User Interface Design

Lecture 5: Data Analysis, Presentation and Interpretation

Dr. Obead Alhadreti

Learning Objectives

- Discuss the difference between qualitative and quantitative data and analysis.
- Make you aware of software packages that are available to help your analysis.
- Enable you to interpret and present your findings in appropriate ways.

What is Data?

- A collection of facts, such as values or measurements.
- The raw material of science.
- Contains the information waiting to be released.
- This is done through data analysis, presentation, and interpretation.

- I. Quantitative data expressed as numbers
- 2. Qualitative data expresses the nature of elements and is represented as themes, patterns, stories

Quantitative vs. Qualitative Analysis

- Explanation through numbers
- Objective
- Deductive reasoning
- Predefined variables and measurement
- Data collection before analysis

Cause and effect relationships

- Explanation through words
- Subjective
- Inductive reasoning
- Creativity, extraneous variables
- Data collection and analysis intertwined
- Description, meaning

Simple quantitative analysis

- Summary statistics: used to summarise a set of observations.
- Commonly used summary statistics are:
 - measure of central tendency such as the average (mean, median or mode)
 - 2. measure of variability like the range and the standard deviation

Measures of central tendency

- I. Mean (also called average): add up values and divide by number of data points
- 2. Median: middle value of data when ranked
- 3. Mode: figure that appears most often in the data

Example 1: Finding the Mean of a Data Set

Find the mean of each data set.

Depths of Puddles (in.)								
5	8	3	5	4	2	1		

mean: 5 + 8 + 3 + 5 + 4 + 2 + 1 = 28
28 ÷ 7 = 4

Add all values. Divide the sum by the number of items.

The mean is 4 inches.

Example 2: Finding the Mean of a Data Set

Find the mean of each data set.

Number of Points Scored								
96	75	84	7					

Example 3: Finding the Median of a Data Set

Find the median of the data set.

\$100, \$275, \$300, \$325, \$350, \$375, \$500

First place the prices in numerical order.

\$100, \$275, \$300, \$325, \$350, \$375, \$500

The price in the middle is the median price.

\$100, \$275, \$300, \$325, \$350, \$375, \$500

The median price is \$325

Example 4: Finding the Median of a Data Set

Find the median of the data set.

```
12, 15, 11, 11, 7, 13
```

First place the prices in numerical order.

```
7,11,11,12,13,15
```

Then find the number in the middle or the average of the two numbers in the middle.

11 + 12 = 23 23 / 2 = 11.5

The median number is 11.5

Example 5: Finding the Mode of a Data Set

Find the mode of the data set.

```
12, 15, 11, 11, 7, 13
```

The mode is 11

Example 6: Finding the Mode of a Data Set

Sometimes a set of data will have more than one mode.

For example, in the following set the numbers both the numbers 5 and 7 appear twice.

2, 9, 5, 7, 8, 6, 4, 7, 5

The mode and this set is said to be bimodal.

Example 7: Finding the Mode of a Data Set

Sometimes there is no mode in a set of data.

```
3, 8, 7, 6, 12, 11, 2, 1
```

• All the numbers in this set occur only once therefore there is no mode in this set.

Measures of Variability

- I. Range: is the difference between the least and greatest values in the set.
- 2. Standard deviation: is a measure of how each value in a data set varies or deviates from the mean.

Example 8: Finding the Range of a Data Set

Consider the following set:

40, 30, 43, 48, 26, 50, 55, 40, 34, 42, 47, and 50

To find the range you would take the largest number, 50, and subtract the smallest number, 26.

$$55 - 26 = 29$$

The range is 29

Example 9: Finding the Standard Deviation of a Data Set

The math test scores of five students are: 92,88,80,68 and 52.

I) Find the mean: (92+88+80+68+52)/5 = 76

2) Find the **deviation from the mean**: 92-76=16 88-76=12 80-76=4 68-76= -8 52-76= -24

Example 9: Finding the Standard Deviation of a Data Set

3) Square the deviation from the mean:

$$(16)^2 = 256$$

 $(12)^2 = 144$
 $(4)^2 = 16$
 $(-8)^2 = 64$
 $(-24)^2 = 576$

4) Find the sum of the squares of the deviation from the mean:

256+144+16+64+576= 1056

Example 9: Finding the Standard Deviation of a Data Set

5) Divide by the number of data items to find the variance:

|056/5 = 2||.2

6) Find the square root of the variance:

$$\sqrt{211.2} = 14.53$$

Thus the standard deviation of the test scores is 14.53

Qualitative analysis

- The primary activity of qualitative analysis is the search for patterns and explanations for those patterns.
- Categorization scheme may be emergent or pre-specified.

