Structured Programming

LectureS8

Dr. Obead Alhadreti

Outline

» Abstraction

» Interfaces

Abstraction

Abstraction

» Abstraction is the concept of hiding the internal details of a
functionality and providing a simple representation for the same.
So complex functionality can be made available to the outside
world in a simple way.

» For example:We use mobile phone everyday but we don’t know
how the functionalities are designed inside it so that we receive
the calls and send messages etc. These functionalities have been
kept inside and we are just accessing them using the options
provided in the mobile.

Abstraction

» Similarly, In java we can write a method to perform some
functionality inside a class and we can expose it to outside
world just by providing an option to call this method.

» Anyone who calls this method will not be knowing the
internal complexity of the method but will be knowing the
functionality of the method and hence he calls it and uses it.

» In this way, we hide the internal implementation and
abstract it inside a method.

Abstraction

» We can achieve abstraction in Java using 2 ways:
|) Abstract class (0 to 100%)

2) Interface (100%)

1) Abstract class

» Abstract class in Java can be created using “abstract”
keyword.

» If we make any class as abstract then it can not be
instantiated which means we are not able to create the
object of abstract class.

» Syntax :
abstract class {}

Abstract Methods

» Inside Abstract class, we can declare abstract methods as
well as concrete methods (non-abstract methods).
A concrete method means, the method have complete
definition (method with body), but it can be overridden in the

inherited class.

» An abstract method is a method that is declared, but
contains no implementation. The method body will be defined
by its subclass. Abstract method can never be final and static.
Any class that extends an abstract class must implement all the

abstract methods declared by the super class.

Abstract Methods

» Syntax :
abstract return_type ();

» Example: Phone.java
abstract class Phone {
abstract void receiveCall();

abstract void sendMessage();

}

» Now any concrete class which extends the above abstract
class will provide the definition of these abstract methods
(overriding).

Examplel

class Samsung extends Phone{
public void receiveCall()}{
System.out.printin("Call received in Samsung"),

}

public void sendMessage(){
System.out.printin("Message sent in Samsung");

}

O W oo 1o b W=

—_

}

» Samsung class has provided the concrete definition for
abstract methods declared inside Phone abstract class.

» Anyone who needs to access this functionality has to call

the method using the subclass objects.
10

(]

xamplel

public class AbstractTest{

public static void main(String([] args) {
Samsung s = new Samsung ();
s.receiveCall();

s.sendMessage();

}
s

Output

Call received in Samsung
Message sent in Samsung

11

Abstract Classes and Methods

» When to use Abstract Methods & Abstract Class?

» Abstract methods are usually declared where two or more
subclasses are expected to do a similar thing in different
ways through different implementations. These subclasses
extend the same Abstract class and provide different
implementations for the abstract methods.

» Abstract classes are used to define generic types of
behaviors at the top of an object-oriented programming
class hierarchy, and use its subclasses to provide
implementation details of the abstract class.

12

Abstract Classes and Methods

» Points to Remember:

13

An abstract class may or may not have an abstract method.
But if any class has even a single abstract method, then it
must be declared abstract.

Abstract classes can have Constructors, Member variables
and Normal method:s.

Abstract classes are never instantiated.

When you extend Abstract class with abstract method, you
must define the abstract method in the child class, or make
the child class abstract.

Example?2

& Testjava ><|[E wehicle_ java >|[= TwoWwheeler_jawva |

Source Histnry||£'-*5l*|'ﬁ%-5‘%

i
[
0
i

@ raclkagses wweaehicoclaemarnacsr ;-
=
L albstract pulkbld 3 o class wWeled ol e £
- Strircg Teoghlica s
=
= o d cl wrelrd el e) £
i T System. ot oprimntln ("M T raeasting Welhhdaele") o5
= ¥
=
CEon =Rl = albh hstract e d cl o sttaxite () o5
L= j=n bl = -] aklh st raacte e T - stoarp (3 5
3=
1= Pkl 3« e d ol Ad szl asy () 4
1z T Swstem o ot o prirmntlr f e 10 o1 = ey T = Tt re=egha)} 5
1= L
pu - ¥
i Test java <[Vehicle java >|[= TwoWheeler.java |
Source Histnr'yfl"l'ﬁ%g%y:ﬁ-l@%?clécﬁ @ [| g=s _=
i packagse wvehiclemanagser;
=
=2 rpulbhlic class TwoWheeler =sxtends Wehicle {
- ROwverride
X public woid staxr-t () {
= IT Svstem.ocout_._println{™"Two wheseler start 1 oogpiac™)
v ¥
=3
S ROwverride
L] rpulkhlicoc woilid stop () £
1 IT Svyvstem.ocut._println{"Two Wheseler stop Logio™) f
A= ¥
13 ¥

—
N

5

Example?2

= Test.jawa ><|[= Vehicle java ><|[= Twowheeler_java |

Source Hist::}r'g.-fl@-E-|'ﬁ_%5‘%é::;|c§>%;ﬁ:—}|

i
I

mackagsese wehiclemarnacger ;
pulks:l i1dc class Test ry

pulsl dc static woldld mairmn {Strairng [] Irogs)

T Y R O R
I

TwroWhheeselaer Tw — 1miew TwoWhesler () 5
T . regNo—"HROI1L o>z 125" rF

1 tiwwr.start= () &

(s 1 tawr . stop L) F

1= twr . displas () 5

1A=

1 — 3

1=

A= ¥

: Output - VehicleManager (run)

