in science

C. Course Description (Note: General description in the form to be used for the Bulletin or Handbook should be attached)

1 Topics to be Covered :-		
Topics	No of	Contact
Topics	Weeks	hours
1- Electric charge and Coulomb's law		
1- Introduction		0.5
2- Electric Charge		0.5
3- Conductors and Insulators	1	0.5
4- Coulomb's law	1	0.5
5- Charge is Quantized		0.5
6- Charge is Conserved		0.5
2- The Electric Field		
1- Fields		0.5
2- The Electric Field E	_	0.5
3- The Electric Field of a Point Charges and Lines of Force	_	0.5
 4- The Electric Field of Continuous Charge Distributions 	- 1	0.5
5- A Point Charge in an Electric Field	-	0.5
6- A Dipole in an Electric Field	-	0.5
		0.5
3- Gauss Law		
1- The flux of a Vector Field		0.5
2- The Flux of the Electric Field		0.5
3- Gauss law		0.5
4- A Charged Insolated Conductor	- 1	0.5
5- Applications of Gauss law		0.5
6- Experimental Tests of Gauss law and Coulomb law		0.5
4- Electric Potential		
1- Electrostatic and Gravitational Forces		0.5
2- Electrical Potential Energy	-	0.5
3- Electric Potential	-	0.5
4- Calculating the Potential from the Field	-	0.5
5- Potential due to Point Charge	-	0.5
6- Potential due to a Collection of Point Charges	- 1.5	0.5
7- The Electric Potential of Continuous Charge distribution	-	0.5
8- Equipotential Surfaces	-	0.5
9- Calculating the Field from the Potential	-	0.5
10- An Insulated Conductor	1	0.5
		L

5- Capacitors		
1- Capacitance		0.5
2- Calculating the Capacitance		1.0
3- Capacitors in Series and Parallel		0.5
4- Energy Storage in an Electric Field	1.5	0.5
5- Capacitor with Dielectric		1.0
6- Dielectrics: an Atomic View		0.5
7- Dielectrics and Gauss law		0.5
6- Current and Resistance		0.7
1- Electric Current		0.5
2- Current Denstiy		0.5
3- Resistance, Resistivity, and Conductivity	1	0.5
4- Ohm's law		0.5
5- Ohm's law: A Microscopic View		0.5
6- Energy Transfers in an Electric Circuit		0.5
7- DC Circuits		
1- Electromotive Force		0.5
2- Calculating the Current in a Single Loop		0.5
3- Potential Differences		0.5
4- Resistors in Series and Parallel	1	0.5
5- Multiloop Circuits		0.5
6- RC Circuits		0.5
8- The Magnetic Field		0.7
1- The Magnetic Field B		0.5
2- The Magnetic Force on a Moving Charge		1
3- Circulating Charges		1
4- The Hall Effect	2	1
5- The Magnetic Force on a Current		1
6- Torque on a Current Loop		0.5
7- The Magnetic Dipole		1
9- Ampere's Law		
1- The Biot-Savart Law		1
2- Applications of the Biot-Savart Law		1
3- Lines of Magnetic Field		1
4- Two Parallel Conductors	2	1
		1
5- Ampere's Law		, I

2 Course components (total contact hours per semester):				
Lecture: 42 hr	Tutorial: 30 hr	Practical/Fieldwork /Internship:	Other: Office hours : 32 hr	

3. Additional private study/learning hours expected for students per week. (This should be an average: for the semester not a specific requirement in each week)

4. Development of Learning Outcomes in Domains of Learning

For each of the domains of learning shown below indicate:

- A brief summary of the knowledge or skill the course is intended to develop;
- A description of the teaching strategies to be used in the course to develop that knowledge or skill;
- The methods of student assessment to be used in the course to evaluate learning outcomes in the domain concerned.

a. Knowledge

(i)		knowledge that students should know and understand when they complete the course are as follow:
	•	Learning fundamentals in electricity and magnetism theory.
	•	Understanding the physics of electricity and magnetism and their applications mentioned in the text.
	•	Improving logical thinking.
	•	To use mathematical formulation to describe the physical principle or phenomena
	•	Ability to explain how things work.
(ii))	Teaching strategies to be used to develop that knowledge
	1.	Demonstrating the basic information and principles through lectures and the achieved applications
	2.	Discussing phenomena with illustrating pictures and diagrams
	3.	Lecturing method:
		a. Blackboard
		b. Power point
		c. e-learning
	4.	Tutorials

- 5. Revisit concepts
- 6. Discussions
- 7. Brain storming sessions
- 8. Start each chapter by general idea and the benefit of it;
- 9. Learn the student background of the subject;
- 10. Show the best ways to deal with problem;
- 11. Keep the question "why" or "how" to explain always there;
- 12. Build a strategy to solve problem.

b. Cognitive Skills

(i) Cognitive skills to be developed

- 1. How to use physical laws and principles to understand the subject
- 2. How to simplify problems and analyze phenomena
- 3. Analyse and explain natural phenomena.
- 4. Ability to explain the idea with the student own words.
- 5. Represent the problems mathematically.

(ii) Teaching strategies to be used to develop these cognitive skills

- 1. Preparing main outlines for teaching
- 2. Following some proofs
- 3. Define duties for each chapter
- 4. Home work assignments
- 5. Encourage the student to look for the information in different references
- 6. Ask the student to attend lectures for practice solving problem
- 7. Ask the student to do small research.

(iii) Methods of assessment of students cognitive skills

- 1. Midterm's exam. Exams, short quizzes
- 2. Asking about physical laws previously taught
- 3. Writing reports on selected parts of the course
- 4. Discussions of how to simplify or analyze some phenomena

c. Interpersonal Skills and Responsibility

(i) Description of the interpersonal skills and capacity to carry responsibility to be developed

- 1. Work independently.
- 2. The students learn independently and take up responsibility.

(ii) Teaching strategies to be used to develop these skills and abilities				
1. Learn how to search the internet and use the library.				
2. Learn how to cover missed lectures.				
3. Learn how to summarize lectures or to collect materials of the course.				
4. Learn how to solve difficulties in learning: solving problems – enhance				
educational skills.				
5. Develop her interest in Science through :(lab work, field trips, visits to				
scientific and research.				
• Encourage the student to attend lectures regularly by:				
 Giving bonus marks for attendance 				
 Assigning marks for attendance. give students tasks of duties 				
 give students tasks of duties 				
(iii) Methods of assessment of students interpersonal skills and capacity to carry				
responsibility				
1. Quizzes on the previous lecture				
2. Checking report on internet use and trips				
3. Discussion				
4. The accuracy of the result gained by each group will indicate good group				
work				
5. Presenting the required research on time and the degree of the quality will				
show the sense of responsibility.				
d. Communication, Information Technology and Numerical Skills				
(i) Description of the skills to be developed in this domain.				
1. Computation				
2. Problem solving				
3. Data analysis and interpretation.				
4. Feeling mathematical reality of solving problems.				
(i) The dimension of the second of the second				
(ii) Teaching strategies to be used to develop these skills				
1. Know the basic physical principles.				
 Know the basic physical principles. Use the web for research. 				
 Know the basic physical principles. Use the web for research. Discuss with the student. 				
 Know the basic physical principles. Use the web for research. Discuss with the student. Exams to measure the mathematical skill. 				
 Know the basic physical principles. Use the web for research. Discuss with the student. 				

7. Computational analysis.

8. Data representation.

9. Lectures for problem solution.

10. Encourage the student to ask good question to help solve the problem.

11. Display the lecture note and homework assignment at the web.

(iii) Methods of assessment of students numerical and communication skills

- 1. Their interaction with the lectures and discussions.
- 2. The reports of different asked tasks.
- 3. Homework, Problem solutions assignment and exam should focus on the understanding.
- 4. Results of computations and analysis.
- 5. Comments on some resulting numbers.
- 6. Research.

e. Psychomotor Skills (if applicable)

(i) Description of the psychomotor skills to be developed and the level of performance required

(ii) Teaching strategies to be used to develop these skills

(iii) Methods of assessment of students psychomotor skills

5. Schedule of Assessment Tasks for Students During the Semester					
Assessment	Assessment task (eg. essay, test, group	Week due	Proportion of		
	project, examination etc.)		Final		
			Assessment		
1	Midterm 1	5 th week	15		
2	Midterm 2	10 th week	15		
3	In-Class Problem Solving	13 th ,7 th week	10		
4	Homework	Every week	10		
5	Final exam	End of semester	50		

D. Student Support

1. Arrangements for availability of faculty for individual student consultations and academic advice. (include amount of time faculty are available each week)

8 office hours per week

E Learning Resources

1. Required Text(s)

2. Essential References

3- Recommended Books and Reference Material (Journals, Reports, etc) (Attach List)
[1] Fundamental of Physics, 8th Edition, by: Jearl Walker. (2008)

4-.Electronic Materials, Web Sites etc

5- Other learning material such as computer-based programs/CD, professional standards/regulations

Wikipedia

F. Facilities Required

Indicate requirements for the course including size of classrooms and laboratories (ie number of seats in classrooms and laboratories, extent of computer access etc.)

- 1. Accommodation (Lecture rooms, laboratories, etc.)
 - 1. Lecture room for 30 students
 - 2. Library

2. Computing resources

- 1. Computer room
- 2. Scientific calculator.

3. Other resources (specify --eg. If specific laboratory equipment is required, list requirements or attach list)

G Course Evaluation and Improvement Processes

1 Strategies for Obtaining Student Feedback on Effectiveness of Teaching

- 1. Midterm and final exam.
- 2. Quiz.

2 Other Strategies for Evaluation of Teaching by the Instructor or by the Department

3 Processes for Improvement of Teaching

- (a) Course report
- (b) Program report
- (c) Program self study
 - Fortification of the student learning.

Handling the weakness point.

4. Processes for Verifying Standards of Student Achievement (eg. check marking by an independent faculty member of a sample of student work, periodic exchange and remarking of a sample of assignments with a faculty member in another institution)

- 1. The instructors of the course are checking together and put a unique process of evaluation
- 2. Check marking of a sample of papers by others in the department.
- **3.** Feedback evaluation of teaching from independent organization.

5 Describe the planning arrangements for periodically reviewing course effectiveness and planning for improvement.

- 1- The following points may help to get the course effectiveness
 - Student evaluation
 - Course report
 - Program report
 - Program Self study
- 2- According to point 1 the plan of improvement should be given.
- 3- Contact the college to evaluate the course and the benefit it add to other courses.
- 4- Add some subject and cut off others depending on the new discoveries in Mathematics and basic science.

Kingdom of Saudi Arabia

The National Commission for Academic Accreditation and Assessment

Course Specification

(4) Classical Mechanics (1) 403241

Course Specification

For Guidance on the completion of this template, please refer to Handbook 2 Internal Quality Assurance Arrangements

Institution: Umm AL-Qura University

College/Department: Faculty of Science / Physics Department

A Course Identification and General Information

1. Course title and code: Classical Mechanics (1) (PH 241)

2. Credit hours 4 Cr. Hrs

3. Program(s) in which the course is offered. (If general elective available in many programs indicate this rather than list programs) B.Sc Degree in Physics

4. Name of faculty member responsible for the course

Dr. Doaa Abd Allah Said

5. Level/year at which this course is offered

3th Level - 2th Year

6. Pre-requisites for this course (if any)

Pre-Requisite 102 PH + 102 Math

7. Co-requisites for this course (if any)

101 PH+101 Math

8. Location if not on main campus

The University Campus

B Objectives

1. Summary of the main learning outcomes for students enrolled in the course.

- On successfully completing the course the students can be understand:
 - 1. The basic concepts of all the way to valid conclusion and discuss the fundamental concepts in classical mechanics (I) through broad range of interesting application to the real world.
 - 2. Clearly and logically discuss the scalar, vector, gradient, divergence, curl, application of operator, vector integration, Gauss's and Stokes's Theorem.
 - 3. The analyse coordinate systems (curvilinear, differential vector operator, Cartesian, spherical and cylindrical) in physics
 - 4. General motion of the particles in the three dimension
 - 5. Knowledge and discussed the noninternal reference systems
 - 6. The central forces and celestial mechanics.
 - 7. Special relativity

2. Briefly describe any plans for developing and improving the course that are being implemented. (eg increased use of IT or web based reference material, changes in content as a result of new research in the field)

- a) The first step in the development of the classical mechanics (I) was to examine the learning outcomes for the courses in the beginning of the semester
- b) The second step was to categorize the subject matter and identify the important concepts. These concepts were identified from outlines of the physical laws, principles and the associated proofs.
- c) The third step is to identify the misconceptions that students are likely to have about each of the concepts in the complete list
- d) The last step is highlighting the day life applications whenever exist and encourage the students to see more details in the international web sites and reference books in the library, discussing some selected problems in each chapter, cooperate with different institution to find how they deal with the subject

C. Course Description (Note: General description in the form to be used for the Bulletin or Handbook should be attached)

1 Topics to be Covered		
Topics	No of	Contact
	Weeks	hours
Vector Analysis		
1-Definition		
2-Scalar Product		
3- Vector or Cross product		
4- Triple Scalar Product, Triple Vector Product		
5-Gradient		
6- Divergence	2weeks	8hrs
7-Curl X		
8- Successive Application of operator		
9-Vector Integration		
10-Gauss's Theorem		
11- Stokes's Theorem		
Coordinate Systems		
1- Curvilinear Coordinates		
2- Differential Vector Operations		
3- Cartesian Coordinates	1week	4 hrs
4- Spherical Polar Coordinates		
5- Circular Cylindrical Coordinates		
General Motion of A Particle in Three Dimensions		
1- Linear Momentum		

2- Angular Momentum		
3- The Work Principle		
4- Conservative Forces and Force Fields		
5- The Potential Energy Function in 3-Dim. Motion		
6- Condition For The Existence of a Potential Function	3weeks	12hrs
7- Motion of a projectile in a Uniform Gravitational Field		
8- The Harmonic Oscillator in Two And Three dimensions		
9- Constrained Motion of a Particle		
10- The Simple Pendulum		
11-More Accurate Solution of The Simple Pendulum		
12-Examples		
Non-inertial Reference Systems		
1-Translation of the Coordinate System		
2- Inertial Force		
3-General Motion of The Coordinate System		
4- Dynamics of a Particle in a Rotating Coordinate	3weeks	12 hrs
System(Coriolis Force)		
5-Effects of The Earth's		
6-The Foucault Pendulum		
7-Examples		
Central Forces and Celestial Mechanics		
1-The Law of Gravity		
2- Gravitational Force Between a sphere and a Particle		
3- Potential Energy in a Gravitational Energy		
4-Potential Energy in a General Central Field		
5-Angular Momentum in a Central Field		
6-The Law of Areas, Kepler's Laws Of Planetary Motion	3weeks	12 hrs
7-Orbit of a Particle in a Central Field		
8-Energy Equation of the Orbit		
9-Orbits in an Inverse-Square Field		
10-Periodic Time of Orbital Motion		
11-Motion in an Inverse-Square Repulsive Field		
12-Examples		
Special Relativity		
1-The Michelson-Morley Experiment		
2-The Special Theory of Relativity		
3-Time Dilation		
4-The Twin Paradox		

5-The Length Contraction		
6-Meson Decay	2weeks	8 hrs
7- The Lorentz Transformation		
8-The Inverse Lorentz Transformation		
9-Velocity Addition		
10-Relativity of Mass		
11-Mass and Energy		

2 Course components (total contact hours per semester):				
Lecture: 56	Tutorial:	Practical/Fieldwork /Internship:	Other:	

3. Additional private study/learning hours expected for students per week. (This should be an average: for the semester not a specific requirement in each week)

5 Office hours in each week to help students for solving assigned problems

4. Development of Learning Outcomes in Domains of Learning For each of the domains of learning shown below indicate:

- A brief summary of the knowledge or skill the course is intended to develop;
- A description of the teaching strategies to be used in the course to develop that knowledge or skill;
- The methods of student assessment to be used in the course to evaluate learning outcomes in the domain concerned.

a. Knowledge

(i) Description of the knowledge to be acquired

- 1- Teaching strategies to be used to develop that knowledge
- 2- Learning fundamentals classical mechanics Theory
- 3- Understanding the physics of Classical Mechanics and their applications mentioned in the text.
- 4- Improving logical thinking.

5- To use mathematical formulation to describe the physical principle or phenomena
6- Ability to explain how things are working.
7- Teaching strategies to be used to develop that knowledge
8- Demonstrating the basic information and principles through lectures and the achieved applications
9- Discussing phenomena with illustrating pictures and diagrams
10-Lecturing method:
a. Blackboard
b. Power point
c. e-learning 11-Tutorials
12- Revisit concepts
13-Discussions
14-Brain storming sessions
15-Start each chapter by general idea and the benefit of it;
16-Learn the student background of the subject;
17-Show the best ways to deal with problem;
18- Keep the question "why" or "how" to explain always there
19-Build a strategy to solve problem.
(ii) Teaching strategies to be used to develop that knowledge
1- Solve some example during the lecture.
2- Exams:
i. Quizzes
ii. Short exams (midterm exams)
iii. Long exams (final)iv. Oral exams
3- Discussions with the students.
4- Ask the student to clear the misunderstanding of some physical principle.
5- Ask quality question.
(iii) Methods of assessment of knowledge acquired
1. Solve some example during the lecture.
2. Exams:
a) Quizzes
b) Short exams (mid term exams)
c) Long exams (final)
d) Oral exams3. Discussions with the students.

4. Ask the student to clear the misunderstanding of some physical principle.

Ask quality question.

b. Cognitive Skills

(i) Cognitive skills to be developed

- 1. Ability to analyse the Vectors, divergence, Curl, Grad,
- 2. Studied the different coordinate systems.
- 3. Ability to understand the general equation of motion for the particle in three dimensions.
- 4. To understand the theoretical treatments of Classical Mechanics.
- 5. Understand the noninertial reference systems.
- 6. Knowing the central forces and celestial mechanics.
- 7. Studying the special relativity and some transformations.
- 8. Ask the student to do small research

(ii) Teaching strategies to be used to develop these cognitive skills

- 1. Preparing main outlines for teaching
- 2. Following some proofs
- 3. Define duties for each chapter
- 4. Home work assignments
- 5. Encourage the student to look for the information in different references
- 6. Ask the student to attend lectures for practice solving problem

Ask the student to do small research.

(iii) Methods of assessment of students cognitive skills

- 1. Midterm's exam. Exams, short quizzes
- 2. Asking about physical laws previously taught
- 3. Writing reports on selected parts of the course
- 4. Discussions of how to simplify or analyse some phenomena

c. Interpersonal Skills and Responsibility

(i) Description of the interpersonal skills and capacity to carry responsibility to be developed

1. Work independently.

2. The students learn independently and take up responsibility.

(ii) Teaching strategies to be used to develop these skills and abilities

- 1. Learn how to search the internet and use the library.
- 2. Learn how to cover missed lectures.

- 3. Learn how to summarize lectures or to collect materials of the course.
- 4. Learn how to solve difficulties in learning: solving problems enhance educational skills.
- 5. Develop her interest in Science through :(lab work, field trips, visits to scientific and research.
- 6. Encourage the student to attend lectures regularly by:
 - i. Giving bonus marks for attendance
 - ii. Assigning marks for attendance.
- 7. give students tasks of duties

(iii) Methods of assessment of students interpersonal skills and capacity to carry responsibility

- 1. Quizzes on the previous lecture
- 2. Checking report on internet use and trips
- 3. Discussion
- 4. The accuracy of the result gained by each group will indicate good group work
- 5. Presenting the required research on time and the degree of the quality will show the sense of responsibility.

d. Communication, Information Technology and Numerical Skills

- (i) Description of the skills to be developed in this domain.
 - 1. Computation
 - 2. Problem solving
 - 3. Data analysis and interpretation.

Feeling physical reality of results

(ii) Teaching strategies to be used to develop these skills

- 1. Know the basic mathematical principles.
- 2. Use the web for research.
- 3. Discuss with the student.
- 4. Exams to measure the mathematical skill.
- 5. Clear the weakness point that should be eliminated.
- 6. Encourage the student to ask for help if needed.
- 7. Computational analysis.
- 8. Data representation.
- 9. Focusing on some real results and its physical meaning.
- 10. Lectures for problem solution.
- 11. Encourage the student to ask good question to help solve the problem.

Display the lecture note and homework assignment at the web.

(iii) Methods of assessment of students numerical and communication skills

- 1. Their interaction with the lectures and discussions.
- 2. The reports of different asked tasks.
- 3. Homework, Problem solutions assignment and exam should focus on the understanding.
- 4. Results of computations and analysis.
- 5. Comments on some resulting numbers.
- 6. Research.

e. Psychomotor Skills (if applicable)

(i) Description of the psychomotor skills to be developed and the level of performance required (NA)

(ii) Teaching strategies to be used to develop these skills (NA)

(iii) Methods of assessment of students psychomotor skills (NA)

Assess	Assessment task (eg. essay, test, group project,	Week due	Proportion
ment	examination etc.)		of Final Assessme nt
1	Midterm 1	5 th week	10
2	Midterm 2	10 th week	10
3	In-Class Problem Solving	13 th ,7 th week	10
4	project	12 th week	10
5	Homework	Every week	10
6	Final exam	End of semester	50

D. Student Support

1. Arrangements for availability of faculty for individual student consultations and academic advice. (include amount of time faculty are available each week)

Each student will supervise by academic adviser in physics Department and the time table for academic advice were given to the student each semester.

E Learning Resources

1. Requ	ired Text (s)
1.	S. T. Thornton and J. B. Marion, " Classical Daynamic of Particles and
	System", 4 th Edition, Brooks Cole (2003)
2.	Ernesto Corinaldesi, "Classical Mechanics for Physics Graduate Students",
	World Scientific Publishing, (1999)
3.	T. W. Kibble and F. H. Berkshire, "Classical Mechanics" World Scientific
	Publishing, (2004)
4.	M. W. McCall, "Classical Mechanics; from Newton to Einstein" 2 th edition
	Wiley (2010)
2. Esser	ntial References
1.	Thornton, Stephen T.; Marion, Jerry B Classical Dynamics of Particles and
	Systems (5th ed.). Brooks Cole. (2003)
2.	Kibble, Tom W. B.; Berkshire, Frank H. Classical Mechanics (5th ed.).
	Imperial College Press. (2004).
3- Reco	ommended Books and Reference Material (Journals, Reports, etc) (Attach List)
1.	Sussman, Gerald Jay & Wisdom, Jack & Mayer, Meinhard E. (2001). Structure
	and Interpretation of Classical Mechanics
4Elect	tronic Materials, Web Sites etc

4-.Electronic Materials, Web Sites etc

 $\underline{http://en.wikipedia.org/wiki/Classical_mechanics}$

http://math.ucr.edu/home/baez/classical/

5- Other learning material such as computer-based programs/CD, professional standards/regulations (NA)

F. Facilities Required

Indicate requirements for the course including size of classrooms and laboratories (ie number of seats in classrooms and laboratories, extent of computer access etc.)

- 1. Accommodation (Lecture rooms, laboratories, etc.)
 - Lecture room for 30 student
- 2. Computing resources
 - 1. Computer room
 - 2. Scientific calculator.

3. Other resources (specify --eg. If specific laboratory equipment is required, list requirements or attach list)

G Course Evaluation and Improvement Processes

1 Strategies for Obtaining Student Feedback on Effectiveness of Teaching

1-10 minutes Quiz per week

- 2- Home works
- 3- Term paper
- 4- Final Exam

2 Other Strategies for Evaluation of Teaching by the Instructor or by the Department

- 1- At the end of term , Students fill an evaluation Sheet (without names)
- 2- Student Marks are analysed by considering Standard Deviation.
- 3 Processes for Improvement of Teaching

Strategies are modified each term according to the student feedback.

4. Processes for Verifying Standards of Student Achievement (eg. check marking by an independent faculty member of a sample of student work, periodic exchange and remarking of a sample of assignments with a faculty member in another institution)

In case of more than one section taken this course, the instructors are cooperated to give unified Exams and they use the same marks distribution for the answer sheet. Students can see their corrected sheet and compare it with key answer sheet.

5 Describe the planning arrangements for periodically reviewing course effectiveness and planning for improvement.

- 1- The following points may help to get the course effectiveness
 - Student evaluation
 - Course report
 - Program report
 - Program Self study
- 2- According to point 1 the plan of improvement should be given.
- 3- Contact the college to evaluate the course and the benefit it add to other courses.
- 4- Add some subject and cut off others depending on the new discoveries in physics.

Kingdom of Saudi Arabia

The National Commission for Academic Accreditation & Assessment

Course Specification

(5) Optics 403231

Course Specification

For Guidance on the completion of this template, please refer to Handbook 2 Internal Quality Assurance Arrangements

Institution Umm AL-Qura University

College/Department College of Sciences / Physics Department

A Course Identification and General Information

1. Course title and code: Optics PH -231

2. Credit hours: 4 cr. Hr (3 contact hrs + Lab)

3. Program(s) in which the course is offered. (If general elective available in many programs indicate this rather than list programs) **B.Sc Degree in** Physics

4. Name of faculty member responsible for the course

Dr. Afaf Maweed Abdelmageed

5. Level/year at which this course is offered Second year

6. Pre-requisites for this course (if any) PH 101, Math 101

7. Co-requisites for this course (if any)

8. Location if not on main campus Within The University Campus

B Objectives

1. Summary of the main learning outcomes for students enrolled in the course

The physical optics science considered one of the most important fields in experimental and theoretical physics.

The objectives of this course are to through light on nature of light. And also throw light on different phenomena like interference, diffraction, polarization and their application in life.

The benchmark statement of the main learning outcomes are as follows:

1. To understand basic Fundamentals of physical optics and its relation with basic science and modern technology.

2. The students should be trained on physical and generic skills (knowledge – cognitive – interpersonal – communication – problem solving – IT)

3. To describe, in words, the ways in which various concepts in optics come into play in particular situations; to represent these optical phenomena and its fields mathematically in those situations; and also to predict outcomes in other similar situations.

4. The day life applications in the domain of this course.

5. To analyze optical systems using a required basics

The main goal of this course is to use the scientific methods to understand the individual points of the course and its relation with the applied technology surrounding him.

2. Briefly describe any plans for developing and improving the course that are being implemented. (eg increased use of IT or web based reference material, changes in content as a result of new research in the field)

- 1. Explain strategy of the course in the beginning of the semester
- 2. Outlines of the physical laws, principles and the associated proofs.
- 3. Highlighting the day life applications whenever exist.
- 4. Encourage the students to see more details in the international web sites and reference books in the library.
- 5- Encourage the student to build an example of different experiments related to course and comparing it with experiments in the lab.

C. Course Description (Note: General description in the form to be used for the Bulletin or Handbook should be attached)

1 Top	ics to be Covered		
	Торіс	No of Weeks	Contac thours
Interf	erence		
-	Addition of two waves of the same frequency		
-	Vector addition of amplitudes		5
-	Addition of simple harmonic motion at right angles		Weeks
-	Interference of two beam		
-	Huygens principle		
-	Young experiment		
-	Fresnel Biprism		
-	Leoyd mirror		
-	Michelson interferometer		
-	Interference involving multiple reflections		
-	Reflection from a plane parallel film		
-	Newtons rings		
-	Fabry perot interferometer		
-	Chromatic resolving power		
Fraur	hofer diffraction		
-	Fraunhofer diffraction by a single slit		
-	Diffraction by a single slit and further investigation of the		3
	diffraction pattern		weeks
-	Graphical treatment of amplitudes- the vibration curve		
-	Rectangle and circular aperature		
-	The double slit		
-	Comparison of the single and double slit pattern		
-	Distinction between interference and diffraction		
-	Positions of the minima and maxima		

Diffra	action grating	
-	Effect of increasing the number of slits	
-	Intensity distribution from an ideal grating	
-	Principle maxima	3
-	Minima and secondary maxima	weeks
-	Formation of spectral by grating	
-	Dispersion	
-	Overlapping of orders	
-	Width of the principle maxima	
-	Resolving power of a grating	
Fresn	el diffraction	
-	Diffraction by a circular	
-	Diffraction by a obstacle	2
-	Fresnel integral	weeks
-	Cornu`s spiral	
-	Single slit	
-	Straight edge	
Polar	ization	
-	Different methods to separate polarised from un polarised	2
-	Mathematical equations representing plane, circular, and	weeks
	elliptical polarization	
-	Optical active phenomena	
-	Half and quarter wave layers	

2 Course components (total contact hours per semester):					
Lecture: 45 hr	Tutorial: 30 hr	Practical/Fieldwor k/Internship: 30 hr	Other: Office hours : 36 hr		

3. Additional private study/learning hours expected for students per week. (This should be an average :for the semester not a specific requirement in each week)

4. Development of Learning Outcomes in Domains of Learning

For each of the domains of learning shown below indicate:

- A brief summary of the knowledge or skill the course is intended to develop;
- A description of the teaching strategies to be used in the course to develop that knowledge or skill;s
- The methods of student assessment to be used in the course to evaluate learning outcomes in the domain concerned.

a. Knowledge

- (i) Description of the knowledge to be acquired
 - (i) Description of the knowledge to be acquired
 - (ii) Learning basic fundamentals in physical optics.
 - (iii) Understanding the physics of wave motion, superposition of waves, interference, diffraction, and polarization
 - (iv) Improving logical thinking.
 - (v) To use high mathematical formulation to describe the physical principle of different physical phenomena

(ii) Teaching strategies to be used to develop that knowledge

- 1.Demonstrating the basic information and principles through lectures and the achieved applications
- 2. Discussing phenomena with illustrating pictures and diagrams
- 3. Lecturing method:
 - a. Blackboard
 - b. Power point
 - c. e-learning
- 4. Tutorials
- 5. Revisit concepts
- 6. Discussions
- 7. Brain storming sessions
- 8. Start each chapter by general idea and the benefit of it;
- 9. Learn the student background of the subject;
- 10. Show the best ways to deal with problem;
- 11. Keep the question "why" or "how" to explain always there
- (iii) Methods of assessment of knowledge acquired
 - 1. Solve some example during the lecture.
 - 2. Exams:
 - a) Quizzes

b) Short exams (mid term exams)

c) Long exams (final)

d) Oral exams

3. Discussions with the students.

4. Ask the student to clear the misunderstanding of some physical principle and asking about quality question.

b. Cognitive Skills

(i) Cognitive skills to be developed

1. How to use physical laws and principles to understand the subject

2. How to simplify problems and analyze phenomena

3. Analyze and explain natural phenomena.

4. Ability to explain the idea with the student own words.

5. Represent the problems mathematically.

(ii) Teaching strategies to be used to develop these cognitive skills

1. Preparing main outlines for teaching

2. Following some proofs

3. Define duties for each chapter

4. Home work assignments

5. Encourage the student to look for the information in different references

6. Ask the student to attend lectures for practice solving problem

7. Doing small research.

(iii) Methods of assessment of students cognitive skills

1. Midterm's exam. Exams, short quizzes

- 2. Asking about physical laws previously taught
- 3. Writing reports on selected parts of the course

c. Interpersonal Skills and Responsibility

(i) Description of the interpersonal skills and capacity to carry responsibility to be developed

1. The student work independently.

2. The students learn independently and take up responsibility.

3. Self learning

(ii) Teaching strategies to be used to develop these skills and abilities

1. Learn how to search the internet and use the library.

2. Learn how to cover missed lectures.

3. Learn how to summarize lectures or to collect materials of the course.

4. Learn how to solve difficulties in learning: solving problems – enhance
educational skills.
5. Develop her interest in Science through :(lab work, field trips, visits to scientific
and research.
6. Encourage the student to attend lectures regularly by:
 Giving bonus marks for attendance Assigning morks for attendance
Assigning marks for attendance.
(iii) Methods of assessment of students interpersonal skills and capacity to carry
responsibility
1. Quizzes on the previous lecture
2. Checking report on internet use and trips
3. Discussion
 The accuracy of the result gained by each group will indicate good group work.
d. Communication, Information Technology and Numerical Skills
a communication, mornation reenhology and realized shins
(i) Description of the skills to be developed in this domain.
1. Computation
2. Problem solving
3. Data analysis and interpretation
(ii) Teaching strategies to be used to develop these skills
1. Know the basic mathematical principles.
2. Use the web for research.
3. Discuss with the student.
4. Exams to measure the mathematical skill.
5. Clear the weakness point that should be eliminated.
6. Encourage the student to ask for help if needed.
7. Computational analysis.
8. Data representation.
9. Focusing on some real results and its physical meaning.
10. Lectures for problem solution.
11. Encourage the student to ask good question to help solve the problem
(iii) Methods of assessment of students numerical and communication skills
1. Their interaction with the lectures and discussions.
2. The reports of different asked tasks.
3. Homework, Problem solutions assignment and exam should focus on the understanding.
4. Results of computations and analysis.

e. Psychomotor Skills (if applicable)

(i) Description of the psychomotor skills to be developed and the level of performance required

(ii) Teaching strategies to be used to develop these skills

(iii) Methods of assessment of students psychomotor skills

Assess ment	Assessment task (eg. essay, test, group project,	Week due	Proportion of Final
ment	examination etc.)		Assessme
			nt
1	Midterm exam 1	5 th week	10
2	Midterm 2	10 th week	10
3	Homework	Every week	5
4	Project	12 th week	5
5	Solving problems	Every week	10
6	Experimental exam	End of semester	20
7	Final exam	End of semester	40

D. Student Support

1. Arrangements for availability of faculty for individual student consultations and academic advice. (include amount of time faculty are available each week)

6 office hours per week

E Learning Resources

1. Required Text(s)

2. Essential References

3- Recommended Books and Reference Material (Journals, Reports, etc) (Attach List)

1- Fundamentals of optics , by Jenkins $\$ white

2- Introduction to Classical and Modern Optics

By: Jurgen R. Meyer-Arendt.

4-.Electronic Materials, Web Sites etc

http://www.physicsclassroom.com

http://www.learnerstv.com/

5- Other learning material such as computer-based programs/CD, professional

standards/regulations

Wikipedia

F. Facilities Required

Indicate requirements for the course including size of classrooms and laboratories (ie number of seats in classrooms and laboratories, extent of computer access etc.)

- 1. Accommodation (Lecture rooms, laboratories, etc.)
 - $\hfill\square$ Lecture room for 30 students
 - □ Library
 - \Box Laboratory for optics

2. Computing resources

3. Other resources (specify --eg. If specific laboratory equipment is required, list requirements or attach list)

G Course Evaluation and Improvement Processes

1 Strategies for Obtaining Student Feedback on Effectiveness of Teaching

1. Midterm and final exam.

2. Quiz

2 Other Strategies for Evaluation of Teaching by the Instructor or by the Department

3 Processes for Improvement of Teaching

- Course report
- Program report

- Program self study
- Fortification of the student learning.
- Handling the weakness point.

4. Processes for Verifying Standards of Student Achievement (eg. check marking by an independent faculty member of a sample of student work, periodic exchange and remarking of a sample of assignments with a faculty member in another institution)

1- The instructors of the course are checking together and put a unique process of evaluation.

2- Check marking of a sample of papers by others in the department.

3- Feedback evaluation of teaching from independent organization

5 Describe the planning arrangements for periodically reviewing course effectiveness and planning for improvement.

- 1- The following points may help to get the course effectiveness
 - Student evaluation
 - Course report
 - Program report
 - Program Self study
- 2- According to point 1 the plan of improvement should be given.
- 3- Contact the college to evaluate the course and the benefit it add to other courses.
- 4- Add some subject and cut off others depending on the new discoveries in physics.

Kingdom of Saudi Arabia

The National Commission for Academic Accreditation & Assessment

Course Specification

(6) Thermodynamcs 403383

Course Specification

For Guidance on the completion of this template, please refer to Handbook 2 Internal Quality Assurance Arrangements

Institution:- Umm AL-Qura University

College/Department :- College of Sciences / Physics Department

A Course Identification and General Information

1. Course title and code: thermodynamics, Phys 403383

2. Credit hours: - 3 Cr.

3. Program(s) in which the course is offered. (If general elective available in many programs indicate this rather than list programs) Pure physics and Medical physics

4. Name of faculty member responsible for the course

Dr. / Ahmed El-hadi

5. Level/year at which this course is offered

Second year

6. Pre-requisites for this course (if any) 101 Phys. or 102 Phys., modern physics, understanding of theoretical physics including knowledge of differential an integral calculus and differential equations.

7. Co-requisites for this course (if any) no-Co-requisite

8. Location if not on main campus :- within the university campus

B Objectives

1. Summary of the main learning outcomes for students enrolled in the course.

- 1. The course provides a general introduction in the thermodynamics include all basic definitions and problem types relating to the laws of thermodynamics.
- The definition of heat leads to the 1st law of thermodynamics and its consequences, such as thermodynamic work, heat and internal energy. Isothermal, adiabatic and free expansion processes are to be studied in detail.
- 3. The second law of thermodynamics is introduced through heat engines, and expressed in terms of entropy changes, which are calculated for a variety of processes. Maxwell's relations, the Clausius-Clapeyron equation.

2. Briefly describe any plans for developing and improving the course that are being implemented. (eg increased use of IT or web based reference material, changes in content as a result of new research in the field)

1. The students are training to search for some scientific subjects such as energy exchange processes (in terms of various forms of energy, heat and work) in aerospace systems. Understandable how various heat engines work. First Law of Thermodynamics to a system of thermodynamic components (heaters,

coolers, pumps, turbines, pistons, etc.) to estimate required balances of heat, work and energy flow.

- 2. Ideal cycle analysis to simple heat engine cycles to estimate thermal efficiency and work.
- 3. Explain the physical content and implications of the second law in nonmathematical terms.
- 4. Use entropy calculations as a tool for evaluating irreversibility.

C. Course Description (Note:	General description in the form to be used for the
Bulletin or Handbook should be	attached)

l opi	cs to be Covered :- The course consists of three parts		1
	Topics	No of	Conta
		Weeks	ct
			hours
<u>1.</u>	Thermal properties of matter: Temperature and Heat,	2W	6
	Temperature scales, Type of thermometer, Zero law of		
	Thermodynamic, Thermal transfers, thermal expansion.		
<u>2.</u>	Thermodynamics properties: equation of ideal gas, kinetic	2W	6
	theory, Van der Waal equation for real gas, Deducation of the		
	critical constant of a real gas of Van der Waal, Virial equation		
	of state, Reduced equation of state, adiabatic compressibility,		
	P-V-T relationship of real gases, Phase Diagram.		
2	First law of thermodynamics, Heat and Energy: The types	3W	9
	of systems and the processing in thermodynamics, the		
	definition of heat capacity and specific heat capacity, latent		
	heat, apply the first law of thermodynamics to evaluate the		
	temperature and work and the internal energy and energy		
	conversion, explain the enthalpy, the relationship between		
	specific heat for gas, the work done in adiabatic process.		
3	Second law of thermodynamics: heat engines, refrigerators,	2W	9
	and heat pumps, reversible processes, statements of Kelvin -		
	Planck and Clausius. Carnot machine and its efficiency, and		
	examine the principles of the Carnot cycle, and efficiency of		
	Otto cycle and diesel fuel and gasoline,		
4	Entropy and third law of thermodynamics: explain the	2W	6
	concept of entropy, the change in entropy in the reversible		
	processes, explain the third law of thermodynamics.		

