
Structured Programming

Lecture9

Dr. Obead Alhadreti

Outline

 Polymorphism

 UML

2

Polymorphism

3

Polymorphism

 Polymorphism comes from Greek meaning “many forms.”

 In jave, polymorphism means the capability of a method to do

different things based on the object that it is acting upon.

 Polymorphism is extensively used in implementing inheritance.

 In particular, polymorphism enables us to write programs that

process objects that share the same superclass in a class

hierarchy as if they are all objects of the superclass.

4

Polymorphism

5

Shape

S
p

e
c

ia
liz

a
tio

n

+

3-D2-D

Polymorphism in java

 Different techniques to achieve polymorphism in java.

1. Method Overloading

2. Method Overriding

3. Abstract class

4. Interfaces

6

Types of polymorphism in java

 There are two types of polymorphism in java:

1) Compile time polymorphism (static polymorphism).

2) Runtime polymorphism (Dynamic polymorphism).

 In simple terms, static binding means when the type of

object which is invoking the method is determined at

compile time by the compiler (For example, method

overloading). While Dynamic binding means when the type

of object which is invoking the method is determined at run

time by the compiler (For example, method overriding).

7

UML

8

UML

 The Unified Modeling Language (UML) is a way of visualizing a

software program using a collection of diagrams.

 UML can be applied to diverse application domains (e.g.,

banking, finance, internet, aerospace, healthcare, etc.)

 UML provides a pictorial or graphical notation for documenting

the artefacts such as classes, objects and packages that make up

an object-oriented system. UML diagrams can be divided into

three categories:

1. Structural diagrams

2. Behavioual diagrams

9

Structural diagrams

 Structure diagrams show the things in the modeled system.

In a more technical term, they show different objects in a

system. Behavioral diagrams show what should happen in a

system. They describe how the objects interact with each other

to create a functioning system.

 The four structural diagrams are:

1. Class diagram

2. Object diagram

3. Component diagram

4. Deployment diagram

10

Class diagram

 In most modeling tools, a class has three parts. Name at the top,

attributes in the middle and operations or methods at the

bottom. In a large system with many related classes, classes are

grouped together to create class diagrams. It shows the classes

in a system, attributes, and operations of each class and the

relationship between each class. Different relationships between

classes are shown by different types of arrows.

11

Class diagram

 Visibility: Use visibility markers to signify who can access the

information contained within a class. Private visibility, denoted

with a - sign, hides information from anything outside the class

partition. Public visibility, denoted with a + sign, allows all other

classes to view the marked information. Protected visibility,

denoted with a # sign, allows child classes to access information

they inherited from a parent class.

12

Class diagram

 Generalization/inheritance: Generalization is another name

for inheritance or an "is a" relationship. It refers to a

relationship between two classes where one class is a

specialized version of another.

13

Class diagram

 Associations: Associations represent static relationships

between classes. Place association names above, on, or below

the association line. Use a filled arrow to indicate the direction

of the relationship. Place roles near the end of an association.

Roles represent the way the two classes see each other. For

example, passenger and airline may be linked

14

Class diagram

 Multiplicity (Cardinality): Place multiplicity notations near

the ends of an association. These symbols indicate the number

of instances of one class linked to one instance of the other

class.

15

Class diagram

 For example, one commercial airplane may contain zero to

many passengers. The notation 0..* in the diagram means “zero

to many”.

 For example, one company will have one or more

employees, but each employee works for one company

only.

16

Behavioral diagrams

 Behavioral diagrams show what should happen in a system.

They describe how the objects interact with each other to

create a functioning system.

 The five structural diagrams are:

1. Use case diagram

2. Sequence diagram

3. Collaboration diagram

4. Statechart diagram

5. Activity diagram

17

Use Cases

 As the most known diagram type of the behavioral UML

diagrams, Use case diagrams give a graphic overview of the

actors involved in a system, different functions needed by

those actors and how these different functions interact.

 Focus on user-system interaction

 Give an “external view” of the system

18

Use Cases

 Use Case Diagrams have 4 major elements:

The actors that the system you are describing interacts

with, the system boundary (the system itself), the use

cases, or function, that the system knows how to perform,

and the lines that represent relationships between

these elements.