[::[} rurmn:

[::[:;} Two wheseler start logic
Two Wheeler stop logic
EI Vehicle reg o - HROL OZ1Z5
%% BOILD STMOCESSEFUOL (total time: 0 ssconds)

15

Example3

2 Test java >><|[= Banbks_.jawva ><|[= SBI.jawva ><|[= PNB_jawva ><|

Source Hist:::rr'g,-"I@@'M*'ﬂ%%‘%i:él@%?b =§=§|C>
a BT i SN I =y F

=

x aales 1t =t et = — =TT

= 3

CE allbhh st raacacte a3 ryi= et RateOfFfF TImntaernae=s1it () &

= ¥

=

i Test.java >/ Banks.java >|[= SBI.java >|[= PNB.java >|

Source History | E-8E-|9 5 5 &G |da¢ b | s E| e 3 | 2 —
a1 mackagese bank s
=
=2 rublic class SBI =extaends Barilk {
=
= BOowverride
@ =1 int getRateOf Interest () {returmn 772 %
) ¥
=

CTest.java =& Banks.java = ||[= SBI.java = || PNB.java KL

Ource Histnr'y'|@v@-|ﬂ%$%éijjg|q?%?§ {Eél
l mackagsese bhhanks

=

= public class PHNB =xtends Banik {

-

5 ROoOverride

& [1nt getRateOf ITnterest () {return 87 3%

w H

10

Example3

© Test.java *|[2 Banks.java *|[# SBI.java x| PNBjava |

Source History B EB-8- - S EiG|(F &% | x| o B | & =

rackage bank;
public class Test {

public static void main(Stringl[] args) {

SBI s =new SBI() -

L =TS I YT) B VA B T]
]

System.cut.println("Eate of Interest is: "4s.getRate0fInterest ()} +" %) 7
10
11 PNE p =new PNBE() ;
1z Syvstem.cut.println{"Eate of Interest is: "+p.getRatedfInterest ()}+" %)
13| L ¥
14
15 ¥

- Qutput - Bank (run)

rumn:

BHate of Interest is: 7 %

Hate of Interest is: 2 %

BOILD SUCCESSFUL (total time: 0 seconds)

3 - R

18

Interfaces

Interfaces

» It is one of the ways to achieve abstraction in Java.

» They are used to achieve multiple inheritance and
polymorphism.

» It will have only method declaration(abstract methods) and
constant attributes in it.

» It cannot be instantiated like how we can’t instantiate
abstract class.

19

Interfaces

public interface Hello{
String str = "hello”;
void sayHello(),

}

W=

» Note :All the variables inside Interface are public , static and
final even if we don’t specify anything.

» Also we can’t change these default access modifiers
variables of Interfaces in Java
» Since all variables inside interface are static, we can access it

directly using interface name.
System.out.printin(Hello.str);

20

Interfaces

)

Also these variables are final, so we can’t modify them.

Do not use any access modifiers for interfaces.

Do not use any access modifer for declared in interfaces.

Since all the methods inside interface are abstract, they must
be overridden in the implementing class.

Why can’t we access methods using interface name?

They are not static methods, so we need object to access

them.
21

Methods of Interfaces in Java

» class B implements Hello {

@Override
public void sayHello() {
System.out.printin(*Hello”);

}
}

B bl = new B();
bl.sayHello();

22

Multiple Inheritance

interface class interface interface interface interface

implements extends implements

i class i interface class

23

Example

= Test_ jawa > | = A FJaawa == | = B jawa

Source Histc}ry||E'--|'ﬁ%-5'!—-:'=“ B | =B ==E o B &= __=
a = el E e Idrnterfoces »
=
dTarnter fFfaae= - £
b= 3
e 3 ol oo) 5
=
= i
= Testjava =|[= A java <[Bjava =|[= Cjava |
Source Hist::}ryllE'-@-lﬁ%g%éiiiilﬁ%?clﬁﬁ @ 0 | &= =
a1 packagese dAnterfacess
=
CE T rnterfaces B ¥
=3
=3 e 3l pprxr-imntBl) o5
=
- H
s Test.java <|= A.java >|[= Bjava >|[= C.java |
Source History | E-8- Q5 & 5% |4+¢ L || e @ | & =
1 packagse interfaces;;
=
=2 class © dmplements R, B {
<
= Roverride
I public wolid prints () {
7 IT Svstem.cut.printlIn (" should Override the method printz® () ™) ;7
8 ¥
=
10 ROverride
T rpublic wvoid printB () {
1= IT Syvstem.cut.println (" should Override the method printB () ") ;7
13 ¥
14 i3
e N

Example

= W est.jawas < | P Jaawaa < | B_jawa > | [=5 C_.jaawaa > |

Source Histc:ry|IE$--lﬁ%5%53333£|@%?¢>|4§§ &= __=
a1 paclkacge Aarmterftface=s 7
=
= pulsl d .o class Taesit £
=
= Pl d 4 o« static woildd madrn(Strirng] args)
= o — A = I o Cr 5
=
= =1 . print®= () 5
=] — 1 _pprimntB B {) 5
LA
pu i I *
I =
1= »
-
: Dutput - imterfaces (ranj
[:::[:} i -
[::[:}_ i should Cverride the method jrimtcEZ ()
i should Crrerride the method primtBE Q)
EI BUOIT.IDD SITMNOCESSEUL (total time: O sSsecords)