5	Thermodynamics potentials: thermodynamics potentials,	2W	6		
	internal energy U, enthalpy (H), free energy of Gibbs (G) and				
	Helmholtz free energy (A), Maxwell relations and their the				
	application, Tds equations, Clausiuos Claperyron equation.				
Text b	ooks and References:				
1.	Daniel V. Shroeder, An Introduction to Thermal Physics,	Addison-	Wesley		
	Publishing Company, San Francisco, CA, 1999, The ISBN is (-201-3802	27-7.		
2.	Blundell S.J / Blundell K.M., Concepts in Thermal Physics, G	Oxford Un	iversity		
	Press, ISBN 978-0-19-856770-7.				
3.	Kittel C. and Kroemer H. ,Thermal Physics, , 2nd Ed., Freema	n and Co.	(1994),		
	ISBN 0 7167-1088-9.				
4.	4. Statistical and thermal physics: Fundamentals and applications, M.D. Sturg				
	A K Peters Natick, Massachusetts (2003).				
5.	5. Sturge M.D., Statistical and Thermal Physics, Fundamentals and Applications				
	(A.K. Peters, Natick, Massachusetts, 2003) ISBN 1-56881-19	6-9.			
6.	Callen H. B., Thermodynamics and an introduction to thermostatistics, 2nd				
	Ed., John Wiley & Sons (1995). John Wiley & Sons, New York, 1985), ISBN 0-				
	471-86256-8.				
7. David Chandler, Introduction to Modern Statistical Mechanics			(Oxford		
	University Press, New York, 1987), ISBN 0-19-504277-8.				
8.	Walter Greiner, Ludwig Neise and Horst Stoecker, Ther	modynami	ics and		
	Statistical Mechanics, English edition, translated from the	German b	oy Dirk		
	Rischke (Springer, New York, 2000), ISBN 0 387 94299 8.				
9.	D. Landau and E. M. Lifshitz, Statistical Physics, Part I, Landa	u and Life	shitz		
	Course of Theoretical Physics, Volume 5 (Butterworth-Heiner	nann, Oxf	ord,		
	1980) 3rd edition ISBN 0 7506 3372 7 , Part II, E.M. Lifshitz	and L.P.			
	Pitaevskii, ISBN 0 7506 2636 4.				

2 Course components (total contact hours per semester):					
Lecture: 41 hr	Tutorial: 12	Practical/Fieldwork /Internship: 0	Other: Office hours : 12		

3. Additional private study/learning hours expected for students per week. (This should be an average: for the semester not a specific requirement in each week)1 hr

4. Development of Learning Outcomes in Domains of Learning

For each of the domains of learning shown below indicate:

- A brief summary of the knowledge or skill the course is intended to develop;
- A description of the teaching strategies to be used in the course to develop that knowledge or skill;
- The methods of student assessment to be used in the course to evaluate learning outcomes in the domain concerned.

a. Knowledge

(i) Description of the knowledge to be acquired

1. Students have proficiency in describing and using the basic principles underlying the study of thermodynamics, include the ideal gas model, the pure substance model, and combustion processes.

2. Students can explain at a level understandable the concepts of path dependence/independence and reversibility/irreversibility of various thermodynamics processes, represent these in terms of changes of thermodynamic state, and cite

examples of how these would impact the performance of simple energy generation systems.

3. Students have an understanding and appreciation for the implications of the science of

thermodynamics on society as a whole (in scientific, historical and economic contexts) and

recognize connections between thermodynamics and other areas of study.

4. Students can explain the First Law of Thermodynamics and define heat, work, thermal

efficiency and the difference between various forms of energy.

5. Students can estimate the thermodynamic efficiency and power production of an arbitrary ideal cycle.

6. Students can use entropy calculations as a tool for evaluating losses and irreversibility in engineering processes.

7. Students can apply the basic principles and laws of thermodynamics to an availability

analysis of an energy conversion system.

(ii) Teaching strategies to be used to develop that knowledge

- 1. Theoretical teaching is supported by problem solving.
- 2. Give the students the summary of course after the end of each chapter.
- 3. Recommended textbooks , data show, internet.

(iii) Methods of assessment of knowledge acquired

The grade is based on performance in the exams, quizzes, homework, oral presentation, and final exam.

Midterm (2)	30%
Report + Quiz	10%
Homework and Activities	10%
Final exam	50%

The student will be graded according to two written midterm and one written final exams.

Homework : it consist of reading, problems, mathematical derivations, calculations, and questions that require detailed explanations.

<u>Presentations</u>: Each student will make a report of some of the topics to the thermal physics and worked an small oral presentation with power point text like modern conference will be at the end of the semester..

b. Cognitive Skills

(i) Cognitive skills to be developed

Introducing the basic links between previous related subject (such as classical thermodynamics) and the new subject.

Homework assignments

Lecture discussions

(ii) Teaching strategies to be used to develop these cognitive skills

Ask students to attend lectures for the exercise of solving some problem with household tasks

(iii) Methods of assessment of students cognitive skills

- 1. Asking questions during lectures
- 2. Midterm exams and quizzes.
- 3. Doing homework.
- 4. Discussion in thermal physics , check the problems solution.

c. Interpersonal Skills and Responsibility

(i) Description of the interpersonal skills and capacity to carry responsibility to be developed

- 1. The student must learn to rely on himself and to have the ability to hard work independently and with groups.
- 2. Develop his English language

(ii) Teaching strategies to be used to develop these skills and abilities

Encouragement of student for reading, go to the university library and compile information on the course

(iii) Methods of assessment of students interpersonal skills and capacity to carry responsibility

The ability to search through the library and internet to give information on the course, and the ability to understand and the think of problems by solving the exercises and questions in solving problems.

d. Communication, Information Technology and Numerical Skills

(i) Description of the skills to be developed in this domain.

The student should know how to use computer to solve statistical problem, search in the internet, improve his English language.

(ii) Teaching strategies to be used to develop these skills

Encourage students to solve problems and homework on the blackboard

(iii) Methods of assessment of students numerical and communication skills

Give students tasks to measure their calculations and analysis, problem solving. Encourage students to seek help if necessary. Encourage students to ask a good question to help solve the problem.

e. Psychomotor Skills (if applicable)

(i) Description of the psychomotor skills to be developed and the level of performance required

Not applicable.

(ii) Teaching strategies to be used to develop these skills

Not applicable.

(iii) Methods of assessment of students psychomotor skills

Not applicable.

5. Schedule of Assessment Tasks for Students During the Semester			
Assess	Assessment task (eg. essay, test, group project,	Week due	Proportion
ment	examination etc.)		of Final
			Assessme
			nt
1	Midterm 1	5 th week	15%

2	Midterm 2	10 th week	15%
3	quizzes + reports	During	10%
		the	
		semester	
4	Homeworks	During	10%
		the	
		semester	
5	Final exam	End of	50%
		semester	

D. Student Support

1. Arrangements for availability of faculty for individual student consultations and academic advice. (include amount of time faculty are available each week)

1- 12-office hours per week in the lecturer schedule.

2- The contact with students by e-mail.

E Learning Resources

1. Required Text(s)

- 1. Kittel C. and Kroemer H. ,Thermal Physics, , 2nd Ed., Freeman and Co. (1994), ISBN 0-. 7167-1088-9.
- 2. W.Nolting, Grundkurs Theortische Physik, Statistische Physik.
- 3. Statistical and thermal physics: Fundamentals and applications, M.D. Sturge, , A K Peters Natick, Massachusetts (2003).

2. Essential References;

1. Daniel V. Shroeder, An Introduction to Thermal Physics, <u>Addison-Wesley</u> <u>Publishing Company</u>, San Francisco, CA, 1999, The ISBN is 0-201-38027-7.

3- Recommended Books and Reference

As above

4-.Electronic Materials, Web Sites etc

There are huge number of web sites that provide so much information and of great interest for thermodynamics.

5- Other learning material such as computer-based programs/CD, professional standards/regulations

None

F. Facilities Required

Indicate requirements for the course including size of classrooms and laboratories (ie number of seats in classrooms and laboratories, extent of computer access etc.)

1. Accommodation (Lecture rooms, laboratories, etc.) Lecture room and a board to write.

2. Computing resources

calculator

3. Other resources (specify --eg. If specific laboratory equipment is required, list requirements or attach list) None.

G Course Evaluation and Improvement Processes

1 Strategies for Obtaining Student Feedback on Effectiveness of Teaching Student evaluation electronically organized by the University

2 Other Strategies for Evaluation of Teaching by the Instructor or by the Department The colleagues who teach the same course discuss together to evaluate their teaching.

3 Processes for Improvement of Teaching

Course report, Program report and Program self-study and a tutorial lecture must be added to this course.

4. Processes for Verifying Standards of Student Achievement (eg. check marking by an independent faculty member of a sample of student work, periodic exchange and remarking of a sample of assignments with a faculty member in another institution)

• The instructors of the course are checking together and put a unique process of evaluation.

• Marking a random sample of student homework and exams by other faculty members.

5.Describe the planning arrangements for periodically reviewing course effectiveness and planning for improvement.

• The course material and syllabus are periodically reviewed and compared with similar materials taught in similar departments in other universities.

• Taking necessary measures to implement the findings of the comparison and check up processes.

• The following points may help to get the course effectiveness:

- * Student evaluation.
- * Course report.
- * Program report.
- * Program self-study.

Kingdom of Saudi Arabia

The National Commission for Academic Accreditation & Assessment

Course Specification

(7) Mathematical Methods (I) 403240

Course Specification

For Guidance on the completion of this template, please refer to Handbook 2 Internal Quality Assurance Arrangements

Institution:- Umm AL-Qura University

College/Department :- College of Sciences / Department of Physics

A Course Identification and General Information

1. Course title and code: Mathematical Methods (I) (Phys. 240)

2. Credit hours: - 3 Credit Hours

3. Program(s) in which the course is offered. (If general elective available in many programs indicate this rather than list programs) B.Sc Degree in Physics

4. Name of faculty member responsible for the course: Dr. Mufeed Al-Maghrabi

5. Level/year at which this course is offered: Second year

6. Pre-requisites for this course (if any): Pre-Requisite: Math. 102

7. Co-requisites for this course (if any): Non

8. Location if not on main campus :- Within The University Campus

B Objectives

1. Summary of the main learning outcomes for students enrolled in the course.

- 1. Giving the students the opportunity to master many of the mathematical techniques necessary for follow-up courses in mathematics, physics and chemistry.
- 2. Training the students how to think about the physical phenomena in mathematical terms.
- 3. Develop an intuitive feeling for the precise mathematical formulation of physical problems and for the physical interpretation of the mathematical solutions.
- 4. Be familiar with the mathematical formulae of this course that frequently appear in physics problems.
- 5. Demonstrate the applications of mathematical methods to a variety of problems in physics.
- 6. Apply the concepts of partial differentiation, infinite series, conic sections, Fourier series and ordinary differential equations to real problems in physics.
- 7. Develop the learning skills of the students in using computers as an educational tool, problem solving and demonstration.
- 8. Enhance the students' analytical, reasoning, and self-learning skills.
- 9. Be familiar with the methods of solving ordinary differential equations.
- 10. Be able to deal with real problems using analytical methods.

2. Briefly describe any plans for developing and improving the course that are being implemented. (eg increased use of IT or web based reference material, changes in content as a result of new research in the field)

- 1. Implementing different teaching methods.
- 2. Encourage the students to use different learning resources including the use of the World Wide Web (WWW) search engines.
- 3. Make use of programs that already available like mathematica for numerical solutions and as a double check for the final answers of the analytical problems.

C. Course Description (Note: General description in the form to be used for the Bulletin or Handbook should be attached)

1 Topics to be Covered :-		
Topics	No of	Contact
	Weeks	hours
Topics		
I) PARTIAL DIFFERENTIATION		
	3	9
	weeks	hours
1. Total differential		
2. Chain rule for differentiating function of a		
function		
3. Implicit differentiation		
4. Application of partial differentiation to		
maximum and minimum problems		
5. Lagrange multipliers		
6. Change of variables		
7. Extra problem solving sessions		
II) INFINIT SERIES, POWER SERIES		
	2	6
	weeks	hours
1. The geometric series with applications		

2. Convergent and divergent series		
3. Testing series for convergence		
4. Power series; interval of convergence		
5. Expanding functions in power series	-	
6. Some uses of series		
7. Extra problem solving sessions		
III) CONIC SECTIONS	3	9
1. The general quadratic equation	weeks	hours
2. Equation for a circle, ellipse, parabola and hyperbola		
3. Parametric equation for a circle, ellipse, parabola and hyperbola		
4. Polar equation for a circle, ellipse, parabola and hyperbola		
5. Extra problem solving sessions		
IV) FOURIER SERIES		
1. Simple harmonic motion; periodic functions	3	9
2. Applications of Fourier series	weeks	hours
3. Average value of a function		
4. Fourier coefficients		
5. Complex form of Fourier series		
6. Even and odd functions		
7. Parseval's theorem		
8. Extra solving problems sessions	1	
V) ORDINARY DIFFERENTIAL EQUATIONS	3	9
1. Separable equations	weeks	hours
2. Linear first-order equations		

3. Other methods for first-order equations	
4. Second-order linear equations with constant coefficients and zero right hand side	
5. Extra solving problems sessions	

2 Course components	s (total contact hours p	er semester):	
Lecture: 42 hrs	Tutorial: zero hrs	Practical/Fieldwork /Internship:	Other: Office hours : 30 hrs

3. Additional private study/learning hours expected for students per week. (This should be an average for the semester not a specific requirement in each week)

This actually depends on the student's level, study skills and habits, but in general three hours per week are sufficient.

4. Development of Learning Outcomes in Domains of Learning

For each of the domains of learning shown below indicate:

- A brief summary of the knowledge or skill the course is intended to develop;
- A description of the teaching strategies to be used in the course to develop that knowledge or skill;
- The methods of student assessment to be used in the course to evaluate learning outcomes in the domain concerned.

a. Knowledge

	Knowledge that students should know and understand when they complete the course is as follows:
1.	Be familiar with the notations of each subject in the course.
2.	Show ability to perform partial differentiation for a function of several variables or for a function of a function.
3.	Be able to expand functions in power series or in Fourier series.
4.	Show ability to decide whether a given series is convergent or divergent.
	Be familiar with the definitions of even and odd functions and their properties.
6.	Be able to recognize the type of a given differential equation and to choose the suitable method for solving it.
7.	Be able to deduce the equations for a circle, ellipse, parabola and hyperbola from the general quadratic equation.
8.	Be able to write the equations of conic sections in parametric and polar forms.
•	Teaching strategies to be used to develop that knowledge
1.	Lecturing.
2.	Solving examples during the lecture time.
	Using different teaching methods.
4.	Build a problem solving strategy.
5.	Strengthening basic proof techniques.
6.	Improve ability to integrate information and ideas.
7.	Open discussions.
(iii) N	Aethods of assessment of knowledge acquired
5.	Homework assignments.
6.	Quizzes.
7.	Term paper.
8.	
b. Co	gnitive Skills
(i) Co	ognitive skills to be developed
1.	Develop analytic skills.
2.	Develop problem-solving skills.
3.	Develop ability to think creatively.
	Improve memory skills.
5.	Improve mathematical skills.

5. Improve mathematical skills.

- (ii) Teaching strategies to be used to develop these cognitive skills
 - **1.** Develop ability to synthesize and integrate information.
 - 2. Encourage the students to use different learning resources.
 - 3. Writing the final answer in concise form when possible.
 - **4.** Writing an equation/physical law in wards.
 - 5. Using shortest way to reach the final answer.
 - 6. Using appropriate symbols that can be easily memorized.

(iii) Methods of assessment of students cognitive skills

- 1. Oral questions.
- 2. Presentations.
- 3. Term paper.
- 4. Quizzes.
- 5. Problem solving.

c. Interpersonal Skills and Responsibility

(i) Description of the interpersonal skills and capacity to carry responsibility to be developed

- 1. Develop ability to work independently.
- 2. Develop ability to work productively with others.
- 3. Improve self-esteem.
- 4. Develop leadership skills.

• Teaching strategies to be used to develop these skills and abilities

- 1. Homework assignment for each group of the students.
- 2. Homework assignments that should be worked out independently.
- 3. Cooperative learning.
- 4. Microteaching.

(iii) Methods of assessment of students interpersonal skills and capacity to carry responsibility

- 1. Marking the home works.
- 2. Asking the members of each group about the content of their assignment.
- 3. Working closely with the different groups.

d. Communication, Information Technology and Numerical Skills

- (i) Description of the skills to be developed in this domain.
 - 1. Perform effective communication with colleagues and faculty members.
 - 2. Ability to use programs designed for numerical computation.
 - 3. Problem solving and ability to interpret the results.
 - 4. Ability to use the World Wide Web (WWW) search engines.

(ii) Teaching strategies to be used to develop these skills

- 1. Problem based learning.
- 2. Additional lectures on numerical techniques.
- 3. Exposing the students to problems that can only be solved numerically.

(iii) Methods of assessment of students numerical and communication skills

- 1. Give the students homework assignments on problems that can be solved numerically.
- 2. Ask the students to search the internet for the solution of a specific problem.
- 3. Using the computer to construct three dimensional graphs.

e. Psychomotor Skills (if applicable)

(i) Description of the psychomotor skills to be developed and the level of performance required

(ii) Teaching strategies to be used to develop these skills

(iii) Methods of assessment of students psychomotor skills

Assess ment	Assessment task (eg. essay, test, group project, examination etc.)	Week due	Proportion of Final Assessme nt
1	First Exam	6 th week	20
2	Second Exam	11 th week	20
3	In-Class Problem Solving	At the end of each chapter	10
4	Home works and quizzes	Every week	10
5	Final exam	Allocated by registration	40

D. Student Support

1. Arrangements for availability of faculty for individual student consultations and academic advice. (include amount of time faculty are available each week)

Five office hours per week. If some students are busy during these times, they can arrange with me (lecturer) for other times.

E Learning Resources

1. Required Text(s): Mathematical methods in the physical sciences. Third edition, by Mary L. Boas

2. Essential References:

Mathematical Methods for Physicists by G. Arfken

3- Recommended Books and Reference Material (Journals, Reports, etc) (Attach List)

- 1. Mathematical Methods by M.C. Potter and J. Goldberg.
- 2. Mathematical Physics by E. Butkov
- 3. Introduction to Mathematical Physics by N. Laham.

4-.Electronic Materials, Web Sites etc

- 1. www.mpipks-dresden.mpg.de/~jochen/methoden/outline.html
- 2. People.uncw.edu/hermanr/phy311/mathphysbook/index.html

5- Other learning material such as computer-based programs/CD, professional standards/regulations.

The following programs are essential for numerical computing and graphing.

- 1. Mathematica
- 2. Matlab.
- 3. Origin.

F. Facilities Required

Indicate requirements for the course including size of classrooms and laboratories (ie number of seats in classrooms and laboratories, extent of computer access etc.)

1. Accommodation (Lecture rooms, laboratories, etc.)

- Lecture room for 30 students.
- Data show.

2. Computing resources

- 1. Computer room for 20 students equipped with computers and access to the internet.
- 2. Software for numerical computing.

3. Other resources (specify --eg. If specific laboratory equipment is required, list requirements or attach list)

G Course Evaluation and Improvement Processes

1 Strategies for Obtaining Student Feedback on Effectiveness of Teaching

Confidential instructor evaluation questionnaire by the end of the course.

1 Other Strategies for Evaluation of Teaching by the Instructor or by the Department

- 1. Course report.
- 2. Observations and assistance from colleagues.
- 3 Processes for Improvement of Teaching
 - 1. Review the student's feedback and work on the weak points.
 - 2. Use combination of different teaching methods.
 - 4 Processes for Verifying Standards of Student Achievement
 - 1. Check marking by another teaching staff of a sample of student work.
 - 2. Peer reviewing of tests remarking and sample of student assignments.
 - 5 Describe the planning arrangements for periodically reviewing course effectiveness and planning for improvement.
 - 1. Regular evaluation of students' feedback.
 - 2. Review the course outline and teaching methods.
 - 3. Submit a course report to the curriculum committee in the department to discuss the content of the course and its connection with other courses.
 - 4. Annual improvement and updating the course based on the outcomes of the reviewing process.

Kingdom of Saudi Arabia

The National Commission for Academic Accreditation & Assessment

Course Specification

(8) Measuring Instruments 403285

Course Specification

For Guidance on the completion of this template, please refer to Handbook 2 Internal Quality Assurance Arrangements

Institution: Umm AL-Qura University

College/Department : College of Applied Sciences / Physics Department

A Course Identification and General Information

1. Course title and code: Measuring Instruments PH285

2. Credit hours 3Cr. (2 + Lab)

3. Program(s) in which the course is offered. (If general elective available in many programs indicate this rather than list programs) B.Sc Degree in Physics

4. Name of faculty member responsible for the course

5. Level/year at which this course is offered Third level

6. Pre-requisites for this course (if any) Electromagnetism 121

7. Co-requisites for this course (if any)

8. Location if not on main campus Within The University Campus

B Objectives

1. Summary of the main learning outcomes for students enrolled in the course.

By the end of this course the student should be able to:

- 1. Understand the concept of an instrumentation system: to support accurate measurements
- 2. Understand the concepts sensitivity, accuracy and precision
- 3. Understand the theory and operation of various instruments
- 4. Use different instruments
- 5. Build, calibrate and use an instrument.
- 6. Measure current, voltage, resistance, frequency, capacitance and inductance
- 7. Discuss the construction and operation of the oscilloscope
- 8. Analyse data obtained and design an instrumentation system
- 9. Select and apply Ac/DC voltage suitable for different circuits
- 10. Understand on a theoretical level R-C circuit, R-C-L circuits energy storage in magnetic field and different oscillations.

2. Briefly describe any plans for developing and improving the course that are being implemented. (eg increased use of IT or web based reference material, changes in content as a result of new research in the field)

- 1. Explain strategy of the course in the beginning of the semester
- 2. Outlines of the physical laws, principles and the associated proofs.
- 3. Highlighting the day life applications whenever exist.
- 4. Encourage the students to see more details in the international web sites and reference books in the library.
- 5. Discussing some selected problems in each chapter.
- 6. Cooperate with different institution to find how they deal with the subject
- 7. Renew the course references frequently
- 8. Frequently check for the latest discovery in science

C. Course Description (Note: General description in the form to be used for the Bulletin or Handbook should be attached)

1 Topics to be Covered		
Topic	No of Weeks	Contac thours
Measurement: Calibration, Need for mesurements, Classification of Measuring Instruments, Accuracy, Precision, Sensitivity, Response, Bandwidth, Resolution, Measurements Errors, Gross Errors, Systematic Error, and Random Errors.	2	6
Direct Current Instruments: Moving Coil Galvanometer, Suspendion, Construction and Idea of the Theory of the Galvanometer, Sensitivity of the Galvanometer.	1	3
Ammeters, Voltameter and Ohmmeter: Single Range Ammeter, Multirange Ammeter, Single Range Voltameter, Multirange Voltameter, Voltameter Sensitivity, Loading Effect, Ammeter Voltameter Method for Measuring Resistance, Seroes Type Ohmmeter, Shunt Type Ohmmeter, and Multimeter and Calibration.		6
Potentiometer: Basic Circuit of a Simple Potentiometer, Single Range Direct Reading Potentiometer, and Dual Range Potentiometer	1	3

Oscilloscope: Cathode Ray Tube, Electron Gun, Electrostatic Focusing and Snell's Law, Electrostatic deflection, Horizontal and Vertical Deflection and deflecting Plates, and Florescent Screen.	2	6
Faraday's Law of Inductance: , Faraday's Experiments, Faradays Law of Inductance, Lenz's law, Motional E.M.F., Induced Electric Field.	2	6
Inductance: Inductance , Calculating the Inductance, R-C Circuits, Energy Storage in a Magnetic Field, Electromagnetic Oscillations, Qualitative Damped and Forced Oscillations.	2	6
Alternating Current: Electeric Generator and the Sinusoidal Representation of the Alternating Current (AC), R-LC Circuits, Reactance, Impedance, Resonance in R-LC Circuits, Power in AC Circuits, Power Factor, Root-Mean- Square (RMS) Values of Current and Voltage, Using of the Complex Quantities in the AC Circuits, and AC Bridges.	2	6

2 Course components (total contact hours per semester):			
Lecture: 42 hrs	Tutorial:	Practical/Fieldwor k/Internship:	Other:
		42 hrs	Office hours : 32 hrs

3. Additional private study/learning hours expected for students per week. (This should be an average :for the semester not a specific requirement in each week)

4. Development of Learning Outcomes in Domains of Learning

For each of the domains of learning shown below indicate:

- A brief summary of the knowledge or skill the course is intended to develop;
- A description of the teaching strategies to be used in the course to develop that knowledge or skill;
- The methods of student assessment to be used in the course to evaluate learning outcomes in the domain concerned.

a. Knowledge
(i) Description of the knowledge to be acquired
 Developing important concepts of measurements such as accuracy, precision, sensitivity, response, resolution, and errors. Understanding the operation of different instruments such as ammeter, voltammeter, Ohmmeter and Oscilloscope.
3. Using of the complex quantities to analyse equations of R-C and R-C-L circuits and calculating the impedance, power factor, root-mean- square values of current and voltage.
4. To use mathematical formulation to describe the physical principle or phenomena.
5. Improving logical thinking.
(ii) Teaching strategies to be used to develop that knowledge
1. Demonstrating the basic information and principles through lectures and the achieved applications
2. Discussing phenomena with illustrating pictures and diagrams
3. Lecturing method: a. Blackboard
b. Power point
c. e-learning
4. Tutorials
5. Revisit concepts
6. Discussions
 Brain storming sessions Start each chapter by general idea and the benefit of it;
 Start each enapter by general idea and the benefit of it, Learn the student background of the subject;
10. Show the best ways to deal with problem;
11. Keep the question "why" or "how" to explain always there;
12. Build a strategy to solve problem.
(iii) Methods of assessment of knowledge acquired
1. Solve some example during the lecture.
2. Exams:
a) Quizzes
b) Short exams (mid term exams)
c) Long exams (final)
d) Oral exams3. Discussions with the students.

- 4. Ask the student to clear the misunderstanding of some physical principle.
- 5. Ask quality question.

b. Cognitive Skills

(i) Cognitive skills to be developed

- 1. How to use physical laws and principles to understand the subject
- 2. How to simplify problems and analyze phenomena
- 3. Analyse and explain natural phenomena.
- 4. Ability to explain the idea with the student own words.
- 5. Represent the problems mathematically

(ii) Teaching strategies to be used to develop these cognitive skills

- 1. Preparing main outlines for teaching
- 2. Following some proofs
- 3. Define duties for each chapter
- 4. Home work assignments
- 5. Encourage the student to look for the information in different references
- 6. Ask the student to attend lectures for practice solving problem
- 7. Ask the student to do small research.

(iii) Methods of assessment of students cognitive skills

- 1. Midterm's exam. Exams, short quizzes
- 2. Asking about physical laws previously taught
- 3. Writing reports on selected parts of the course
- 4. Discussions of how to simplify or analyze some phenomena.

c. Interpersonal Skills and Responsibility

(i) Description of the interpersonal skills and capacity to carry responsibility to be developed

The students should learn independently and take up responsibility through:

- 1. Write a report
- 2. Develop his English language
- 3. Think in solving problems
- 4. Search on the internet
- 5. Collect the material of the course
- 6. Deal with the lost lectures that he missed.
- 7. The students should know how to do that independently and through discussions with the others

(ii) Teaching strategies to be used to develop these skills and abilities
1- Learn how to search the internet and use the library
2- Learn how to cover missed lectures
3- Learn how to summarize lectures or to collect materials of the course
4- Learn how to solve difficulties in learning : solving problems – enhance
educational skills
5- Develop his interest in Science through :(lab work, field trips, visits to
scientific and research institutes).
6- Encourage the student to attend lectures regularly by giving bonus marks for attendance
7- Give students tasks of duties
8- Learn how to write reports some of them in English language.
(iii) Methods of assessment of students interpersonal skills and capacity to carry
responsibility
1. Quizzes on the previous lecture
 Checking report on internet use and trips
3. Discussion
4. The accuracy of the result gained by each group will indicate good group
work
5. Presenting the required research on time and the degree of the quality will
show the sense of responsibility
d. Communication, Information Technology and Numerical Skills
(i) Description of the skills to be developed in this domain.
1. Communication with others: the lecturer – students in the class
1. Communication with others, the fecturer – students in the class
 Communication with others, the fecturer – students in the class IT through: the Internet – computer skills
2. IT through: the Internet – computer skills
 IT through: the Internet – computer skills Numerical skills through: solving problems- computation – data analysis – feeling
2. IT through: the Internet – computer skills
 IT through: the Internet – computer skills Numerical skills through: solving problems- computation – data analysis – feeling physical reality of results.
 2. IT through: the Internet – computer skills 3. Numerical skills through: solving problems- computation – data analysis – feeling physical reality of results. (ii) Teaching strategies to be used to develop these skills
 IT through: the Internet – computer skills Numerical skills through: solving problems- computation – data analysis – feeling physical reality of results.
 2. IT through: the Internet – computer skills 3. Numerical skills through: solving problems- computation – data analysis – feeling physical reality of results. (ii) Teaching strategies to be used to develop these skills
 2. IT through: the Internet – computer skills 3. Numerical skills through: solving problems- computation – data analysis – feeling physical reality of results. (ii) Teaching strategies to be used to develop these skills Know the basic mathematical principles.
 2. IT through: the Internet – computer skills 3. Numerical skills through: solving problems- computation – data analysis – feeling physical reality of results. (ii) Teaching strategies to be used to develop these skills Know the basic mathematical principles. Use the web for research.
 IT through: the Internet – computer skills Numerical skills through: solving problems- computation – data analysis – feeling physical reality of results. (ii) Teaching strategies to be used to develop these skills Know the basic mathematical principles. Use the web for research. Discuss with the student.
 2. IT through: the Internet – computer skills 3. Numerical skills through: solving problems- computation – data analysis – feeling physical reality of results. (ii) Teaching strategies to be used to develop these skills Know the basic mathematical principles. Use the web for research. Discuss with the student. Exams to measure the mathematical skill.
 2. IT through: the Internet – computer skills 3. Numerical skills through: solving problems- computation – data analysis – feeling physical reality of results. (ii) Teaching strategies to be used to develop these skills Know the basic mathematical principles. Use the web for research. Discuss with the student. Exams to measure the mathematical skill. Clear the weakness point that should be eliminated.
 2. IT through: the Internet – computer skills 3. Numerical skills through: solving problems- computation – data analysis – feeling physical reality of results. (ii) Teaching strategies to be used to develop these skills Know the basic mathematical principles. Use the web for research. Discuss with the student. Exams to measure the mathematical skill. Clear the weakness point that should be eliminated. Encourage the student to ask for help if needed.
 IT through: the Internet – computer skills Numerical skills through: solving problems- computation – data analysis – feeling physical reality of results. (ii) Teaching strategies to be used to develop these skills Know the basic mathematical principles. Use the web for research. Discuss with the student. Exams to measure the mathematical skill. Clear the weakness point that should be eliminated. Encourage the student to ask for help if needed. Computational analysis.

10. Lectures for problem solution.

11. Encourage the student to ask good question to help solve the problem

12. Display the lecture note and homework assignment at the web.

(iii) Methods of assessment of students numerical and communication skills

- 1. Their interaction with the lectures and discussions.
- 2. The reports of different asked tasks.
- 3. Homework, Problem solutions assignment and exam should focus on the understanding.
- 4. Results of computations and analysis.
- 5. Comments on some resulting numbers.
- 6. Research.

e. Psychomotor Skills (if applicable)

(i) Description of the psychomotor skills to be developed and the level of performance required

not applicable

(ii) Teaching strategies to be used to develop these skills

not applicable

(iii) Methods of assessment of students psychomotor skills

not applicable

5. Schedule of Assessment Tasks for Students During the Semester			
Assess	Assessment task (eg. essay, test, group project,	Week due	Proportion
ment	examination etc.)		of Final
			Assessme
			nt
1	Exam I	6	15%
2	Exam II	12	15%
3	Class activities(presence – reports – participation)	weekly	10%

4	Final exam	16	40%
5	Practical Exam	15	20%

D. Student Support

1. Arrangements for availability of faculty for individual student consultations and academic advice. (include amount of time faculty are available each week)

Office hours 4 hours per week

E Learning Resources

1. Required Text(s)

2. Essential References

3- Recommended Books and Reference Material (Journals, Reports, etc) (Attach List) Fundamental of Physics by Halliday & Resnick

4-.Electronic Materials, Web Sites etc

5- Other learning material such as computer-based programs/CD, professional standards/regulations Wikipedia

F. Facilities Required

Indicate requirements for the course including size of classrooms and laboratories (ie number of seats in classrooms and laboratories, extent of computer access etc.)

1. Accommodation (Lecture rooms, laboratories, etc.)

- 1. Lecture room for 30 students
- 2. Library
- 3. Laboratory

2. Computing resources

- 1. Computer room
- 2. Scientific calculator.

3. Other resources (specify --eg. If specific laboratory equipment is required, list requirements or attach list)

G Course Evaluation and Improvement Processes

1 Strategies for Obtaining Student Feedback on Effectiveness of Teaching

- 1. Midterm and final exam.
- 2. Quiz.

2 Other Strategies for Evaluation of Teaching by the Instructor or by the Department

3 Processes for Improvement of Teaching

- Course report
- Program report
- Program self study
- Fortification of the student learning.
- Handling the weakness point.

4. Processes for Verifying Standards of Student Achievement (eg. check marking by an independent faculty member of a sample of student work, periodic exchange and remarking of a sample of assignments with a faculty member in another institution)

1. The instructors of the course are checking together and put a unique process of evaluation

- 2. Check marking of a sample of papers by others in the department.
- 3. Feedback evaluation of teaching from independent organization.

5 Describe the planning arrangements for periodically reviewing course effectiveness and planning for improvement.

- 1- The following points may help to get the course effectiveness
 - Student evaluation
 - Course report
 - Program report
 - Program Self study
- 2- According to point 1 the plan of improvement should be given.
- 3- Contact the college to evaluate the course and the benefit it add to other courses.
- 4- Add some subject and cut off others depending on the new discoveries in physics.

Kingdom of Saudi Arabia

The National Commission for Academic Accreditation & Assessment

Course Specification

(9) Atomic Physics 403253

Course Specification

For Guidance on the completion of this template, please refer to Handbook 2 Internal Quality Assurance Arrangements

Institution: Umm Al-Qura University

College/Department : Faculty of Applied Science / Physics Department

A Course Identification and General Information

1. Course title and code : **ATOMIC PHYSICS**, 403253

2. Credit hours:- **3** Cr.

3. Program(s) in which the course is offered. (If general elective available in many programs indicate this rather than list programs) Undergraduate

4. Name of faculty member responsible for the course

Dr Mohamed BOUSTIMI

5. Level/year at which this course is offered

4th level of the second year see plan

6. Pre-requisites for this course (if any)

OPTICS, 433231

MATHEMATICAL PHYSICS 1, 433240

7. Co-requisites for this course (if any)

Some knowledge in electromagnetism

4. Location if not on main campus

B Objectives

1. Summary of the main learning outcomes for students enrolled in the course.

The student should understand at least the major concepts of the following and be able and to demonstrate his understanding in Lab experiments and when resolving physical problems:

- Einstein's postulate of relativity
- UV catastrophe (thermal radiation treated with classical physics)
- Energy is quantified (photons)
- Relate the linear momentum of a photon to its energy or wavelength, and apply linear momentum conservation to simple processes involving the emission, reflection, or absorption of electrons
- Describe a typical photoelectric effect experiment
- Sketch or identify a graph of stopping potential versus frequency for a photoelectric-effect experiment
- The concept of energy levels for atoms
- State the assumptions and conclusions of the Bohr model for the hydrogen atom
- The concept of De Broglie wavelength
- Schrodinger equation for the Hydrogen atom (quantum numbers to describe the electron)

2. Briefly describe any plans for developing and improving the course that are being implemented. (eg increased use of IT or web based reference material, changes in content as a result of new research in the field)

- Explain the syllabus of the course in the beginning of the semester. And pointed the importance of modern physics to understand Quantum mechanics and molecular physics.
- Make a soft (in power point and/or pdf) and hard copy of lectures
- Highlighting the day life applications whenever exist
- Resolving and discussing some selected problems in each chapter
- check for the latest discovery in the field of quantum mechanics and its applications
- Indicate the links between experiment lab and the course

C. Course Description (Note: General description in the form to be used for the Bulletin or Handbook should be attached)

1 Topics to be Covered

THE SPATIAL THEORY OF THE RELATIVITY	No of	Contac
	Weeks	thours
1- reference frame		liouis
2- inertial reference frame		
3- Galilean relativity		
4- Einstein's postulate of relativity		
5- Lorentz transformations		
6- relativistic velocity transformations		
7- transformation of energy		
8- Doppler effect	1 week	
BLACK BODY RADIATION		
1- radiation of heated objects		
2- thermal radiation		
3- cavity radiation treated with classical physics		
4- UV catastrophe		
5- Planck's solution		
6- quantum of energy	1 week	
PARTICLE PROPERTIES OF WAVES		
1- The photoelectric effect		
2- The quantum theory of light		
3- X-ray diffraction		
5- x-ray uniraction		
4- The Compton effect		
5- Pair production		

6- Gravitational red shift	1Weeks	
WAVE PROPERTIES OF PARTICLES		
1- De Broglie waves		
2- Wave function		
3- De Broglie wave velocity		
4- Phase and group velocities		
5- The diffraction of particles		
6- The uncertainty principle		
7- Applications of the uncertainty principle, The wave-particle duality	1 week	
ATOMIC STRUCTURE		
1- Atomic models		
2- Alpha-particle scattering		
3- The Rutherford scattering formula		
4- Nuclear dimensions		
5- Electron orbits		
6- Atomic spectra		
7- The Bohr atom		

8- Energy levels and spectra		
9- Nuclear Motion		
10- Atomic excitation,		
11- The correspondence Principle	2 weeks	
QUANTUM MECHANICS		
12- Classical mechanics is an approximation of		
quantum mechanics		
13- The wave equation		
13- The wave equation		
14- Schrodinger equation: time dependent form		
15- Linearity and superposition		
16- Expectation value		
17- Schrodinger equation: steady state form		
18- Particle in a box		
19- Finite potential well		
20- Tunnel effect		
21- Harmonic oscillator	2 weeks	
21- Harmonic oscillator	2 weeks	
QUANTUM THEORY OF THE HYDROGEN ATOM		
1- Schrodinger equation for the Hydrogen		
atom		
2- Separation of variables		

3- Quantum numbers		
4- The normal Zeeman effect		
5- Electron probability density		
6- Radiative transition		
7- Selection rules	2 weeks	
MANY-ELECTRON ATOM		
1- Electron spin		
2- Spin-orbit coupling		
3- The exclusion principle		
4- Electrons configurations		
5- The periodic table		
6- Hund's Rule		
7- Total angular momentum		
8- LS coupling		
9- jj coupling		
10- one-electron spectra		
11- two-electron spectra		
12- X-ray spectra	3 weeks	
MOLECULES H ₂		
1- Molecular formation		
2- Electron sharing		
3- The H ₂ ⁺ molecular ion		
4- The H ₂ molecule		
5- Molecular orbitals		
6- Hybrid orbitals		
7- Carbon-carbon bonds		
8- Rotational energy levels		
9- Vibrational energy levels		
10- Electronic spectra of molecules	2 weeks	

2 Course components (total contact hours per semester):			
Lecture: 42 h	Tutorial:	Practical/Fieldwork /Internship: 30 h	Other:

3. Additional private study/learning hours expected for students per week. (This should be an average :for the semester not a specific requirement in each week)

8 office hours weekly

4. Development of Learning Outcomes in Domains of Learning For each of the domains of learning shown below indicate:

- A brief summary of the knowledge or skill the course is intended to develop;
- A description of the teaching strategies to be used in the course to develop that knowledge or skill;
- The methods of student assessment to be used in the course to evaluate learning outcomes in the domain concerned.

a. Knowledge

(i) Description of the knowledge to be acquired

- The first three chapters are devoted to the theory of atoms. An innovation in an introductory modern physics course is a largely descriptive account of the general relativity; it is included in light of recent technological advances that have allowed careful and precise experiments and have stimulated new interest in the field.
- Quantum theory is the central theme of the next five chapters. Chapter 4 summarizes the experimental findings that ultimately led to broad acceptance of energy quantization. Chapter 5 is an account of the Bohr model of the hydrogen atom. The concept of cross section is introduced and illustrated in connection with Rutherford scattering. Chapter 6, The de Broglie hypothesis and experiments that validated it.
- Elementary quantum mechanics is the subject matter of Chapters 7 and 8. The Schrödinger equation is introduced in Chapter 7 and the standard onedimensional examples- infinite and finite square wells, barrier penetration, and the harmonic oscillator are presented. Chapter 8 addresses primarily the quantum mechanics of the hydrogen atom. The formal solution of the Schrödinger equation in spherical coordinates is well beyond the mathematical sophistication of the student whose background is a one-year course in differential and integral calculus.

