
Lecture 6: Functional Dependencies
and Normalization for Relational

Databases
Dr. Obead Alhadreti

Normalization

➢Normalization
➢process of analyzing the given relation schemas based on their

Functional Dependencies and primary keys to achieve the
desirable properties:

(1) Minimizing redundancy

(2) Minimizing the insertion, deletion, and update anomalies

Redundant
Information

➢ In EMP_DEPT, the attribute values pertaining to a
particular department (DNUMBER, DNAME, DMGRSSN) are
repeated for every employee who works for that
department.

Redundant
Information

➢ In contrast, each department's information appears only
once in the DEPARTMENT relation.

➢ Only the department number (DNUMBER) is repeated in
the EMPLOYEE relation for each employee who works in that
department

➢These can be classified into insertion anomalies, deletion
anomalies, and modification anomalies.

What Is Anomalies?

➢ Anomalies are problems that can occur in poorly planned,
unnormalized databases where all the data is stored in one table (a
flat-file database).

➢There are different types of anomalies which can occur in referencing
and referenced relation:
➢Insertion anomaly: there are circumstances in which certain facts cannot be

recorded.

➢Deletion anomaly: the unintended loss of data due to deletion of other data.

➢Modification/Update anomaly: the same information can be expressed on
multiple rows; therefore updates to the relation may result in logical
inconsistencies.

Insertion Anomalies

➢can be differentiated into two types, based on the EMP_DEPT
relation:
➢ To insert a new employee tuple into EMP_DEPT, we must include either the

attribute values for the department that the employee works for

➢ or nulls (if the employee does not work for a department as yet).

Insertion Anomalies

➢It is difficult to insert a new department that has no employees as yet
in the EMP_DEPT relation.

➢ The only way to do this is to place null values in the attributes for
employee.

➢This causes a problem because SSN is the primary key of EMP_DEPT,
and each tuple is supposed to represent an employee entity-not a
department entity.

Deletion Anomalies

➢If we delete from EMP_DEPT an
employee tuple that happens to
represent the last employee
working for a particular
department, the information
concerning that department is
lost from the database.

➢This problem does not occur in
this database because
DEPARTMENT tuples are stored
separately.

Modification Anomalies

➢In EMP_DEPT, if we change the value of one of the attributes of a
particular department, For example the manager of department 5
➢we must update the tuples of all employees who work in that department;

otherwise, the database will become inconsistent.

➢ If we fail to update some tuples, the same department will be shown
to have two different values for manager in different employee
tuples, which would be wrong.

For your Project

➢Make sure to design the base relation schemas so that no insertion,
deletion, or modification anomalies are present in the relations.

➢If any anomalies are present, note them clearly and make sure that
the programs that update the database will operate correctly.

Functional Dependencies
➢Functional Dependency(FD): is a relationship that exists when one

attribute uniquely determines another attribute.

➢ An attribute Y is said to have a functional dependency on a set of
attributes X (written X → Y) if and only if each X value is associated with
precisely one Y value.

➢It represented by an arrow sign (→) that is, X→Y, where X functionally
determines Y. The left-hand side attributes determine the values of
attributes on the right-hand side.

➢ Customarily we call X the determinant set and Y the dependent attribute.

Functional Dependencies

Example:

F= {SSN → {ENAME, BDATE, ADDRESS, DNUMBER},
DNUMBER→{DNAME, DMGRSSN}}
Some of the additional functional dependencies that we can infer
from F are the following:
SSN → {DNAME, DMGRSSN}
SSN →SSN
DNUMBER →DNAME

Trivial functional dependency

➢ A functional dependency of an attribute on a superset of itself.

Example:

{Employee ID, Employee Address} → {Employee Address} is
trivial, as is {Employee Address} → {Employee Address}.

Properties of functional dependencies

➢Subset Property (Axiom of Reflexivity):

➢ If Y is a subset of X, then X → Y

➢Augmentation (Axiom of Augmentation):

➢ If X → Y, then XZ → YZ

➢Transitivity (Axiom of Transitivity):

➢ If X → Y and Y → Z, then X → Z

➢Union:

➢If X → Y and X → Z, then X → YZ

➢Decomposition:

➢If X → YZ, then X → Y and X → Z

➢Pseudotransitivity:

➢f X → Y and WY → Z, then XW → Z

Functional Dependencies types

➢Full functional dependency: an attribute is fully functionally
dependent on a set of attributes X if it is:
➢Functionally dependent on X, and

➢ Not functionally dependent on any proper subset of X.

➢X->Y is a full functional dependency if removal of any attribute from X means
that the dependency does not hold anymore.

➢Partial dependency: if some attribute in X can removed and the
dependency still holds.

➢Transitive dependency: an indirect functional dependency, one in
which X→Z only by virtue of X→Y and Y→Z

Keys in Database

➢Superkey: subset of attributes that separate any two rows.
➢For example, {SSN}, {SSN, ENAME}, {SSN, ADDRESS}.

➢ Key: a key has to be minimal.

➢Candidate Key: has more than one key.
➢For example, SSN and student_ID.

➢Primary key: one picked from the candidate key pool.
➢Most DBMSs require a table to be defined as having a single unique key, rather than a

number of possible unique keys.

➢Secondary keys: candidate key minus primary key.

Normal forms

➢Normal forms (NF): provide criteria for determining a table's degree
of vulnerability to logical inconsistencies and anomalies.

