
Structured Programming

Lecture 1

Dr. Obead Alhadreti

Outline

 Course Overview

 Programming Languages

 Java Programming Language

 Classes & Objects: Defining, Creating, and Using.

2

Course Overview

 Timetable

A 2-hour lecture + A 1-hour lab. + A 2-hour lab.

 Course Learning Objectives:

1. Students will understand object oriented concepts including

classes, objects, inheritance, data abstraction, encapsulation,

and polymorphism;

2. Students will learn how to design applications using object

oriented design methodology;

3. Students will appreciate the benefits of code reuse by learning

how to make use of off-the-shelf Java libraries.

3

Course Overview

 Course Elements

1. Lectures

 Can be downloaded from your

 unive the portal of “Learning”

2. Lab Exercises

3. Assignments

4. Exams

4

Course Overview

Topic to be covered:

1. Overview of Object Oriented Programming

2. Classes and Objects

3. Modifiers

4. Encapsulation

5. Inheritance

6. Overriding and Overloading

7. Interfaces

8. Abstraction

9. Polymorphism

10. UML for Object Oriented Programming

5

Course Overview

 Textbook:

• Java: How to Program, 9th edition , Dietel and Dietel,

Pearson 0273759760.

• Available at the college library.

• Parts available @

http://www.deitel.com/Books/Java/JavaHowtoProgram9eEarl

yObjectsVersion/tabid/3622/Default.aspx

6

http://www.deitel.com/Books/Java/JavaHowtoProgram9eEarlyObjectsVersion/tabid/3622/Default.aspx

Additional Resources

 Harmash.com (Arabic)

http://www.harmash.com/java/lesson_1.html

 Rwaq (Arabic)

https://www.rwaq.org/

 w3resource (English)

https://www.w3resource.com/

7

http://www.harmash.com/java/lesson_1.html
https://www.rwaq.org/
https://www.w3resource.com/

Course Overview

 Assessment Methods:

• Final Paper-based Exam (40%)

• Final Lab Exam (10%)

• Mid-term Exam (20%)

• Assignments (20%)

• Lab exercises (10%)

8

Course Overview

 Students are expected to attend lectures in time.

 Attendance is monitored by means of an attendance sheet. This

is filled in within 10 minutes of the start of each lecture.

 Students are responsible to submit assignments in time.

 Late submissions will be subject to penalties.

 There will be no makeup exams except under emergencies. If a

student cannot attend the exam, then student must make

arrangement with the instructor prior to the planned absence.

9

Programming Languages

10

Programming Languages

 For a computer to be able to perform specific tasks (i.e. print

what grade a student got on an exam), it must be given

instructions to do the task.

 The set of instructions that tells the computer to perform

specific tasks is known as software program.

 A programming language is a set of rules, symbols and special

words used to write statements in order to develop sets of

instructions (computer software) for computers to execute.

11

Examples of Programming Languages

12

Programming Language Levels

 There are two main levels of programming languages.

1. Low-level programming. Low-level languages are closer to

the hardware than are high-level programming. Low-level

languages can convert to machine code without a compiler or

interpreter. For example, assembly language.

13

Programming Language Levels

2. high-level programming languages: languages that are closer to

human languages and further from machine languages. Examples

include Java, C/C++ , Pascal, FORTRAN , BASIC

 The main advantage of high-level languages over low-level

languages is that they are easier to read, write, and maintain.

 Programs written in a high-level language must be translated into

machine language by a compiler or interpreter.

14

Programming Paradigms

 A programming paradigm is a model of programming based on

distinct concepts that shapes the way programmers design,

organize and write programs.

 There are two main programming paradigms:

1. Procedural programming

2. Object-oriented paradigm

15

1. Procedural Programming

 In procedural (functions-based) programming, programming relies

on procedures (functions) which contain a series of

computational steps to be carried out. Code is executed from

the top of the file to the bottom.

16

1. Procedural Programming

 The life of a process-centred design was short because changes

to the process specification required a change in the entire

program. An inability to reuse existing code without considerable

overhead.

 Examples of computer procedural languages are BASIC,

FORTRAN, and Pascal.

17

2. Object-Oriented Programming (OOP)

 To have a fine definition of OOP, please note what do you see in

your classroom right now? Nice, what is the attributes and

behavior of each of them ?

 OOP program is a collection of interacting objects. That’s mean

objects play a central role.

 Each object consists of attributes and behavior.

 Each different type of object comes from a specific class of that

type.

18

Some Benefits of OOP

 OOP is easier to accommodate changes.

 It helps increase productivity through reuse of existing codes.

 The OOP paradigm is currently the most popular way of

analysing, designing, and developing application systems, especially

large ones.

 Examples of OOP languages include: Java, Python, and C++.

19

Java Programming Language

20

What is Java ?

 It is a high-level programming language

 It was originally developed by Sun Microsystems in1995, and

now owned by Oracle Corporation.