(ii) Teaching strategies to be used to develop that knowledge

- In-class lecturing where the previous knowledge is linked with the current and future topics as well as a brief account of instrumentation for radiation physics and astrophysics .
- Homework assignments and solving the problems of each chapter.
- Tutorial discussions and laboratory practice (conducting experiments and writing reports)

(iii) Methods of assessment of knowledge acquired

- In class short MCQs quizzes.
- Major and final exams.
- Evaluation of the problems solutions of each chapter

b. Cognitive Skills

(i) Cognitive skills to be developed

- Solve problems on the theory of relativity, quantum theory and elementary quantum mechanics.
- Identify the recent technological advances that have allowed careful and precise experiments and have stimulated new interest in the field.
- Summarize the experimental findings that ultimately led to broad acceptance of energy quantization.
- Validate de Broglie hypothesis and experiments.
- Apply the concepts of the theory of relativity and quantum theory in our life practice.
- Introduce Schrödinger equation and the standard one-dimensional examplesinfinite and finite square wells, barrier penetration, and the harmonic oscillator.

(ii) Teaching strategies to be used to develop these cognitive skills

• Work independently and as a part of team.

(iii) Methods of assessment of students cognitive skills

• writing group reports

• Solving problems in groups at the end of each chapter

c. Interpersonal Skills and Responsibility

(i) Description of the interpersonal skills and capacity to carry responsibility to be developed

- Assessment of the solution of problems
- Grading homework assignments

(ii) Teaching strategies to be used to develop these skills and abilities

• Use the computational tools.

- Write reports.
 - Communicate results of the work to other

(iii) Methods of assessment of students interpersonal skills and capacity to carry responsibility

Evaluate written summary reports

d. Communication, Information Technology and Numerical Skills

(i) Description of the skills to be developed in this domain. Not applicable

(ii) Teaching strategies to be used to develop these skills

Not applicable

(iii) Methods of assessment of students numerical and communication skills

Not applicable

e. Psychomotor Skills (if applicable)

(i) Description of the psychomotor skills to be developed and the level of performance required

(ii) Teaching strategies to be used to develop these skills

(iii) Methods of assessment of students psychomotor skills

5. Schedule of Assessment Tasks for Students During the Semester

Assess	Assessment task (eg. essay, test, group project,	Week due	Proportion
ment	examination etc.)		of Final
			Assessme
			nt
1	Class activates (class quizzes, homework, solving problems and written summary reports).	weekly	20 %
2	Major examination I	6	15 %
3	Major examination II	12	15 %
4	Final examination	18	50 %

D C41	4 5	

D. Student Support

1. Arrangements for availability of faculty for individual student consultations and academic advice. (include amount of time faculty are available each week)

• Office hours 6 hr/ week.

E Learning Resources

1. Required Text(s)

- 2. Essential References Frank J. Blatt, Modern Physics. International Edition 1992 by McGraw –Hill Book Co.
- Arthur Beiser, Concepts of Modern Physics (5th Ed.), 2000, by McGraw-Hill, Inc

3- Recommended Books and Reference Material (Journals, Reports, etc) (Attach List)

4-.Electronic Materials, Web Sites etc

Websites on the internet relevant to the topics of the course

5- Other learning material such as computer-based programs/CD, professional standards/regulations

Multi media associated with the text book and the relevant websites

F. Facilities Required

Indicate requirements for the course including size of classrooms and laboratories (ie number of seats in classrooms and laboratories, extent of computer access etc.)

- 1. Accommodation (Lecture rooms, laboratories, etc.)
- Lecture room with at least 25 seats.
- Auditorium of a capacity of not less than 100 seats for large lecture format classes.
- Laboratory of physics with at least 25 places
- 2. Computing resources

• Computer room containing at least 15 systems.

• Scientific calculator for each student.

3. Other resources (specify --eg. If specific laboratory equipment is required, list requirements or attach list)

G Course Evaluation and Improvement Processes

1 Strategies for Obtaining Student Feedback on Effectiveness of Teaching

• Course evaluation by student.

2 Other Strategies for Evaluation of Teaching by the Instructor or by the Department

- Peer consultation on teaching.
- Departmental council discussions.
- Discussions within the group of faculty teaching the course
- 3 Processes for Improvement of Teaching
- Peer consultation on teaching.
- Departmental council discussions.

Discussions within the group of faculty teaching the course

4. Processes for Verifying Standards of Student Achievement (eg. check marking by an independent faculty member of a sample of student work, periodic exchange and remarking of a sample of assignments with a faculty member in another institution)

- Providing samples of all kinds of assessment in the departmental course portfolio of each course.
- Assigning group of faculty members teaching the same course to grade same questions for various students.

5 Describe the planning arrangements for periodically reviewing course effectiveness and planning for improvement.

- The course material and learning outcomes are periodically reviewed and the changes to be taken are approved in the departmental and higher councils.
- The head of department and faculty take the responsibility of implementing the proposed changes.

Kingdom of Saudi Arabia

The National Commission for Academic Accreditation & Assessment

Course Specification

(10) Electrical Properties Of Biological Solutions (403296)

Course Specification

For Guidance on the completion of this template, please refer to Handbook 2 Internal

Quality Assurance Arrangements

Institution:- Umm AL-Qura University

College/Department :- College of Sciences / Physics Department

A Course Identification and General Information

1. Course title and code: Electrical Properties Of Biological Solutions (403296)

2. Credit hours: - 2 Cr. Hrs

3. Program(s) in which the course is offered. (If general elective available in many programs indicate this rather than list programs) B.Sc Degree in Physics

4. Name of faculty member responsible for the course:

5. Level/year at which this course is offered: Fourth level/Second year

6. Pre-requisites for this course (if any) Devices measurements-403285 and Electricity and magnetism-403121

7. Co-requisites for this course (if any) Electricity and Magnetism (403121)

8. Location if not on main campus :- Within The University Campus

B Objectives

1. Summary of the main learning outcomes for students enrolled in the course. The objectives of this course are to give the students the basic knowledge about the laws of dielectric behavior of biological molecules in solution

For students undertaking this course, the aims are to:

- Introduce the fundamental information about the dielectric theory its laws.
- Define of capacitance and capacitor with dielectrics.
- Study the polarization in material and its types (electronic polarization, orientational polarization and ionic polarization).
- Give students the essential concepts of dielectric constant and complex dielectric constant equations.
- Study the equations of Debye equation for the complex dielectric constant.
- Introduce the main information about the relaxation time theory.
- Analyse the distribution of relaxation time for different relaxation times.
- Enable the students to understand the impedance of biological tissues and dependence frequency on impedance.
- Introduce the student the electrical resistance of cells and tissue and different practical measurements of impedance of biological tissues and.
- Describe the dielectric behaviour of some biological molecules such as proteins, DNA, blood red blood cells and its hemoglobin.
- Enable the students to have an idea about cell membrane potential, Nernest equation, conductance, action potential, resting membrane potential.

The overall goal is to use the scientific method to come to understand the enormous variety of dielectric behavior of biological molecules in solution phenomena in terms of a few relatively simple laws

2. Briefly describe any plans for developing and improving the course that are being implemented. (eg increased use of IT or web based reference material, changes in content as a result of new research in the field)

- Explain strategy of the course in the beginning of the semester
- Outlines of the physical laws, principles and the associated proofs.
- Highlighting the day life applications whenever exist.
- Encourage the students to see more details in the international web sites and reference books in the library.
- Discussing some selected problems in each chapter.
- Cooperate with different institution to find how they deal with the subject
- Renew the course references frequently
- Frequently check for the latest discovery in science

C. Course Description (Note: General description in the form to be used for the Bulletin or Handbook should be attached)

1 Topics to be Covered		
Торіс	No of Weeks	Contact hours
Dielectric theory, fundamental information about the dielectric theory its laws, susceptibility, conductivity,	1	2 hrs
Polarization of material and its types (electronic polarization, orientational polarization and ionic polarization).	1	2 hrs
Dielectric constant and complex dielectric constant equations.	1	2 hrs
Dielectric behaviour of material in Direct Current (DC) circuit.	1	2 hrs
Dielectric behaviour of material in Alternate Current (AC) circuit.	1	2 hrs
Equations of Debye equation for the complex dielectric constant, relative permittivity, dielectric loss factor, dielectric loss tangent.	1	2 hrs
Relaxation time theory and the distribution of relaxation time for different relaxation times equations.	1	2 hrs
Physics of membrane of cell and tissue and electrical model of cells and tissue- physical equations cell membrane.	1	2 hrs
Impedance of biological tissues and dependence frequency on impedance.	1	2 hrs
Different practical techniques for measurements of impedance of biological tissues e.g: Wein's bridge, four electrodes bridge.	1	2 hrs
Study Cole-Cole diagram and the its interpretation also, training the student how to sketch Cole-Cole diagram beside its physical meaning.	1	2 hrs

Examples of dielectric behaviour of some biological molecules such as proteins, DNA, blood red blood cells and its hemoglobin.	1	2 hrs
Cell membrane potential, Nernest equation, conductance, action potential, resting membrane potential .	1	2 hrs

2 Course components	s (total contact hours po	er semester):	
Lecture: 30 hr	Tutorial: -	Practical/Fieldwork /Internship:-	Other: Office hour: 30 hr

3. Additional private study/learning hours expected for students per week. (This should be an average :for the semester not a specific requirement in each week).

4. Development of Learning Outcomes in Domains of Learning For each of the domains of learning shown below indicate:

- A brief summary of the knowledge or skill the course is intended to develop;
- A description of the teaching strategies to be used in the course to develop that knowledge or skill;
- The methods of student assessment to be used in the course to evaluate learning outcomes in the domain concerned.

a. Knowledge

knowledge that students should know and understand when they complete the course are as follow:

- Learning fundamentals in dielectric theory, fundamental information about the dielectric theory its laws, susceptibility, conductivity.
- Understanding the physics of dielectric theory and their applications mentioned in the text.
- Improving logical thinking.
- To use mathematical formulation to describe the physical principle or phenomena
- Ability to explain how things work.
- Teaching strategies to be used to develop that knowledge
- 1. Demonstrating the basic information and principles through lectures and the achieved applications
- 2. Discussing phenomena with illustrating pictures and diagrams
- 3. Lecturing method:
 - a. Blackboard

- b. Power point
- c. e-learning
- 4. Tutorials
- 5. Revisit concepts
- 6. Discussions
- 7. Brain storming sessions
- 8. Start each chapter by general idea and the benefit of it;
- 9. Learn the student background of the subject;

10. Show the best ways to deal with problem;

11. Keep the question "why" or "how" to explain always there;

Build a strategy to solve problem.

(iii) Methods of assessment of knowledge acquired

- 1. Solve some example during the lecture.
- 2. Exams:
 - a) Quizzes
 - b) Short exams (mid term exams)
 - c) Long exams (final)
 - d) Oral exams
- 3. Discussions with the students.
- 4. Ask the student to clear the misunderstanding of some physical principle.
- 5. Ask quality question.

b. Cognitive Skills

(i) Cognitive skills to be developed

- 1. How to use physical laws and principles to understand the subject
- 2. How to simplify problems and analyze phenomena
- 3. Analyse and explain natural phenomena.
- 4. Ability to explain the idea with the student own words.
- 5. Represent the problems mathematically.

(ii) Teaching strategies to be used to develop these cognitive skills

- 1. Preparing main outlines for teaching
- 2. Following some proofs
- 3. Define duties for each chapter
- 4. Home work assignments
- 5. Encourage the student to look for the information in different references
- 6. Ask the student to attend lectures for practice solving problem
- 7. Ask the student to do small research.

(iii) Methods of assessment of students cognitive skills

- 1. Midterm's exam. Exams, short quizzes
- 2. Asking about physical laws previously taught

- 3. Writing reports on selected parts of the course
- 4. Discussions of how to simplify or analyze some phenomena

c. Interpersonal Skills and Responsibility

(i) Description of the interpersonal skills and capacity to carry responsibility to be developed

3. Work independently.

The students learn independently and take up responsibility.

(ii) Teaching strategies to be used to develop these skills and abilities

- Learn how to search the internet and use the library.
- Learn how to cover missed lectures.
- Learn how to summarize lectures or to collect materials of the course.
- Learn how to solve difficulties in learning: solving problems enhance educational skills.
- Develop her interest in Science through :(lab work, field trips, visits to scientific and research.
 - **4** Encourage the student to attend lectures regularly by:
 - Giving bonus marks for attendance
 - Assigning marks for attendance.

give students tasks of duties

(iii) Methods of assessment of students interpersonal skills and capacity to carry responsibility

- 1. Quizzes on the previous lecture
- 2. Checking report on internet use and trips
- 3. Discussion
- 4. The accuracy of the result gained by each group will indicate good group work

Presenting the required research on time and the degree of the quality will show the sense of responsibility.

d. Communication, Information Technology and Numerical Skills

(i) Description of the skills to be developed in this domain.

- 1. Computation
- 2. Problem solving
- 3. Data analysis and interpretation.

Feeling physical reality of results

(ii) Teaching strategies to be used to develop these skills 1. Know the basic mathematical principles. 2. Use the web for research. 3. Discuss with the student. 4. Exams to measure the mathematical skill. 5. Clear the weakness point that should be eliminated. 6. Encourage the student to ask for help if needed. 7. Computational analysis. 8. Data representation. 9. Focusing on some real results and its physical meaning. 10. Lectures for problem solution. 11. Encourage the student to ask good question to help solve the problem. Display the lecture note and homework assignment at the web. (iii) Methods of assessment of students numerical and communication skills 1. Their interaction with the lectures and discussions. 2. The reports of different asked tasks. 3. Homework, Problem solutions assignment and exam should focus on the understanding. 4. Results of computations and analysis. 5. Comments on some resulting numbers. **Research.** e. Psychomotor Skills (if applicable) (i) Description of the psychomotor skills to be developed and the level of performance required Frequently not permitted to be existed in practical colleges. (ii) Teaching strategies to be used to develop these skills Student are emphasizing to search through the internet about all concepts • that they are learned on class. Student are emphasizing to look for the concepts that they are learned on • class on library by themselves. (iii) Methods of assessment of students psychomotor skill 5. Schedule of Assessment Tasks for Students During the Semester

Assess ment	Assessment task (eg. essay, test, group project, examination etc.)	Week due	Proportion of Final Assessme nt
1	Midterm 1	5 th week	10

2	Midterm 2	10 th week	10
3	In-Class Problem Solving	13 th ,7 th week	10
4	project	12 th week	10
5	Homework	Every week	10
6	Final exam	End of semester	50

D. Student Support

 Arrangements for availability of faculty for individual student consultations and academic advice. (include amount of time faculty are available each week)
 4 office hours per week

E Learning Resources

1. Required Text(s)

2. Essential References

3- Recommended Books and Reference Material (Journals, Reports, etc) (Attach List)

[1] Handbook of physics in medicine and biology, Robert Splinter, CRC Press Taylor & Francis Group, 2010.

[2] biophysics, Roland Glaser, spring-Verlag Berlin Heidelberg, New York, 5th, 2001.

[3] Physics for scientists and engineering by Serway 7Th edition

4-.Electronic Materials, Web Sites etc http://www.youtube.com/watch?v=PTaSfpBJgCE&feature=related http://www.youtube.com/watch?v=Fjy_hVpWgWs&feature=related http://www.youtube.com/watch?v=lP57gEWcisY&feature=related http://www.youtube.com/watch?v=HuZLh_mS6iE

5- Other learning material such as computer-based programs/CD, professional standards/regulations

Wikipedia

F. Facilities Required

Indicate requirements for the course including size of classrooms and laboratories (ie number of seats in classrooms and laboratories, extent of computer access etc.)

1. Accommodation (Lecture rooms, laboratories, etc.)

3. Lecture room for 30 students

4. Library

Laboratory for optics (there is a special course for laboratory related to electromagnetic)

2. Computing resources

4 Computer room

4 Scientific calculator.

3. Other resources (specify --eg. If specific laboratory equipment is required, list requirements or attach list)

G Course Evaluation and Improvement Processes

1 Strategies for Obtaining Student Feedback on Effectiveness of Teaching

- Midterm and final exam.
- Quiz.

2 Other Strategies for Evaluation of Teaching by the Instructor or by the Department

3 Processes for Improvement of Teaching

- (a) Course report
- (b) Program report
- (c) Program self study
- **4** Fortification of the student learning.
- Handling the weakness point.

4. Processes for Verifying Standards of Student Achievement (eg. check marking by an independent faculty member of a sample of student work, periodic exchange and remarking of a sample of assignments with a faculty member in another institution)

- 1. The instructors of the course are checking together and put a unique process of evaluation
- 2. Check marking of a sample of papers by others in the department.
- 3. Feedback evaluation of teaching from independent organization.

5 Describe the planning arrangements for periodically reviewing course effectiveness and planning for improvement.

- 1- The following points may help to get the course effectiveness
 - Student evaluation
 - Course report
 - Program report
 - Program Self study
- 2- According to point 1 the plan of improvement should be given.
- 3- Contact the college to evaluate the course and the benefit it add to other courses.

Add some subject and cut off others depending on the new discoveries in physics.

Kingdom of Saudi Arabia

The National Commission for Academic Accreditation & Assessment

Course Specification

(11) Physics of Membranes and Macromolecules 403291

Course Specification

For Guidance on the completion of this template, please refer to of Handbook 2

Internal Quality Assurance Arrangements

Institution:- Umm AL-Qura University

College/Department :- College of Sciences / Physics Department

A Course Identification and General Information

1. Course title and code: Physics of Membranes and Macromolecules (PH 291)

2. Credit hours: - 3 Cr. Hrs

3. Program(s) in which the course is offered. (If general elective available in many programs indicate this rather than list programs) B.Sc Degree in Medical Physics

4. Name of faculty member responsible for the course:

5. Level/year at which this course is offered: Fourth Level

6. Pre-requisites for this course (if any) Pre-Requisite 211 (Cell Biology)

7. Co-requisites for this course (if any)

8. Location if not on main campus :- Within The University Campus

B Objectives

1. Summary of the main learning outcomes for students enrolled in the course.

The objectives of this course are to study the biological molecules composing membranes and their arrangements in addition to their connections and functions within the biological membranes, and finally, to study artificial membranes' preparation as a simple model for biological membranes and their applications in medical purposes.

The benchmark statement of the main learning outcomes are as follows:

- 7. To understand basic properties of macromolecules composing the cell membrane.
- 8. The students should be trained on physical and generic skills (knowledge cognitive interpersonal communication problem solving IT)
- 9. To describe, in words, the different models discussing the membrane composition.
- 10. The medical applications of artificial biological membranes
- 11. To analyse the physical properties of biological macromolecules
- 12. To understanding behaviour of biological membranes using different techniques (electron microscope, electrophoresis, spectroscopy, etc)

The overall goal is to use the scientific method to come to understand the enormous variety of medical applications of biological membranes and different techniques used for membranes' investigation.

2. Briefly describe any plans for developing and improving the course that are being implemented. (eg increased use of IT or web based reference material, changes in content as a result of new research in the field)

- 1. Explain strategy of the course in the beginning of the semester
- 2. Outlines of the physical basis, models and techniques.
- 3. Highlighting the day life applications whenever exist.
- 4. Encourage the students to see more details in the international web sites and reference books in the library.
- 5. Discussing some selected items in each chapter.
- 6. Cooperate with different institution to find how they deal with the subject
- 7. Renew the course references frequently
- 8. Frequently check for the latest discovery in science

C. Course Description (Note: General description in the form to be used for the Bulletin or Handbook should be attached)

Topics to be covered		
Topics	No. Of Weeks	Contact hours
Membranes:		
1-Basic Membrane Properties		
2-Analyzing Transport		
3- Electrodiffusion	3 Weeks	1.5 hr/week
4-Active Transport in Red Blood Cells	J WEEKS	1.3 III/ WEEK
5- Membrane Models		
6- Membrane Thickness Determination and Energy		
Transduction Processes		
Macromolecules:		
1-Random Motion in Large Molecules		
2- Instantaneous Velocity	2 weeks	1.5 hr/week
3- Average Energy		
4- Degree of Freedom		
Diffusion:		
1- Fick'Equations of Diffusion		
2- Coefficient and Temperature		
3- Viscosity and Friction	3 Weeks 1.5	1.5 hr/week
4- Solution of Diffusion Equation in solids and liquids		
5- Method of Diffusion Coefficient Determination		
6-Radioactive Sectioning Technique		
Techniques of Biological Membrane Analysis:		
1- Principles of Gel Electrophoresis	5 weeks 1.5 hr/v	
2-Principles of Gel Chromatography		1.5 hr/week
3- Principles of IR spectroscopy		
4- Principles of Fluorescence		

2 Course components	s (total contact hours p	er semester):	
Lecture: 36 hr	Tutorial: 12 hr	Practical/Fieldwork /Internship:	Other: Office hours : 32 hr

3. Additional private study/learning hours expected for students per week. (This should be an average :for the semester not a specific requirement in each week)

4. Development of Learning Outcomes in Domains of Learning For each of the domains of learning shown below indicate:

- A brief summary of the knowledge or skill the course is intended to develop;
- A description of the teaching strategies to be used in the course to develop that knowledge or skill;
- The methods of student assessment to be used in the course evaluate learning outcomes in the domain concerned.

a. Knowledge

- knowledge that students should know and understand when they complete the course are as follow:
- Learning fundamental structure and function of biological membranes
- Understanding the physics of membrane transport processes
- Improving logical thinking.
- To use mathematical formulation to describe the physical principle of membranes' preparation
- (vi) Ability to explain how things work in medical applications.

(ii) Teaching strategies to be used to develop that knowledge
1. Demonstrating the basic information and principles through lectures and the
achieved applications
2. Discussing phenomena with illustrating pictures and diagrams
3. Lecturing method:
a. Blackboard
b. Power point
c. e-learning 4. Tutorials
 Futorials Revisit concepts
6. Discussions
7. Brain storming sessions
8. Start each chapter by general idea and the benefit of it;
9. Learn the student background of the subject;
10. Show the best ways to deal with problem;
11. Keep the question "why" or "how" to explain always there;
Build a strategy to solve problem.
(iii) Methods of assessment of knowledge acquired
1. Discuss some examples during the lecture.
2. Exams:
a) Quizzes
b) Short exams (mid term exams)
c) Long exams (final)
d) Oral exams
3. Discussions with the students.
4. Ask the student to clear the misunderstanding of some physical principles.
Ask quality question.
b. Cognitive Skills
(i) Cognitive skills to be developed
1. How to use physical principles to understand the subject
2. How to simplify and analyze phenomena
3. Analyse and explain natural phenomena.
4. Ability to explain the idea with the student own words.

5. Represent the problems mathematically.

(ii) Teaching strategies to be used to develop these cognitive skills

- 1. Preparing main outlines for teaching
- 2. Following some proofs
- 3. Define duties for each chapter
- 4. Home work assignments
- 5. Encourage the student to look for the information in different references
- 6. Ask the student to attend lectures for practice solving problem

Ask the student to do small research.

(iii) Methods of assessment of students cognitive skills

- 1. Midterm's exam. Exams, short quizzes
- 2. Asking about biological background previously taught
- 3. Writing reports on selected parts of the course

Discussions of how to simplify or analyze some phenomena

c. Interpersonal Skills and Responsibility

(i) Description of the interpersonal skills and capacity to carry responsibility to be developed

4. Work independently.

The students learn independently and take up responsibility.

(ii) Teaching strategies to be used to develop these skills and abilities

- Learn how to search the internet and use the library.
- Learn how to cover missed lectures.
- Learn how to summarize lectures or to collect materials of the course.
- Learn how to solve difficulties in learning: solving problems enhance educational skills.
- Develop her interest in Science through :(lab work, field trips, visits to scientific and research.
 - **4** Encourage the student to attend lectures regularly by:
 - Giving bonus marks for attendance
 - Assigning marks for attendance.

give students tasks of duties

(iii) Methods of assessment of students interpersonal skills and capacity to carry responsibility

- Quizzes on the previous lecture
- Checking report on internet use and trips
- Discussion
- The accuracy of the result gained by each group will indicate good group work
- Presenting the required research on time and the degree of the quality will show the sense of responsibility.

a. (Communication, Information Technology and Numerical Skills
(i) I	Description of the skills to be developed in this domain.
•	
•	
•	Data analysis and interpretation.
•	Feeling physical reality of results
(ii)	Teaching strategies to be used to develop these skills
•	Know the basic biological principles.
•	Use the web for research.
•	Discuss with the student.
•	Exams to measure the knowledge and comprehensive skills.
•	
•	
•	
•	
•	Focusing on some real results and its physical meaning.
•	Lectures for discussing some medical applications.
•	Encourage the student to ask good question to help solve the problem.
	Display the lecture note and homework assignment at the web.
(iii)	Methods of assessment of students numerical and communication skills
	Their interaction with the lectures and discussions.
•	The reports of different asked tasks.
•	Homework, Problem solutions assignment and exam should focus on the understanding.
•	Results of computations and analysis.
•	Comments on some resulting numbers.
•	Research.
e. P	sychomotor Skills (if applicable)
(i) I	Description of the psychomotor skills to be developed and the level of performance
requ	
(ii)	Teaching strategies to be used to develop these skills
(iii)	Methods of assessment of students psychomotor skills

5. Sched	5. Schedule of Assessment Tasks for Students During the Semester				
Assess ment	Assessment task (eg. essay, test, group project, examination etc.)	Week due	Proportion of Final Assessme nt		
1	Midterm 1	5 th week	10		
2	Midterm 2	10 th week	10		
3	In-Class Problem Solving	13 th ,7 th week	10		
4	Project	12 th week	10		
5	Homework	Every week	10		
6	Final exam	End of semester	50		

D. Student Support

1. Arrangements for availability of faculty for individual student consultations and academic advice. (include amount of time faculty are available each week)

4 office hours per week

E Learning Resources

1. Required Text(s)
2. Essential References
3- Recommended Books and Reference Material (Journals, Reports, etc) (Attach List)
[1] Membrane Biophysics by H. Ti Tien and Angelica Ottova-Leitmannova, 3 rd Eds,2010.
 [2] Structural Biology with Biochemical And Biophysics Foundation by Mary Luckey, 1st edition, Cambridge University Press, 2008 [3] Cell Biology and Membrane Transport Processes by Michael Caplan,
 Intenernational Edition, Academic Press, 1994. [4] Soft Condensed Matter Physics in Molecular and Cell Biology by W. C. K. Poon and D. Andelman, 1st Eds, Taylor and Francis, 2006.
4Electronic Materials, Web Sites etc ↓ <u>http://www.biotec.tu-dresden.de/cms/index.php?id=197</u>
<u>http://www.northland.cc.mn.us/biology/biology1111/animations/transport1.</u> <u>html</u> <u>http://www.physiologywych.com/lecture_notes/membrane_transport/me</u>
<u>http://www.physiologyweb.com/lecture_notes/membrane_transport/membrane_transport_processes_summary.html</u>

5- Other learning material such as computer-based programs/CD, professional standards/regulations

Wikipedia

F. Facilities Required

Indicate requirements for the course including size of classrooms and laboratories (ie number of seats in classrooms and laboratories, extent of computer access etc.)

1. Accommodation (Lecture rooms, laboratories, etc.)

- Lecture room for 30 students
- Library
- Laboratory for optics (there is a special course for laboratory related to electromagnetic)

2. Computing resources

- Computer room
- Scientific calculator.

3. Other resources (specify --eg. If specific laboratory equipment is required, list requirements or attach list)

G Course Evaluation and Improvement Processes

1 Strategies for Obtaining Student Feedback on Effectiveness of Teaching

- Midterm and final exam.
- Quiz.

2 Other Strategies for Evaluation of Teaching by the Instructor or by the Department

3 Processes for Improvement of Teaching

- (a) Course report
- (b) Program report
- (c) Program self study
 - Fortification of the student learning.

Handling the weakness point.

4. Processes for Verifying Standards of Student Achievement (eg. check marking by an independent faculty member of a sample of student work, periodic exchange and remarking of a sample of assignments with a faculty member in another institution)

- The instructors of the course are checking together and put a unique process of evaluation
- Check marking of a sample of papers by others in the department.
- Feedback evaluation of teaching from independent organization.

5 Describe the planning arrangements for periodically reviewing course effectiveness and planning for improvement.

- 1- The following points may help to get the course effectiveness
 - Student evaluation
 - Course report
 - Program report
 - Program Self study
- 2- According to point 1 the plan of improvement should be given.
- 3- Contact the college to evaluate the course and the benefit it add to other courses.
- 4- Add some subject and cut off others depending on the new discoveries in physics.

Kingdom of Saudi Arabia

The National Commission for Academic Accreditation & Assessment

Course Specification

(12) Mathematical Methods (II) 403242

Course Specification

For Guidance on the completion of this template, please refer to of Handbook 2

Internal Quality Assurance Arrangements

Institution:- Umm AL-Qura University

College/Department :- College of Sciences / Department of Physics

A Course Identification and General Information

1. Course title and code: Mathematical Methods (II) (Phys. 242)

2. Credit hours: - 3 Credit Hours

3. Program(s) in which the course is offered. (If general elective available in many programs indicate this rather than list programs) B.Sc Degree in Physics

4. Name of faculty member responsible for the course: Dr. Abdel Khaleq Alsmadi

5. Level/year at which this course is offered: Third year

6. Pre-requisites for this course (if any): Pre-Requisite: PH 240

7. Co-requisites for this course (if any): Non

8. Location if not on main campus :- Within The University Campus

B Objectives

- 1. Summary of the main learning outcomes for students enrolled in the course.
 - 1. Giving the students the opportunity to master many of the mathematical techniques necessary for follow-up courses in mathematics, physics and chemistry.
 - 2. Training the students how to think about the physical phenomena in mathematical terms.
 - 3. Develop an intuitive feeling for the precise mathematical formulation of physical problems and for the physical interpretation of the mathematical solutions.
 - 4. Be familiar with the mathematical formulae of this course that frequently appear in physics problems.
 - 5. Demonstrate the applications of mathematical methods to a variety of problems in physics.
 - 6. Introducing some special differential equations such as Bessel and Legendre equations and applying the concept of series solution to differential equations to familiarize the students to some special functions such as Bessel and Legendre functions.
 - 7. Apply the concepts of partial differential equations such as Laplace and wave equations, solution of some differential equation by series method, other special functions such as Gamma and Beta functions, in addition to function of complex variables to real problems in physics.
 - 8. Develop the learning skills of the students in using computers as an educational tool, problem solving and demonstration.
 - 9. Enhance the students' analytical, reasoning, and self-learning skills.
 - 10. Be familiar with the methods of solving ordinary differential equations.
 - 11. Be able to deal with real problems using analytical methods.

2. Briefly describe any plans for developing and improving the course that are being implemented. (eg increased use of IT or web based reference material, changes in content as a result of new research in the field)

- 1. Implementing different teaching methods.
- 2. Encourage the students to use different learning resources including the use of the World Wide Web (WWW) search engines.
- 3. Make use of programs that already available like mathematica for numerical solutions and as a double check for the final answers of the analytical problems.

C. Course Description (Note: General description in the form to be used for the Bulletin or Handbook should be attached)

1 Topics to be Covered :-		
Topics	No of	Contact
	Weeks	hours

Topics		
VI) Solution of differential equation by series method	4 weeks	12 hours
8. Bessel equation and Besssel functions		
9. Legendre equation and Legenre functions	-	
10. Hermite equation and Hermite functions	-	
11. Lageure equation and Lageure functions	_	
12. Other special differential equations and their special functions	-	
VII) Gamma and Beta functions	3 weeks	9 hours
8. Definition of Gamma function	-	
9. Recurrence relation		
10. Gamma function of negative numbers		
11. Important formula of Gamma functions	_	
12. Definition of Beta function		
13. Important formula of Beta functions	_	
14. applications on Gamma and Beta functions		
VIII) Partial differential equations	3.5 weeks	10 hours
6. Laplace equation	weeks	nours
7. Wave equation		
8. Vibrary membrane equation	-	
IX) Function of complex variables		
9. Analytic functions	3.5 weeks	11 hours
10. Contour Integral		

11. Residue theorem and finding residues		
12. Evaluation of integrals by Residue theorem		

2 Course components (total contact hours per semester):					
Lecture: 42 hrs	Tutorial: zero hrs	Practical/Fieldwork /Internship:	Other: Office hours : 30 hrs		

3. Additional private study/learning hours expected for students per week. (This should be an average for the semester not a specific requirement in each week)

This actually depends on the student's level, study skills and habits, but in general three hours per week are sufficient.

4. Development of Learning Outcomes in Domains of Learning

For each of the domains of learning shown below indicate:

- A brief summary of the knowledge or skill the course is intended to develop;
- A description of the teaching strategies to be used in the course to develop that knowledge or skill;
- The methods of student assessment to be used in the course to evaluate learning outcomes in the domain concerned.

a. Knowledge

- Knowledge that students should know and understand when they complete the course is as follows:
- Be familiar with the notations of each subject in the course.
- Be able to recognize the type of a given differential equation and to choose the suitable method for solving it.
- Be able to solve differential equation by series method and to compare the solution with other solutions obtained by other methods.
- Be familiar with some special functions such as Besssel, Legendre. Hermite and Lageure functions.
- Be familiar with gamma and Beta functions and solve integrals that are related to these functions.
- Be familiar with some partial differential equations such as Laplace and wave equations
- Show ability to decide whether a given series is convergent or divergent.
- Be able to deal with functions of complex variables.
- Be familiar with the residue theorem and integrals by this theorem.

- Teaching strategies to be used to develop that knowledge
- Lecturing.
- Solving examples during the lecture time.
- Using different teaching methods.
- Build a problem solving strategy.
- Strengthening basic proof techniques.
- Improve ability to integrate information and ideas.
- Open discussions.

(iii) Methods of assessment of knowledge acquired

- Homework assignments.
- Quizzes.
- Term paper.
- Exams.

b. Cognitive Skills

(i) Cognitive skills to be developed

- Develop analytic skills.
- Develop problem-solving skills.
- Develop ability to think creatively.
- Improve memory skills.
- Improve mathematical skills.
- Teaching strategies to be used to develop these cognitive skills
- Develop ability to synthesize and integrate information.
- Encourage the students to use different learning resources.
- Writing the final answer in concise form when possible.
- Writing an equation/physical law in wards.
- Using shortest way to reach the final answer.
- Using appropriate symbols that can be easily memorized.

(iii) Methods of assessment of students cognitive skills

- Oral questions.
- Presentations.
- Term paper.
- Quizzes.
- Problem solving.

c. Interpersonal Skills and Responsibility

(i) Description of the interpersonal skills and capacity to carry responsibility to be developed

- Develop ability to work independently.
- Develop ability to work productively with others.
- Improve self-esteem.
- Develop leadership skills.

(ii) Teaching strategies to be used to develop these skills and abilities

- Homework assignment for each group of the students.
- Homework assignments that should be worked out independently.
- Cooperative learning.
- Microteaching.

(iii) Methods of assessment of students interpersonal skills and capacity to carry responsibility

- Marking the home works.
- Asking the members of each group about the content of their assignment.
- Working closely with the different groups.

d. Communication, Information Technology and Numerical Skills

(i) Description of the skills to be developed in this domain.

- 1. Perform effective communication with colleagues and faculty members.
- 2. Ability to use programs designed for numerical computation.
- 3. Problem solving and ability to interpret the results.
- 4. Ability to use the World Wide Web (WWW) search engines.
- (ii) Teaching strategies to be used to develop these skills

12. Problem based learning.

- 13. Additional lectures on numerical techniques.
- 14. Exposing the students to problems that can only be solved numerically.

(iii) Methods of assessment of students numerical and communication skills

- 1. Give the students homework assignments on problems that can be solved numerically.
- 2. Ask the students to search the internet for the solution of a specific problem.
- 3. Using the computer to construct three dimensional graphs.

e. Psychomotor Skills (if applicable)

(i) Description of the psychomotor skills to be developed and the level of performance required

(ii) Teaching strategies to be used to develop these skills

(iii) Methods of assessment of students psychomotor skills

5. Schedule of Assessment Tasks for Students During the Semester

Assess ment	Assessment task (eg. essay, test, group project, examination etc.)	Week due	Proportion of Final Assessme nt
1	First Exam	6 th week	20
2	Second Exam	11 th week	20
3	In-Class Problem Solving	At the end of each chapter	10
4	Home works and quizzes	Every week	10
5	Final exam	Allocated by registration	40

D. Student Support

1. Arrangements for availability of faculty for individual student consultations and academic advice. (include amount of time faculty are available each week)

Five office hours per week. If some students are busy during these times, they can arrange with me (lecturer) for other times.

E Learning Resources

1. Required Text(s): Mathematical methods in the physical sciences. Third edition, by Mary L. Boas

2. Essential References:

Mathematical Methods for Physicists by G. Arfken

3- Recommended Books and Reference Material (Journals, Reports, etc) (Attach List)

- 1. Mathematical Methods by M.C. Potter and J. Goldberg.
- 2. Mathematical Physics by E. Butkov
- 3. Introduction to Mathematical Physics by N. Laham.