Figure 8.8 Building the affinity diagram of Indian ATM usage Source: Figure 1, A. DeAngeli, U. Athavamker, A. Joshi, L. Coventry and G.I. Johnson (2004) "Introducing ATMs in India: a contextual inquiry", *Interacting with Computers* 16(1), 29–44. Reproduced with permission. Some approaches to qualitative analysis

• <u>Grounded Theory</u>

Begins with observations and no preconceived hypotheses Seeks to discovers patterns in the data.

<u>Conversation Analysis</u>

structure and norms around language and attached significance and meaning.

attention to pauses, tone, stuttering etc.

Qualitative analysis process

- There are some generic strategies that are part of almost every approach to data analysis.
 - immersion in the data
 - doing preliminary and informal analysis
 - making analytic memos
 - finding codes or themes
 - connecting the codes or themes into categories
 - searching for confirming and disconfirming evidence
 - building a conceptual framework that explains the findings

Tools to support data analysis

- Spreadsheet simple to use, basic graphs
- Statistical packages, e.g. SPSS
- Qualitative data analysis tools
 - Categorization and theme-based analysis
 - Quantitative analysis of text-based data
- Nvivo and Atlas.ti support qualitative data analysis
- CAQDAS Networking Project, based at the University of Surrey (<u>http://caqdas.soc.surrey.ac.uk/</u>)

Data Presentation

- Visual methods can make the point much stronger than simply describing the data.
- Appropriate use of tables and graphs can enhance the message you are delivering.
- Tables
 - Simplest way to summarize data
 - Data is presented as absolute numbers or percentages
- Charts and graphs
 - Visual representation of data
 - Usually data is presented using percentages

Tables

- Good for when exact numbers need to be presented.
- Because your STEPS report will be <u>the</u> reference for results from your STEPS survey, it will have a lot of tables!
- Best Practice:
 - Clear table title and column / row headings
 - Minimal use of grid lines
 - Leave enough space so columns/rows are easy to read

Percentage of current smokers												
	Men				Women				Both Sexes			
Age Group – (years)	%				%	0504 01	_		%			
	ri	smoker	ker			smoker	99 % CI		ri	smoker	95% CI	
18-24	251	45.2	38.2-52.1		391	5.0	2.6-7.4		642	26.5	22.1-30.9	
25-34	258	62.7	55.2-70.2		675	3.7	2.1-5.2		933	36.1	31.8-40.4	
35-44	357	65.3	59.8-70.9		812	5.7	4.0-7.4		1169	33.7	29.7-37.7	
45-54	483	57.5	52.1-62.9		1212	5.7	3.5-7.9		1695	29.9	26.6-33.1	
55-64	523	40.1	35.1-45.1		1475	3.2	2.0-4.4		1998	20.9	18.1-23.6	
18-64	1872	55.5	52.7-58.4		4565	4.8	3.7-5.8		6437	30.3	28.4-32.2	

- Bar graphs show quantities represented by horizontal or vertical bars and are useful for displaying:
 - Several categories of results at once (e.g. males vs. females)
- Pie charts show proportions in relation to a whole, with each wedge representing a percentage of the total and are useful for displaying:
 - Parts of a whole in percentages

Charts and Graphs: Best Practice

- Emphasize <u>one</u> idea at a time in a figure.
- > Pay careful attention to the <u>scaling</u> of the graph.
- Provide a <u>title</u>, <u>units</u> and <u>labels</u>: the graph or table should be <u>self-explanatory</u>!
- If possible, mention the <u>total sample size</u> of the data set for which the graph or chart is made.
- Be sparing and consistent with use of colour, fonts and "enhancements".

Effective Data Presentation

Clear

Consistency

- Font, Colors, Punctuation, Terminology, Line/ Paragraph Spacing
- An appropriate amount of information, less is more

Attractive

Data Interpretation

- Interpretation: adding meaning to information by making connections and comparisons and by exploring causes and consequences.
- Only make claims that your data can support.