 One of the best programming language in the last 20 years.

21

22

Reasons to Learn Java

1. Java is an OOP Language

2. Java is easy to learn

3. Java is FREE

4. Wonderful community support

5. Great collection of Open Source libraries

6. Excellent documentation support

7. Java is everywhere: Desktop, web applications, and mobile

applications.

8. Java support Platform Independent Compiling

23

Programming Language Compiler

 A compiler is a software that:

1. Checks the correctness of the source code according to the

language rules.

 Syntax errors are raised if some rules were violated.

2. Translates the source code into a machine code if no errors

were found.

24

Platform dependent Compiling

 Because different operating systems (windows, macs, unix),

require different machine code, you must compile most programs

separately for each platform.

25

Java Platform Independent Compiling

 The Java compiler (javac) produces bytecode (a “.class” file) not

machine code from the source code (the “.java” file).

 Java Virtual Machine (JVM): A hypothetical computer developed to

make Java programs machine independent (i.e run on many

different types of computer platforms). Bytecode is the machine

language for the JVM

26

Java Platform Independent Compiling

 The Java Virtual Machine (JVM) Components:

1. The Class Loader

 stores bytecodes in memory

2. Bytecode Verifier

 ensures bytecodes do not violate security requirements

3. Bytecode Interpreter

 translates bytecodes into machine language

27

Java Platform Independent Compiling

Class

Loader

Bytecode
Interpreter

Bytecode

Verifier

Hardware

Operating System

JVM

Running

The Bytecode
(the “.class” file)

28

Five Phases in Java Programs

 Java programs normally go through five phases :

1. Edit

2. Compile

3. Load

4. Verify

5. Execute.

29

Five Phases in Java Programs

30

Classes & Objects: Defining, Creating,

and Using

31

Classes

 A class is a description of a kind of object (known as blue print).

 When we write a program in Java, we define classes, which in

turn are used to create objects of the same type.

 Classes are, therefore, the main building blocks of Java programs,

as everything (objects, attributes and operations) is contained

in classes.

32

Classes

33

Any Thing

Attributes

Behavior

Each one is presented as
a variable in the Class

Each one is presented as
a method in the Class

Classes

34

class

objects

Class Declaration

 To declare a new class, we use the keyword class, followed by a

non-reserved identifier that names it. A pair of matching open

and close brace characters { and } follow and delimit the class's

body.

 A class name shall be a noun or a noun phrase made up of

several words. All the words shall be initial-capitalized. For

example, SoccerPlayer.

35

https://www.google.com.sa/search?q=keywords+in+java&safe=strict&source=lnms&tbm=isch&sa=X&ved=0ahUKEwi8n-Lx2MvWAhWLvhQKHRFTC2oQ_AUICigB&biw=1280&bih=591#imgrc=m544nSFd-Al7VM:

Example

36

Class Declaration

 Every .java file has one or more classes. Only one of the classes

can be a public class. Keyword public means that the class is

available to everybody.

 That public class must have the same name as the .java file, and

contains the method main in it.

 Execution always begins with method main java applications.

37

Class Declaration

 To better organize your programs, use a separate .java file for the

public class containing method main.

 In general, there should be one class per file. If you organise things

that way, then when you search for a class, you know you only

need to search for the file with that name.

38

Objects

 An object is an instance of a class.

 You can create any number of objects from one class.

 To create a object of a class, you have to:

1. Declare an object identifier (object name/reference) of a

particular class.

2. Construct the object using the "new" operator.

39

1. Declaring Object References

 To declare an object, we need an object reference variable.

ClassName objectReferenceName;

 The above statement creates a variable “objectReferenceName”

which can reference a ClassName object. It does NOT create an

object.

 Variable names begin with a lowercase letter, and subsequent

words in the name begin with a capital letter.

40

2. Instantiating Objects

 To create an object, we use the new keyword along with a

constructor for the class of the object we wish to create.

 To refer to the object, we “point” an object reference

variable to the new object.

objectReferenceName = new ClassName();

 The declaration and instantiation can be combined as follows:

ClassName objectReferenceName = new ClassName();

41

Example 1:

1. Declaring object references:

Laptop dell ;

2. Instantiating objects

dell = new Laptop ();

Or

Laptop dell = new Laptop();

42

constructor

Example 2:

1. Declaring object references:

Student s1 ;

2. Instantiating objects

s1 = new Student ();

Or

Student s1 = new Student ();

43

constructor

Example 2:

44

Accessing Members of a Class

 The variables and methods belonging to a class are formally

called member variables and member methods.

 To access a member variable or method of a class, you must: First

identify the object you are interested in, and then, Use the dot

operator (.) to access the desired member variable or method.

Referencing variables:

objectReferenceName.varName

Calling methods:

objectReferenceName.methodName()

45

Example

46

Example

47

Assignment One is Uploaded to the

Portal of “Learning”

48