4-.Electronic Materials, Web Sites etc

- 1. <u>www.mpipks-dresden.mpg.de/~jochen/methoden/outline.html</u>
- 2. People.uncw.edu/hermanr/phy311/mathphysbook/index.html

5- Other learning material such as computer-based programs/CD, professional standards/regulations.

The following programs are essential for numerical computing and graphing.

1. Mathematica

- 2. Matlab.
- 3. Origin.

F. Facilities Required

Indicate requirements for the course including size of classrooms and laboratories (ie number of seats in classrooms and laboratories, extent of computer access etc.)

1. Accommodation (Lecture rooms, laboratories, etc.)

- 1. Lecture room for 30 students.
- 2. Data show.

2. Computing resources

- 1. Computer room for 20 students equipped with computers and access to the internet.
- 2. Software for numerical computing.

3. Other resources (specify --eg. If specific laboratory equipment is required, list requirements or attach list)

G Course Evaluation and Improvement Processes

1 Strategies for Obtaining Student Feedback on Effectiveness of Teaching

Confidential instructor evaluation questionnaire by the end of the course.

2 Other Strategies for Evaluation of Teaching by the Instructor or by the Department

- Course report.
- Observations and assistance from colleagues.

3 Processes for Improvement of Teaching

- Review the student's feedback and work on the weak points.
- Use combination of different teaching methods.

Processes for Verifying Standards of Student Achievement • Check marking by another teaching staff of a sample of student work. ٠ Peer reviewing of tests remarking and sample of student assignments. • Describe the planning arrangements for periodically reviewing course 4 effectiveness and planning for improvement. Regular evaluation of students' feedback. • Review the course outline and teaching methods. • • Submit a course report to the curriculum committee in the department to discuss the content of the course and its connection with other courses. Annual improvement and updating the course based on the outcomes of the • reviewing process.

Kingdom of Saudi Arabia

The National Commission for Academic Accreditation & Assessment

Course Specification

(13) Ultrasound in Medicine 403.....

Course Specification

For Guidance on the completion of this template, please refer to Handbook 2 Internal

Quality Assurance Arrangements

Institution:- Umm AL-Qura University

College/Department :- College of Sciences / Physics Department

A Course Identification and General Information

1. Course title and code: Ultrasound in Medicine

2. Credit hours: - 2 Cr. Hrs

3. Program(s) in which the course is offered. (If general elective available in many programs indicate this rather than list programs) B.Sc Degree in Medical Physics

4. Name of faculty member responsible for the course:

5. Level/year at which this course is offered: Fourth Level

6. Pre-requisites for this course (if any) Pre-Requisite 204 PH + 101 Biology

7. Co-requisites for this course (if any)

8. Location if not on main campus :- Within The University Campus

B Objectives

1. Summary of the main learning outcomes for students enrolled in the course.

The objectives of this course are to tease out the ultrasound waves properties from our everyday experience by specific examples of how ultrasound waves used in medical application especially imaging.

We want to be able:

The benchmark statement of the main learning outcomes are as follows:

- 1. To understand basic Fundamentals of ultrasound waves: Physics of wave motion, ultrasound intensity, and attenuation of ultrasound.
- 2. The students should be trained on physical and generic skills (knowledge cognitive interpersonal communication problem solving IT)
- 3. To describe, in words, the ways in which various concepts in ultrasound come into play in particular situations; to represent ultrasound generation and principles of different medical applications.
- 4. To analyse ultrasound systems using a required basics
- 5. To understanding behaviour of different modes of ultrasound imaging.

The overall goal is to study the physical characteristics of ultrasound, generation methods and different medical applications as a safe medical imaging technique.

2. Briefly describe any plans for developing and improving the course that are being implemented. (eg increased use of IT or web based reference material, changes in content as a result of new research in the field)

- 1. Explain strategy of the course in the beginning of the semester
- 2. Outlines of the physical laws, principles and the associated proofs.
- 3. Highlighting the day life applications whenever exist.
- 4. Encourage the students to see more details in the international web sites and reference books in the library.
- 5. Discussing some selected problems in each chapter.
- 6. Cooperate with different institution to find how they deal with the subject
- 7. Renew the course references frequently

Frequently check for the latest discovery in science

C. Course Description (Note: General description in the form to be used for the Bulletin or Handbook should be attached)

Topics to be achieved		
Topics	No. Of	Contact
* 	Weeks	hours
Ultrasound Waves:		
1- Wave Motion		
2- Wave Characteristics		
3- Velocity of Ultrasound	2	1.5
4- Ultrasound Intensity	weeks	hr/week
5- Acoustic Impedance	weeks	III/ WOOK
6-Ultrasound Wavefront		
7- Attenuation of Ultrasound		
Ultrasound Transducers:		
1- Pizoelectric Effect		1.5
2- Transducer Design	2	
3- Frequency response of a transducer	weeks	hr/week
4- Focused Transducer		
5- Ophthalmic and Doppler Probes		
Ultrasound Display System:		
1- A-Mode Presentation		
2- Echoencephalography		1.5
3- B-Mode Presentation	6 weeks	1.5 hr/week
4- Two-dimensional Display of Internal Organs	WCCKS	III/ WCCK
5- M-Mode Presentation		
6- Detection of Heart Movement and Fetus Health State		
The Doppler Effect:		
1- Measurement of the frequency shift	2	1.5
2- Measurement of Reflection from Media of Different Acoustic	weeks	hr/week
Impedances		

2 Course components (total contact hours per semester):					
Lecture: 36 hr	Tutorial:	Practical/Fieldwork /Internship:	Other: Office hours : 32 hr		

3. Additional private study/learning hours expected for students per week. (This should be an average :for the semester not a specific requirement in each week)

4. Development of Learning Outcomes in Domains of Learning For each of the domains of learning shown below indicate:

- A brief summary of the knowledge or skill the course is intended to develop;
- A description of the teaching strategies to be used in the course to develop that knowledge or skill;
- The methods of student assessment to be used in the course to evaluate learning outcomes in the domain concerned.

a. Knowledge

- knowledge that students should know and understand when they complete the course are as follow:
- Learning fundamentals of ultrasound wave physics
- Understanding the design of ultrasound transducer and their applications mentioned in the text.
- Improving logical thinking.
- To use mathematical formulation to describe the physical principle of different imaging modes

Ability to explain how things work.

Teaching strategies to be used to develop that knowledge

- Demonstrating the basic information and principles through lectures and the achieved applications
- Discussing phenomena with illustrating pictures and diagrams
- Lecturing method:
 - Blackboard
 - Power point
 - e-learning
- Tutorials

•

- Revisit concepts
- Discussions

- Brain storming sessions
- Start each chapter by general idea and the benefit of it;
- Learn the student background of the subject;
- Show the best ways to deal with problem;
- Keep the question "why" or "how" to explain always there;
- Build a strategy to solve problem.

(iii) Methods of assessment of knowledge acquired

- 1. Solve some example during the lecture.
- 2. Exams:
 - a) Quizzes
 - b) Short exams (mid term exams)
 - c) Long exams (final)
 - d) Oral exams
- 3. Discussions with the students.
- 4. Ask the student to clear the misunderstanding of some physical principle.

Ask quality question.

b. Cognitive Skills

(i) Cognitive skills to be developed

- 1. How to use physical laws and principles to understand the subject
- 2. How to simplify problems and analyze phenomena
- 3. Analyse and explain natural phenomena.
- 4. Ability to explain the idea with the student own words.
- 5. Represent the problems mathematically.

(ii) Teaching strategies to be used to develop these cognitive skills

- 1. Preparing main outlines for teaching
- 2. Following some proofs
- 3. Define duties for each chapter
- 4. Home work assignments
- 5. Encourage the student to look for the information in different references
- 6. Ask the student to attend lectures for practice solving problem

Ask the student to do small research.

(iii) Methods of assessment of students cognitive skills

- 1. Midterm's exam. Exams, short quizzes
- 2. Asking about physical laws previously taught
- 3. Writing reports on selected parts of the course
- 4. Discussions of how to simplify or analyze some phenomena

c. Interpersonal Skills and Responsibility

(i) Description of the interpersonal skills and capacity to carry responsibility to be developed

- Work independently.
- The students learn independently and take up responsibility.

(ii) Teaching strategies to be used to develop these skills and abilities

- Learn how to search the internet and use the library.
- Learn how to cover missed lectures.
- Learn how to summarize lectures or to collect materials of the course.
- Learn how to solve difficulties in learning: solving problems enhance educational skills.
- Develop her interest in Science through :(lab work, field trips, visits to scientific and research.
- Encourage the student to attend lectures regularly by:
 - Giving bonus marks for attendance
 - Assigning marks for attendance.

give students tasks of duties

(iii) Methods of assessment of students interpersonal skills and capacity to carry responsibility

- Quizzes on the previous lecture
- Checking report on internet use and trips
- Discussion
- The accuracy of the result gained by each group will indicate good group work
- Presenting the required research on time and the degree of the quality will show the sense of responsibility.

d. Communication, Information Technology and Numerical Skills

(i) Description of the skills to be developed in this domain.

- Computation
- Problem solving
- Data analysis and interpretation.
- Feeling physical reality of results

(ii) Teaching strategies to be used to develop these skills

- Know the basic mathematical principles.
- Use the web for research.
- Discuss with the student.
- Exams to measure the mathematical skill.
- Clear the weakness point that should be eliminated.

- Encourage the student to ask for help if needed.
- Computational analysis.
- Data representation.
- Focusing on some real results and its physical meaning.
- Lectures for problem solution.
- Encourage the student to ask good question to help solve the problem.
- Display the lecture note and homework assignment at the web.

(iii) Methods of assessment of students numerical and communication skills

- Their interaction with the lectures and discussions.
- The reports of different asked tasks.
- Homework, Problem solutions assignment and exam should focus on the understanding.
- Results of computations and analysis.
- Comments on some resulting numbers.

e. Psychomotor Skills (if applicable)

(i) Description of the psychomotor skills to be developed and the level of performance required

(ii) Teaching strategies to be used to develop these skills

(iii) Methods of assessment of students psychomotor skills

5. Schedule of Assessment Tasks for Students During the Semester					
Assess ment	Assessment task (eg. essay, test, group project, examination etc.)	Week due	Proportion of Final Assessme nt		
1	Midterm 1	5 th week	10		
2	Midterm 2	10 th week	10		
3	In-Class Problem Solving	13 th ,7 th week	10		
4	project	12 th week	10		
5	Homework	Every week	10		
6	Final exam	End of semester	50		

D. Student Support

1. Arrangements for availability of faculty for individual student consultations and academic advice. (include amount of time faculty are available each week)

4 office hours per week

E Learning Resources

1. Required Text(s)

2. Essential References

3- Recommended Books and Reference Material (Journals, Reports, etc) (Attach List)

[1] Fundmentals of Ultrasonographic techniques by J. D. Wicks and K. S. Howe

[2] Basic Physics and Technology of Medical Diagnostic Ultrasound by M. Hussey

4-.Electronic Materials, Web Sites etc

- http://www.physicsclassroom.com
- http://www.brooksidepress.org/Products/Military_OBGYN/Ultrasound/basic_ultrasound.htm

5- Other learning material such as computer-based programs/CD, professional standards/regulations

Wikipedia

F. Facilities Required

Indicate requirements for the course including size of classrooms and laboratories (ie number of seats in classrooms and laboratories, extent of computer access etc.)

1. Accommodation (Lecture rooms, laboratories, etc.)

- Lecture room for 30 students
- Library

2. Computing resources

- Computer room
- Scientific calculator.

3. Other resources (specify --eg. If specific laboratory equipment is required, list requirements or attach list)

G Course Evaluation and Improvement Processes

1 Strategies for Obtaining Student Feedback on Effectiveness of Teaching

- Midterm and final exam.
- Quiz.

2 Other Strategies for Evaluation of Teaching by the Instructor or by the Department

3 Processes for Improvement of Teaching

- (a) Course report
- (b) Program report
- (c) Program self study
 - Fortification of the student learning.

Handling the weakness point.

4. Processes for Verifying Standards of Student Achievement (eg. check marking by an independent faculty member of a sample of student work, periodic exchange and remarking of a sample of assignments with a faculty member in another institution)

- The instructors of the course are checking together and put a unique process of evaluation
- Check marking of a sample of papers by others in the department.
- Feedback evaluation of teaching from independent organization.

5 Describe the planning arrangements for periodically reviewing course effectiveness and planning for improvement.

- 1- The following points may help to get the course effectiveness
 - Student evaluation
 - Course report
 - Program report
 - Program Self study
- 2- According to point 1 the plan of improvement should be given.
- 3- Contact the college to evaluate the course and the benefit it add to other courses.
- 4- Add some subject and cut off others depending on the new discoveries in physics.

Kingdom of Saudi Arabia

The National Commission for Academic Accreditation & Assessment

Course Specification

(14) Laser in Medicine 403333

Course Specification

For Guidance on the completion of this template, please refer to Handbook 2 Internal

Quality Assurance Arrangements

Institution:- Umm AL-Qura University

College/Department :- College of Sciences / Physics Department

A Course Identification and General Information

1. Course title and code: Laser in Medicine (PH 333)

2. Credit hours: - 3 Cr. Hrs

3. Program(s) in which the course is offered. (If general elective available in many programs indicate this rather than list programs) B. Sc Degree in Medical Physics

4. Name of faculty member responsible for the course:

Dr. Ramadan Ali Hassan

5. Level/year at which this course is offered: Third year

6. Pre-requisites for this course (if any) Optics (PH 231)

7. Co-requisites for this course (if any)

PH102 and Math 102

8. Location if not on main campus :- Within The University Campus

B Objectives

1. Summary of the main learning outcomes for students enrolled in the course.

The objectives of this course are to try to set down the basics of laser and its interaction with tissue and describe how these basics have been applied in some of the medical specialties.

2. Briefly describe any plans for developing and improving the course that are being implemented. (eg increased use of IT or web based reference material, changes in content as a result of new research in the field)

- 1. Explain strategy of the course in the beginning of the semester
- 2. Outlines of the physical laws, principles and the associated proofs.
- 3. Highlighting the day life applications whenever exist.
- 4. Encourage the students to see more details in the international web sites and reference books in the library.
- 5. Cooperate with different institution to find how they deal with the subject
- 6. Renew the course references frequently
- 7. Frequently check for the latest discovery in science

C. Course Description (Note: General description in the form to be used for the Bulletin or Handbook should be attached)

Topics	No of	Contac
-	Weeks	t hours
Laser Principles	1 Week	
Theory of temporal and spatial coherence	WCCK	1.5 hr
Coherence Length and Spectral Line Width		
The optical properties of Laser beam	1 Week	_
Electromagnetic Modes in a Cavity		
Theory of Laser Emission		
Major Types of Lasers	1 Week	
Measuring Laser Power and Focusing Laser Energy		1.5 hr
Basics of Fiber Optics		1.5 hr
Optical and Thermal Response of Tissue to Laser Radiation	1 Week	1.5 hr
The Optical Response Of Tissue		1.5 m
Thermal Response Of Tissue	1 Week	
Interaction of Laser Light With Living Systems		
Dosimetry and Thermal Monitoring	1 Week	3 hr
Therapeutic and Diagnostic Application of Lasers in Ophthalmology	1 Week	
Basic Ocular Anatomy and Physiology and Transmission and		1.5 hr
Absorptive Properties of Ocular Tissues		
Photothermal Laser Applications	1 Week	1.5 hr
Photodisruptive Laser Applications		1
Photochemical Laser Applications: Photoablation and Photodynamic Therapy	1 Week	

Laser in dermatology		1. 5 hr
Diagnostic Laser Applications	1 Week	
Tissue Diagnostics Using Lasers		1.5 hr
Spectroscopic Diagnostics of Malignant Tumours	1 Week	1.5 hr
Spectroscopic Diagnostics of Atherosclerotic Plaque	1 Week	1.5 hr
Light Scattering and Tissue Transillumination	1 Week	1.5 hr
Laser Safety		1.5 hr
Future of Medical Lasers and Fiber Optics	1 Week	-

2 Course components	(total contact hours p	er semester):	
Lecture: 42 hr	Tutorial: 30 hr	Practical/Fieldwork /Internship:	Other: Office hours : 32 hr

3. Additional private study/learning hours expected for students per week. (This should be an average :for the semester not a specific requirement in each week)

4. Development of Learning Outcomes in Domains of Learning

For each of the domains of learning shown below indicate:

- A brief summary of the knowledge or skill the course is intended to develop;
- A description of the teaching strategies to be used in the course to develop that knowledge or skill;
- The methods of student assessment to be used in the course to evaluate learning outcomes in the domain concerned.

a. Kn	owledge
•	knowledge that students should know and understand when they complete the course are as follow:
1.	Understanding the physics of laser
2.	Learning fundamentals of laser generation theory
3.	Understanding the interaction of laser with tissues.
4.	Learning laser applications in medicine.
5.	Teaching strategies to be used to develop that knowledge
•	Demonstrating the basic information and principles through lectures and the
	achieved applications
•	Discussing phenomena with illustrating pictures and diagrams
•	Lecturing method:
	• Blackboard
	 Power point e-learning
•	Tutorials
•	Revisit concepts
•	Discussions
•	Brain storming sessions
•	Start each chapter by general idea and the benefit of it;
•	Learn the student background of the subject;
•	Show the best ways to deal with problem;
•	Keep the question "why" or "how" to explain always there;
٠	Build a strategy to solve problem.
(iii) M	Iethods of assessment of knowledge acquired
1.	Solve some example during the lecture.
2.	Exams:
	a) Quizzes
	b) Short exams (mid term exams)
	c) Long exams (final)d) Oral exams
3.	Discussions with the students.
	Ask the student to clear the misunderstanding of some physical principle.
	ality question.
. 1	5 1
b. Co	gnitive Skills
(i) Co	gnitive skills to be developed
	1. How to use physical laws and principles to understand the subject
	 How to sub-physical laws and philoppes to and observation the subject How to simplify problems and analyze phenomena

3. Analyse and explain natural phenomena.

4. Ability to explain the idea with the student own words. (ii) Teaching strategies to be used to develop these cognitive skills 1. Preparing main outlines for teaching 2. Following some proofs 3. Define duties for each chapter 4. Home work assignments 5. Encourage the student to look for the information in different references Ask the student to do small research. (iii) Methods of assessment of students cognitive skills 1. Midterm's exam. Exams, short quizzes 2. Asking about lecture previously taught 3. Writing reports on selected parts of the course Discussions of how to simplify or analyse some phenomena c. Interpersonal Skills and Responsibility (i) Description of the interpersonal skills and capacity to carry responsibility to be developed • Work independently. The students learn independently and take up responsibility. (ii) Teaching strategies to be used to develop these skills and abilities • Learn how to search the internet and use the library. • Learn how to cover missed lectures. • Learn how to summarize lectures or to collect materials of the course. • Develop her interest in Science through : (lab work, field trips, visits to scientific and research. Encourage the student to attend lectures regularly by: Giving bonus marks for attendance Assigning marks for attendance. give students tasks of duties (iii) Methods of assessment of students interpersonal skills and capacity to carry responsibility Quizzes on the previous lecture • Checking report on internet use and trips Discussion • The accuracy of the result gained by each group will indicate good group work • Presenting the required research on time and the degree of the quality will show the sense of responsibility. d. Communication, Information Technology and Numerical Skills

(i) Description of the skills to be developed in this domain.

- Using internet to search for topics and writing reports
- Using some math program for some calculation

(ii) Teaching strategies to be used to develop these skills

- Know the basic physical principles.
- Use the web for research.
- Discuss with the student.
- Exams to measure the information skill.
- Clear the weakness point that should be eliminated.
- Encourage the student to ask for help if needed.
- Data representation.
- Display the lecture note and homework assignment at the web.

(iii) Methods of assessment of students numerical and communication skills

- Their interaction with the lectures and discussions.
- The reports of different asked tasks.
- Homework, Problem solutions assignment and exam should focus on the understanding.
- Results of computations and analysis.
- Comments on some resulting numbers.
- Research.

e. Psychomotor Skills (if applicable)

(i) Description of the psychomotor skills to be developed and the level of performance required

(ii) Teaching strategies to be used to develop these skills

(iii) Methods of assessment of students psychomotor skills

5. Schedule of Assessment Tasks for Students During the Semester			
Assess ment	Assessment task (eg. essay, test, group project, examination etc.)	Week due	Proportion of Final Assessme nt
1	Midterm 1	5 th week	10
2	Midterm 2	10 th week	10

3	In-Class Problem Solving	13 th ,7 th week	10
4	project	12 th week	10
5	Homework	Every week	10
6	Final exam	End of semester	50

D. Student Support

1. Arrangements for availability of faculty for individual student consultations and academic advice. (include amount of time faculty are available each week)

8 office hours per week

E Learning Resources

1. Required Text(s)
2. Essential References
 3- Recommended Books and Reference Material (Journals, Reports, etc) (Attach List) 1- lasers in medicine by Ronald W. Waynant 2001 2- Medical applications of lasers D. R. Vij,K. Mahesh 2002 3- Introduction to Health Physics Herman Cember McGraw-Hill 2009
4Electronic Materials, Web Sites etc
http://emedicine.medscape.com/article/838099-overview
http://www.lasersinmedicine.com.au/index.html
http://www.wickedlasers.com/laser-tech/medical_application.html

5- Other learning material such as computer-based programs/CD, professional standards/regulations

Wikipedia

F. Facilities Required

Indicate requirements for the course including size of classrooms and laboratories (ie number of seats in classrooms and laboratories, extent of computer access etc.)

1. Accommodation (Lecture rooms, laboratories, etc.)

Lecture room for 30 students

2. Computing resources

Computer room

3. Other resources (specify --eg. If specific laboratory equipment is required, list requirements or attach list)

G Course Evaluation and Improvement Processes

1 Strategies for Obtaining Student Feedback on Effectiveness of Teaching

- 1- Midterm and final exam.
- 2- Quiz.

2 Other Strategies for Evaluation of Teaching by the Instructor or by the Department

3 Processes for Improvement of Teaching

- (a) Course report
- (b) Program report
- (c) Program self study
 - Fortification of the student learning.

Handling the weakness point.

4. Processes for Verifying Standards of Student Achievement (eg. check marking by an independent faculty member of a sample of student work, periodic exchange and remarking of a sample of assignments with a faculty member in another institution)

- The instructors of the course are checking together and put a unique process of evaluation
- Check marking of a sample of papers by others in the department.
- Feedback evaluation of teaching from independent organization.

5 Describe the planning arrangements for periodically reviewing course effectiveness and planning for improvement.

- 1- The following points may help to get the course effectiveness
 - Student evaluation
 - Course report
 - Program report
 - Program Self study
- 2- According to point 1 the plan of improvement should be given.
- 3- Contact the college to evaluate the course and the benefit it add to other courses.
- 4- Add some subject and cut off others depending on the new discoveries in physics.

Kingdom of Saudi Arabia

The National Commission for Academic Accreditation & Assessment

Course Specification

(15) Medical Radiation Physics 403364

Course Specification

For Guidance on the completion of this template, please refer to Handbook 2 Internal

Quality Assurance Arrangements

Institution : Umm AL-Qura University

College/Department : College of Sciences / Physics Department

A Course Identification and General Information

1. Course title and code: Medical Radiation Physics (PH 364)

2. Credit hours: 4 Cr Hrs

3. Program(s) in which the course is offered. (If general elective available in many programs indicate this rather than list programs) *B.Sc Degree in Medical Physics*

4. Name of faculty member responsible for the course: Dr/ Aida Radwan

5. Level/year at which this course is offered : Third year

6. Pre-requisites for this course (if any) (PH 253)

7. Co-requisites for this course (if any) (PH 361)

8. Location if not on main campus: Within The University Campus

B Objectives

1. Summary of the main learning outcomes for students enrolled in the course. The objectives of this course are:

- 1- Understanding the fundamentals of radiation physics such as, Types of Radiations and the interactions of radiation with matter.
- 2- Drive The Radioactive Decay Law and the relationship between the linear attenuation coefficient and the half value layer
- 3- Describe different types of radiation detectors, its theory of operation and its advantages and disadvantages(Ionization Chamber & Geiger counter)
- 4- Understanding the theory of the scintillation detectors and the construction of the gamma camera.
- 5- Explain the radioisotope generator used in hospitals.
- 6- Understanding the radiation detectors used for in vivo dosimetry(Diodes&TLD).

2. Briefly describe any plans for developing and improving the course that are being implemented. (eg increased use of IT or web based reference material, changes in content as a result of new research in the field)

- 1- Encourage the student to pick up one item from the course and read more about this item from another source of information (books from the library or web reference material) and write a report about it.
- 2- Renew the course references.

C. Course Description (Note: General description in the form to be used for the Bulletin or Handbook should be attached)

1 Topics to be Covered		
Торіс	No of Weeks	Contac thours
Chapter (1) Atom & Nuclear Structure	1 week	
Atomic Mass Unit Binding Energy		1.5 hrs
Nuclear Stability Curve Radioactivity		1.5 hrs
Chapter (2) Radioactive Decay Chapter (3) The Radioactive Decay Law	1 week	
Methods of Radioactive Decay(Alpha,Beta, electron capture and gamma emission)		1.5 hrs

Relationship between the Decay Constant and the Half Life.		1.5 hrs
Chapter (4) Unit of Radiation Measurement	1 week	
The Radiation Source		2 hrs
The Radiation Beam		
The Absorber		
The Inverse Square Law		1 hr
Chapter (5) Interaction of Radiation with Matter	1 week	
Radioactive Emissions		1.5 hrs
Photoelectric Effect		1.5 hrs
Compton Effect		
Chapter (6) Attenuation of Gamma-rays	1 week	
Effect of Atomic Number Effect of Density Effect of Thickness Effect of Gamma-Ray Energy		1.5 hrs
Half Value Layer Relationship between the Linear Attenuation Coefficient and the Half Value Layer Mass Attenuation Coefficient		1.5 hrs
Chapter (7) Gas-filled radiation detectors	1 week	
Ionization Chamber		1.5 hrs
Geiger counter		1.5 hrs
Chapter (8) Scintillation Detectors	1 week	
Photomultiplier Tube		3 hrs
Chapter (9) Nuclear Medicine Imaging Systems	1 week	
Gamma Camera		3 hrs
Chapter (10) Production of Radioisotopes	1 week	
		1

Radioisotope Generator		3 hrs
Chapter (11) Radiation Detectors (Diode&TLD)	2 weeks	
Diode "Principle of the method " Basic Characteristics of diodes		3 hrs
Advantages and disadvantages		
Thermoluminscence Dosimeter Principle of the method Basic Characteristics of Thermoluminscence Dosimeter (TLD) Advantages and disadvantages		3 hrs

2 Course components	s (total contact hours p	er semester):	
Lecture: 42	Tutorial: 30	Practical/Fieldwork /Internship:	Other: Office hours : 32 hr

3. Additional private study/learning hours expected for students per week. (This should be an average :for the semester not a specific requirement in each week)

4. Development of Learning Outcomes in Domains of Learning

For each of the domains of learning shown below indicate:

- A brief summary of the knowledge or skill the course is intended to develop;
- A description of the teaching strategies to be used in the course to develop that knowledge or skill;
- The methods of student assessment to be used in the course to evaluate learning outcomes in the domain concerned.

a. Knowledge

(i) Description of the knowledge to be acquired

At the end of this course the student should be able to:

Understanding the fundamentals of radiation physics such as, Types of Radiations and the interactions of radiation with matter.

- 2- Drive The Radioactive Decay Law and the relationship between the linear attenuation coefficient and the half value layer
- 3- Describe different types of radiation detectors, its theory of operation and its advantages and disadvantages(Ionization Chamber & Geiger counter)
- 4- Understanding the theory of the scintillation detectors and the construction of the gamma camera.

5- Explain the radioisotope generator used in hospitals. 6- Understanding the radiation detectors used for in vivo dosimetry (Diodes&TLD). (ii) Teaching strategies to be used to develop that knowledge 1- Demonstrating the basic information and principles through lectures 2- Discussing phenomena with illustrating pictures and diagrams 3- Lecturing method: ✓ Power point ✓ e-learning 4- Tutorials 5- Discussions 6- Start each chapter by general idea and the benefit of it; (iii) Methods of assessment of knowledge acquired 1- Exams: a) Short exams (mid term exams) b) Long exams (final) c) Oral exams 2- Discussions with the students. b. Cognitive Skills (i) Cognitive skills to be developed 1. How to use physical phenomena's and principles to understand the subject 2. Analyse and explain natural phenomena. 3. Ability to explain the idea with the student own words. (ii) Teaching strategies to be used to develop these cognitive skills 1- Encourage the student to look for the information in different references 2- Discuss the problem faces the student in understanding the subject and tray to simplify it. (iii) Methods of assessment of students cognitive skills 1- Midterm's exam. Exams, short quiz. 2- Writing reports on selected parts of the course. 3- Discussions about the applications of the physical phenomena in our practical work. . Interpersonal Skills and Responsibility (i) Description of the interpersonal skills and capacity to carry responsibility to be developed Each student should choose one item from the course and write a report about it. The students learn independently and take up responsibility. (ii) Teaching strategies to be used to develop these skills and abilities Learn how to search the internet and use the library. 0 Learn how to summarize lectures or to collect materials of the course.

• Develop her interest in Science through: (field trips, visits to scientific and research centres
(iii) Methods of assessment of students interpersonal skills and capacity to carry responsibility
 Quizzes on the previous lecture Checking report on internet use and trips
3- Discussion4- The accuracy of the result gained by each group will indicate good group work.
d. Communication, Information Technology and Numerical Skills
(i) Description of the skills to be developed in this domain.
1- Use the web for research.
2- Looking for new books related to the course.
3. Encourage the student to attend the medical physics conference held inside and outside the university.
(ii) Teaching strategies to be used to develop these skills
1- Discuss with the student.2- Exams.
3- Clear the weakness point that should be eliminated.
4- Encourage the student to ask for help if needed.
(iii) Methods of assessment of students numerical and communication skills
 Their interaction with the lectures and discussions. The reports of different asked tasks. Discussion about the conference they attend
e. Psychomotor Skills (if applicable)
(i) Description of the psychomotor skills to be developed and the level of performance required
(ii) Teaching strategies to be used to develop these skills

(iii) Methods of assessment of students psychomotor skills

5. Schedule of Assessment Tasks for Students During the Semester			
Assess ment	Assessment task (eg. essay, test, group project, examination etc.)	Week due	Proportion of Final Assessme nt
1	Midterm 1	5 th week	15
2	Midterm 2	10 th week	15

3	Report	12 th week	10
4	Oral Exam.	After each chapter	10
5	Final exam	End of semester	50

D. Student Support

1. Arrangements for availability of faculty for individual student consultations and academic advice. (include amount of time faculty are available each week)

4 office hours per week

E Learning Resources

1. Required Text(s)
BASIC PHYSICS OF NUCLEAR MEDICINE
by Kieran Maher
2. Essential References
Introduction to HealthPhysics
by
Herman Cember, PhD
Northwestern University
Evanston, Illinois
Thomas E. Johnson, PhD
Assistant Professor
Department of Environmental and Radiological Health Sciences
Colorado State University
3- Recommended Books and Reference Material (Journals, Reports, etc) (Attach List)
RADIATION ONCOLOGYPHYSICS:
A HANDBOOK FOR TEACHERS AND STUDENTS
INTERNATIONAL ATOMIC ENERGY AGENCY
VIENNA, 2005
4Electronic Materials, Web Sites etc
http://www.medical physics.com
http://www.IAEA.com
5- Other learning material such as computer-based programs/CD, professional
standards/regulations

F. Facilities Required

Indicate requirements for the course including size of classrooms and laboratories (ie number of seats in classrooms and laboratories, extent of computer access etc.)

1. Accommodation (Lecture rooms, laboratories, etc.)

- ✓ Lecture room for 30 students
- ✓ Library

2. Computing resources

3. Other resources (specify --eg. If specific laboratory equipment is required, list requirements or attach list)

G Course Evaluation and Improvement Processes

1 Strategies for Obtaining Student Feedback on Effectiveness of Teaching

✓ Midterm and final exam.

2 Other Strategies for Evaluation of Teaching by the Instructor or by the Department

✓ Evaluation done by the university (the student evaluate the Instructor after the end of the semester).

3 Processes for Improvement of Teaching

- ✓ Course report
- ✓ Program report
- ✓ Program self study

4. Processes for Verifying Standards of Student Achievement (eg. check marking by an independent faculty member of a sample of student work, periodic exchange and remarking of a sample of assignments with a faculty member in another institution)

✓ The instructors of the course are checking together and put a unique process of evaluation

5 Describe the planning arrangements for periodically reviewing course effectiveness and planning for improvement.

1- The following points may help to get the course effectiveness

- Student evaluation
- Course report
- Program report
- Program Self study

2- Contact the college to evaluate the course and the benefit it add to other courses.

Add some subject and cut off others depending on the recent books in the field of medical physics.

Kingdom of Saudi Arabia

The National Commission for Academic Accreditation & Assessment

Course Specification

(16) Solid State Physics (I) 403371

Course Specification

For Guidance on the completion of this template, please refer to Handbook 2 Internal

Quality Assurance Arrangements

Institution:- Umm AL-Qura University

College/Department :- College of Sciences / Physics Department

A Course Identification and General Information

1. Course title and code: Solid State Physics II (403371, PH 371)

2. Credit hours: - **3 Cr. hrs**

3. Program(s) in which the course is offered. (If general elective available in many programs indicate this rather than list programs) B.Sc Degree in Physics

4. Name of faculty member responsible for the course: **Prof. Dr. Y.M. MOUSTAFA**

5. Level/year at which this course is offered: **3rd year (6th level)**

6. Pre-requisites for this course (if any): Statistical thermodynamics (PH403312)

7. Co-requisites for this course (if any)

Quantum mechanics 1 (PH 403344)

8. Location if not on main campus :-

Physics Dept. – Faculty of Science, Within The University Campus

B Objectives

1. Summary of the main learning outcomes for students enrolled in the course.

This course introduces students to continue her/his research in solid state field. At the end of the course, the student must be able to :

- Gain knowledge and to be ready to study Solid State Physics II.
- Be familiar with the basic physics knowledge on Solid State Physics.
- Understand and compare the origin of bonding in materials.
- Discuss and classify the different crystal structures and symmetry operations.
- Understand and appreciate of the different types of defects in solid state and understand how it affect the physical properties of matter.
- Understand how X-Rays Diffraction can be used in studying the solid structure.
- Understand and appreciate of the physical laws governing the X-Rays diffraction by crystal.
- Understand the origin of lattice vibration and thermal property.
- Define and describe the Super conducting phenomena.
- Discuss the free electron theories in solids.
- Deep understanding of the importance of solids in our lives.
- Be trained on physical and generic skills (knowledge cognitive interpersonal communication problem solving)
- Describe, in words, the origin of the different properties of solids.

The overall goal is to understand the structure of crystalline material and the origin of the different properties and phenomena play role in solids and control its application.

2. Briefly describe any plans for developing and improving the course that are being implemented. (eg increased use of IT or web based reference material, changes in content as a result of new research in the field)

- 8. Explain strategy of the course in the beginning of the semester
- 9. Outlines of the physical laws, principles and the associated proofs.
- 10. Highlighting the day life applications whenever exist.
- 11. Encourage the students to see more details in the international web sites and reference books in the library.
- 12. Discussing some selected problems in each chapter.