19

Use Case Diagrams (UCD)

20

Use Case Diagrams (UCD)

 Actors

• Give meaningful relevant names for actors – For

example if your use case interacts with an outside

organization its much better to name it with the function

rather than the organization name. (Eg: Airline Company is

better than PanAir)

• Primary actors should be to the left side of the

diagram – This enables you to quickly highlight the

important roles in the system.

• Actors don’t interact with other actors

Use Case Diagrams (UCD)

 System boundary (also called system or subject) is

presented by a rectangle with system's name, associated

keywords and stereotypes in the top left corner. Use

cases applicable to the system are located inside the

rectangle and actors - outside of the system boundary.

 It is an optional element.

http://www.uml-diagrams.org/use-case.html
http://www.uml-diagrams.org/use-case-actor.html

Use Case Diagrams (UCD)

 Use Cases

• Names begin with a verb – An use case models an

action so the name should begin with a verb.

• Make the name descriptive – This is to give more

information for others who are looking at the diagram.

For example “Print Invoice” is better than “Print”.

• Highlight the logical order – For example if you’re

analyzing a bank customer typical use cases include

open account, deposit and withdraw. Showing them in

the logical order makes more sense.

Use Case Diagrams (UCD)

 Relationships in Use Case Diagrams

 There are four main types of relationships in a use case

diagram. They are

1. Association between an actor and a use case

2. Extend relationship between two use cases

3. Include relationship between two use cases

4. Generalization of a use case

Relationships in Use Case Diagrams

1. Association Between Actor and Use Case

 This one is straightforward and present in every use case

diagram. Few things to note.

• An actor must be associated with at least one use case.

• An actor can be associated with multiple use cases.

• Multiple actors can be associated with a single use case.

http://static3.creately.com/blog/wp-content/uploads/2015/02/use-case-relationship-actor-use-case.png

Relationships in Use Case Diagrams

2. Extend Relationship Between Two Use Cases

 As the name implies it extends the base use case and

adds more functionality to the system

 Here are few things to consider when using the

<<extend>> relationship.

• The extending use case is dependent on the

extended (base) use case. In the below diagram the

“Calculate Bonus” use case doesn’t make much sense

without the “Deposit Funds” use case.

Relationships in Use Case Diagrams

Relationships in Use Case Diagrams

•The extending use case is usually optional and can be

triggered conditionally. In the diagram you can see that the

extending use case is triggered only for deposits over

10,000 or when the age is over 55.

•The extended (base) use case must be meaningful on its

own. This means it should be independent and must not rely

on the behavior of the extending use case.

Relationships in Use Case Diagrams
3. Include Relationship Between Two Use Cases

• Include relationship show that the behavior of the

included use case is part of the including (base) use case.

The main reason for this is to reuse the common

actions across multiple use cases. In some situations this

is done to simplify complex behaviors. Few things to

consider when using the <<include>> relationship.

• The base use case is incomplete without the included

use case.

• The included use case is mandatory and not optional.

Relationships in Use Case Diagrams
 Lest expand our banking system use case diagram to

show include relationships as well.

Relationships in Use Case Diagrams
4. Generalization of a Use Case

 The behavior of the ancestor is inherited by the

descendant. This is used when there are common

behavior between two use cases and also specialized

behavior specific to each use case.

 For example in the previous banking example there might

be an use case called “Pay Bills”. This can be generalized

to “Pay by Credit Card”, “Pay by Bank Balance” etc.

Relationships in Use Case Diagrams

Generalization Extend Include

Relationships in Use Case Diagrams

 Arrow points to the base use case when using

<<extend>>

 Arrow points to the included use case when using

<<include>>

 Both <<extend>> and <<include>> are shown as dashed

arrows.

 Actor and use case relationship doesn’t show arrows.

Activity Diagram

 Activity diagrams represent workflows in a graphical way.

 Activity diagrams are constructed from a limited number of

shapes, connected with arrows. The most important shape types:

1. rounded rectangles represent actions.

2. diamonds represent decisions.

3. bars represent the start (split) or end (join) of concurrent

activities.

4. a black circle represents the start (initial state) of the workflow.

5. an encircled black circle represents the end (final state).

Activity Diagram

Sequence Diagram

 Sequence diagrams in UML show how objects interact with

each other and the order those interactions occur.

 It depicts the objects and classes involved in the scenario and

the sequence of messages exchanged between the objects

needed to carry out the functionality of the scenario.

 Sequence diagrams are sometimes called event diagrams or

event scenarios.

Example: Add staff

