# **Database I** (60012301-1)

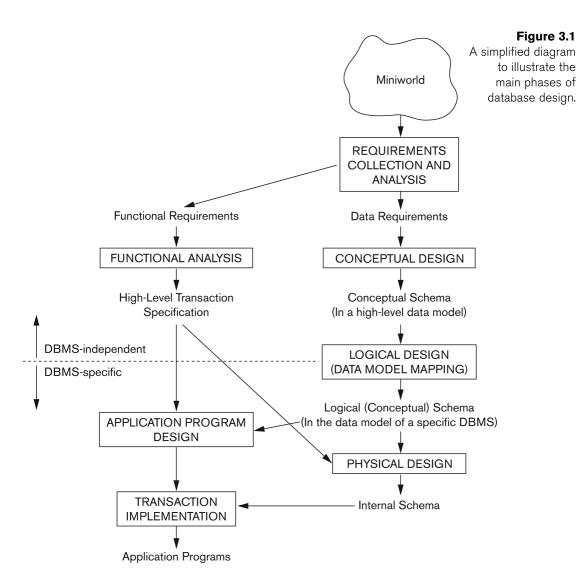
#### Lecture 3: Data Modeling Using the Entity-Relationship (ER) Model

#### Dr. Obead Alhadreti



## Outline

- Overview of Database Design Process
- Example Database Application (COMPANY)
- ER Model Concepts
  - Entities and Attributes
  - Entity Types, Value Sets, and Key Attributes
- ER Diagrams Notation
- ER Diagram for COMPANY Schema


## **Overview of Database Design Process**

- Two main activities:
  - Database design
  - Applications design
- Focus here on database design
  - To design the conceptual schema for a database application
- Applications design focuses on the programs and interfaces that access the database
  - Generally considered part of software engineering

## What is Database Design?

- Database design is the process of producing a detailed data model of a database.
- Database design involves identifying the existing relationships between separate pieces of data and mapping out those relationships in an organized way that makes sense.
- After analysis, Gather all the essential data required and understand how the data are related.

### Main Phases of Database Design



# Overview of Database Design Process (Contd.)

#### I. Requirements Collection and Analysis

- Database designers interview prospective database users to understand and document their data requirements.
- Functional requirements: user defined operations.
- **The output is:** A set of requirements.

#### 2. Conceptual Design

- Detailed description of the entities, attributes, and their relationships.
- The output is: A conceptual schema (described using a conceptual data model like Entity-Relationship (ER) model.

# Overview of Database Design Process (Contd.)

#### 3. Logical Design

- Mapping a conceptual schema (like ER model) into logical schema to provide a much detail description.
- **The output is:** A logical schema (described using a logical data model specific to the DBMS like relational model).

#### 4. Physical Design

- Internal storage structures, file organizations, indexes, access paths, and physical design parameters for the database files are specified.
- **The output is:** An internal (physical) schema (described using a physical data model).

## Example COMPANY Database

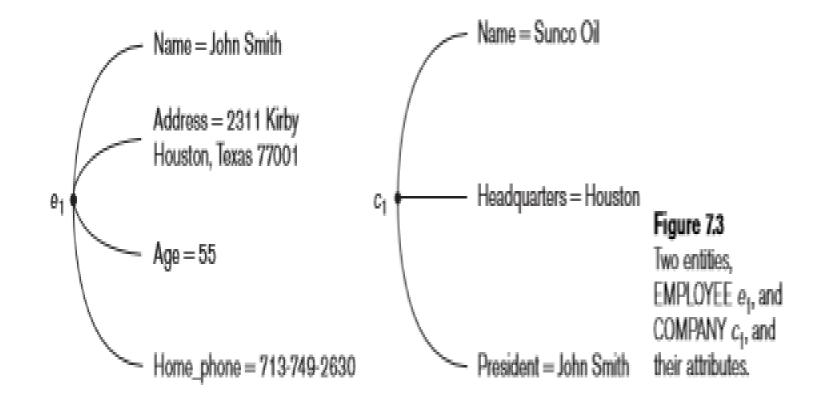
- We need to create a database schema design based on the following (simplified) requirements of the COMPANY Database:
  - The company is organized into DEPARTMENTs.
  - Each department has a name, number and an employee who manages the department. We keep track of the start date of the department manager. A department may have several locations.
  - Each department *controls* a number of PROJECTs.
  - Each project has a unique name, unique number and is located at a single location.