13. Cooperate with different institution to find how they deal with the subject

14. Renew the course references frequently

15. Frequently check for the latest discovery in science

C. Course Description (Note: General description in the form to be used for the Bulletin or Handbook should be attached)

1 Topics to be Covered :-Primarily for senior physics majors. Superconduction, X-Rays diffraction in crystals, free electron theory in metals, band theory, thermal, electrical, dielectrical, magnetic properties of solids, and semiconductors

Topics	No of Weeks	Contac t hours
1- The atomic Theory and Binding Forces1- Review of atomic structure2- Atomic binding and band theory3- Binding forces between atoms4- Lattice Energy Calculations5- Types of bonds6- Nucleation and growth kinetic7-Experimental methods of crystal growth	- 3 weeks	9 hrs
2- Crystalline Structure 1- Long Range and Short Rang order	_	6 hrs
2- The crystalline state	2	
3- Basic definitions of crystallography	weeks	
4- The seven crystal systems		
5- WIGNER SEITZ PRIMITIVE CELL		
6- Symmetry elements of crystals	1 weeks	3 hrs

_	
3 weeks	9 hrs
_	
2 weeks	6 hrs
	weeks

5-X-Rays Diffraction in Crystals	2	6 hrs
1- USED RAYS IN STUDYING CRYSTAL STRUCTURE	week	0 111 5

2- Generation and properties of X-rays		
3- X-Rays scattering from an atom		
4- X-Rays scattering from a crystal and Reciprocal lattice		
6- Lattice Vibrations		
1- Elastic waves		
2- MODES OF VIBRATIONS AND DENSITY OF STATES OF A CONTINUOUS MEDIUM		
3- The phonon	2 weeks	6 hrs
4- ELASTIC AND NON-ELASTIC SCATTERING		
5- LATTICE WAVES OF ONE-ATOMIC LINEAR CHAIN		
6- Vibration Modes of 1D diatomic		

2 Course components (total contact hours per semester):			
Lecture: 45 hrs	Tutorial: 10 hrs	Practical/Fieldwork /Internship:	Other: Office hours : 10 hrs

3. Additional private study/learning hours expected for students per week. (This should be an average :for the semester not a specific requirement in each week)

4. Development of Learning Outcomes in Domains of Learning For each of the domains of learning shown below indicate:

- A brief summary of the knowledge or skill the course is intended to develop;
- A description of the teaching strategies to be used in the course to develop that knowledge or skill;
- The methods of student assessment to be used in the course to evaluate learning outcomes in the domain concerned.

a. Knowl	edge
•	knowledge that students should know and understand when they complete the course are as follow:
•	Understanding the origin and types of binding in material. Learning fundamentals of crystallography and crystal defects.
•	Improving logical thinking.
•	To use mathematical formulation to describe the physical principle or phenomena.
•	Ability to explain the structure of simple crystals.
•	Learning theory and applications of the solid state.
•	Methods of measurement and assessment of properties of solids
٠	Teaching strategies to be used to develop that knowledge
•	Demonstrating the basic information and principles through lectures and the achieved applications
•	Discussing phenomena with illustrating pictures and diagrams Lecturing method:
• • • •	 Blackboard Power point e-learning Tutorials Revisit concepts Discussions Brain storming sessions Start each chapter by general idea and the benefit of it; Learn the student background of the subject;
•	Show the best ways to deal with problem;
•	Keep the question "why" or "how" to explain always there;
•	Build a strategy to solve problem.
•	Encourage interactive learning and develop individualized interest
(iii) Meth	ods of assessment of knowledge acquired
•	Solve some example during the lecture.
•	Exams: • Quizzes • Short exams (mid term exams) • Long exams (final) • Oral exams Discussions with the students.
•	Ask the student to clear the misunderstanding of some physical principle.
•	Ask quality question.
•	Short essays and application projects

b. Cogni	tive Skills
(i) Cogni	tive skills to be developed
• H	ow to use physical laws and principles to understand the subject ow to simplify problems and analyze phenomena nalyse and explain natural phenomena.
• A	bility to explain the idea with the student own words.
	epresent the problems mathematically.
	ow to breakdown problems and analyze phenomena
(ii) Teach	hing strategies to be used to develop these cognitive skills
 Fo D H 	reparing main outlines for teaching ollowing some proofs efine duties for each chapter ome work assignments neourage the student to look for the information in different references
	sk the student to attend lectures for practice solving problem
	sk the student to do small research.
-	nods of assessment of students cognitive skills
• A • W • D	idterm's exam. Exams, short quizzes sking about physical laws previously taught riting reports on selected parts of the course iscussions of how to simplify or analyze some phenomena
c. Interp	ersonal Skills and Responsibility
deve • W	ription of the interpersonal skills and capacity to carry responsibility to be loped York independently.
	he students learn independently and take up responsibility.
 La La La ea 	hing strategies to be used to develop these skills and abilities earn how to search the internet and use the library. earn how to cover missed lectures. earn how to summarize lectures or to collect materials of the course. earn how to solve difficulties in learning: solving problems – enhance lucational skills.
sc • Ei	 evelop her interest in Science through :(lab work, field trips, visits to ientific and research. ncourage the student to attend lectures regularly by: Giving bonus marks for attendance Assigning marks for attendance. give students tasks of duties

160

(iii) Methods of assessment of students interpersonal skills and capacity to carry responsibility • Quizzes on the previous lecture • Checking report on internet use and trips • Discussion • The accuracy of the result gained by each group will indicate good group work • Presenting the required research on time and the degree of the quality will show the sense of responsibility. d. Communication, Information Technology and Numerical Skills (i) Description of the skills to be developed in this domain. Computation • • Problem solving • Data analysis and interpretation. • Feeling physical reality of results Teaching strategies to be used to develop these skills • • Know the basic mathematical principles. Use the web for research. • • Discuss with the student. • Exams to measure the mathematical skill. • Clear the weakness point that should be eliminated. • Encourage the student to ask for help if needed. • Computational analysis. • Data representation. • Focusing on some real results and its physical meaning. • Lectures for problem solution. Encourage the student to ask good question to help solve the problem. • Display the lecture note and homework assignment at the web. (iii) Methods of assessment of students numerical and communication skills Their interaction with the lectures and discussions. The reports of different asked tasks. • • Homework, Problem solutions assignment and exam should focus on the understanding. Results of computations and analysis. • Comments on some resulting numbers. • • Research. e. Psychomotor Skills (if applicable) none (i) Description of the psychomotor skills to be developed and the level of performance required

(ii) Teaching strategies to be used to develop these skills

(iii) Methods of assessment of students psychomotor skills

5. Schedule of Assessment Tasks for Students During the Semester

Assess ment	Assessment task (eg. essay, test, group project, examination etc.)	Week due	Proportion of Final Assessment
1	Midterm 1	5 th week	10
2	Midterm 2	10 th week	10
3	In-Class Problem Solving	13 th ,7 th week	10
4	project	12 th week	10
5	Homework	Every week	10
6	Final exam	End of semester	50

D. Student Support

1. Arrangements for availability of faculty for individual student consultations and academic advice. (include amount of time faculty are available each week) 8 office hours per week

E Learning Resources

- 1. Required Text(s)
- Given by teacher

2. Essential References

3- Recommended Books and Reference Material (Journals, Reports, etc) (Attach List)

1. C.Kittel / Introduction to Solid State Physics. 7th. dition

2. <u>Walter A. Harrison</u>/ Solid State Theory , Dover edition 1979

4-.Electronic Materials, Web Sites etc

- http://www.phys.lsu.edu/~jarrell/COURSES/SOLID_STATE_HTML/course_solid.html
- <u>http://www.encyclopedia.com/topic/solid-state_physics.aspx</u>
- <u>http://www.physics.byu.edu/research/condensed</u>
- <u>http://web.utk.edu/~tbarnes/website/cm/cm.html</u>
- http://www.answers.com/topic/solid-state-physics

5- Other learning material such as computer-based programs/CD, professional standards/regulations

Wikipedia

F. Facilities Required

Indicate requirements for the course including size of classrooms and laboratories (ie number of seats in classrooms and laboratories, extent of computer access etc.)

1. Accommodation (Lecture rooms, laboratories, etc.)

- Lecture room for 30 students
- Library
- Laboratory for experimental solid state
- 2. Computing resources
 - Computer room

courses.

• Scientific calculator.

3. Other resources (specify --eg. If specific laboratory equipment is required, list requirements or attach list) Solid State Laboratory

G Course Evaluation and Improvement Processes

1 Strategies for Obtaining Student Feedback on Effectiveness of Teaching **1.** Midterm and final exam. 2. Ouiz. 2 Other Strategies for Evaluation of Teaching by the Instructor or by the Department 3 Processes for Improvement of Teaching (a) Course report (b) Program report (c) Program self study Fortification of the student learning. Handling the weakness point. 4. Processes for Verifying Standards of Student Achievement (eg. check marking by an independent faculty member of a sample of student work, periodic exchange and remarking of a sample of assignments with a faculty member in another institution) 1. The instructors of the course are checking together and put a unique process of evaluation 2. Check marking of a sample of papers by others in the department. 3. Feedback evaluation of teaching from independent organization. 5 Describe the planning arrangements for periodically reviewing course effectiveness and planning for improvement. 1- The following points may help to get the course effectiveness • Student evaluation Course report Program report Program Self study 2- According to point 1 the plan of improvement should be given. 3- Contact the college to evaluate the course and the benefit it add to other

4- Add some subject and cut off others depending on the new discoveries in physics.

Kingdom of Saudi Arabia

The National Commission for Academic Accreditation & Assessment

Course Specification

(17) Quantum Mechanics (I) 403344

Course Specification

For Guidance on the completion of this template, please refer to Handbook 2 Internal

Quality Assurance Arrangements

Institution: Umm AL-Qurra University

College/Department: Faculty of Science / Physics Department

A. Course Identification and General Information

Course Title and Code: Quantum Mechanics I (344)

Credit Hours: 4 Cr. Hrs

Program (s) in which the course is offered. (If general elective available in many

programs indicate this rather than list programs)

B.Sc Degree in Physics

Name of Faculty Member Responsible For The Course

Dr. Roshdi Seoudi Mohamed Awed

Level/year at which this course is offered

5th Level-3th year

Pre-requisites for this course (if any) Atomic Physics (253) and Math Phys. (II) (242)

Co-requisites for this course (if any): and Math Phys. (I) (240) and Optics (231)

Location if not on main campus : University campus

B Objectives

1. Summary of the main learning outcomes for students enrolled in the course. The quantum mechanics (1) start with the reasons and natural phenomena that have led to the emergence of quantum mechanics; this is done by highlighting the difficulty of the classic mechanics to explain many phenomena that indicate duality of the particle and wave. In order to the student understand these phenomena we discussed

- 1. Radiation- Planck's law, photoelectric effect, Compton effect, Wave Nature of matter, De Broglie waves, diffraction of matter waves.
- Expectations values, principle of superposition; Quantum mechanical operators: Three important quantum mechanical operators, eigen functions and eigen values, properties of operators, measurability of different observables at equal times, Heisenberg's uncertainty principle, angular momentum operator.
- 3. Kinetic energy, total energy, bra and ket notation Schrodinger equation, Postulates, formulation, properties of stationary states.
- 4. Solution of Schrodinger Equation, free particle, harmonic oscillator, particle in a box, constants of motion, conservation laws, Hydrogen atom, Wave functions, hydrogen atom spectrum.

2. Briefly describe any plans for developing and improving the course that are being implemented. (Eg increased use of IT or web based reference material, changes in content as a result of new research in the field)

- i. Development of the quantum mechanics (I) is to examine the learning outcomes for the courses in the quantum mechanics stream. Categorize the subject matter and identify the important concepts in each category to be covered courses. These concepts were identified from the course outlines, which had themselves been developed over several years by a number of different academic staff.
- ii. The students should be acquainted with the basics of physical optics (interference, superposition, light as a quantum mechanics field) and a good knowledge of algebra (vector spaces, Hilbert spaces, linear operators on these

spaces). But all these concepts and tools will be brushed up in the beginning of the course.

- iii. At the end of the course the students should be able to address all the following questions and solve problems related to these matters.
- iv. Circulate this concept list to a range of quantum mechanics teaching staff and ask them to rank the 10 most important concepts for each course and to identify the misconceptions that students are likely to have about each of the concepts in the complete list.

C. Course Description (Note: General description in the form to be used for the Bulletin or Handbook should be attached)

Topics to be Covered :		
Topics	No of	Contact
	Weeks	hours
THE LIMITS OF CLASSICAL MECHANICS	3	12
1. Blackbody Radiation		
2. Blackbody Radiation could not be explained by classical		
physics		
3. The Planck Distribution and the Quantum of Energy		
4. The Photoelectric Effect		
5. The Compton Effect		
6. Wave Prosperities and Electron Diffraction		
7. De Broglie Waves are observed experimentally		
8. The Bohr Atom and Derivation of Redberg constant		
WAVE PACKET AND THE UNCERTAINTY RELATION	2.5	10
1- Introduction of Complex Number, Special Integration,		
Fourier Transform and Integration, Fourier analysis and		
Wave Packet, Calculation of The Half Band Width.		
2- Wave Packet and its Calculation of their Band Width.		
3- The Propagation of the Wave Packet.		
4- From Wave Packet to the Schrodinger Equation		
5- The Uncertainty Relation.		
6- Measurements the Position of The Electron (Hesinberg		
Microscope)		

SCHRODINGER WAVE EQUATION AND PROBABILITY	2	8
INTERPRETATION		
1. Interpretation of the Probability Wave Function		
2. Importance of Phases		
3. Probability Current and Conservation Low		
4. Expectations Values and particle Momentum		
5. Derivation of Momentum Operator		
6. Operators properties		
EIGEN FUNCTION AND EIGEN VALUES	2	6
1- Time Dependent Schrodinger Equation		
2- Time Independent Schrodinger Equation		
3- Concepts of Hamiltonian Operator		
4- Solution of the Eigen Values Equation for the particle in a		
Box.		
5- Derivation of some Physical Information from the Eigen		
Values Solutions.		
6- Expansion Postulate and Its Physical Interpretation		
7- Parity		
ONE-DIMENSIONAL POTENTIAL	2.5	10
1- The Potential Step: (Transmission and reflection)		
2- Reflection and Transmission Fluxes		
3- Potential Well		
4- Even and Odd Solutions		
5- The potential Barriers		
6- Tunnelling Phenomena (cold emission)		
7- The Harmonic Oscillator		
GENERAL CONSTRUCTION OF QUANTUM MECHANICS	2	8

1-	Eigen Function and Eigen Values "Hamiltonian Operator"		
2-	Other Observable		
3-	Equation of Momentum Operator		
4-	Theory of Expansion and Parity with the Vector		
5-	Operator and Observable		
6-	Time dependence the Classical Limit of quantum		
	Mechanics		
	THE SCHRODINGER EQUATION IN THREE	3	12
	DIMENSIONS		
	1- The Central Potential		
	2- Consequences of Rotational Invariance		
	3- Invariance under Rotation about Z-Axis		
	4- Commutative Relation of the Angular Momentum		
	5- Separation of Variables in the Schrodinger Equation		
	6- The Radial Equation		
	7- The Hydrogen Atom		
	8- The Energy spectrum		
	9- The Degeneracy of the spectrum		
	10-The Radial Eigen Function		

2 Course components (total contact hours per semester):				
Lectures: 66 hr	Tutorial: 30	Practical/Fieldwork /Internship:	Other:	

3. Additional private study/learning hours expected for students per week. (This should be an average: for the semester not a specific requirement in each week)

6 Office hours to help students for solving assigned problems

4. Development of Learning Outcomes in Domains of Learning For each of the domains of learning shown below indicate:

- 1- A brief summary of the knowledge or skill the course is intended to develop
 - 2- A description of the teaching strategies to be used in the course to develop that knowledge or skill.
 - 3- The methods of student assessment to be used in the course to evaluate learning outcomes in the domain concerned.

a. Knowledge

Knowledge that students should know and understand when they complete the course is as follow:

- 1- Teaching strategies to be used to develop that knowledge
- 2- Learning to be acquainted with the historical background of quantum mechanics, wave-particle description-the uncertainty principle and Schrodinger equation.
- 3- Understanding the physics of quantum mechanics and their applications mentioned in the text.
- 4- Improving logical thinking.
- 5- To use mathematical formulation to describe the physical principle or phenomena
- 6- Ability to explain how things are working.
- 7- Teaching strategies to be used to develop that knowledge
- 8- Demonstrating the basic information and principles through lectures and the achieved applications
- 9- Discussing phenomena with illustrating pictures and diagrams
- 10-Lecturing method:
 - a. Blackboard
 - b. Power point
 - c. e-learning
- 11-Tutorials
- 12-Revisit concepts
- 13-Discussions

14-Brain storming sessions
15-Start each chapter by general idea and the benefit of it;
16-Learn the student background of the subject;
17-Show the best ways to deal with problem;
18- Keep the question "why" or "how" to explain always there
19-Build a strategy to solve problem.
(iii) Methods of assessment of knowledge acquired
6- Solve some example during the lecture.
7- Exams:
i. Quizzesii. Short exams (mid term exams)
iii. Long exams (final)
iv. Oral exams 8- Discussions with the students.
9- Ask the student to clear the misunderstanding of some physical principle.
10- Ask quality question.
b. Cognitive Skills
(i) Cognitive skills to be developed
 Acquired a firm background in the foundations of quantum mechanics and have students desire kindled to discover more in the second part of the course
2- Ability to analyse the observed of the particles by solving the Schrodinger equation
3- Understand the theoretical treatments of quantum mechanics problems
4- Ask the student to do small research
(ii) Teaching strategies to be used to develop these cognitive skills
1- Preparing main outlines for teaching
2- Following some proofs
3- Define duties for each chapter
4- Home work assignments
5- Encourage the student to look for the information in different references
6- Ask the student to attend lectures for practice solving problem
(iii) Methods of assessment of students cognitive skills
1- Midterm's exam. Exams, short quizzes
171

2- Asking about physical laws previously taught

3- Writing reports on selected parts of the course

4- Discussions of how to simplify or analyse some phenomena

c. Interpersonal Skills and Responsibility

(i) Description of the interpersonal skills and capacity to carry responsibility to be developed

1- Work independently.

2- The students learn independently and take up responsibility.

(ii) Teaching strategies to be used to develop these skills and abilities

- 1- Learn how to search the internet and use the library.
- 2- Learn how to cover missed lectures.
- 3- Learn how to summarize lectures or to collect materials of the course.
- 4- Learn how to solve difficulties in learning: solving problems enhance educational skills.
- 5- Develop her interest in Science through :(lab work, field trips, visits to scientific and research.

6- Encourage the student to attend lectures regularly by:

- i. Giving bonus marks for attendance
- ii. Assigning marks for attendance.
- 7- Give students tasks of duties

(iii) Methods of assessment of students interpersonal skills and capacity to carry responsibility

- 1- Quizzes on the previous lecture
- 2- Checking report on internet use and trips
- 3- Discussion
- 4- The accuracy of the result gained by each group will indicate good group work
- 5- Presenting the required research on time and the degree of the quality will show the sense of responsibility.
- d. Communication, Information Technology and Numerical Skills

(i) Description of the skills to be developed in this domain.
1- Computation
2- Problem solving
3- Data analysis and interpretation.
4- Feeling physical reality of results
(ii) Teaching strategies to be used to develop these skills
1- Know the basic mathematical principles.
2- Use the web for research.
3- Discuss with the student.
4- Exams to measure the mathematical skill.
5- Clear the weakness point that should be eliminated.
6- Encourage the student to ask for help if needed.
7- Computational analysis.
8- Data representation.
9- Focusing on some real results and its physical meaning.
10-Lectures for problem solution.
11-Encourage the student to ask good question to help solve the problem.
12-Display the lecture note and homework assignment at the web.
(iii) Methods of assessment of students numerical and communication skills
1- Their interaction with the lectures and discussions.
2- The reports of different asked tasks.3- Homework, Problem solutions assignment and exam should focus on the understanding.
4- Results of computations and analysis.5- Comments on some resulting numbers.
6- Research.
e. Psychomotor Skills (if applicable)
(I) Description of the psychomotor skills to be developed and the level of performance required

(NA)

(ii) Teaching strategies to be used to develop these skills (NA)

(iii) Methods of assessment of students psychomotor skills (NA)				
Assessment	Assessment task (eg. essay, test, group project, examination etc.)	Week due	Proportion of Final Assessme nt	
1	Midterm 1	5 th week	10	
2	Midterm 2	10 th week	10	
3	In-Class Problem Solving	13 th ,7 th week	10	
4	project	12 th week	10	
5	Homework	Every week	10	
6	Final exam	End of semester	50	

D. Student Support

 Arrangements for availability of faculty for individual student consultations and academic advice. (include amount of time faculty are available each week)
 Each student will supervise by academic adviser in physics Department and the time table for academic advice were given to the student each semester.

E Learning Resources

1.Required Text(s)

 Feynman, Richard P., Robert Leighton, and Matthew Sands. The Feynman Lectures on Physics. Addison-Wesley, Reading, Massachusetts: 1965. Vol. 3: Quantum Mechanics.

2. Essential References

1- David A.B. Miller, "Quantum Mechanics for Scientists and Engineers", Cambridge University Press, 2008

3- Recommended Books and Reference

- 2- David J. Griffiths "Introduction to Quantum Mechanics", Pearson Prentice Hall, New York, USA, 2005
- Amnon Yariv, "Theory and applications of Quantum Mechanics", Wiley, New York, USA, 1982
- 4- Claude Cohen-Tannoudji, Bernard Diu, Franck Lalo[¨], "Mecanique Quantique", Universit[´] de Paris, France, 1973

4- Electronic Materials, Web Sites etc

http://en.wikipedia.org/wiki/Quantum Mechanics/

http://www.dmoz.org/Science/Physics/Quantum Mechanics/

F. Facilities Required

Indicate requirements for the course including size of classrooms and laboratories (i.e. number of seats in classrooms and laboratories, extent of computer access etc.)

- 1. Accommodation (Lecture rooms, laboratories, etc.)
 - Lecture room for 30 students
 - Library
 - Laboratory for optics (there is a special course for laboratory related to quantum mechanics)
- 2. Computing resources
 - Computer room
 - Scientific calculator.

3. Other resources (specify --eg. If specific laboratory equipment is required, list requirements or attach list)

G Course Evaluation and Improvement Processes

1 Strategies for Obtaining Student Feedback on Effectiveness of Teaching

1-10 minutes Quiz per week

2- Home works

- 3- Term paper
- 4- Final Exam

2 Other Strategies for Evaluation of Teaching by the Instructor or by the Department

1- At the end of term , Students fill an evaluation Sheet (without names)

2- Student Marks are analysed by considering Standard Deviation.

3 Processes for Improvement of Teaching

Strategies are modified each term according to the student feedback.

4. Processes for Verifying Standards of Student Achievement (e.g. check marking by

an independent faculty member of a sample of student work, periodic exchange and

remarking of a sample of assignments with a faculty member in another institution)

In case of more than one section taken this course, the instructors are cooperated to give unified Exams and they use the same marks distribution for the answer sheet. Students can see their corrected sheet and compare it with key answer sheet.

5 Describe the planning arrangements for periodically reviewing course effectiveness and planning for improvement.

- 1- The following points may help to get the course effectiveness
 - Student evaluation
 - Course report
 - Program report
 - Program Self study
- 2- According to point 1 the plan of improvement should be given.
- 3- Contact the college to evaluate the course and the benefit it add to other courses.
- 4- Add some subject and cut off others depending on the new discoveries in physics.

Kingdom of Saudi Arabia

The National Commission for Academic Accreditation & Assessment

Course Specification

(18) COMPUTER 403383

Course Specification

Institution : Umm Al-Qura University

College/Department : College of Science/Physics Department

A Course Identification and General Information

1. Course title and code: COMPUTER 403383-2

2. Credit hours: 2 Cr

3. Program(s) in which the course is offered. (If general elective available in many programs indicate this rather than list programs) :physics students

4. Name of faculty member responsible for the course : Dr. LOULOU Mehrez

5. Level/year at which this course is offered: 6th level/ third year

6. Pre-requisites for this course (if any): 102 PH +140 Math

7. Co-requisites for this course (if any):no- Co-requisite

8. Location if not on main campus :on campus

B Objectives

1. Summary of the main learning outcomes for students enrolled in the course.

The basic of computer and languages are taught in this course. Introduction to computers, languages, Virus, physical application, Microsoft Windows, Microsoft Arabic Word, and plotting by computer are briefly covered. By the end of this course the student will be able to :

- Know the components of a computer system and its architecture
- Know the database applications
- Define programming, Programs
- Define network and multimedia components

2. Briefly describe any plans for developing and improving the course that are being implemented. (eg increased use of IT or web based reference material, changes in content as a result of new research in the field)

* This course is developed by using interactive lab work showing most of the course lab in form of simulation comparing the real measurements obtained in lab work with simulated measurements.

* Using the library to search on some topic and writing reports.

C. Course Description (Note: General description in the form to be used for the Bulletin or Handbook should be attached)

1 Topics to be Covered

List of Topics	No of Weeks	Contac thours
Introduction to computers + computers	2	4
Computer languages	3	6
Operating system in personal computers (DOS)	2	4
Virus	1	2
Flow charts	2	4
Physical application	1	2
Microsoft Windows 3.1 +Microsoft Arabic Word	3	6

2 Course components (total contact hours per semester):				
Lecture: 28	Tutorial: 7	Laboratory: 0	Practical/Field work/Internshi p	Other:

3. Additional private study/learning hours expected for students per week. (This should be an average :for the semester not a specific requirement in each week)

2 hours/week for homework

4. Development of Learning Outcomes in Domains of Learning

For each of the domains of learning shown below indicate:

- A brief summary of the knowledge or skill the course is intended to develop;
- A description of the teaching strategies to be used in the course to develop that knowledge or skill;
- The methods of student assessment to be used in the course to evaluate learning outcomes in the domain concerned.

• Learn how to solve difficulties in learning: solving problems-enhance educational skills.				
 Develop her interest in science through: lab work, field trips, 				
 Encourage the student to attend lectures regularly by giving bonus marks for 				
attendance				
(vii) Methods of assessment of students interpersonal skills and capacity to carry responsibility				
• Quizzes on the previous lecture				
• Discussion				
• The accuracy of the result gained by each group will indicate good group work				
d. Communication, Information Technology and Numerical Skills				
(i) Description of the skills to be developed in this domain.				
• Using internet to search for topic and writing reports				
Make simulation				
• Plotting by computers (origin)				
(ii) Teaching strategies to be used to develop these skills				
• Use the web for research				
• Discuss with the student				
• Clear the weakness point that should be eliminated				
• Encourage the student to ask for help if needed				
Computational analysis				
Data representation				
• Focusing on some real results and its physical meaning				
• Display the lecture note and homework assignment at the web				
(viii) Methods of assessment of students numerical and communication skills				
• Their interaction with the lectures and discussions				
• The reports of different asked tasks				
• Homework, problem solution assignment and exam should focus on the understanding				
 Results of computations and analysis 				
 Comments on some resulting numbers 				
Research				
e. Psychomotor Skills (if applicable)				
() Description of the market (1.11) (1.1.1)				
(i) Description of the psychomotor skills to be developed and the level of performance				
required				
(ii) Teaching strategies to be used to develop these skills				
(iii) Methods of assessment of students psychomotor skills				

Assess ment	Assessment task (eg. essay, test, group project, examination etc.)	Week due	Proportion of Final Assessme nt
1	Homework Assignments	All along	10%
2	Participation + Quizzes	All along	10%
3	Mid-term exam 1	6th	20%
4	Mid-term exam 2	14th	20%
5	Final exam	17th	40%

D. Student Support

1. Arrangements for availability of teaching staff for individual student consultations and academic advice. (include amount of time teaching staff are expected to be available each week)

During office hours. In addition, students can arrange appointments with the lecturer whenever suits them.

E Learning Resources

1. Required Text(s);			
2. Essential References :			
* Fortran 77 with scientific and engineering application. Dr. Awad Mansour,			
* Windows 3.1 and MS-DOS 6.2 by Majdi Mohammed abou alaata			
3- Recommended Books and Reference Material (Journals, Reports, etc) (Attach List)			
• Windows 3.1 and MS-DOS 6.2 by Majdi Mohammed abou alaata			
• Fortran 77 with scientific and engineering application. Dr. Awad Mansour			
4Electronic Materials, Web Sites etc			
The lecturer prepared some solved exercise for each chapter, which are available on his			
personal website. Also, students are usually asked to watch some educational videos			
online about the subjects covered in the course.			

5- Other learning material such as computer-based programs/CD, professional standards/regulations

F. Facilities Required

Indicate requirements for the course including size of classrooms and laboratories (ie number of seats in classrooms and laboratories, extent of computer access etc.)

1. Accommodation (Lecture rooms, laboratories, etc.)

The maximum number of students in each group is 25, which can be conveniently accommodated in all class rooms in the university.

2. Computing resources

3. Other resources (specify --eg. If specific laboratory equipment is required, list requirements or attach list)

G Course Evaluation and Improvement Processes

1 Strategies for Obtaining Student Feedback on Effectiveness of Teaching

Students are required to evaluate the course online (including the lecturer performance, the material .. etc) each semester. The student will not be able to receive his/her own final mark without this evaluation.

2 Other Strategies for Evaluation of Teaching by the Instructor or by the Department

3 Processes for Improvement of Teaching

The consideration of the students' comments and evaluations, plus the continuous update and improvement of the course material

4. Processes for Verifying Standards of Student Achievement (eg. check marking by an independent member teaching staff of a sample of student work, periodic exchange and remarking of tests or a sample of assignments with staff at another institution)

Students have the right to ask for re-marking any exam in case there is any suspicion of the results.

5 Describe the planning arrangements for periodically reviewing course effectiveness and planning for improvement.

Continuous evaluation and consultation with the Faculty of Engineering to match their requirements.

Kingdom of Saudi Arabia

The National Commission for Academic Accreditation & Assessment

Course Specification

(19) Nuclear (I) 403361

Course Specification

For Guidance on the completion of this template, please refer to Handbook 2 Internal

Quality Assurance Arrangements

Institution:- Umm AL-Qura University

College/Department :- College of Sciences / Physics Department

A Course Identification and General Information

1. Course title and code: Nuclear I (PH 361)

2. Credit hours: - 4 Cr. Hrs

3. Program(s) in which the course is offered. (If general elective available in many programs indicate this rather than list programs) B.Sc Degree in Physics

4. Name of faculty member responsible for the course:

5. Level/year at which this course is offered: Third year

6. Pre-requisites for this course (if any) PH 253+ PH344

7. Co-requisites for this course (if any) PH462 + PH461

7. Location if not on main campus :- Within The University Campus

B Objectives

1. Summary of the main learning outcomes for students enrolled in the course. The objective of this course is to establish the meaning of the ends of the computational and use in communication, and differentiation, integration and applications of it.

The objectives of this course are to establish the meaning of the concepts of nuclear physics and elementary particles, and to tease out the theoretical models to describe the nuclear properties.

We want to be able:

The benchmark statement of the main learning outcomes are as follows:

- To understand basic ffundamentals of nuclear properties.
- The students should be trained on physical and generic skills (knowledge cognitive interpersonal communication problem solving IT)
- To understand the liquid drop model.
- To understand the nuclear drop model.
- To understand the origin of alpha transition within the nucleus.
- To understand the origin of Gamma transition within the nucleus.
- To understand the origin of Beta transition within the nucleus.
- To understand the elementary particles.
- The overall goal is to understand the fundamentals of nuclear physics.

2. Briefly describe any plans for developing and improving the course that are being implemented. (eg increased use of IT or web based reference material, changes in content as a result of new research in the field)

- Explain strategy of the course in the beginning of the semester
- Outlines of the Nuclear concepts, theories and the associated proofs.
- Highlighting the day life applications whenever exist.
- Encourage the students to see more details in the international web sites and reference books in the library.
- Discussing some selected problems in each chapter.
- Cooperate with different institution to find how they deal with the subject
- Renew the course references frequently
- Frequently check for the latest discovery in science

C. Course Description (Note: General description in the form to be used for the Bulletin or Handbook should be attached)

1 Topics to be Covered :-		
Topics	No of	Contac
	Weeks	t hours
1- Nuclear Properties		
7- Definitions & Nuclear radii		1
8- Nuclear Mass-Binding Energy	1	1
9- Nuclear Radiation, Energy.		2

10 I		2
10-Levels, nuclear Isomers.		2
11- Angular Momentum, Parity and Symmetry	1	1
12-Dipole moment, qudropole moment		1
2- Liquid Drop Model		
1- Finding Energy	1	2
2- Sem-emperical Formula	1	2
3- Mass Spectrometer	0.5	1
4- Nuclear Reactions and Q-value	0.5	1
3- Nuclear Shell Model		
1- Single Particle model with square well and Harmovia		1
Oscellator	1	
2- Magic Numbers	1	2
3- Spin for Different nuclei		1
4- Excited rootes		1
5- Nuclear Magnetic momans	1	2
6- Parity and Isotopic Spin		1
4- Gamma Transitions		
1- Multiple Moments		2
2- Decay Constants	1	1
3- Selection Nucles		1
4- Angular Correlation	1	2
5- Internal Conversion	1	2
5- Alpha Transitions		
1- Heavy Ions-Stalitlity	0.5	1
2- Decay Constants	0.5	1
3- Tunnel Effect	1	2
4- Energy Levels	1	2
6- Beta Transitions		
1- Theorgy of B-decay	1	2
2- Allowed and Forbiddin transitions		2
3- Selection Nucles	1	2
4- Non Conservation of Parity	-	2
7. Elementer Proticio		
7- Elementary Particles		
1- Nucler Force and Meson Theory	1	2
2- Pions & Meuns		2
3- Kayons & Hyperons	1	2
4- Classi Fiction of demeray Pancles		2

2 Course components (total contact hours per semester):					
Lecture: 52 hr	Tutorial: 30 hr	Practical/Fieldwork /Internship:	Other: Office hours : 32 hr		

3. Additional private study/learning hours expected for students per week. (This should be an average: for the semester not a specific requirement in each week)

4. Development of Learning Outcomes in Domains of Learning

For each of the domains of learning shown below indicate:

- A brief summary of the knowledge or skill the course is intended to develop;
- A description of the teaching strategies to be used in the course to develop that knowledge or skill;
- The methods of student assessment to be used in the course to evaluate learning outcomes in the domain concerned.

a. Knowledge

- (iii) knowledge that students should know and understand when they complete the course are as follow:
- Learning fundamentals in nuclear physics.
- Understanding the models and theories which explain the nuclear properties.
- Improving logical thinking.
- To use concepts of nuclear physical in daily life.
- Ability to describe the nuclear phenomena.

(iv) Teaching strategies to be used to develop that knowledge

- Demonstrating the basic information and principles through lectures and the achieved applications
- Discussing phenomena with illustrating pictures and diagrams
- Lecturing method:
 - Blackboard
 - Power point
 - e-learning
- Tutorials
- Revisit concepts
- Discussions
- Brain storming sessions
- Start each chapter by general idea and the benefit of it;

- Learn the student background of the subject;
- Show the best ways to deal with problem;
- Keep the question "why" or "how" to explain always there;
- Build a strategy to solve problem.
- (v) Methods of assessment of knowledge acquired
- 1. Solve some example during the lecture.
- **2.** Exams:
 - a) Quizzes
 - b) Short exams (mid term exams)
 - c) Long exams (final)
 - d) Oral exams
- 3. Discussions with the students.
- 4. Ask the student to clear the misunderstanding of some mathematical principle.
- 5. Ask quality question.

b. Cognitive Skills

(i) Cognitive skills to be developed

- How to use physical laws and principles to understand the subject
- How to simplify problems and analyze phenomena
- Analyse and explain natural phenomena.
- Ability to explain the idea with the student own words.
- Represent the problems mathematically.

(ii) Teaching strategies to be used to develop these cognitive skills

- Preparing main outlines for teaching
- Following some proofs
- Define duties for each chapter
- Home work assignments
- Encourage the student to look for the information in different references
- Ask the student to attend lectures for practice solving problem
- Ask the student to do small research.

(iii) Methods of assessment of students cognitive skills

- Midterm's exam. Exams, short quizzes
- Asking about physical laws previously taught
- Writing reports on selected parts of the course
- Discussions of how to simplify or analyze some phenomena

c. Interpersonal Skills and Responsibility

(i) Description of the interpersonal skills and capacity to carry responsibility to be developed

- 5. Work independently.
- 6. The students learn independently and take up responsibility.

(ii) Teaching strategies to be used to develop these skills and abilities

- Learn how to search the internet and use the library.
- Learn how to cover missed lectures.
- Learn how to summarize lectures or to collect materials of the course.
- Learn how to solve difficulties in learning: solving problems enhance educational skills.
- Develop her interest in Science through :(lab work, field trips, visits to scientific and research.

4 Encourage the student to attend lectures regularly by:

- Giving bonus marks for attendance
- Assigning marks for attendance.
- give students tasks of duties

(iii) Methods of assessment of students interpersonal skills and capacity to carry responsibility

- Quizzes on the previous lecture
- Checking report on internet use and trips
- Discussion
- The accuracy of the result gained by each group will indicate good group work
- Presenting the required research on time and the degree of the quality will show the sense of responsibility.

d. Communication, Information Technology and Numerical Skills

(i) Description of the skills to be developed in this domain.

- Computation
- Problem solving
- Data analysis and interpretation.
- Feeling physical reality of results

(ii) Teaching strategies to be used to develop these skills

- Know the basic physical principles.
- Use the web for research.
- Discuss with the student.
- Exams to measure the physical skill.
- Clear the weakness point that should be eliminated.
- Encourage the student to ask for help if needed.
- Computational analysis.

- Data representation.
- Focusing on some real results and its physical meaning.
- Lectures for problem solution.
- Encourage the student to ask good question to help solve the problem.
- Display the lecture note and homework assignment at the web.

(iii) Methods of assessment of students numerical and communication skills

- Their interaction with the lectures and discussions.
- The reports of different asked tasks.
- Homework, Problem solutions assignment and exam should focus on the understanding.
- Results of computations and analysis.
- Comments on some resulting numbers.
- Research.

e. Psychomotor Skills (if applicable)

(i) Description of the psychomotor skills to be developed and the level of performance required

(ii) Teaching strategies to be used to develop these skills

(iii) Methods of assessment of students psychomotor skills

5. Schedule of Assessment Tasks for Students During the Semester

Assess ment	Assessment task (eg. essay, test, group project, examination etc.)	Week due	Proportion of Final Assessme nt
1	Midterm 1	5 th week	15
2	Midterm 2	10 th week	15
3	In-Class Problem Solving	13 th ,7 th week	10
4	Homework	Every week	10
5	Final exam	End of semester	50

D. Student Support

1. Arrangements for availability of faculty for individual student consultations and academic advice. (include amount of time faculty are available each week)

8 office hours per week

E Learning Resources

1. Required Text(s)	
2. Essential References	

3- Recommended Books and Reference Material (Journals, Reports, etc) (Attach List)[1] Introductory Nuclear Physics, Krene, 1987.

4-.Electronic Materials, Web Sites etc

5- Other learning material such as computer-based programs/CD, professional standards/regulations

Wikipedia

F. Facilities Required

Indicate requirements for the course including size of classrooms and laboratories (ie number of seats in classrooms and laboratories, extent of computer access etc.)

1. Accommodation (Lecture rooms, laboratories, etc.)

- Lecture room for 30 students
- Library

2. Computing resources

- Computer room
- Scientific calculator.

3. Other resources (specify --eg. If specific laboratory equipment is required, list requirements or attach list)

G Course Evaluation and Improvement Processes

1 Strategies for Obtaining Student Feedback on Effectiveness of Teaching

- Midterm and final exam.
- Quiz.
- 2 Other Strategies for Evaluation of Teaching by the Instructor or by the Department
- 3 Processes for Improvement of Teaching

(a) Course report

(b) Program report

(c) Program self study

Fortification of the student learning.

Handling the weakness point.

4. Processes for Verifying Standards of Student Achievement (eg. check marking by an independent faculty member of a sample of student work, periodic exchange and remarking of a sample of assignments with a faculty member in another institution)

- The instructors of the course are checking together and put a unique process of evaluation
- Check marking of a sample of papers by others in the department.
- Feedback evaluation of teaching from independent organization.

5 Describe the planning arrangements for periodically reviewing course effectiveness and planning for improvement.

- 1- The following points may help to get the course effectiveness
 - Student evaluation
 - Course report
 - Program report
 - Program Self study
- 2- According to point 1 the plan of improvement should be given.
- 3- Contact the college to evaluate the course and the benefit it add to other courses.
- 4- Add some subject and cut off others depending on the new discoveries in physics.

Kingdom of Saudi Arabia

The National Commission for Academic Accreditation & Assessment

Course Specification

(20) **BIOMECHANICS**

Course Specification

For Guidance on the completion of this template, please refer to Handbook 2 Internal

Quality Assurance Arrangements

Institution: Umm AL-Qura University

College/Department :- College of Sciences / Physics Department

A Course Identification and General Information

1. Course title and code: **Biomechanics**

2. Credit hours; **3 Cr. Hrs**

3. Program(s) in which the course is offered. (If general elective available in many programs indicate this rather than list programs)

B.Sc Degree in Medical Physics

4. Name of faculty member responsible for the course

5. Level/year at which this course is offered **Sixth level/Third year**

6. Pre-requisites for this course (if any) Classical Mechanics-403241

7. Co-requisites for this course (if any)

8. Location if not on main campus

B Objectives

1. Summary of the main learning outcomes for students enrolled in the course.

The objectives of this course are to give the students the basic knowledge about the Bio-mechanics.

For students undertaking this course, the aims are to:

- 1) Static Forces
- 2) Friction For The Human Body
- 3) Translational Motion For The Human Body
- 4) Angular Motion For The Human Body
- 5) Elasticity And Strength Of Materials.
- 6) Insect Flight.
- 7) Fluids
- 8) The Motion Of Fluids In Human Body

2. Briefly describe any plans for developing and improving the course that are being implemented. (eg increased use of IT or web based reference material, changes in content as a result of new research in the field)

- 1. Explain strategy of the course in the beginning of the semester
- 2. Outlines of the physical laws, principles and the associated proofs.
- 3. Highlighting the day life applications whenever exist.
- 4. Encourage the students to see more details in the international web sites and reference books in the library.

