
Structured Programming

Lecture 2

Dr. Obead Alhadreti

Outline

 Modifiers

 Methods

2

Modifiers

3

Modifiers

 Modifiers are keywords that are added to change meaning

of a definition. In Java, modifiers are catagorized into two

types,

1. Access modifiers

2. Non-access modifiers

4

1. Access modifiers

 The access to classes, variables and methods are

regulated using access modifiers.

 i.e. a class can control what information or data can be

accessible by other classes.

 To take advantage of encapsulation, you should minimize

access whenever possible.

5

1. Access modifiers

1. public: are visible to any class in the Java program,

whether these classes are in the same package or in

another package.

2. private: they cannot be accesses by anywhere

outside the enclosing class.

* A class can not be declared as private

* A standard design strategy is to make all variables private,

and methods public.
6

1. Access modifiers

3. protected: Variables and methods declared

protected in a super class can be accessed only by

subclasses in other packages. Classes in the same

package can also access protected variables, and

methods as well, even if they are not a subclass of the

protected member’s class.

4. default: when no access modifier is present, any class,

variable, and methodthat has no declared access modifier

is accessible only by classes in the same package

(known as package private).

7

1. Access modifiers

8

1. Access modifiers

9

Can be Better to be

Class Public or default Public or default

Variables Public, default,

private, or

protected

Private

Methods Public, default,

private, or

protected

Public

2. Non-access modifiers

 Non-access modifiers do not change the accessibility of

variables and methods, but they do provide them special

properties. There are two main types of non-access

modifiers:

1. Static

2. Final

10

2. Non access modifiers

1. Static Modifier

Static modifier is used to create class variable and class

methods which can be accessed without instance of a class.

A. Static Variables: Static variables (also known as class

variables or shared variables), which can be access variables

directly using class name, have only one single storage. All the

object of the class having static variable will have the same

instance of static variable. Static variables represent common

property of a class. It saves memory. Static variables are

owned by class rather than by its individual instances

(objects). However, static variables can change values.
11

2. Non access modifiers

 Accessing a static variable

 ClassName.myStaticVariable

 Suppose there are 100 employee in a company. All

employee have its unique name and employee id but

company name will be same all 100 employee. Here

company name is the common property. So if you create a

class to store employee detail, companyName field will be

mark as static.

12

Example of static variables



13

Example of static variables



14

Example of static variables



15

2. Non access modifiers

16

2. Non access modifiers

B. Static Method:

 Sometimes a method performs a task that does not
depend on an object. In other words, it applies to the class
in which it’s declared as a whole.

 To declare a method as static, place the keyword static
before the return type in the method’s declaration.

 Calling a static method

 ClassName.myMethodName()

17

2. Non access modifiers

 Static methods use no instance variables. They work with

static variables, and can also take input from the

parameters, perform actions on it, then return some

result.

 main() method is the most common example of static method.

 Static methods do not need instance of its class for being

accessed.

18

Example

19

Example

20

2. Non access modifiers

2. Final Modifier

Final modifier is used to declare a field as final i.e. it prevents

its content from being modified. Final field must be initialized

when it is declared. Final keyword can be used with a

variable, a method or a class.

A. Final Variable: When a variable is declared as final, then

its value cannot be changed. The variable acts like a constant.

It also cannot be used without creating instance of a class.

final int a = 5;

21

2. Non access modifiers

B. Final Method: When a method is declared as final, then

that method cannot be overridden (redefined). A final

method can be inherited/used in the subclass, but it cannot

be overridden (redefine).

C. Final Class: A class can also be declared as final. A class

declared as final cannot be inherited.

22

2. Non access modifiers

 What cannot be changed and will be accessible without

creating instance of a class will be a static final variable .

 The names of variables declared class constants should be

all uppercase with words separated by underscores ("_").

23

Methods

24

Methods

 A method is a set of code which is referred to by name and

can be called at any point in a program simply by utilizing

the method's name to perform certain task. Think of a method

as a subprogram that acts on data and often returns a value.

 Every class consists of one or more methods .A java

applications must contain one main method in a public class.

Execution always begins with main method.

 Methods are time savers, in that they allow for the repetition

of sections of code without retyping the code.

25

Methods

 There are two basic types of methods:

26

1. Built-in: Build-in methods are part of the compiler package, such

as System.out.println() and System.exit(0).

2. User-defined: User-defined methods are created by you, the programmer. These

methods take-on names that you assign to them and perform tasks that you create.

Method Declaration

 Methods typically starts by the keywords public static

(modifier). The only required elements of a method

declaration are the method's return type, name, a pair of

parentheses, (), and a body between braces, {}.

 The return type specifies the type of data the method returns

after performing its task.

27

Method Declaration

 Return type void indicates that a method will perform a task

but will not return (i.e., give back) any information to its calling

method when it completes its task.

 Method name follows the return type. By convention, method

names begin with a lowercase first letter and subsequent

words in the name begin with a capital letter (known as

camelCase).

 Empty parentheses after the method name indicate that the

method does not require additional information to perform its

task.
28

Example

29

Example

30