➢ The normal forms are applicable to individual tables; to say that an
entire database is in normal form n is to say that all of its tables are in
normal form n.

First Normal Form (1NF)
➢A table is in 1NF if and only it satisfies the following five conditions:
➢ There's no top-to-bottom ordering to the rows.

➢There's no left-to-right ordering to the columns.

➢There are no duplicate rows.

➢Every row-and-column intersection contains exactly one value from the
applicable domain (and nothing else).

➢All columns are regular [i.e. rows have no hidden components such as row
IDs, object IDs, or hidden timestamps].

➢Violation of any of these conditions would mean that the table is not
strictly relational, and therefore that it is not in 1NF.

First Normal Form (1NF)

Example of tables that would not meet this definition of 1NF are:
➢A table that lacks a unique key. Such a table would be able to accommodate

duplicate rows, in violation of condition 3.

➢A table with at least one nullable attribute. A nullable attribute would be in
violation of condition 4, which requires every field to contain exactly one
value from its column's domain.

First normal form (1NF)
Example:

Suppose a novice designer wishes to record the names and
telephone numbers of customers. He defines a customer table
which looks like this:

First normal form (1NF)

• The designer then becomes aware of a requirement to record
multiple telephone numbers for some customers. He reasons that the
simplest way of doing this is to allow the "Telephone Number" field in
any given record to contain more than one value:

First normal form (1NF)
• Assuming, however, that the Telephone Number column is defined on

some Telephone Number-like constraint (e.g. strings of 12 characters
in length), the previous representation is not in 1Nf as it prevents a
single field from containing more than one value from its column's
domain.

• The designer might attempt to get around this restriction by defining
multiple Telephone Number columns:

First normal form (1NF)

➢This representation use of nullable columns, and therefore does not
conform to definition of 1NF and causes logical problems. These
problems include:
➢Difficulty in querying the table. Answering such questions as "Which

customers have telephone number X?"

➢Inability to enforce uniqueness of Customer-to-Telephone Number links
through the RDBMS. Customer 789 might mistakenly be given a Tel. No. 2
value that is exactly the same as her Tel. No. 1 value.

➢Restriction of the number of telephone numbers per customer to three. If a
customer with four telephone numbers comes along, we are constrained to
record only three and leave the fourth unrecorded.

First normal form (1NF)

➢A design that is unambiguously in 1NF makes use of two tables:
➢ a Customer Name table and

➢a Customer Telephone Number table.

Second normal form

➢A table that is in first normal form (1NF) must meet additional criteria
if it is to qualify for second normal form.

➢Specifically: a 1NF table is in 2NF if and only if, given any candidate key K and
any attribute A that is not a constituent of a candidate key, A depends upon
the whole of K rather than just a part of it.

➢In slightly more formal terms: a 1NF table is in 2NF if and only if all its non-
prime attributes are functionally dependent on the whole of a candidate key.
(A non-prime attribute is one that does not belong to any candidate key.)

Second normal form

➢Consider a table describing employees' skills:

Second normal form

➢Neither {Employee} nor {Skill} is a candidate key for the table.

➢This is because a given Employee might need to appear more than
once (he might have multiple Skills), and a given Skill might need to
appear more than once (it might be possessed by multiple
Employees).

➢Only the composite key {Employee, Skill} qualifies as a candidate key
for the table.

➢The remaining attribute, Current Work Location, is dependent on
only part of the candidate key, namely Employee.

➢Therefore the table is not in 2NF.

Second normal form
➢A 2NF alternative to this design would represent the same

information in two tables:
➢an "Employees" table with candidate key {Employee}, and

➢an "Employees' Skills" table with candidate key {Employee, Skill}:

Third normal form

➢The third normal form (3NF) is a normal form used in database
normalization.

➢3NF was originally defined by E.F. Codd in 1971.

➢ Codd's definition states that a table is in 3NF if and only if both of
the following conditions hold:
➢ The relation R (table) is in second normal form (2NF)

➢ Every non-prime attribute of R is non-transitively dependent (i.e. directly
dependent) on every candidate key of R.

Third normal
form

A 2NF table that fails to meet the requirements of 3NF is:

➢Because each row in the table needs to tell us who win a
particular Tournament in a particular Year, the composite key
{Tournament, Year} is a minimal set of attributes guaranteed to
uniquely identify a row.

➢That is, {Tournament, Year} is a candidate key for the table.

➢The breach of 3NF occurs because the non-prime attribute
Winner Date of Birth is transitively dependent on the candidate
key {Tournament, Year} via the non-prime attribute Winner.

Third normal form

➢The fact that Winner Date of Birth is functionally dependent on
Winner makes the table vulnerable to logical inconsistencies, as there
is nothing to stop the same person from being shown with different
dates of birth on different records.

➢ In order to express the same facts without violating 3NF, it is
necessary to split the table into two:

Third normal form

Update anomalies cannot occur in these tables, which are both in 3NF

Summary of Normal Forms Based on Primary
Keys and Corresponding Normalization

Notes on Normal Forms Based on Primary Keys

➢Takes a relation schema through a series of tests to certify whether it
satisfies a certain normal form.

➢ Decompose relations as necessary.

➢The normal form of a relation refers to the highest normal form
condition that it meets, and hence indicates the degree to which it
has been normalized.

Make your database into 3NF.