- 5. Discussing some selected problems in each chapter.
- 6. Cooperate with different institution to find how they deal with the subject
- 7. Renew the course references frequently
- 8. Frequently check for the latest discovery in science

C. Course Description (Note: General description in the form to be used for the Bulletin or Handbook should be attached)

1 Topics to be Covered		
1		
Торіс	No of Weeks	Conta ct hours
Static Forces-Equilibrium and Stability- Equilibrium Considerations for the Human Body.	1	1 hr
Stability of the Human Body under the Action of an External Force- Skeletal Muscles- Levers- The Elbow- The Hip- Limping Standing		2 hrs
Tip-Toe on One Foot- Dynamic Aspects of Posture.	1	1 hrs
Friction- Standing at an Incline-Friction at the Hip Joint- Spine Fin of a Catfish- EXERCISES.		2 hrs
Translational Motion- Vertical Jump- Effect of Gravity on the Vertical Jump-	1	1 hr
Running High Jump- Range of a Projectile- Standing Broad Jump- Running Broad Jump (Long Jump)- Motion through Air- Energy Consumed in Physical Activity- EXERCISES		2 hrs
Angular Motion- Forces on a Curved Path- A Runner on a Curved Track- Pendulum	1	1 hr
Walking- Physical Pendulum- Speed of Walking and Running- Energy Expended in Running- Alternate Perspectives on Walking and Running- Carrying Loads- EXERCISES		2 hrs
Elasticity and Strength of Materials-Longitudinal Stretch and Compression-A Spring.	1	1 hr
Bone Fracture: Energy Considerations-Impulsive Forces-Fracture Due to a Fall: Impulsive Force Considerations- Airbags: Inflating Collision Protection Devices.		2 hrs
Whiplash Injury- Falling from Great Height- Osteoarthritis and Exercise.	1	1 hr
Insect Flight-Hovering Flight-Insect Wing Muscles-Power Required for Hovering-Kinetic Energy of Wings in Flight-Elasticity of Wings- EXERCISES		2 hrs
Fluids-Force and Pressure in a Fluid-Pascal's Principle	1	1 hr
Hydrostatic Skeleton-Archimedes' Principle-Power Required to Remain Afloat-Buoyancy of Fish-Surface Tension-Soil Water		2 hrs
Insect Locomotion on Water-Contraction of Muscles-Surfactants- EXERCISES	1	1 hr
The Motion of Fluids-Bernoulli's Equation-Viscosity and Poiseuille's Law-Turbulent Flow-Circulation of the Blood-Blood Pressure-Control of Blood Flow.		2 hrs

Energetics of Blood Flo Blood Flow	ow-Turbulence in the	Blood-Arteriosclerosis	and 1	1 hr	
Power Produced by EXERCISES	ure-	2 hrs			
2 Course components (
Lecture:26Tutorial: 13Practical/Fieldwork /Internship:Other: 30 hrs					

3. Additional private study/learning hours expected for students per week. (This should be an average :for the semester not a specific requirement in each week)

4. Development of Learning Outcomes in Domains of Learning

For each of the domains of learning shown below indicate:

- A brief summary of the knowledge or skill the course is intended to develop;
- A description of the teaching strategies to be used in the course to develop that knowledge or skill;
- The methods of student assessment to be used in the course to evaluate learning outcomes in the domain concerned.

a. Knowledge

- (i) Description of the knowledge to be acquired
 - Learning fundamentals in dielectric theory, fundamental information about the dielectric theory its laws, susceptibility, conductivity.
 - Understanding the physics of dielectric theory and their applications mentioned in the text.
 - Improving logical thinking.
 - To use mathematical formulation to describe the physical principle or phenomena
 - Ability to explain how things work.

(ii) Teaching strategies to be used to develop that knowledge

- Demonstrating the basic information and principles through lectures and the achieved applications
- Discussing phenomena with illustrating pictures and diagrams
- Lecturing method:
 - o Blackboard
 - Power point
 - e-learning
- Tutorials

Revisit concepts • Discussions • Brain storming sessions • • Start each chapter by general idea and the benefit of it; Learn the student background of the subject; • Show the best ways to deal with problem; • Keep the question "why" or "how" to explain always there; • Build a strategy to solve problem. (iii) Methods of assessment of knowledge acquired Solve some example during the lecture. Exams: • Quizzes • Short exams (mid term exams) • Long exams (final) • Oral exams Discussions with the students. Ask the student to clear the misunderstanding of some physical principle. • Ask quality question b. Cognitive Skills (i) Cognitive skills to be developed • How to use physical laws and principles to understand the subject • How to simplify problems and analyze phenomena • Analyse and explain natural phenomena. • Ability to explain the idea with the student own words. • Represent the problems mathematically (ii) Teaching strategies to be used to develop these cognitive skills • Preparing main outlines for teaching • Following some proofs • Define duties for each chapter • Home work assignments • Encourage the student to look for the information in different references • Ask the student to attend lectures for practice solving problem Ask the student to do small research. (iii) Methods of assessment of students cognitive skills • Midterm's exam. Exams, short quizzes Asking about physical laws previously taught • Writing reports on selected parts of the course Discussions of how to simplify or analyze some phenomena c. Interpersonal Skills and Responsibility

(i) Description of the interpersonal skills and capacity to carry responsibility to be developed

7. Work independently.

The students learn independently and take up responsibility.

(ii) Teaching strategies to be used to develop these skills and abilities

- Learn how to search the internet and use the library.
- Learn how to cover missed lectures.
- Learn how to summarize lectures or to collect materials of the course.
- Learn how to solve difficulties in learning: solving problems enhance educational skills.
- Develop her interest in Science through :(lab work, field trips, visits to scientific and research.
 - **u** Encourage the student to attend lectures regularly by:
 - Giving bonus marks for attendance
 - Assigning marks for attendance.

give students tasks of duties

(iii) Methods of assessment of students interpersonal skills and capacity to carry responsibility

- Quizzes on the previous lecture
- Checking report on internet use and trips
- Discussion
- The accuracy of the result gained by each group will indicate good group work
- Presenting the required research on time and the degree of the quality will show the sense of responsibility.
- d. Communication, Information Technology and Numerical Skills

(i) Description of the skills to be developed in this domain.

- Computation
- Problem solving
- Data analysis and interpretation.
- Feeling physical reality of results

(ii) Teaching strategies to be used to develop these skills

- Know the basic mathematical principles.
- Use the web for research.
- Discuss with the student.
- Exams to measure the mathematical skill.
- Clear the weakness point that should be eliminated.
- Encourage the student to ask for help if needed.
- Computational analysis.
- Data representation.
- Focusing on some real results and its physical meaning.

- Lectures for problem solution.
- Encourage the student to ask good question to help solve the problem.
- Display the lecture note and homework assignment at the web.

(iii) Methods of assessment of students numerical and communication skills

- Their interaction with the lectures and discussions.
- The reports of different asked tasks.
- Homework, Problem solutions assignment and exam should focus on the understanding.
- Results of computations and analysis.
- Comments on some resulting numbers.
- Research.

e. Psychomotor Skills (if applicable) Frequently not permitted to be existed in practical colleges.

(i) Description of the psychomotor skills to be developed and the level of performance required

• Student are emphasizing to search through the internet about all concepts that they are learned on class.

Student are emphasizing to look for the concepts that they are learned on class on library by themselves.

(ii) Teaching strategies to be used to develop these skills

(iii) Methods of assessment of students psychomotor skills

5. Scheo	5. Schedule of Assessment Tasks for Students During the Semester					
Assess ment	Assessment task (eg. essay, test, group project, examination etc.)	Week due	Proportion of Final Assessme nt			
1	Midterm 1	5 th week	10			
2	Midterm 2	10 th week	10			
3	In-Class Problem Solving	13 th ,7 th week	10			
4	project	12 th week	10			
5	Homework	Every week	10			
6	Final exam	End of semester	50			
7	Midterm 1	5 th week	10			

8	Midterm 2	10 th week	10

D. Student Support

1. Arrangements for availability of faculty for individual student consultations and academic advice. (include amount of time faculty are available each week)

4 office hours per week

E Learning Resources

1. Required Text(s)
2. Essential References
[1] Physics in Biology and Medicine, Paul Davidovits, 3rd edition, Academic Press is an imprint of Elsevier 2007.
[2] Handbook of physics in medicine and biology, Robert Splinter, CRC Press Taylor & Francis Group, 2010.
[3] Biophysics, Roland Glaser, spring-Verlag Berlin Heidelberg, New York, 5 th , 2001.
Electronic Materials, Web Sites etc http://www.youtube.com/watch?v=lP57gEWcisY&feature=related
http://www.youtube.com/watch?v=HuZLh_mS6iE
3- Recommended Books and Reference Material (Journals, Reports, etc) (Attach List)
4Electronic Materials, Web Sites etc
http://www.youtube.com/watch?v=PTaSfpBJgCE&feature=related
http://www.youtube.com/watch?v=Fjy_hVpWgWs&feature=related
5- Other learning material such as computer-based programs/CD, professional standards/regulations Wikipedia

F. Facilities Required

Indicate requirements for the course including size of classrooms and laboratories (ie number of seats in classrooms and laboratories, extent of computer access etc.)

1. Accommodation (Lecture rooms, laboratories, etc.)

- Lecture room for 30 students
- Library
- Laboratory for electricity (there is a special course for laboratory related to Biomechanics course)

2. Computing resources

- **Computer room**
- Scientific calculator.

3. Other resources (specify --eg. If specific laboratory equipment is required, list requirements or attach list)

1 Strategies for Obtaining Student Feedback on Effectiveness of Teaching

G Course Evaluation and Improvement Processes

Midterm and final exam.

•

- White multi multi kum.
• Quiz.
2 Other Strategies for Evaluation of Teaching by the Instructor or by the Department
3 Processes for Improvement of Teaching
(a) Course report
(b) Program report
(c) Program self study
Fortification of the student learning.
Handling the weakness point.
4. Processes for Verifying Standards of Student Achievement (eg. check marking by an
independent faculty member of a sample of student work, periodic exchange and
remarking of a sample of assignments with a faculty member in another institution)
1. The instructors of the course are checking together and put a unique process of
evaluation
2. Check marking of a sample of papers by others in the department.
3. Feedback evaluation of teaching from independent organization.
5 Describe the planning arrangements for periodically reviewing course effectiveness
and planning for improvement.
1- The following points may help to get the course effectiveness
Student evaluation
Course report
Program report Drogram Solf study
 Program Self study According to point 1 the plan of improvement should be given
2- According to point 1 the plan of improvement should be given.
3- Contact the college to evaluate the course and the benefit it add to other courses.
 4- Add some subject and cut off others depending on the new discoveries in physics.

Kingdom of Saudi Arabia

The National Commission for Academic Accreditation & Assessment

COURSE SPECIFICATION

(21) Radiation physics 304462

Course Specification

For Guidance on the completion of this template, please refer to Handbook 2 Internal

Quality Assurance Arrangements

Institution Umm AL Quraa University

College/Department : Physics department

A Course Identification and General Information

1. Course title and code: **Radiation physics**, **304462**

2. Credit hours : 3 Cr Hrs

3. Program(s) in which the course is offered. For medical physics students (If general elective available in many programs indicate this rather than list programs) B.Sc Degree in Physics

4. Name of faculty member responsible for the course Dr. Taha Mohamed taha alfawwal

5. Level/year at which this course is offered three year

6. Pre-requisites for this course (if any) Pre-Requisite 403361

7. Co-requisites for this course (if any) : Radiation physics

8. Location if not on main campus Within The University Campus

B Objectives

1. Summary of the main learning outcomes for students enrolled in the course. The objectives of this course are to tease out the laws of radiation physics from our everyday experience by specific examples of how radiation physics phenomena manifest themselves.

We want to be able:

The benchmark statement of the main learning outcomes are as follows:

- 1- They are understanding radiation protection,
- 2- They will be familiars with radiation background, interaction of radiation with matter, radiation quantities and units The overall goal is to use the scientific method to come to understand the enormous variety of radiation physics phenomena in terms of a few relatively simple laws

2. Briefly describe any plans for developing and improving the course that are being implemented. (eg increased use of IT or web based reference material, changes in content as a result of new research in the field)

• Explain strategy of the course in the beginni	ng of the semester
• Outlines of the introduction for radiation passociated proofs.	hysical laws, principles and the
 Highlighting the radiation experiments corr subject. 	esponding to a theoretical
 Encourage the students to see more details in reference books in the library. 	n the international web sites and
• Discussing some selected problems in each	chapter.
• Cooperate with different institution to find h	now they deal with the subject
• Renew the course references frequently	
• Development ofl radiation physics laborator	у
• Joining between the theoretical and industria	al applications

• Frequently check for the latest discovery in science

Г

C. Course Description (Note: General description in the form to be used for the Bulletin or Handbook should be attached)

1 Topics to be Covered		
Topic	No of	Contac
	Weeks	thours
Fundamental Sciences		
Quantities and units in science and engineering		
Background information		
Excitation and Ionization		
Characteristic x-ray		
Binding Energy		
The chart of nuclides		
	2	6
Interaction of radiation with matter		0
Alpha particle interactions	2	6
Beta particle interactions		
Specific ionization		
Mass stopping power		
Linear energy transfer		
Bremsstrahlung		
Radioactive atoms- Nature and Behavior		
Alpha emission	2	6
Positron emission		
Orbital electron capture		
Beta emission		
Gamma ray emission		
Internal Conversion Electrons		
Auger electron		

Transformation kinetics		
Average life		
Specific activity		
Time of maximum progeny activity		
Tracing radioactive decay on the chart of the nuclides		
Radiation quantities and units		
Exposure		6
	2	
Absorbed dose and equivalent dose		
Radioactivity		

2 Course components (total contact hours per semester):			
Lecture: : 30 hr	Tutorial: 30 hr	Practical/Fieldwork/I nternship:	Office hours : 24 hr Other:
		15	Paper has been published. Seminar in radiation protection in medicine

3. Additional private study/learning hours expected for students per week. (This should be an average :for the semester not a specific requirement in each week)

4. Development of Learning Outcomes in Domains of Learning

For each of the domains of learning shown below indicate:

- A brief summary of the knowledge or skill the course is intended to develop;
- A description of the teaching strategies to be used in the course to develop that • knowledge or skill;
- The methods of student assessment to be used in the course to evaluate learning • outcomes in the domain concerned.

a. Knowledge

- Understanding the physics of radiation and their applications mentioned in the text.
- Improving logical thinking.
- To use mathematical formulation to describe the physical principle or phenomena Ability to explain how things work.

(i) Description of the knowledge to be acquired

Basic of radiation

Visit for radiology departments

(ii) Teaching strategies to be used to develop that knowledge

- Demonstrating the basic information and principles through lectures and the achieved applications
- Discussing phenomena with illustrating pictures and diagrams
- Lecturing method:
 - Blackboard
 - Power point
 - \circ e-learning
- Tutorials
- Revisit concepts
- Discussions
- Brain storming sessions
- Start each chapter by general idea and the benefit of it;
- Learn the student background of the subject;
- Show the best ways to deal with problem;
- Keep the question "why" or "how" to explain always there;
- Build a strategy to solve problem.

(iii) Methods of assessment of knowledge acquired

- 1. Exams:
 - a) Quizzes
 - b) Short exams (mid term exams)
 - c) Long exams (final)
 - d) Oral exams
- 2. Discussions with the students.
- 3. Ask the student to clear the misunderstanding of some physical principle.
- 4. Ask quality question
- b. Cognitive Skills

(i) Cognitive skills to be developed

- How to use physical laws and principles to understand the subject
- How to simplify problems and analyze phenomena
- Analyse and explain natural phenomena.
- Ability to explain the idea with the student own words.
- Represent the problems mathematically.

(ii) Teaching strategies to be used to develop these cognitive skills

- 1. Preparing main outlines for teaching
- 2. Following some proofs
- 3. Define duties for each chapter
- 4. Home work assignments

- 5. Encourage the student to look for the information in different references
- 6. Ask the student to attend lectures for practice solving problem
- 7. Ask the student to do small research.

(iii) Methods of assessment of students cognitive skills

- Midterm's exam. Exams, short quizzes
- Asking about physical laws previously taught
- Writing reports on selected parts of the course
- Discussions of how to simplify or analyze some phenomena

c. Interpersonal Skills and Responsibility

(i) Description of the interpersonal skills and capacity to carry responsibility to be developed

8. Work independently.

The students learn independently and take up responsibility

(ii) Teaching strategies to be used to develop these skills and abilities

- Learn how to cover missed lectures.
- Learn how to summarize lectures or to collect materials of the course.
- Learn how to solve difficulties in learning: solving problems enhance educational skills.
- Develop her interest in Science through :(lab work, field trips, visits to scientific and research.
 - **4** Encourage the student to attend lectures regularly by:
 - Giving bonus marks for attendance
 - Assigning marks for attendance.
 - *give students tasks of duties*

(iii) Methods of assessment of students interpersonal skills and capacity to carry responsibility

- Checking report on internet use and trips
- Discussion
- The accuracy of the result gained by each group will indicate good group work
- Presenting the required research on time and the degree of the quality will show the sense of responsibility.
- Quizzes on the previous lecture
- Checking report on internet use and trips
- Discussion
- The accuracy of the result gained by each group will indicate good group work
- Presenting the required research on time and the degree of the quality will show the sense of responsibility.

d. Communication, Information Technology and Numerical Skills

(i) Description of the skills to be developed in this domain.

- 1. Computation
- 2. Problem solving
- 3. Data analysis and interpretation.
- 4. Feeling physical reality of results

(ii) Teaching strategies to be used to develop these skills
• Know the basic mathematical principles.
• Use the web for research.
• Discuss with the student.
• Exams to measure the mathematical skill.
• Clear the weakness point that should be eliminated.
• Encourage the student to ask for help if needed.
Computational analysis.
• Data representation.
• Focusing on some real results and its physical meaning.
• Lectures for problem solution.
• Encourage the student to ask good question to help solve the problem.
• Display the lecture note and homework assignment at the web.
(iii) Methods of assessment of students numerical and communication skills
• Their interaction with the lectures and discussions.
• The reports of different asked tasks.
• Homework, Problem solutions assignment and exam should focus on the understanding.
• Results of computations and analysis.
• Comments on some resulting numbers.
• Research.
e. Psychomotor Skills (if applicable)
(i) Description of the psychomotor skills to be developed and the level of performance required
Problem solving
• Data analysis and interpretation.
Feeling physical reality of results
(ii) Teaching strategies to be used to develop these skills
• Know the basic mathematical principles.
• Use the web for research.
• Discuss with the student.
• Exams to measure the mathematical skill.
• Clear the weakness point that should be eliminated.
• Encourage the student to ask for help if needed.
Computational analysis.
• Data representation.
• Focusing on some real results and its physical meaning.
• Lectures for problem solution.
• Encourage the student to ask good question to help solve the problem.

• Display the lecture note and homework assignment at the web

(iii) Methods of assessment of students psychomotor skills

5. Schedule of Assessment Tasks for Students During the Semester			
Assessme nt	Assessment task (eg. essay, test, group project, examination etc.)	Week due	Proportion of Final Assessme nt
1	Midterm 1	5 th week	10
2	Midterm 2	10 th week	10
3	In-Class Problem Solving	13 th ,7 th week	10
4	Medical Radiation laboratory	12 th week	20
5	Final exam	End of semester	50

D. Student Support

1. Arrangements for availability of faculty for individual student consultations and academic advice. (include amount of time faculty are available each week)

8 office hours per week

E Learning Resources

1. Required Text(s)
2. Essential References
1- Recommended Books and Reference Material (Journals, Reports, etc) (Attach List)
 Michael G. Stabin" Radiation Protection and Dosimetry" 2007.Ch5. p-p, 67-74 Herman Cember "Introduction to Health Physics" 1983, 2003, 2009.Ch6. p-p, 135-142.,Ch.10-p. 529.
4Electronic Materials, Web Sites etc

↓ http://www.IAEA.com

http://ICRP.com
http://NCRPcom
http://ICRU.com
http://UNSCAR.com
http://ANSI.com
http://FWO.com
http://WHO.com

5- Other learning material such as computer-based programs/CD, professional standards/regulations Wikipedia

F. Facilities Required

Indicate requirements for the course including size of classrooms and laboratories (ie number of seats in classrooms and laboratories, extent of computer access etc.)

- 1. Accommodation (Lecture rooms, laboratories, etc.)
 - Lecture room for 20 students
 - Library
 - Laboratory for medical radiation physics (there is a special course for laboratory related to medical radiation physics)

2. Computing resources

- Computer room
- Scientific calculator

3. Other resources (specify --eg. If specific laboratory equipment is required, list requirements or attach list)

G Course Evaluation and Improvement Processes

1 Strategies for Obtaining Student Feedback on Effectiveness of Teaching

• Midterm and final exam.

• Quiz

2 Other Strategies for Evaluation of Teaching by the Instructor or by the Department

3 Processes for Improvement of Teaching

- (a) Course report
- (b) Program report
- (c) Program self study
 - Fortification of the student learning.

Handling the weakness point.

4. Processes for Verifying Standards of Student Achievement (eg. check marking by an independent faculty member of a sample of student work, periodic exchange and remarking of a sample of assignments with a faculty member in another institution)

- The instructors of the course are checking together and put a unique process of evaluation
- Check marking of a sample of papers by others in the department.
- Feedback evaluation of teaching from independent organization.

5 Describe the planning arrangements for periodically reviewing course effectiveness and planning for improvement.

- 1- The following points may help to get the course effectiveness
 - Student evaluation
 - Course report
 - Program report
 - Program Self study
- 2- According to point 1 the plan of improvement should be given.
- 3- Contact the college to evaluate the course and the benefit it add to other courses.
- 4- Add some subject and cut off others depending on the new discoveries in physics.

Kingdom of Saudi Arabia

The National Commission for Academic Accreditation & Assessment

Course Specification

(22) Radioisotope in Medicine 403497

Course Specification

For Guidance on the completion of this template, please refer to Handbook 2 Internal

Quality Assurance Arrangements

Institution:- Umm AL-Qura University

College/Department :- College of Sciences / Physics Department

A Course Identification and General Information

1. Course title and code: Radioisotope in Medicine (PH 497)

2. Credit hours: - 2 Cr. Hrs

3. Program(s) in which the course is offered. (If general elective available in many programs indicate this rather than list programs) B.Sc Degree in Medical Physics

4. Name of faculty member responsible for the course:

5. Level/year at which this course is offered: Seventh Level

6. Pre-requisites for this course (if any) Pre-Requisite 364 PH + 360 Physiology

7. Co-requisites for this course (if any)

8. Location if not on main campus :- Within The University Campus

B Objectives

1. Summary of the main learning outcomes for students enrolled in the course.

The objectives of this course are to tease out the ultrasound waves properties from our everyday experience by specific examples of how ultrasound waves used in medical application especially imaging.

We want to be able:

The benchmark statement of the main learning outcomes are as follows:

- 1. To understand basic Fundamentals of Radioisotope production and protection of their hazards: Physics of production, radiopharmaceuticals' properties, and dose calculations in different body organs.
- 2. The students should be trained on physical and generic skills (knowledge cognitive interpersonal communication problem solving IT)
- 3. To describe, in words, the ways in which various concepts of radioisotopes come into play in particular situations; to represent radioisotope generation and principles of different medical applications.
- 4. To study Gamma camera and whole body counter used in evaluation of body's content of different radioisotopes
- 5. To understanding behaviour of different radioisotopes in medical tests.

The overall goal is to study the physical characteristics of radioisotopes, generation methods and different medical applications as a medical imaging technique, in addition to the protection ways.

2. Briefly describe any plans for developing and improving the course that are being implemented. (eg increased use of IT or web based reference material, changes in content as a result of new research in the field)

- 1. Explain strategy of the course in the beginning of the semester
- 2. Outlines of the physical laws, principles and the associated proofs.
- 3. Highlighting the day life applications whenever exist.
- 4. Encourage the students to see more details in the international web sites and reference books in the library.
- 5. Discussing some selected problems in each chapter.
- 6. Cooperate with different institution to find how they deal with the subject
- 7. Renew the course references frequently

Frequently check for the latest discovery in science

C. Course Description (Note: General description in the form to be used for the Bulletin or Handbook should be attached)

Topics to be achieved		
Topics	No. Of	Contact
	Weeks	hours
Production and Properties of Radioisotopes		
1- Matter and Energy		
2- Atomic Structure		
3- Isotopes, isotones and isobars	2	1.5
4- Types of Isotopes	weeks	hr/week
5- Application		in, week
6-Radioactive emissions and their properties		
7- Radioactivity in practical Radiology		
Radioisotopes in clinical medicine:		
1- Radioactivity materials		
2- Nuclear reactor and its construction		
3- Radioactive equilibrium	2	1.5
4- Characteristics of Target material	weeks	hr/week
5- 24 hrs Thyroid upta7ke test	weeks	in, week
6- Kidney function test		
7- Blood volume test		
8- Radioactive phosphorus		
Radiation Dosimetry:		
1- Physical, biological and effective half lifes		
2- Dosimetry calculations	6	1.5
3- Accumulated activity	weeks	hr/week
4- S-value		
5- self-dose, target and source organs		
Radiation Safety:		
1- Rationale and dose limits	2	1.5
2- Occupational exposure and exposure to general public	weeks	hr/week
3- Methods for limiting exposure and shielding		

2 Course components	s (total contact hours p	er semester):	
Lecture: 36 hr	Tutorial:	Practical/Fieldwork /Internship:	Other: Office hours : 32 hr

3. Additional private study/learning hours expected for students per week. (This should be an average :for the semester not a specific requirement in each week)

4. Development of Learning Outcomes in Domains of Learning For each of the domains of learning shown below indicate:

- A brief summary of the knowledge or skill the course is intended to develop;
- A description of the teaching strategies to be used in the course to develop that knowledge or skill;
- The methods of student assessment to be used in the course to evaluate learning outcomes in the domain concerned.

a. Knowledge knowledge that students should know and understand when they complete • the course are as follow: Learning fundamentals of radioisotopes' physics Understanding the design of radiopharmaceutical generators and their applications mentioned in the text. Improving logical thinking. To use mathematical formulation to describe the physical principle of different imaging modes Ability to explain how things work. Teaching strategies to be used to develop that knowledge • Demonstrating the basic information and principles through lectures and the 1. achieved applications 2. Discussing phenomena with illustrating pictures and diagrams 3. Lecturing method: a. Blackboard b. Power point

c. e-learning

4. Tutorials

5. Revisit concepts

6. Discussions
7. Brain storming sessions
8. Start each chapter by general idea and the benefit of it;
9. Learn the student background of the subject;
10. Show the best ways to deal with problem;
11. Keep the question "why" or "how" to explain always there;
Build a strategy to solve problem.
(iii) Methods of assessment of knowledge acquired
• Solve some example during the lecture.
• Exams:
• Quizzes
• Short exams (mid term exams)
 Long exams (final) Oral exams
 Oral exams Discussions with the students.
• Ask the student to clear the misunderstanding of some physical principle.
• Ask quality question.
b. Cognitive Skills
(i) Cognitive skills to be developed
• How to use physical laws and principles to understand the subject
 How to use physical laws and principles to understand the subject How to simplify problems and analyze phenomena
How to simplify problems and analyze phenomena
 How to simplify problems and analyze phenomena Analyse and explain natural phenomena.
 How to simplify problems and analyze phenomena Analyse and explain natural phenomena. Ability to explain the idea with the student own words.
 How to simplify problems and analyze phenomena Analyse and explain natural phenomena.
 How to simplify problems and analyze phenomena Analyse and explain natural phenomena. Ability to explain the idea with the student own words.
 How to simplify problems and analyze phenomena Analyse and explain natural phenomena. Ability to explain the idea with the student own words. Represent the problems mathematically.
 How to simplify problems and analyze phenomena Analyse and explain natural phenomena. Ability to explain the idea with the student own words. Represent the problems mathematically. (ii) Teaching strategies to be used to develop these cognitive skills Preparing main outlines for teaching
 How to simplify problems and analyze phenomena Analyse and explain natural phenomena. Ability to explain the idea with the student own words. Represent the problems mathematically. (ii) Teaching strategies to be used to develop these cognitive skills Preparing main outlines for teaching Following some proofs
 How to simplify problems and analyze phenomena Analyse and explain natural phenomena. Ability to explain the idea with the student own words. Represent the problems mathematically. (ii) Teaching strategies to be used to develop these cognitive skills Preparing main outlines for teaching Following some proofs Define duties for each chapter
 How to simplify problems and analyze phenomena Analyse and explain natural phenomena. Ability to explain the idea with the student own words. Represent the problems mathematically. (ii) Teaching strategies to be used to develop these cognitive skills Preparing main outlines for teaching Following some proofs Define duties for each chapter Home work assignments
 How to simplify problems and analyze phenomena Analyse and explain natural phenomena. Ability to explain the idea with the student own words. Represent the problems mathematically. (ii) Teaching strategies to be used to develop these cognitive skills Preparing main outlines for teaching Following some proofs Define duties for each chapter Home work assignments Encourage the student to look for the information in different references
 How to simplify problems and analyze phenomena Analyse and explain natural phenomena. Ability to explain the idea with the student own words. Represent the problems mathematically. (ii) Teaching strategies to be used to develop these cognitive skills Preparing main outlines for teaching Following some proofs Define duties for each chapter Home work assignments Encourage the student to look for the information in different references Ask the student to attend lectures for practice solving problem
 How to simplify problems and analyze phenomena Analyse and explain natural phenomena. Ability to explain the idea with the student own words. Represent the problems mathematically. (ii) Teaching strategies to be used to develop these cognitive skills Preparing main outlines for teaching Following some proofs Define duties for each chapter Home work assignments Encourage the student to look for the information in different references
 How to simplify problems and analyze phenomena Analyse and explain natural phenomena. Ability to explain the idea with the student own words. Represent the problems mathematically. (ii) Teaching strategies to be used to develop these cognitive skills Preparing main outlines for teaching Following some proofs Define duties for each chapter Home work assignments Encourage the student to look for the information in different references Ask the student to attend lectures for practice solving problem Ask the student to do small research.
 How to simplify problems and analyze phenomena Analyse and explain natural phenomena. Ability to explain the idea with the student own words. Represent the problems mathematically. (ii) Teaching strategies to be used to develop these cognitive skills Preparing main outlines for teaching Following some proofs Define duties for each chapter Home work assignments Encourage the student to look for the information in different references Ask the student to attend lectures for practice solving problem Ask the student to do small research.
 How to simplify problems and analyze phenomena Analyse and explain natural phenomena. Ability to explain the idea with the student own words. Represent the problems mathematically. (ii) Teaching strategies to be used to develop these cognitive skills Preparing main outlines for teaching Following some proofs Define duties for each chapter Home work assignments Encourage the student to look for the information in different references Ask the student to attend lectures for practice solving problem Ask the student to do small research. (iii) Methods of assessment of students cognitive skills
 How to simplify problems and analyze phenomena Analyse and explain natural phenomena. Ability to explain the idea with the student own words. Represent the problems mathematically. (ii) Teaching strategies to be used to develop these cognitive skills Preparing main outlines for teaching Following some proofs Define duties for each chapter Home work assignments Encourage the student to look for the information in different references Ask the student to attend lectures for practice solving problem Ask the student to do small research. (iii) Methods of assessment of students cognitive skills Midterm's exam. Exams, short quizzes Asking about physical laws previously taught
 How to simplify problems and analyze phenomena Analyse and explain natural phenomena. Ability to explain the idea with the student own words. Represent the problems mathematically. (ii) Teaching strategies to be used to develop these cognitive skills Preparing main outlines for teaching Following some proofs Define duties for each chapter Home work assignments Encourage the student to look for the information in different references Ask the student to attend lectures for practice solving problem Ask the student to do small research. (iii) Methods of assessment of students cognitive skills

c. Interpersonal	Skills	and	Responsibi	lity

(i) Description of the interpersonal skills and capacity to carry responsibility to be developed

9. Work independently.

The students learn independently and take up responsibility.

(ii) Teaching strategies to be used to develop these skills and abilities

- Learn how to search the internet and use the library.
- Learn how to cover missed lectures.
- Learn how to summarize lectures or to collect materials of the course.
- Learn how to solve difficulties in learning: solving problems enhance educational skills.
- Develop her interest in Science through :(lab work, field trips, visits to scientific and research.

4 Encourage the student to attend lectures regularly by:

- Giving bonus marks for attendance
- Assigning marks for attendance.

give students tasks of duties

(iii) Methods of assessment of students interpersonal skills and capacity to carry responsibility

- 1. Quizzes on the previous lecture
- 2. Checking report on internet use and trips
- 3. Discussion
- 4. The accuracy of the result gained by each group will indicate good group work
- 5. Presenting the required research on time and the degree of the quality will show the sense of responsibility.

d. Communication, Information Technology and Numerical Skills

(i) Description of the skills to be developed in this domain.

- Computation
- Problem solving
- Data analysis and interpretation.
- Feeling physical reality of results

1. Know the basic mathematical principles. 2. Use the web for research. 3. Discuss with the student. 4. Exams to measure the mathematical skill. 5. Clear the weakness point that should be eliminated. 6. Encourage the student to ask for help if needed. 7. Computational analysis. 8. Data representation. 9. Focusing on some real results and its physical meaning. 10. Lectures for problem solution. 11. Encourage the student to ask good question to help solve the problem. 12. Display the lecture note and homework assignment at the web. (iii) Methods of assessment of students numerical and communication skills 1. Their interaction with the lectures and discussions. 2. The reports of different asked tasks. 3. Homework, Problem solutions assignment and exam should focus on the understanding. 4. Results of computations and analysis. 5. Comments on some resulting numbers. e. Psychomotor Skills (if applicable) (i) Description of the psychomotor skills to be developed and the level of performance required (ii) Teaching strategies to be used to develop these skills (iii) Methods of assessment of students psychomotor skills 5. Schedule of Assessment Tasks for Students During the Semester

(ii) Teaching strategies to be used to develop these skills

Assess ment	Assessment task (eg. essay, test, group project, examination etc.)	Week due	Proportion of Final Assessme nt
1	Midterm 1	5 th week	10
2	Midterm 2	10 th week	10
3	In-Class Problem Solving	13 th ,7 th week	10

4	project	12 th week	10
5	Homework	Every week	10
6	Final exam	End of semester	50

D. Student Support

1. Arrangements for availability of faculty for individual student consultations and academic advice. (include amount of time faculty are available each week)

4 office hours per week

E Learning Resources

1. Required Text(s)
2. Essential References
 3- Recommended Books and Reference Material (Journals, Reports, etc) (Attach List) [1] Physics & Instrumentation of Nuclear Medicine by Sprawls [2] Basic Science of Nuclear Medicine by Parker
4Electronic Materials, Web Sites etc ↓
5- Other learning material such as computer-based programs/CD, professional standards/regulations

Wikipedia

F. Facilities Required

Indicate requirements for the course including size of classrooms and laboratories (ie number of seats in classrooms and laboratories, extent of computer access etc.)

- 1. Accommodation (Lecture rooms, laboratories, etc.)
 - Lecture room for 30 students
 - Library

2. Computing resources

- Computer room
 - Scientific calculator.

3. Other resources (specify --eg. If specific laboratory equipment is required, list requirements or attach list)

G Course Evaluation and Improvement Processes

1 Strategies for Obtaining Student Feedback on Effectiveness of Teaching
• Midterm and final exam.
• Quiz.
2 Other Strategies for Evaluation of Teaching by the Instructor or by the Department
3 Processes for Improvement of Teaching
(a) Course report
(b) Program report
(c) Program self study
Fortification of the student learning.
Handling the weakness point.
4. Processes for Verifying Standards of Student Achievement (eg. check marking by an independent faculty member of a sample of student work, periodic exchange and
remarking of a sample of assignments with a faculty member in another institution)
• The instructors of the course are shealing together and put a unique process of
• The instructors of the course are checking together and put a unique process of evaluation
 Check marking of a sample of papers by others in the department.
• Feedback evaluation of teaching from independent organization.
recourse evaluation of teaching from macpendent organization.
5 Describe the planning arrangements for periodically reviewing course effectiveness
and planning for improvement.
1- The following points may help to get the course effectiveness
 Student evaluation
Course report
Program report
Program Self study
2- According to point 1 the plan of improvement should be given.
3- Contact the college to evaluate the course and the benefit it add to other courses.
4- Add some subject and cut off others depending on the new discoveries in
physics.

Kingdom of Saudi Arabia

The National Commission for Academic Accreditation & Assessment

Course Specification

(23) **Electronics 403423**

Course Specification

For Guidance on the completion of this template, please refer to Handbook 2 Internal

Quality Assurance Arrangements

Institution Umm AL-Qura University

College/Department College of Sciences / Physics Department

A Course Identification and General Information

1. Course title and code: Electronics PH423

2. Credit hours: 4 Cr Hours (3+Lab)

3. Program(s) in which the course is offered. (If general elective available in many programs indicate this rather than list programs) *B.Sc Degree in Physics*

4. Name of faculty member responsible for the course

5. Level/year at which this course is offered Fourth year

6. Pre-requisites for this course (if any) Pre-Requisite 246 PH + 285 PH

7. Co-requisites for this course (if any)

8. Location if not on main campus Within The University Campus

B Objectives

1. Summary of the main learning outcomes for students enrolled in the course.

Outcomes of this course are to introduce the basic physical principles and fundamentals of semiconductors and their usage and applications in electronic components like diodes and transistors.

This course introduces basic principles of linear and digital electronic circuits that are used in the everyday experience, like

- Signal operational amplifiers,
- Circuit rectifiers.
- Digital circuits like logic gates
- Applications to memory chips and timers used in most of electronic devices

At the end of this course the student should be able to

- 1. Understand and analyze relatively simple electronic layouts and circuits
- 2. Design special purpose circuits that meet his requirements in his scientific life

2. Briefly describe any plans for developing and improving the course that are being implemented. (eg increased use of IT or web based reference material, changes in content as a result of new research in the field)

1. Explain strategy of the course in the beginning of the semester

2. Outlines of the physical laws, principles and the associated proofs.

 3. Highlighting the day life applications whenever exist. 4. Encourage the students to see more details in the internareference books in the library. 5. Discussing some selected problems in each chapter. 6. Cooperate with different institution to find how they dea 7. Renew the course references frequently 		
8. Frequently check for the latest discovery in science		
<i>C. Course Description</i> (Note: General description in the form Bulletin or Handbook should be attached)1 Topics to be Covered		ed for the
Торіс	No of Weeks	Contacthours
I- CONDUCTION MECHANISM IN SEMICONDUCTORS		
 Metals and semiconductors; Carrier Concentration; Charge neutrality; Impurities 		
 Carrier concentration at equilibrium ; Temperature dependence; Non-equilibrium and excess carriers Recombination and generation of excess carriers 		
4. Transport of electric current; Drift diffusion and flow of carriers; Einstein relations	2 weeks	6 hrs
II- DISTRIBUTION AND FLOW OF CARRIERS IN SEMICONDUCTOR		
 The effect of recombination on flow Evaluation of carrier lost bu recombination; Modified conservation law 		
 Graded semiconductors and built-in-fields Equilibrium situation and minority carrier flow 	2 weeks	6 hrs
III- JUNCTION DIODE PHYSICAL ELECTRONICS	weeks	0 1115
1. The p-n junction; physical model for p-n junction		
 Carrier concentration at edges of space-charge layer Minority distribution and flow 		
 Current-Voltage characteristics Temperature dependence of idealized diode equation 		
6. Brief view of p-n dynamic behavior; junction structure;		
 Contacts and metal-semiconductor junctions 	2 weeks	6 hrs
IV- BIPOLAR JUNCTION TRANSISTORS	WUUKS	0 111 5
1. BJT as control valves		
2. Operation of BJT		
3. Circuit models of low speed active region operation		
4. An example of transistor circuit analysis ; Transistor operation at extremes of collector voltage	2 weeks	6 hrs
V- FIELD-EFFECT TRANSISTORS		0 1110
1. Electrical properties of semiconductors for surfaces	2	
2. Volt-Ampere characteristics of MOSFET	weeks	6 hrs

3.	A brief view of dynamics for MOSFET and circuit		
4.	applications Junction Field-Effect Transistors static drain		
	characteristics;		
5.	Comparison of MOSFET and FET transistors		
VI-	Operational amplifiers		
1.	Introduction		
2.	Connecting the Amplifier to the circuit		
3.	Ideal and real Amplifiers		
4.	Linear Amplification and negative feedback		
5.	Special applications of amplifications		
6.	Addition and subtraction of signals		
7.	Memory and timing applications; using positive		
	feedback (Multivibrators)		
8.	Integration and Differentiation	2	
		weeks	6 hrs
	DIGITAL ELECTRONICS		
1.	Digital logic (Binary numbers, Logic levels, Logic		
	gates; Truth tables; Logic families-practical circuits)		
	Main gates (AND, OR, NOT, NAND, NOR)		
	Combination of gates		
	Logic laws		
	XOR and XNOR gates		
	Adding of binary numbers		
7.	Memory elements (Multivibrators, Flip-Flops)	2	
		weeks	6 hrs

2 Course components	s (total contact hours p	er semester):	
Lecture: 42 hrs	Tutorial: 30 hrs	Practical/Fieldwork /Internship:	Other Office hours : 32 hr

3. Additional private study/learning hours expected for students per week. (This should be an average :for the semester not a specific requirement in each week)

4. Development of Learning Outcomes in Domains of Learning For each of the domains of learning shown below indicate:

- A brief summary of the knowledge or skill the course is intended to develop;
- A description of the teaching strategies to be used in the course to develop that knowledge or skill;

The methods of student assessment to be used in the course to evaluate learning outcomes in the domain concerned.

Des	scription of the knowledge to be acquired
•	Learning fundamentals in electronics and electronic elements
•	Understanding the physics of electronics and their applications mentioned in the text.
•	Improving logical thinking.
•	Ability to understand and design simple electronic circuits
•	Ability to explain how things work.
Te	aching strategies to be used to develop that knowledge
•	Demonstrating the basic information and principles through lectures and the achieved applications
•	Discussing phenomena with illustrating pictures and diagrams
•	 Lecturing method: Blackboard
	 Blackboard Power point
	• e-learning
•	Tutorials
•	Revisit concepts
•	Discussions
•	Brain storming sessions
•	Start each chapter by general idea and the benefit of it;
•	Learn the student background of the subject;
•	Show the best ways to deal with problem;
•	Keep the question "why" or "how" to explain always there;
٠	Build a strategy to solve problem.
) M	ethods of assessment of knowledge acquired
•	Solve some example during the lecture.
•	Exams:
	• Quizzes
	 Short exams (mid term exams)
	• Long exams (final)
	• Oral exams Discussions with the students.
•	
•	Ask the student to clear the misunderstanding of some physical principle.
•	Ask quality question.

(i) Cognitive skills to be developed
 How to use physical laws and principles to understand the subject How to simplify problems and analyze phenomena Analyse and explain natural phenomena. Ability to explain the idea with the student own words. Represent the problems mathematically.
(ii) Teaching strategies to be used to develop these cognitive skills
 Preparing main outlines for teaching Following some proofs Define duties for each chapter Homework assignments Encourage the student to look for the information in different references Ask the student to attend lectures for practice solving problem Ask the student to do small research.
(iii) Methods of assessment of students cognitive skills
 Midterm's exam;. short quizzes Asking about physical laws previously taught Writing reports on selected parts of the course Discussions of how to simplify or analyze some phenomena c. Interpersonal Skills and Responsibility
(i) Description of the interpersonal skills and capacity to carry responsibility to be developed
Work independently.The students learn independently and take up responsibility.
(ii) Teaching strategies to be used to develop these skills and abilities
 Learn how to search the internet and use the library. Learn how to cover missed lectures. Learn how to summarize lectures or to collect materials of the course. Learn how to solve difficulties in learning: solving problems – enhance educational skills.
• Develop his interest in Science through :(lab work, field trips, visits to scientific and research institutions.
 Encourage the student to attend lectures regularly by: Giving bonus marks for attendance Assigning marks for attendance. give students tasks of duties
(iii) Methods of assessment of students interpersonal skills and capacity to carry responsibility
 Quizzes on the previous lecture Checking report on internet use and trips Discussion The accuracy of the result gained by each group will indicate good group work

	• Presenting the required research on time and the degree of the quality will show the sense of responsibility.
I. C	Communication, Information Technology and Numerical Skills
i) D	escription of the skills to be developed in this domain.
	 Computation Problem solving Data analysis and interpretation. Feeling physical reality of results
(11)	Teaching strategies to be used to develop these skills
	• Know the basic mathematical principles.
	• Use the web for research.
	• Discuss with the student.
	• Exams to measure the mathematical skill.
	• Clear the weakness point that should be eliminated.
	• Encourage the student to ask for help if needed.
	Computational analysis.
	Data representation.Focusing on some real results and its physical meaning.
	 Lectures for problem solution.
	• Encourage the student to ask good question to help solve the problem.
	 Display the lecture note and homework assignment at the web.
(iii)	Methods of assessment of students numerical and communication skills
	 Their interaction with the lectures and discussions. The reports of different asked tasks. Homework, Problem solutions assignment and exam should focus on the understanding. Results of computations and analysis. Comments on some resulting numbers. Research.
e. Ps	sychomotor Skills (if applicable)
(i) D requi	escription of the psychomotor skills to be developed and the level of performance red
(ii) 7	Ceaching strategies to be used to develop these skills

5. Schedule of Assessment Tasks for Students During the Semester

Assess ment	Assessment task (eg. essay, test, group project, examination etc.)	Week due	Proportion of Final Assessme nt
1	Midterm 1	5 th week	10
2	Midterm 2	10 th week	10
3	In-Class Problem Solving	13 th ,7 th week	10
4	project	12 th week	10
5	Homework	Every week	10
6	Final exam	End of semester	50

D. Student Support

1. Arrangements for availability of faculty for individual student consultations and academic advice. (include amount of time faculty are available each week)

8 office hours per week

E Learning Resources

1. Required Text(s)

2. Essential References

3- Recommended Books and Reference Material (Journals, Reports, etc) (Attach List) [1] **Physics by Experiment**, by J.R.L Hartley; D.L. Misell; Pob. Stanley Thornes

4-.Electronic Materials, Web Sites etc

- <u>http://www.physicsclassroom.com</u>
- http://www.electronicstheory.com/
- <u>http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/</u>

5- Other learning material such as computer-based programs/CD, professional standards/regulations

Wikipedia

F. Facilities Required

Indicate requirements for the course including size of classrooms and laboratories (ie number of seats in classrooms and laboratories, extent of computer access etc.)

1. Accommodation (Lecture rooms, laboratories, etc.)

- Lecture room for 30 students
- Library
- Laboratory for electronics there is a special course for laboratory related to electronics)

2. Computing resources

- Computer room
- Scientific calculator.

3. Other resources (specify --eg. If specific laboratory equipment is required, list requirements or attach list)

G Course Evaluation and Improvement Processes

1 Strategies for Obtaining Student Feedback on Effectiveness of Teaching

- Midterms and final exam.
- Quizzes.

2 Other Strategies for Evaluation of Teaching by the Instructor or by the Department

3 Processes for Improvement of Teaching

- (a) Course report
- (b) Program report
- (c) Program self study
 - Fortification of the student learning.
 - Handling the weakness point.

4. Processes for Verifying Standards of Student Achievement (eg. check marking by an independent faculty member of a sample of student work, periodic exchange and remarking of a sample of assignments with a faculty member in another institution)

- The instructors of the course are checking together and put a unique process of evaluation
- Check marking of a sample of papers by others in the department.
- Feedback evaluation of teaching from independent organization.

5 Describe the planning arrangements for periodically reviewing course effectiveness and planning for improvement.

- 1- The following points may help to get the course effectiveness
 - Student evaluation
 - Course report
 - Program report
 - Program Self study
- 2- According to point 1 the plan of improvement should be given.
- 3- Contact the college to evaluate the course and the benefit it add to other courses.
- 4- Add some subject and cut off others depending on the new discoveries in physics.

Kingdom of Saudi Arabia

The National Commission for Academic Accreditation & Assessment

Course Specification

(24) Medical Imaging 403497

Course Specification

For Guidance on the completion of this template, please refer to Handbook 2 Internal

Quality Assurance Arrangements

Institution:- Umm AL-Qura University

College/Department :- College of Sciences / Physics Department

A Course Identification and General Information

1. Course title and code: Medical Imaging (PH 497)

2. Credit hours: - 3 Cr. Hrs

3. Program(s) in which the course is offered. (If general elective available in many programs indicate this rather than list programs) B. Sc Degree in Medical Physics

4. Name of faculty member responsible for the course: Dr Ramadan Ali Hassan

5. Level/year at which this course is offered: Forth year

6. Pre-requisites for this course (if any) Medical Radiation Physics (PH 364)

7. Co-requisites for this course (if any) Atomic Physics (PH 253)

8. Location if not on main campus :- Within The University Campus

B Objectives

1. Summary of the main learning outcomes for students enrolled in the course.

The objectives of this course are to try to set down the basics of medical imaging and describe how these basics have been applied in some of the medical specialties.

2. Briefly describe any plans for developing and improving the course that are being implemented. (eg increased use of IT or web based reference material, changes in content as a result of new research in the field)

- Explain strategy of the course in the beginning of the semester
- Outlines of the physical laws, principles and the associated proofs.
- Highlighting the day life applications whenever exist.
- Encourage the students to see more details in the international web sites and reference books in the library.
- Cooperate with different institution to find how they deal with the subject
- Renew the course references frequently
- Frequently check for the latest discovery in science

C. Course Description (Note: General description in the form to be used for the Bulletin or Handbook should be attached)

1 Topics to be Covered :-

Topics	No of Weeks	Contac t hours
1 Introduction to digital image	VV CCKS	t nours
processing		151
Digital images		1.5 hr
Image quality Basic image operations		-
2 Radiography		-
Introduction		-
X-rays		1.5 hr
Interaction with matter	1 week	
X-ray detectors		
Dual-energy imaging		
Image quality		1.5 hr
Equipment		
Clinical use		1.5 hr
Biologic effects and safety	1 week	
Future expectations		1.5 hr
3 X-ray computed tomography		1.5 hr
Introduction		1.5 hr
X-ray detectors in CT		
Imaging		
Cardiac CT		151
Dual-energy CT		1.5 hr
Image quality		
Equipment		1.5 hr
Clinical use		
Biologic effects and safety		1.5 hr
Future expectations		
4 Magnetic resonance imaging		1.5 hr
Introduction		1.5 hr

Physics of the transmitted signal		
Interaction with tissue		1.5 hr
Signal detection and detector		
Imaging		1.5 hr
Image quality		
Equipment	2 weeks	
Clinical use		
Biologic effects and safety		
Future expectations		1.5 hr
5 Nuclear medicine imaging		
Introduction		1.5 hr
Radionuclides		1.5 m
Interaction of γ-photons and particles		
with matter		
Data acquisition		1.5 hr
Imaging		
Image quality		1.5 hr
Equipment		
Clinical use		1.5 hr

2 Course components (total contact hours per semester):					
Lecture: 42 hr	Tutorial: 30 hr	Practical/Fieldwork /Internship:	Other: Office hours : 32 hr		

3. Additional private study/learning hours expected for students per week. (This should be an average :for the semester not a specific requirement in each week)

4. Development of Learning Outcomes in Domains of Learning

For each of the domains of learning shown below indicate:

- A brief summary of the knowledge or skill the course is intended to develop;
- A description of the teaching strategies to be used in the course to develop that knowledge or skill;
- The methods of student assessment to be used in the course to evaluate learning outcomes in the domain concerned.

a. Knowledge

(i) knowledge that students should know and understand when they complete the course are as follow:

- Understanding the physics of medical imaging
- Learning fundamentals of clinical application of medical imaging
- Understanding of factors effecting image quality.
- Learning of medical imaging systems.

(ii) Teaching strategies to be used to develop that knowledge

- Demonstrating the basic information and principles through lectures and the achieved applications
- Discussing phenomena with illustrating pictures and diagrams
 - Lecturing method:
 - Blackboard
 - Power point
 - \circ e-learning
- Tutorials
- Revisit concepts
- Discussions
- Brain storming sessions
- Start each chapter by general idea and the benefit of it;
- Learn the student background of the subject;
- Show the best ways to deal with problem;
- Keep the question "why" or "how" to explain always there;
- Build a strategy to solve problem.

(iii) Methods of assessment of knowledge acquired

- 1. Solve some example during the lecture.
- 2. Exams:
 - a) Quizzes
 - b) Short exams (mid term exams)
 - c) Long exams (final)
 - d) Oral exams

- 3. Discussions with the students.
- 4. Ask the student to clear the misunderstanding of some physical principle.
- 5. Ask quality question.

b. Cognitive Skills

- (i) Cognitive skills to be developed
 - 5. How to use physical laws and principles to understand the subject
 - 6. How to simplify problems and analyze phenomena
 - 7. Analyse and explain natural phenomena.

8. Ability to explain the idea with the student own words.

(ii) Teaching strategies to be used to develop these cognitive skills

- 8. Preparing main outlines for teaching
- 9. Following some proofs
- **10.** Define duties for each chapter
- **11.** Home work assignments

12. Encourage the student to look for the information in different references

Ask the student to do small research.

(iii) Methods of assessment of students cognitive skills

- 4. Midterm's exam. Exams, short quizzes
- 5. Asking about lecture previously taught
- 6. Writing reports on selected parts of the course

Discussions of how to simplify or analyse some phenomena

c. Interpersonal Skills and Responsibility

(i) Description of the interpersonal skills and capacity to carry responsibility to be developed

10. Work independently.

The students learn independently and take up responsibility.

(ii) Teaching strategies to be used to develop these skills and abilities

- Learn how to search the internet and use the library.
- Learn how to cover missed lectures.
- Learn how to summarize lectures or to collect materials of the course.
- Develop her interest in Science through :(lab work, field trips, visits to scientific and research.
 - **4** Encourage the student to attend lectures regularly by:
 - Giving bonus marks for attendance
 - Assigning marks for attendance.

give students tasks of duties

(iii) Methods of assessment of students interpersonal skills and capacity to carry responsibility

- Quizzes on the previous lecture
- Checking report on internet use and trips
- Discussion
- The accuracy of the result gained by each group will indicate good group work
- Presenting the required research on time and the degree of the quality will show the sense of responsibility.

d. Communication, Information Technology and Numerical Skills

(i) Description of the skills to be developed in this domain.

- Using internet to search for topics and writing reports
- Using some math program for some calculation

(ii) Teaching strategies to be used to develop these skills

- Know the basic physical principles.
- Use the web for research.
- Discuss with the student.
- Exams to measure the information skill.
- Clear the weakness point that should be eliminated.
- Encourage the student to ask for help if needed.
- Data representation.
- Display the lecture note and homework assignment at the web.

(iii) Methods of assessment of students numerical and communication skills

- Their interaction with the lectures and discussions.
- The reports of different asked tasks.
- Homework, Problem solutions assignment and exam should focus on the understanding.
- Results of computations and analysis.
- Comments on some resulting numbers.
- Research.

e. Psychomotor Skills (if applicable)

(i) Description of the psychomotor skills to be developed and the level of performance required

(ii) Teaching strategies to be used to develop these skills

(iii) Methods of assessment of students psychomotor skills

5. Schedule of Assessment Tasks for Students During the Semester				
Assess ment	Assessment task (eg. essay, test, group project, examination etc.)	Week due	Proportion of Final Assessme nt	
1	Midterm 1	5 th week	10	
2	Midterm 2	10 th week	10	
3	In-Class Problem Solving	13 th ,7 th week	10	
4	project	12 th week	10	
5	Homework	Every week	10	
6	Final exam	End of semester	50	

D. Student Support

1. Arrangements for availability of faculty for individual student consultations and academic advice. (include amount of time faculty are available each week)

8 office hours per week

E Learning Resources

1. Required Text(s)
2. Essential References
 3- Recommended Books and Reference Material (Journals, Reports, etc) (Attach List) Medical imaging physics Fourth Edition William R. Hendee, Ph.D. 2002 by Wiley-Liss, Inc Fundamentals of Medical Imaging Second Edition Paul Suetens Cambridge University Press 2009 Introduction to Medical Imaging Smith and A. Webb Cambridge University Press 2011 4Electronic Materials, Web Sites etc
http://www.excelmedicalimaging.com/ http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6159236 http://www.nema.org/prod/med/
5- Other learning material such as computer-based programs/CD, professional standards/regulations
Wikipedia

F. Facilities Required

Indicate requirements for the course including size of classrooms and laboratories (ie number of seats in classrooms and laboratories, extent of computer access etc.)

1. Accommodation (Lecture rooms, laboratories, etc.)

Lecture room for 30 students

2. Computing resources

Computer room

3. Other resources (specify --eg. If specific laboratory equipment is required, list requirements or attach list)

G Course Evaluation and Improvement Processes

1 Strategies for Obtaining Student Feedback on Effectiveness of Teaching

- Midterm and final exam.
- Quiz.

2 Other Strategies for Evaluation of Teaching by the Instructor or by the Department

3 Processes for Improvement of Teaching

- (a) Course report
- (b) Program report
- (c) Program self study
 - Fortification of the student learning.
 - Handling the weakness point.

4. Processes for Verifying Standards of Student Achievement (eg. check marking by an independent faculty member of a sample of student work, periodic exchange and remarking of a sample of assignments with a faculty member in another institution)

- The instructors of the course are checking together and put a unique process of evaluation
- Check marking of a sample of papers by others in the department.
- Feedback evaluation of teaching from independent organization.

5 Describe the planning arrangements for periodically reviewing course effectiveness and planning for improvement.

- The following points may help to get the course effectiveness
 - Student evaluation
 - Course report
 - Program report
 - Program Self study
- According to point 1 the plan of improvement should be given.
- Contact the college to evaluate the course and the benefit it add to other courses.
- Add some subject and cut off others depending on the new discoveries in physics.

Kingdom of Saudi Arabia

The National Commission for Academic Accreditation & Assessment

Course Specification

(25) Clinical Radiotherapy Physics 403490

Course Specification

For Guidance on the completion of this template, please refer to of Handbook 2

Internal Quality Assurance Arrangements

Institution:- Umm AL-Qura University

College/Department :- College of Sciences / Physics Department

A Course Identification and General Information

1. Course title and code: Clinical Radiotherapy Physics (PH 490)

2. Credit hours: - 3 Cr. Hrs

3. Program(s) in which the course is offered. (If general elective available in many programs indicate this rather than list programs) B. Sc Degree in Medical Physics

4. Name of faculty member responsible for the course: Dr Ramadan Ali Hassan

5. Level/year at which this course is offered: Forth year

6. Pre-requisites for this course (if any) Medical Radiation Physics (PH 364)

7. Co-requisites for this course (if any) Atomic Physics (PH 253)

8. Location if not on main campus :- Within The University Campus

B Objectives

1. Summary of the main learning outcomes for students enrolled in the course.

The objectives of this course are to try to set down the basics of Radiation and its interaction with tissue and describe how these basics have been applied in Radiotherapy specialties.

2. Briefly describe any plans for developing and improving the course that are being implemented. (eg increased use of IT or web based reference material, changes in content as a result of new research in the field)

- Explain strategy of the course in the beginning of the semester
- Outlines of the physical laws, principles and the associated proofs.
- Highlighting the day life applications whenever exist.
- Encourage the students to see more details in the international web sites and reference books in the library.
- Cooperate with different institution to find how they deal with the subject
- Renew the course references frequently
- Frequently check for the latest discovery in science

C. Course Description (Note: General description in the form to be used for the Bulletin or Handbook should be attached)

1 Topics to be Covered :-		
Topics	No of Weeks	Contac t hours
Topics		
- Radiation Related Terms (Basic Terms)	1 week	
Radiation, Ionization, Radioactivity, Gamma Rays, Betas, Alphas, X rays		1.5 hr
- Common Units Roentgen (R), Rad, Rem, Curie (Ci), SI units.		-
- X-Ray production		
Physics of X-ray Production		1.5 hr
X-Ray Machines (Cathode-Anode)		
Characteristic Radiation		
Continuous X-ray Spectrum		
Factors affecting the x-ray emission spectrum		1.5 hr
- Interaction of Photon with Matter		
Photoelectric, Compton, Pair production	1 week	
Half-value layer		1.5 hr
Filtration		1.5 hr
- Teletherapy Machines		
Kilovoltage Unites (Grenz, Contact, Supervoltage, Orthovoltage)		
Megavolage Unites (Linear Accelerator, Microtron, Cyclotron)		1.5 hr
Machines using Radionuclides (Cobalt, Caesium)		

- Radiation Detectors	
- Kaulauon Delectors	
Gas Filled Detector	
Sodium Iodide Detector	1.5 hr
Sourain Iourae Detector	1.5 11
Ionization chamber, TLD, Film	
	1.5 hr
Active and Passive Detectors	1.5 III
	1.5 hr
- Doses Measurements	
Tissue Equivalent Materials	1.5 hr
Tissue Equivalent Materials	
Type (Exposure and Absorbed Dose)	
Absolute Doses (in Air, in Medium, Calibration)	
	1.5 hr
Relative Doses (%DD, Isodose Distrebution)	
- Dosimetric Parameters	
%DD, BSF, TAR, TMR, SAR	
Factors affecting DD	1.5 hr
E Eld C ECD D ata	
E, Fld.S, FSD, FCD, D, etc.	
	1.5 hr
- Dose Calculations (Manual)	
(Single Field, Multiple Field, Isocenter, Modified, Irregular,	
Inhomogeneity Correction)	1.5 hr
- Dose Calculations (Treatment Planning)	

(Beam Data Entry, Patient Data Entry, Algorism, Calculation, Optimization, Output Data)		1.5 hr
- Advanced Radiotherapy Techniques		
IORT, IMRT, IMRT, CRT		
Sterotactic Radiotherapy	1	
- Electron Beam Therapy	Week	1.5 hr
Interaction		-
Measurements		
Calculation		-
- Brachytherapy	1 Week	-
Sealed Radioactive Sources	WCCK	1.5 hr
Afterloading System		1.5 hr
Dose Calculations		
		1.5 hr
- Radiation Protection	1 Week	
Aim of R.P. in Medicine		
Sources of ionizing radiation		
Personal Dosimetry	1 Week	3 hr
Radiation Detection Equipment		
Shielding in Radiotherapy		1.5 hr
Shielding in Nuclear Medicine	1 Week	1.5 hr
Quantities and Unites		
Exposure Limits		
- Quality Assurance in Radiotherapy	1 Week	1. 5 hr

(Q.A of: Teletherapy Machines, Dosimetry equipments, Treatment Planning,etc.)	1 Week	
		1.5 hr

2 Course components (total contact hours per semester):					
Lecture: 42 hr	Tutorial: 30 hr	Practical/Fieldwork /Internship:	Other: Office hours : 32 hr		

3. Additional private study/learning hours expected for students per week. (This should be an average :for the semester not a specific requirement in each week)

4. Development of Learning Outcomes in Domains of Learning

For each of the domains of learning shown below indicate:

- A brief summary of the knowledge or skill the course is intended to develop;
- A description of the teaching strategies to be used in the course to develop that knowledge or skill;
- The methods of student assessment to be used in the course to evaluate learning outcomes in the domain concerned.

a. Knowledge

- knowledge that students should know and understand when they complete the course are as follow:
- 1. Understanding the physics of radiation therapy physics
- 2. Learning experimental and theoretical knowledge of radiation therapy physics
- 3. Understanding the Teletherapy Machines
- 4. Learning Brachytherapy physics
- 5. Learning Quality Assurance in Radiotherapy.
- 6. Teaching strategies to be used to develop that knowledge
- 1. Demonstrating the basic information and principles through lectures and the achieved applications
- 2. Discussing phenomena with illustrating pictures and diagrams
- 3. Lecturing method:
 - a. Blackboard
 - b. Power point
 - c. e-learning
- 4. Tutorials

5. Revisit concepts			
6. Discussions			
7. Brain storming sessions			
8. Start each chapter by general idea and the benefit of it;			
9. Learn the student background of the subject;			
10. Show the best ways to deal with problem;			
11. Keep the question "why" or "how" to explain always there;			
Build a strategy to solve problem.			
(iii) Methods of assessment of knowledge acquired			
• Solve some example during the lecture.			
• Exams:			
o Quizzes			
 Short exams (mid term exams) 			
 Long exams (final) 			
• Oral exams			
• Discussions with the students.			
• Ask the student to clear the misunderstanding of some physical principle.			
• Ask quality question.			
b. Cognitive Skills			
(i) Cognitive skills to be developed			
• How to use physical laws and principles to understand the subject			
 How to simplify problems and analyze phenomena 			
 Analyse and explain natural phenomena. 			
Ability to explain the idea with the student own words.			
(ii) Teaching strategies to be used to develop these cognitive skills			
Preparing main outlines for teaching			
• Following some proofs			
• Define duties for each chapter			
• Home work assignments			
• Encourage the student to look for the information in different references			
• Ask the student to do small research.			
(iii) Methods of assessment of students cognitive skills			
• Midterm's exam. Exams, short quizzes			
Asking about lecture previously taught			
• Writing reports on selected parts of the course			
Discussions of how to simplify or analyse some phenomena			
c. Interpersonal Skills and Responsibility			
(i) Description of the interpersonal skills and capacity to carry responsibility to be			
developed			

- Work independently.
- The students learn independently and take up responsibility.

(ii) Teaching strategies to be used to develop these skills and abilities

- Learn how to search the internet and use the library.
- Learn how to cover missed lectures.
- Learn how to summarize lectures or to collect materials of the course.
- Develop her interest in Science through :(lab work, field trips, visits to scientific and research.
 - **u** Encourage the student to attend lectures regularly by:
 - Giving bonus marks for attendance
 - Assigning marks for attendance.

give students tasks of duties

(iii) Methods of assessment of students interpersonal skills and capacity to carry responsibility

- Quizzes on the previous lecture
- Checking report on internet use and trips
- Discussion
- The accuracy of the result gained by each group will indicate good group work
- Presenting the required research on time and the degree of the quality will show the sense of responsibility.

d. Communication, Information Technology and Numerical Skills

(i) Description of the skills to be developed in this domain.

- Using internet to search for topics and writing reports
- Using some math program for some calculation
- (ii) Teaching strategies to be used to develop these skills
 - Know the basic physical principles.
 - Use the web for research.
 - Discuss with the student.
 - Exams to measure the information skill.
 - Clear the weakness point that should be eliminated.
 - Encourage the student to ask for help if needed.
 - Data representation.
 - Display the lecture note and homework assignment at the web.

(iii) Methods of assessment of students numerical and communication skills

- Their interaction with the lectures and discussions.
- The reports of different asked tasks.
- Homework, Problem solutions assignment and exam should focus on the understanding.
- Results of computations and analysis.
- Comments on some resulting numbers.
- Research.

e. Psychomotor Skills (if applicable)

(i) Description of the psychomotor skills to be developed and the level of performance required

(ii) Teaching strategies to be used to develop these skills

(iii) Methods of assessment of students psychomotor skills

5. Schedule of Assessment Tasks for Students During the Semester				
Assess ment	Assessment task (eg. essay, test, group project, examination etc.)	Week due	Proportion of Final Assessme nt	
1	Midterm 1	5 th week	10	
2	Midterm 2	10 th week	10	
3	In-Class Problem Solving	13 th ,7 th week	10	
4	project	12 th week	10	
5	Homework	Every week	10	
6	Final exam	End of semester	50	

D. Student Support

1. Arrangements for availability of faculty for individual student consultations and academic advice. (include amount of time faculty are available each week)

8 office hours per week

E Learning Resources

1. Required Text(s)

2. Essential References

3- Recommended Books and Reference Material (Journals, Reports, etc) (Attach List)

- 1- The physics of radiation therapy failz m. khan, ph.d. 2003 by lippincott williams & Wilkins
- 2- Clinical radiotherapy physics Lawrence Herman 2004 by Springer
- Radiation oncology physics international atomic energy agency Vienna, 2005
- 4- Radiation oncology ;Physicist's eye view 2001 by Springer

4-.Electronic Materials, Web Sites etc

http://www.oxfordradcliffe.nhs.uk/medphys/radiotherapy/home.aspx http://medicalphysicsweb.org/

http://www.aapm.org/links/medphys/

5- Other learning material such as computer-based programs/CD, professional standards/regulations

Wikipedia

F. Facilities Required

Indicate requirements for the course including size of classrooms and laboratories (ie number of seats in classrooms and laboratories, extent of computer access etc.)

- 1. Accommodation (Lecture rooms, laboratories, etc.)
 - 3. Lecture room for 30 students

2. Computing resources

3. Computer room

3. Other resources (specify --eg. If specific laboratory equipment is required, list requirements or attach list)

G Course Evaluation and Improvement Processes

1 Strategies for Obtaining Student Feedback on Effectiveness of Teaching

- Midterm and final exam.
- Quiz.

2 Other Strategies for Evaluation of Teaching by the Instructor or by the Department

3 Processes for Improvement of Teaching

- (a) Course report
- (b) Program report
- (c) Program self study
 - Fortification of the student learning.

Handling the weakness point.

4. Processes for Verifying Standards of Student Achievement (eg. check marking by an independent faculty member of a sample of student work, periodic exchange and remarking of a sample of assignments with a faculty member in another institution)

- The instructors of the course are checking together and put a unique process of evaluation
- Check marking of a sample of papers by others in the department.
- Feedback evaluation of teaching from independent organization.

5 Describe the planning arrangements for periodically reviewing course effectiveness and planning for improvement.

- 1- The following points may help to get the course effectiveness
 - Student evaluation
 - Course report
 - Program report
 - Program Self study
- 2- According to point 1 the plan of improvement should be given.
- 3- Contact the college to evaluate the course and the benefit it add to other courses.
- 4- Add some subject and cut off others depending on the new discoveries in physics.

Kingdom of Saudi Arabia

The National Commission for Academic Accreditation & Assessment

Course Specification

(26) COMPUTER 403383

Course Specification

Institution : Umm Al-Qura University

College/Department : College of Science/Physics Department

A Course Identification and General Information

1. Course title and code: COMPUTER 403383-2

2. Credit hours: 2 Cr

3. Program(s) in which the course is offered. (If general elective available in many programs indicate this rather than list programs) :physics students

4. Name of faculty member responsible for the course : Dr. LOULOU Mehrez

5. Level/year at which this course is offered: 6th level/ third year

6. Pre-requisites for this course (if any): 102 PH +140 Math

7. Co-requisites for this course (if any):no- Co-requisite

8. Location if not on main campus :on campus

B Objectives

1. Summary of the main learning outcomes for students enrolled in the course.

The basic of computer and languages are taught in this course. Introduction to computers, languages, Virus, physical application, Microsoft Windows, Microsoft Arabic Word, and plotting by computer are briefly covered. By the end of this course the student will be able to :

- Know the components of a computer system and its architecture
- Know the database applications
- Define programming, Programs
- Define network and multimedia components

2. Briefly describe any plans for developing and improving the course that are being implemented. (eg increased use of IT or web based reference material, changes in content as a result of new research in the field)

* This course is developed by using interactive lab work showing most of the course lab in form of simulation comparing the real measurements obtained in lab work with simulated measurements.

* Using the library to search on some topic and writing reports.

C. Course Description (Note: General description in the form to be used for the Bulletin or Handbook should be attached)

1 Topics to be Covered

List of Topics	No of Weeks	Contac thours
Introduction to computers + computers	2	4
Computer languages	3	6
Operating system in personal computers (DOS)	2	4
Virus	1	2
Flow charts	2	4
Physical application	1	2
Microsoft Windows 3.1 +Microsoft Arabic Word	3	6

2 Course compon	ents (total contac	et hours per seme	ester):	
Lecture: 28	Tutorial: 7	Laboratory: 0	Practical/Field work/Internshi p	Other:

3. Additional private study/learning hours expected for students per week. (This should be an average :for the semester not a specific requirement in each week)

2 hours/week for homework

4. Development of Learning Outcomes in Domains of Learning For each of the domains of learning shown below indicate:

- A brief summary of the knowledge or skill the course is intended to develop;
- A description of the teaching strategies to be used in the course to develop that knowledge or skill;
- The methods of student assessment to be used in the course to evaluate learning outcomes in the domain concerned.

a. Knowledge

(i) Description of the knowledge to be acquired : Basics of computer and computer languages

(ii) Teaching strategies to be used to develop that knowledge
• Continuous evaluation by several quizzes and exams plus homework.
• online videos
(iii) Methods of assessment of knowledge acquired
• Quizzes every other week, Mid-term exam, Final exam
• Discussions with the students
b. Cognitive Skills
(ix) Description of cognitive skills to be developed
• Ability to think critically and analytically in computing
• Ability to interpret of oriented problems, whether graphically or algebraically using the computer program
(x) Teaching strategies to be used to develop these cognitive skills
Preparing main outlines for teaching
• Following some proofs
• Define duties for each chapter
 Homework assignments Encourage the student to look for the information in different references
 Encourage the student to look for the information in different references Ask the student to attend lectures for practice solving problem
 Ask the student to attend rectares for practice solving problem Ask the student to do small research
(iii) Methods of assessment of students cognitive skills
• Midterm's exam, Exams, Short quizzes
 Research projects
• Writing reports on selected parts of the course
c. Interpersonal Skills and Responsibility
(i) Description of the interpersonal skills and capacity to carry responsibility to be developed
• Students have the necessary skills to defend their point of view and/or proposed solution to any computational problem based on the acquired knowledge.
• Students learn independently and take up responsibility
• Students can complete all assignments in due time
(ii) Teaching strategies to be used to develop these skills and abilities
• Learn how to search the internet and use the library
 Learn how to cover missed lectures Learn how to summarize lectures or to collect materials of the course
 Learn how to summarize lectures or to collect materials of the course Learn how to solve difficulties in learning: solving problems-enhance
educational skills.
• Develop her interest in science through: lab work, field trips,
• Encourage the student to attend lectures regularly by giving bonus marks for attendance

(xi	
	responsibility
•	Quizzes on the previous lecture
٠	Discussion
•	The accuracy of the result gained by each group will indicate good group work
d. Co	ommunication, Information Technology and Numerical Skills
(i) De	scription of the skills to be developed in this domain.
•	Using internet to search for topic and writing reports
•	Make simulation
•	Plotting by computers (origin)
(ii) Te	eaching strategies to be used to develop these skills
•	Use the web for research
•	Discuss with the student
•	Clear the weakness point that should be eliminated
•	Encourage the student to ask for help if needed
•	Computational analysis
•	Data representation
•	Focusing on some real results and its physical meaning
•	Display the lecture note and homework assignment at the web
(xi	i) Methods of assessment of students numerical and communication skills
	Their interaction with the lectures and discussions
•	The reports of different asked tasks
•	Homework, problem solution assignment and exam should focus on the
•	understanding
	Results of computations and analysis
	Comments on some resulting numbers
	Research
e. Psy	chomotor Skills (if applicable)
(1) De require	scription of the psychomotor skills to be developed and the level of performance
(ii) Te	eaching strategies to be used to develop these skills
(iii) N	Iethods of assessment of students psychomotor skills

5. Schedule of Assessment Tasks for Students During the Semester			
Assess ment	Assessment task (eg. essay, test, group project, examination etc.)	Week due	Proportion of Final Assessme nt
1	Homework Assignments	All along	10%
2	Participation + Quizzes	All along	10%
3	Mid-term exam 1	6th	20%
4	Mid-term exam 2	14th	20%
5	Final exam	17th	40%

D. Student Support

1. Arrangements for availability of teaching staff for individual student consultations and academic advice. (include amount of time teaching staff are expected to be available each week)

During office hours. In addition, students can arrange appointments with the lecturer whenever suits them.

E Learning Resources

1. Required Text(s);

2. Essential References :

* Fortran 77 with scientific and engineering application. Dr. Awad Mansour,

* Windows 3.1 and MS-DOS 6.2 by Majdi Mohammed abou alaata

3- Recommended Books and Reference Material (Journals, Reports, etc) (Attach List)

- Windows 3.1 and MS-DOS 6.2 by Majdi Mohammed abou alaata
- Fortran 77 with scientific and engineering application. Dr. Awad Mansour

4-.Electronic Materials, Web Sites etc

The lecturer prepared some solved exercise for each chapter, which are available on his personal website. Also, students are usually asked to watch some educational videos online about the subjects covered in the course.

5- Other learning material such as computer-based programs/CD, professional standards/regulations

F. Facilities Required

Indicate requirements for the course including size of classrooms and laboratories (ie number of seats in classrooms and laboratories, extent of computer access etc.)

1. Accommodation (Lecture rooms, laboratories, etc.)

The maximum number of students in each group is 25, which can be conveniently accommodated in all class rooms in the university.

2. Computing resources

3. Other resources (specify --eg. If specific laboratory equipment is required, list requirements or attach list)

G Course Evaluation and Improvement Processes

1 Strategies for Obtaining Student Feedback on Effectiveness of Teaching

Students are required to evaluate the course online (including the lecturer performance, the material .. etc) each semester. The student will not be able to receive his/her own final mark without this evaluation.

2 Other Strategies for Evaluation of Teaching by the Instructor or by the Department

3 Processes for Improvement of Teaching

The consideration of the students' comments and evaluations, plus the continuous update and improvement of the course material

4. Processes for Verifying Standards of Student Achievement (eg. check marking by an independent member teaching staff of a sample of student work, periodic exchange and remarking of tests or a sample of assignments with staff at another institution)

Students have the right to ask for re-marking any exam in case there is any suspicion of the results.

5 Describe the planning arrangements for periodically reviewing course effectiveness and planning for improvement.

Continuous evaluation and consultation with the Faculty of Engineering to match their requirements.

Kingdom of Saudi Arabia

The National Commission for Academic Accreditation & Assessment

Course Specification

(27) Nuclear physics (2) 403461

Course Specification

For Guidance on the completion of this template, please refer to Handbook 2 Internal

Quality Assurance Arrangements

Institution:- Umm AL-Qura University

College/Department :- College of Sciences / Physics Department

A Course Identification and General Information

1. Course title and code: Nuclear physics 2 (403461)

2. Credit hours: - 3 Cr. Hrs

3. Program(s) in which the course is offered. (If general elective available in many programs indicate this rather than list programs) B.Sc Degree in Physics

4. Name of faculty member responsible for the course:

5. Level/year at which this course is offered: level 8

6. Pre-requisites for this course (if any) Pre-Requisite 361 PH + 362 PH

7. Co-requisites for this course (if any);

- 8. Location if not on main campus :- Within The University Campus
- **B** Objectives
 - 1. Summary of the main learning outcomes for students enrolled in the course.

The objectives of this course are to study physics of nuclei, as course covers most aspects of nuclear structure physics with nuclear forces, various nuclear properties, dynamics of nuclear reactions and sources of nuclear energy.

The main learning outcomes are as follows:

- To have knowledge about the strong nuclear interaction from properties of the deuteron and from proton and neutron scattering experiments.
- To understand nuclear moments, molecular beam resonance and the results of measurements of Nuclear Moments.
- To know Nuclear Magnetic Resonance phenomena that allows the observation of specific <u>quantum mechanical magnetic</u> properties of the <u>atomic nucleus</u>. NMR is also routinely used in advanced <u>medical imaging</u> techniques.
- To know Nuclear Models. The Shell model allows us to understand and to predict various nuclear properties such as "magic nuclei", nuclear magnetic moments, etc.
- Elements of the theory of nuclear reactions, resonance scattering and neutron spectroscopy.
- Nuclear Energy. We study the theory of energy released in fission and fusion reactions. Controlled fission and fusion reactions provide useful huge energy to generate electricity. It is also useful in generating higher mission velocities for rockets. The overall goal is to use the scientific method to come to understand the enormous variety of Nuclear Phenomena.

2. Briefly describe any plans for developing and improving the course that are being implemented. (eg increased use of IT or web based reference material, changes in content as a result of new research in the field)

- Explain strategy of the course in the beginning of the semester
- Outlines of the physical laws, principles and the associated proofs.
- Highlighting the day life applications whenever exist.
- Encourage the students to see more details in the international web sites and reference books in the library.
- Discussing some selected problems in each chapter.
- Cooperate with different institution to find how they deal with the subject
- Renew the course references frequently
- Frequently check for the latest discovery in science

C. Course Description (Note: General description in the form to be used for the Bulletin or Handbook should be attached)

1 Topics to be Covered :-		
Topics	No of Weeks	Contact hours

Topics		
The Deuteron:		
1-Introduction	1 week	
2- The Deuteron, Experimental data		-
		1.5 hr
3-Simple Theory of the Deuteron		
4-Normalization of the Deuteron Wave Function ; Root Mean Square Radius		1.5 hr
5-Spin Dependence of Nuclear Forces	2 week	
6-Tensor force		1.5 hr
NUCLEON –NUCLEON SCATTERING:		
		1.5.1
1-Introduction		1.5 hr
2-Scaterring Cross Sections		
3-Experimental Data on Low Energy Neutron Proton Scattering	3 week	1.5 hr
4-Partial Wave Analysis of n-p Scattering		-
5-Determination of the Phase Shift		
6-Singlet and Triplet Potentials		1.5 hr
7-Effective Range Theory		
9 Emerals of Ductors Ductors Continue of Long Emerals	4 week	1.5 hr
8-Example of Proton-Proton Scattering at Low Energies		
9- Theory of Proton-Proton Scattering at Low Energies		
10-High Energy Nucleon-Nucleon Scattering		-
		1.5 hr
11-Meson Theory of Nuclear Forces		1
NUCLEAR MOMENTS:		

2-Effect of an External magnetic field on hyperfine structure 3-Molecular Excitations and Determination of I Form Molecular Band Spectra 4-Nuclear Parameters Determined By Microwave 5-Molecular Beam Resonance Methods 6-Molecular Beam Experiments on Hydrogen 7- Nuclear Magnetic Resonances in Liquids and Solids 8-Measurement of Magnetic Moment of Neutron	1. veek 1.	.5 hr .5 hr .5 hr
3-Molecular Excitations and Determination of I Form Molecular Band Spectra	1. veek 1.	.5 hr .5 hr
Molecular Band Spectra4-Nuclear Parameters Determined By Microwave5-Molecular Beam Resonance Methods6-Molecular Beam Experiments on Hydrogen7- Nuclear Magnetic Resonances in Liquids and Solids8-Measurement of Magnetic Moment of Neutron	/eek 1.	.5 hr
5-Molecular Beam Resonance Methods 6 w 6-Molecular Beam Experiments on Hydrogen 7 7- Nuclear Magnetic Resonances in Liquids and Solids 8 8-Measurement of Magnetic Moment of Neutron 6	/eek 1.	.5 hr
6-Molecular Beam Experiments on Hydrogen 6 7- Nuclear Magnetic Resonances in Liquids and Solids 8 8-Measurement of Magnetic Moment of Neutron 6	1.	
7- Nuclear Magnetic Resonances in Liquids and Solids 8-Measurement of Magnetic Moment of Neutron		
8-Measurement of Magnetic Moment of Neutron	1.	.5 hr
	1.	.5 hr
	1	
9-Results of Measurements of Nuclear Moments 7 w	veek	
NUCLEAR MODELS:		
1-Review of the Atomic Shell Model and Predicted Ground State Angular Momenta	1.	.5 hr
2- Single Particle Model of the Nucleus		
3-Magic Numbers; Spin Orbit Coupling	1.	.5 hr
4-Predicted Angular Momenta of Nuclear Ground States 8 w	veek	
5- Excited States and the Shell Model	1.	.5 hr
6- Magnetic Moments and the Shell Model; Schmidt Lines		<u> </u>
7- Symmetry; Isospin	1.	.5 hr

8- Single Particle Orbits in a Distorted Well		
o bingle futilete ofbits in a Distorted Wen	9 week	
9- Collective Motion; Rotational States		1.5 hr
10-Vibratioal States		1.5 hr
NUCLEAR REACTIONS:		
1-Introduction	10 week	
2-Reaction Dynamics; The Q-Equation		1.5 hr
3-Charged Particle Reaction Spectroscopy		
4-Neutron Spectroscopy		1.5 hr
5-Theories of Nuclear Reactions	11 week	-
6-Partial Wave Analysis of Reaction Cross Sections		1.5 hr
7-Compound Nucleus Formation and Breakup		-
8-Resonance Scattering and Reactions		1.5 hr
9-Nuclear Resonance Spectroscopy	12 week	-
10-The Optical Model		1.5 hr
11-Theory of Stripping Reactions		-
12- Stripping Reactions and the Shell Model		1.5 hr
13- Coulomb Excitation	13 week	
14-Photonuclear Reaction		1.5 hr
NUCLEAR ENERGY:		
1-The Fission Process		1.5 hr
2-Neutrons Released in the Fission Process; Cross Sections	14 week	
3-The Fission Reactor Operating With Natural Uranium as Fuel		1.5 hr
4- Fusion; Thermonuclear Energy		

5-Prospect of Controlled Fusion Energy	1.5 hr

2 Course compone	nts (total contact hours	s per semester):	
Lecture: 42 hr	Tutorial: 30 hr	Practical/Fieldwork	Other:
		/Internship:	Office hours : 32 hr

3. Additional private study/learning hours expected for students per week. (This should be an average: for the semester not a specific requirement in each week) 06 hr.

4. Development of Learning Outcomes in Domains of Learning

For each of the domains of learning shown below indicate:

- A brief summary of the knowledge or skill the course is intended to develop;
- A description of the teaching strategies to be used in the course to develop that knowledge or skill;
- The methods of student assessment to be used in the course to evaluate learning outcomes in the domain concerned.

a. Knowledge

Knowledge that students should know and understand when they complete the course are as follow:

- The fundamental knowledge of nuclear theory.
- Understanding the physics of nuclei and forces acting between nuclear particles.
- Improving logical thinking.
- To use mathematical formulation to describe the physical principle or phenomena
- Knowledge of Nuclear Magnetic Resonance phenomena and its applications.
- Knowledge of production of nuclear energy and its uses.

Methods of assessment of knowledge acquired

- 1. Solve some examples during the lecture.
- 2. Exams:
 - a) Quizzes
 - b) Short exams (mid term exams)
 - c) Long exams (final)
 - d) Oral exams
- 3. Discussions with the students.
- 4. Ask the student to clear the misunderstanding of some physical principle.
- 5. Ask short conceptual questions.

b. Cognitive Skills

(i) Cognitive skills to be developed

- 1. How to use physical laws and principles to understand the subject
- 2. How to simplify problems and analyze phenomena
- 3. Analyse and explain natural phenomena.
- 4. Ability to explain the idea with the student own words.
- 5. Represent the problems mathematically.

(ii) Teaching strategies to be used to develop these cognitive skills

- 1. Preparing main outlines for teaching
- 2. Following some proofs
- 3. Define duties for each chapter
- 4. Home work assignments
- 5. Encourage the student to look for the information in different references
- 6. Ask the student to attend lectures for practice solving problem

(iii) Methods of assessment of students cognitive skills

- 7. Midterm's exam. Exams, short quizzes
- 8. Asking about physical laws previously taught
- 9. Writing reports on selected parts of the course
- 10. Asking for derivation that was derived in class.

c. Interpersonal Skills and Responsibility

(i) Description of the interpersonal skills and capacity to carry responsibility to be developed

11. Work independently.

The students learn independently and take up responsibility.

(ii) Teaching strategies to be used to develop these skills and abilities

- Learn how to search the internet and use the library.
- Learn how to cover missed lectures.
- Learn how to summarize lectures or to collect materials of the course.
- Learn how to solve difficulties in learning: solving problems enhance educational skills.
- Develop their interest in Science through :(lab works, field trips, visits to scientific and research institutions.
 - **4** Encourage the student to attend lectures regularly by:
 - Giving bonus marks for attendance
 - Assigning marks for attendance.

Encourage the student to ask questions during lectures.

(iii) Methods of assessment of students interpersonal skills and capacity to carry responsibility

- 1. Quizzes on the previous lecture
- 2. Checking report on internet use and trips
- 3. Discussion
- 4. The accuracy of the result gained by each group will indicate good group work

Presenting the required research on time and the degree of the quality will show the sense of responsibility.

d. Communication, Information Technology and Numerical Skills

(i) Description of the skills to be developed in this domain.

- 5. Computation
- 6. Problem solving
- 7. Data analysis and interpretation.

Feeling physical reality of results

(ii) Teaching strategies to be used to develop these skills
1. Know the basic mathematical principles.
2. Use the web for research.
3. Discuss with the student.
4. Exams to measure the mathematical skill.
5. Clear the weakness point that should be eliminated.
6. Encourage the student to ask for help if needed.
7. Computational analysis.
8. Data representation.
 9. Focusing on some real results and its physical meaning. 10. Leastures for problem solution
10. Lectures for problem solution.11. Encourage the student to ask good question to help solve the problem.
11. Encourage the student to ask good question to help solve the problem.
12. Display the lecture note and homework assignment at the web.
(iii) Methods of assessment of students numerical and communication skills
1. Their interaction with the lectures and discussions.
2. The reports of different asked tasks.
3. Homework, Problem solutions assignment and exam should focus on the understanding.
4. Results of computations and analysis.
5. Comments on some resulting numbers.
6. <i>Research.</i> e. Psychomotor Skills (if applicable)
e. i sychomotor Skins (ii applicable)
(i) Description of the psychomotor skills to be developed and the level of performance required
(ii) Teaching strategies to be used to develop these skills
(iii) Methods of assessment of students psychomotor skills
(iii) memous of assessment of students psycholiotor skins

5. Schedule of Assessment Tasks for Students During the Semester

Assess ment	Assessment task (eg. essay, test, group project, examination etc.)	Week due	Proportion of Final Assessme nt
1	Midterm 1	5 th week	10
2	Midterm 2	10 th week	10
3	In-Class Problem Solving	13 th ,7 th week	10

4	project	12 th week	10
5	Homework	Every week	10
6	Final exam	End of semester	50
7			
8			

D. Student Support

1. Arrangements for availability of faculty for individual student consultations and academic advice. (include amount of time faculty are available each week)

8 office hours per week

E Learning Resources

1. Required Text(s)

2. Essential References

3- Recommended Books and Reference Material (Journals, Reports, etc) (Attach List)

[1] Introduction of Nuclear Physics by A Enge

[2] Introductory Nuclear Physics by KS Krane

[3] Introductory Atomic and Nuclear Physics by Harvey E White

4-.Electronic Materials, Web Sites etc

- http://www.physicsclassroom.com
- ✤ <u>http://www.eskimo.com</u>

http://ocw.mit.edu/

5- Other learning material such as computer-based programs/CD, professional standards/regulations

Wikipedia

F. Facilities Required

Indicate requirements for the course including size of classrooms and laboratories (ie number of seats in classrooms and laboratories, extent of computer access etc.)

1. Accommodation (Lecture rooms, laboratories, etc.)

- Lecture room for 30 students
- Library
- Laboratory for nuclear experiments.

2. Computing resources

- Computer room
- Scientific calculator.

3. Other resources (specify --eg. If specific laboratory equipment is required, list requirements or attach list)

G Course Evaluation and Improvement Processes

1 Strategies for Obtaining Student Feedback on Effectiveness of Teaching

- Midterm and final exam.
- Quiz.

2 Other Strategies for Evaluation of Teaching by the Instructor or by the Department

3 Processes for Improvement of Teaching

- (a) Course report
- (b) Program report
- (c) Program self study

Fortification of the student learning.

Handling the weakness point.

Encourage the students to ask questions during lectures. Their questions will be the most helpful for them; they are also helpful for the teacher because they provide feedback.

4. Processes for Verifying Standards of Student Achievement (eg. check marking by an independent faculty member of a sample of student work, periodic exchange and remarking of a sample of assignments with a faculty member in another institution)

- The instructors of the course are checking together and put a unique process of evaluation
- Check marking of a sample of papers by others in the department.
- Feedback evaluation of teaching from independent organization.

5 Describe the planning arrangements for periodically reviewing course effectiveness and planning for improvement.

- 1- The following points may help to get the course effectiveness
 - Student evaluation
 - Course report
 - Program report
 - Program Self study
- 2- According to point 1 the plan of improvement should be given.
- 3- Contact the college to evaluate the course and the benefit it add to other courses.
- 4- Add some subject and cut off others depending on the new discoveries in physics.

Kingdom of Saudi Arabia

The National Commission for Academic Accreditation & Assessment

Course Specification

(28) Nuclear Technology 403463

Course Specification

For Guidance on the completion of this template, please refer to Handbook 2 Internal

Quality Assurance Arrangements

Institution:- Umm AL-Qura University

College/Department :- College of Sciences / Physics Department

A Course Identification and General Information

1. Course title and code: Nuclear Technology (403463)

2. Credit hours: - 2 Cr. Hrs

3. Program(s) in which the course is offered. (If general elective available in many programs indicate this rather than list programs) B.Sc Degree in Physics

4. Name of faculty member responsible for the course:

5. Level/year at which this course is offered: level 8

6. Pre-requisites for this course (if any) Pre-Requisite 361 PH + 362 PH

7. Co-requisites for this course (if any);

8. Location if not on main campus :- Within The University Campus

B Objectives

1. Summary of the main learning outcomes for students enrolled in the course.

The course aims to introduce students to the types of fusion and fission reactions, as well as identify the products and how they are used in power generation, also deals with the decision to study the working of different types of particle accelerators and their applications.

The main learning outcomes are as follows:

- 1. To understand basic Fundamentals of fission and fusion reactions.
- 2. The students should be trained on physical and generic skills (knowledge cognitive interpersonal communication problem solving IT)
- 3. To know controlled chain reactions and their usages.
- 4. To know about un-controlled chain reactions and their disasters.
- 5. To know the cause of large amount of energy released in these reactions.
- 6. To describe, in words, the theory of fission and fusion process come into play in particular situations; to represent these nuclear phenomena mathematically in those situations; and to predict outcomes in other similar situations.
- 7. The overall goal is to use the scientific method to understand the sources of nuclear energy.

2. Briefly describe any plans for developing and improving the course that are being implemented. (eg increased use of IT or web based reference material, changes in content as a result of new research in the field)

- 1. Explain strategy of the course in the beginning of the semester
- 2. Outlines of the physical laws, principles and the associated proofs.
- 3. Highlighting the day life applications whenever exist.
- 4. Encourage the students to see more details in the international web sites and reference books in the library.
- 5. Discussing some selected problems in each chapter.
- 6. Cooperate with different institution to find how they deal with the subject
- 7. Renew the course references frequently
- 8. Frequently check for the latest discovery in science

C. Course Description (Note: General description in the form to be used for the Bulletin or Handbook should be attached)

1 Topics to be Covered :-		
Topics	No of Weeks	Contact hours
Topics		
FISSION REACTORS:		
1-Types of Fission Reactions	1 week	2hr
2- Slowing down of Neutron	2 week	1hr
3-Thermal Neutron Diffusion		1hr
4-Diffusion of Slowing Down Neutrons	3 week	1hr
5-Chain Reaction		1hr
6-Multiple Factors in an Infective Medium	4 week	1hr
7- Spear Neutron in the Absorption Process Thermal Utilization Factor		1hr
8-Resonance Escape Probability	5 week	1hr
9-Reproduction Factor of Fast Neutrons		1hr
10- Optimum Parameters of Reproduction Media	6 week	1hr
11- Critical Date of Reactor		1hr

12- Neutron Reflector	7 week	1hr
13-Non-Critical Reactor		1hr
14- Electricity Generating Reactors	8 week	2 hr
FUSION REACTORS:		
1-Plasma Physics (Introduction)	9 week	1hr
2- Plasma Coefficient		1hr
3-Basic Fusion Reactions	10 week	1hr
4- Characteristic of Fusion Processes		1hr
5-Controlled Nuclear Chain Reactor	11 week	1hr
ACCELERATORS:		
1-Electromagnetic Accelerators		1hr
2-Van de Graff and Tandom Van-de Graff	12 week	1hr
3-Cyclotron		1hr
4-Syncrotron	13 week	1hr
5-Betatron		1hr
6-Linear Accelerator	14 week	1hr

2 Course components	s (total contact hours p	er semester):	
Lecture: 28 hr	Tutorial: 20 hr	Practical/Fieldwork /Internship:	Other: Office hours : 32 hr

3. Additional private study/learning hours expected for students per week. (This should be an average: for the semester not a specific requirement in each week) 06 hr.

4. Development of Learning Outcomes in Domains of Learning For each of the domains of learning shown below indicate:

- A brief summary of the knowledge or skill the course is intended to develop;
- A description of the teaching strategies to be used in the course to develop that knowledge or skill;

The methods of student assessment to be used in the course to evaluate learning outcomes in the domain concerned.

a. Knowledge

Knowledge that students should know and understand when they complete the course are as follow:

- The fundamental knowledge of nuclear theory.
- Knowledge of production of nuclear energy and its uses.
- Understanding the physics of fission and fusion reactions.
- Importance of controlled chain reaction.
- Knowledge of disasters of un-controlled chain reactions.
- To use mathematical formulation to describe the physical principle or phenomena.
- Ability to explain how things work.

Methods of assessment of knowledge acquired

- 1. Solve some examples during the lecture.
- 2. Exams:
 - a) Quizzes
 - b) Short exams (mid term exams)
 - c) Long exams (final)
 - d) Oral exams
- 3. Discussions with the students.
- 4. Ask the student to clear the misunderstanding of some physical principle.
- 5. Ask short conceptual questions.

b. Cognitive Skills

- (i) Cognitive skills to be developed
 - 1. How to use physical laws and principles to understand the subject
 - 2. How to simplify problems and analyze phenomena
 - 3. Analyse and explain natural phenomena.
 - 4. Ability to explain the idea with the student own words.
 - 5. Represent the problems mathematically.

(ii) Teaching strategies to be used to develop these cognitive skills

- 1. Preparing main outlines for teaching
- 2. Following some proofs
- 3. Define duties for each chapter
- 4. Home work assignments
- 5. Encourage the student to look for the information in different references
- 6. Ask the student to attend lectures for practice solving problem

(iii) Methods of assessment of students cognitive skills

- 1. Midterm's exam. Exams, short quizzes
- 2. Asking about physical laws previously taught
- 3. Writing reports on selected parts of the course
- 4. Asking for derivation that was derived in class.

c. Interpersonal Skills and Responsibility

(i) Description of the interpersonal skills and capacity to carry responsibility to be developed

12. Work independently.

The students learn independently and take up responsibility.

(ii) Teaching strategies to be used to develop these skills and abilities

- Learn how to search the internet and use the library.
- Learn how to cover missed lectures.
- Learn how to summarize lectures or to collect materials of the course.
- Learn how to solve difficulties in learning: solving problems enhance educational skills.
- Develop their interest in Science through :(lab works, field trips, visits to scientific and research institutions.
 - **4** Encourage the student to attend lectures regularly by:
 - Giving bonus marks for attendance
 - Assigning marks for attendance.

Encourage the student to ask questions during lectures.

(iii) Methods of assessment of students interpersonal skills and capacity to carry responsibility

- Quizzes on the previous lecture
- Checking report on internet use and trips
- Discussion
- The accuracy of the result gained by each group will indicate good group work
- Presenting the required research on time and the degree of the quality will show the sense of responsibility.

d. Communication, Information Technology and Numerical Skills

(i) Description of the skills to be developed in this domain.

- 1. Computation
- 2. Problem solving
- 3. Data analysis and interpretation.

(ii) Teaching strategies to be used to develop these skills
1. Know the basic mathematical principles.
2. Use the web for research.
3. Discuss with the student.
4. Exams to measure the mathematical skill.
5. Clear the weakness point that should be eliminated.
6. Encourage the student to ask for help if needed.
7. Computational analysis.
8. Data representation.
 Focusing on some real results and its physical meaning. Lectures for problem solution.
11. Encourage the students to ask good questions to help solve the problem.
12. Display the lecture note and homework assignment at the web.
(iii) Methods of assessment of students numerical and communication skills
1. Their interaction with the lectures and discussions.
2. The reports of different asked tasks.
3. Homework, Problem solutions assignment and exam should focus on the understanding.
4. Results of computations and analysis.
5. Comments on some resulting numbers.
6. Research.
e. Psychomotor Skills (if applicable)
(i) Description of the psychomotor skills to be developed and the level of performance required
(ii) Teaching strategies to be used to develop these skills
(iii) Methods of assessment of students psychomotor skills

5. Schedule of Assessment Tasks for Students During the Semester

Assess ment	Assessment task (eg. essay, test, group project, examination etc.)	Week due	Proportion of Final Assessme nt
1	Midterm 1	5 th week	10
2	Midterm 2	10 th week	10
3	In-Class Problem Solving	13 th ,7 th week	10

4	Project	12 th week	10
5	Homework	Every week	10
6	Final exam	End of semester	50

D. Student Support

1. Arrangements for availability of faculty for individual student consultations and academic advice. (include amount of time faculty are available each week)

8 office hours per week

E Learning Resources

1. Required Text(s)	
2. Essential References	
2 Decremental Declared Defense $M_{44} = 1 (L_{14} = 1 - L_{14}) (A_{44} = 1 - L_{14})$	<u></u>
3- Recommended Books and Reference Material (Journals, Reports, etc) (Attach List	t)
[1] Introduction of Nuclear Physics by A Enge	
[2] Introductory Nuclear Physics by KS Krane	
[3] Introductory Atomic and Nuclear Physics by Harvey E White	
[4]Plasma Physics by Cheu	
[5] Nuclear Physics by Irving Kaplan	
4Electronic Materials, Web Sites etc	
<u>http://www.physicsclassroom.com</u>	
• http://www.oskimo.com	

- <u>http://www.eskimo.com</u>
- <u>http://ocw.mit.edu/</u>

5- Other learning material such as computer-based programs/CD, professional standards/regulations

Wikipedia

F. Facilities Required

Indicate requirements for the course including size of classrooms and laboratories (ie number of seats in classrooms and laboratories, extent of computer access etc.)

- 1. Accommodation (Lecture rooms, laboratories, etc.)
 - Lecture room for 30 students
 - Library

• Laboratory for nuclear experiments.

2. Computing resources

- Computer room
- Scientific calculator

3. Other resources (specify --eg. If specific laboratory equipment is required, list requirements or attach list)

G Course Evaluation and Improvement Processes

1 Strategies for Obtaining Student Feedback on Effectiveness of Teaching

- Midterm and final exam.
- Quiz.

2 Other Strategies for Evaluation of Teaching by the Instructor or by the Department

3 Processes for Improvement of Teaching

- (a) Course report
- (b) Program report
- (c) Program self study
 - Fortification of the student learning.

Handling the weakness point.

Encourage the students to ask questions during lectures. Their questions will be the most helpful for them; they are also helpful for the teacher because they provide feedback.

4. Processes for Verifying Standards of Student Achievement (eg. check marking by an independent faculty member of a sample of student work, periodic exchange and remarking of a sample of assignments with a faculty member in another institution)

- The instructors of the course are checking together and put a unique process of evaluation
- Check marking of a sample of papers by others in the department.
- Feedback evaluation of teaching from independent organization.

5 Describe the planning arrangements for periodically reviewing course effectiveness and planning for improvement.

- 1- The following points may help to get the course effectiveness
 - Student evaluation
 - Course report
 - Program report
 - Program Self study
- 2- According to point 1 the plan of improvement should be given.
- 3- Contact the college to evaluate the course and the benefit it add to other courses.
- 4- Add some subject and cut off others depending on the new discoveries in physics.

Kingdom of Saudi Arabia

The National Commission for Academic Accreditation & Assessment

Course Specification

(29) Solid State Physics (II) 433472

Course Specification

For Guidance on the completion of this template, please refer to Handbook 2 Internal

Quality Assurance Arrangements

Institution:- Umm AL-Qura University

College/Department :- College of Sciences / Physics Department

A Course Identification and General Information

1. Course title and code: Solid State Physics II (433472-3, PH 472)

2. Credit hours: - 2 Cr. hrs

3. Program(s) in which the course is offered. (If general elective available in many programs indicate this rather than list programs) B.Sc Degree in Physics

4. Name of faculty member responsible for the course:

Prof.Dr. Y.M. MOUSTAFA

5. Level/year at which this course is offered: **Fourth year (8th level)**

6. Pre-requisites for this course (if any): Solid State Physics I (433471-3, PH471)

7. Co-requisites for this course (if any)

8. Location if not on main campus :-

Physics Dept. – Faculty of Science, Within The University Campus

B Objectives

1. Summary of the main learning outcomes for students enrolled in the course.

This course introduces students to continue her/his research in solid state field. At the end of the course, the student must be able to :

- Gain knowledge on Solid State Physics.
- 1. Be familiar with the basic physics knowledge on Solid State Physics.
- 2. Understand how X-Rays Diffraction can be used in studying the solid structure
- 3. Understand and appreciate of the physical laws governing solids.
- 4. Define and describe the Super conducting phenomena.
- 5. Illustrate the band theory of solids.
- 6. Discuss the different theories of electron in solids.
- 7. Be familiar with the basic physical properties of solids.
- 8. Deep understanding of the importance of solids in our lives.
- Be trained on physical and generic skills (knowledge cognitive interpersonal – communication – problem solving)
- 10. Describe, in words, the origin of the different properties of solids.
- **11.** The overall goal is to understand the origin of the different properties and phenomena play role in solids and control its application.

2. Briefly describe any plans for developing and improving the course that are being implemented. (eg increased use of IT or web based reference material, changes in content as a result of new research in the field)

- 1. Explain strategy of the course in the beginning of the semester
- 2. Outlines of the physical laws, principles and the associated proofs.
- 3. Highlighting the day life applications whenever exist.
- 4. Encourage the students to see more details in the international web sites and reference books in the library.
- 5. Discussing some selected problems in each chapter.
- 6. Cooperate with different institution to find how they deal with the subject
- 7. Renew the course references frequently
- 8. Frequently check for the latest discovery in science

C. Course Description (Note: General description in the form to be used for the Bulletin or Handbook should be attached)

1 Topics to be Covered :-Primarily for senior physics majors. Superconduction, X-Rays diffraction in crystals, free electron theory in metals ,band theory, thermal, electrical, dielectrical, magnetic properties of solids, and semiconductors

properties of solids, and semiconductors				
Topics	No of Weeks	Contac t hours		
2- Superconducting Properties of Solids 1- Properties of Superconductor 2- Magnetic Flux in Superconductor 3-Thermodynamic Properties of Superconductor 4- Superconduction Theory 5- Josephson Effect	2 week	6 hrs		
3- X-Rays Diffraction in Crystals 1- USED RAYS IN STUDYING CRYSTAL STRUCTURE 2- Generation and properties of X-rays 3- X-Rays scattering from an atom 4- X-Rays scattering from a crystal and Reciprocal lattice 5- Using of X-Rays for structural analysis of solids	2 week	6 hrs		
 4- Free Electron Theory in Metals 1- Origin of conduction electrons 2- The classical model of free-electron 3- Electrical Conductivity of Metals According to the Classical Model 	1 week	3 hrs		

4- Temperature Dependence of Electrical Conductivity		
5- Thermal capacity according to free electron gas model		
6- Fermi surface and its Effect on electrical conductivity		
7- Thermal conductivity in metals	1 week	3 hrs
8- Electron motion in a magnetic field		
9- AC Conductivity and Optical Properties		
5- Thermal Properties of Crystal Lattice		
1- Specific heat		
2- Specific heat according the exact theory	1	3 hrs
3- Thermal conductivity of solid	week	5 1118
4- Thermal expansion		

6- Energy Band Theory in Solids		
1-Origin of Energy Bands in Solids and Classification of Solids	1	3 hrs
2- Bloch Theorem for Energy Bands	week	5 1118
3- Energy Bands Symmetry Properties in k-Space		
4- Kronig-Penney Model for Calculating Energy Bands	1	2 h
5- The Nearly-Free Electron Model For Determining Energy Bands	week	3 hrs

6- The Tight-Binding Model		
6- Dielectric Properties of Solids		
1- Polarization and Polarizability		
2- Local Field		
3- Sources and typs of Polarizability	2 weeks	6 hrs
4-Specification of Solids according to the dielectric loos	WCCRS	0 11 3
5- Properties of Dielectric Material with AC Field		
6- Ferro-electricity		
7- Piezo-electric Effect		

7- Magnetic Properties of Solids		
1- Basic Concepts		
2- The Origin of Magnetism in Solids	1 weeks	3 hrs
3- Magnetic Susceptibility	WEEKS	5 1118
4- Classification of Magnetic Materials		
5- DIAMAGNETIC MATERIALS AND L ANGVIN THEORY		
6- Paramagnetic Materials	1 weeks	3 hrs
7- Pauli's Magnetic Susceptibility	weeks	5 1118

8- Ferromagnetic Materials		
9- Classification Ferromagnetic Materials		
10- Magnetic Domains and Some of Magnetic Applications		
8- The Semiconductors: Theory and Application		
1- Energy Bands in Semiconductors		
2- Concentration of Intrinsic Charge Carriers		
3- Donors and Acceptors		
4- Electron Mobility in Semiconductors	2 weeks	6 hrs
5- Resistivity and Conductivity of Semiconductors		
6- Photoconductivity and Photoluminescence		
7- p-n Junction		
8- Bipolar Junction transistors		

2 Course components (total contact hours per semester):			
Lecture: 48 hrs	Tutorial: 15 hrs	Practical/Fieldwork /Internship:20 hrs	Other: Office hours : 32 hrs

3. Additional private study/learning hours expected for students per week. (This should be an average :for the semester not a specific requirement in each week)

4. Development of Learning Outcomes in Domains of Learning

For each of the domains of learning shown below indicate:

- A brief summary of the knowledge or skill the course is intended to develop;
- A description of the teaching strategies to be used in the course to develop that knowledge or skill;
- The methods of student assessment to be used in the course to evaluate learning outcomes in the domain concerned.

a. Knowledge

•	knowledge that students should know and understand when they complete the course are as follow:
•	Learning fundamentals in electron gas theory
•	Understanding the physics of solid properties and their applications mentioned in the text.
•	Improving logical thinking.
•	To use mathematical formulation to describe the physical principle or phenomena
•	Ability to explain how physical properties work in solids.
•	Learning theory and applications of the solid state.
•	Methods of measurement and assessment of properties of solids
٠	Teaching strategies to be used to develop that knowledge
	Demonstrating the basic information and principles through lectures and the achieved applications Discussing phenomena with illustrating pictures and diagrams Lecturing method:
5. 6. 7. 8. 9. 10. 11. 12.	 a. Blackboard b. Power point c. e-learning Tutorials Revisit concepts Discussions Brain storming sessions Start each chapter by general idea and the benefit of it; Learn the student background of the subject; Show the best ways to deal with problem; Keep the question "why" or "how" to explain always there; Build a strategy to solve problem.
13.	Encourage interactive learning and develop individualized interest

(iii) Methods of assessment of knowledge acquired

- 1. Solve some example during the lecture.
- 2. Exams:
 - a) Quizzes
 - b) Short exams (mid term exams)
 - c) Long exams (final)
 - d) Oral exams
- 3. Discussions with the students.
- 4. Ask the student to clear the misunderstanding of some physical principle.
- 5. Ask quality question.
- 6. Short essays and application projects

b. Cognitive Skills

(i) Cognitive skills to be developed

- 1. How to use physical laws and principles to understand the subject
- 2. How to simplify problems and analyze phenomena
- 3. Analyse and explain natural phenomena.
- 4. Ability to explain the idea with the student own words.
- 5. Represent the problems mathematically.
- 6. How to breakdown problems and analyze phenomena

(ii) Teaching strategies to be used to develop these cognitive skills

- 1. Preparing main outlines for teaching
- 2. Following some proofs
- 3. Define duties for each chapter
- 4. Home work assignments
- 5. Encourage the student to look for the information in different references
- 6. Ask the student to attend lectures for practice solving problem
- 7. Ask the student to do small research.

(iii) Methods of assessment of students cognitive skills

- 1. Midterm's exam. Exams, short quizzes
- 2. Asking about physical laws previously taught
- 3. Writing reports on selected parts of the course
- 4. Discussions of how to simplify or analyze some phenomena

c. Interpersonal Skills and Responsibility

(i) Description of the interpersonal skills and capacity to carry responsibility to be developed				
1. Work independently.				
 Work independently. The students learn independently and take up responsibility. 				
(ii) Teaching strategies to be used to develop these skills and abilities				
 Learn how to search the internet and use the library. Learn how to cover missed lectures. Learn how to summarize lectures or to collect materials of the course. Learn how to solve difficulties in learning: solving problems – enhance educational skills. Develop her interest in Science through :(lab work, field trips, visits to 				
scientific and research.6. Encourage the student to attend lectures regularly by:				
i. Giving bonus marks for attendance				
ii. Assigning marks for attendance.				
7-give students tasks of duties				
(iii) Methods of assessment of students interpersonal skills and capacity to carry responsibility				
 Quizzes on the previous lecture Checking report on internet use and trips Discussion The accuracy of the result gained by each group will indicate good group work 				
5. Presenting the required research on time and the degree of the quality will show the sense of responsibility.				
d. Communication, Information Technology and Numerical Skills				
(i) Description of the skills to be developed in this domain.				
 Computation Problem solving Data analysis and interpretation. Feeling physical reality of results (ii) Teaching strategies to be used to develop these skills 				
1. Know the basic mathematical principles.				
2. Use the web for research.				
3. Discuss with the student.				
4. Exams to measure the mathematical skill.				
5. Clear the weakness point that should be eliminated.				
6. Encourage the student to ask for help if needed.				
7. Computational analysis.				
8. Data representation.				
 Focusing on some real results and its physical meaning. Lectures for problem solution. 				
11. Encourage the student to ask good question to help solve the problem.				

12. Display the lecture note and homework assignment at the web.		
(iii) Methods of assessment of students numerical and communication skills		
1. Their interaction with the lectures and discussions.		
 The reports of different asked tasks. Homework, Problem solutions assignment and exam should focus on the understanding. 		
 Results of computations and analysis. Comments on some resulting numbers. Research. 		
e. Psychomotor Skills (if applicable) none		
(i) Description of the psychomotor skills to be developed and the level of performance required		
(ii) Teaching strategies to be used to develop these skills		
(iii) Methods of assessment of students psychomotor skills		
5. Schedule of Assessment Tasks for Students During the Semester		

5. Senedule of Assessment Tasks for Students During the Senester			
Assess ment	Assessment task (eg. essay, test, group project, examination etc.)	Week due	Proportion of Final Assessment
1	Midterm 1	5 th week	10
2	Midterm 2	10 th week	10
3	In-Class Problem Solving	13 th ,7 th week	10
4	project	12 th week	10
5	Homework	Every week	10
6	Final exam	End of semester	50

D. Student Support

1. Arrangements for availability of faculty for individual student consultations and academic advice. (include amount of time faculty are available each week) 8 office hours per week

E Learning Resources

1. Required Text(s) By teacher 2. Essential References

- 3- Recommended Books and Reference Material (Journals, Reports, etc) (Attach List)
 - 1. C.Kittel / Introduction to Solid State Physics. 7th. dition
 - 2. <u>Walter A. Harrison</u>/ Solid State Theory, Dover edition 1979

4-.Electronic Materials, Web Sites etc

- <u>http://www.phys.lsu.edu/~jarrell/COURSES/SOLID_STATE_HTML/course_solid.html</u>
- <u>http://www.encyclopedia.com/topic/solid-state_physics.aspx</u>
- <u>http://www.physics.byu.edu/research/condensed</u>
- <u>http://web.utk.edu/~tbarnes/website/cm/cm.html</u>
- http://www.answers.com/topic/solid-state-physics

5- Other learning material such as computer-based programs/CD, professional standards/regulations

Wikipedia

F. Facilities Required

Indicate requirements for the course including size of classrooms and laboratories (ie number of seats in classrooms and laboratories, extent of computer access etc.)

- 1. Accommodation (Lecture rooms, laboratories, etc.)
 - Lecture room for 30 students
 - Library

• Laboratory for experimental solid state

- 2. Computing resources
 - Computer room
 - Scientific calculator.

3. Other resources (specify --eg. If specific laboratory equipment is required, list requirements or attach list)

Solid State Laboratory

G Course Evaluation and Improvement Processes

1 Strategies for Obtaining Student Feedback on Effectiveness of Teaching

- Midterm and final exam.
- Quiz.

2 Other Strategies for Evaluation of Teaching by the Instructor or by the Department

3 Processes for Improvement of Teaching

- (a) Course report
- (b) Program report
- (c) Program self study
 - Fortification of the student learning.
 - Handling the weakness point.

4. Processes for Verifying Standards of Student Achievement (eg. check marking by an independent faculty member of a sample of student work, periodic exchange and remarking of a sample of assignments with a faculty member in another institution)

- 1. The instructors of the course are checking together and put a unique process of evaluation
- 2. Check marking of a sample of papers by others in the department.
- 3. Feedback evaluation of teaching from independent organization.

5 Describe the planning arrangements for periodically reviewing course effectiveness and planning for improvement.

- 1- The following points may help to get the course effectiveness
 - Student evaluation
 - Course report
 - Program report
 - Program Self study
- 2- According to point 1 the plan of improvement should be given.
- 3- Contact the college to evaluate the course and the benefit it add to other courses.
- 4- Add some subject and cut off others depending on the new discoveries in physics.