# Example COMPANY Database (Contd.)

- We store each EMPLOYEE's social security number, address, salary, sex, and birthdate.
  - Each employee works for one department but may work on several projects.
  - We keep track of the number of hours per week that an employee currently works on each project.
  - We also keep track of the *direct supervisor* of each employee.
- Each employee may *have* a number of DEPENDENTs.
  - For each dependent, we keep track of their name, sex, birthdate, and relationship to the employee.

## Entity-Relationship (ER) Model

- The ER model is a popular high-level conceptual data model, which is a representation of the structure of the database. It was proposed by Peter Chen in 1976
- The ER model aim to illustrate how relationships between entities are defined and refined.
- The ER model describes data as entities, relationships, and attributes.
- The diagrammatic *notation* associated with the ER model is known as ER diagrams.


### Entities

- Entity: is a thing or object in the real world with an independent existence.
- An entity may be an object with a physical existence (for example, a particular person, car, house, or employee)
- It may also be an object with a conceptual existence (for instance, a company, a job, or a university course).
- Each entity has *attributes* that give them their identity.

## Attributes

- Attributes: are properties used to describe an entity.
- For example, an EMPLOYEE entity may be described by the employee's name, age, address, salary, and job.
- A specific entity will have a value for each of its attributes.
  - For example a specific employee entity may have Name='John Smith', SSN='123456789', Address ='731, Fondren, Houston, TX', Sex='M', BirthDate='09-JAN-55'
- Each attribute has a value set (or data type) associated with it – e.g. integer, string, subrange, enumerated type, ...

### Attributes



## Types of Attributes

#### Simple versus Composite attributes

- Simple attribute: entity has a single atomic value for the attribute.
- Composite attributes: The attribute can be divided into smaller subparts.
- For example, the Address can be subdivided into (Apt#, House#, Street, City, State, ZipCode, Country).
- Name(FirstName, MiddleName, LastName).
- Composition may form a hierarchy where some components are themselves composite.

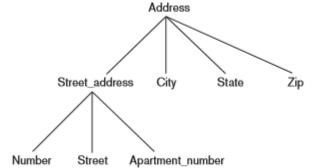



Figure 3.4 A hierarchy of composite attributes.

<sup>&</sup>lt;sup>3</sup>Zip Code is the name used in the United States for a five-digit postal code, such as 76019, which can be extended to nine digits, such as 76019-0015. We use the five-digit Zip in our examples.

# Types of Attributes (Contd.)

#### Single-Valued versus Multi-Valued Attributes

- Single-valued attributes: Most attributes have a single value for a particular entity; such attributes are called single-valued. For example, Age, height.
- Single-valued attributes: An entity may have multiple values for that attribute. For example, Color of a CAR or PreviousDegrees of a STUDENT.
  - Denoted as {Color} or {PreviousDegrees}.

#### Stored versus Derived Attributes

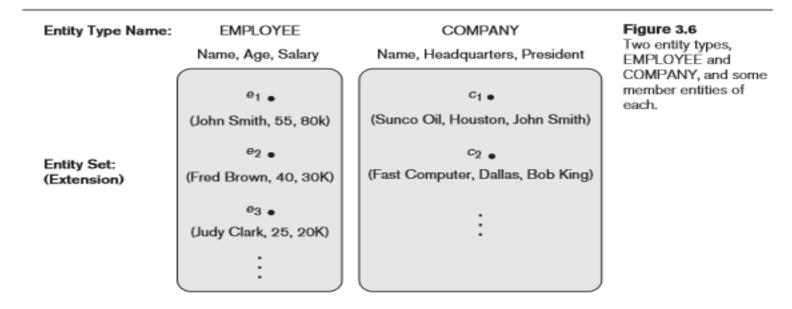
- For example: Birth\_date is a stored attribute.
- Age can be derived from Birth\_date. Therefore, Age is a called a derived attribute.

# Types of Attributes (Contd.)

#### NULL Values

- A particular entity may not have an applicable value for an attribute (*not applicable value*).
- For example, a College\_degrees attribute applies only to people with college degrees. For such situations, a special value called NULL is created.
- NULL can also be used if we do not know the value of an attribute for a particular entity (Unknown)- missing or really unknown.

#### Complex Attributes


 Mixing with composite and multivalued. For example, address and phones.

# Entity Type

- Entity Type: a collection of entities that have the same attributes.
- So we may say a name of table is an entity type.
- Each entity type in the database is described by its name and attributes.
- Entity Instance: An entity instance is a single occurrence of an entity.

## Entity Set

- Entity Set: The collection of all entities of a particular entity type in the database at any point in time is called an entity set or entity collection.
- Entity set is the current state of the entities of that type that are stored in the database.



#### Exercise 1

#### Table name is STUDENT

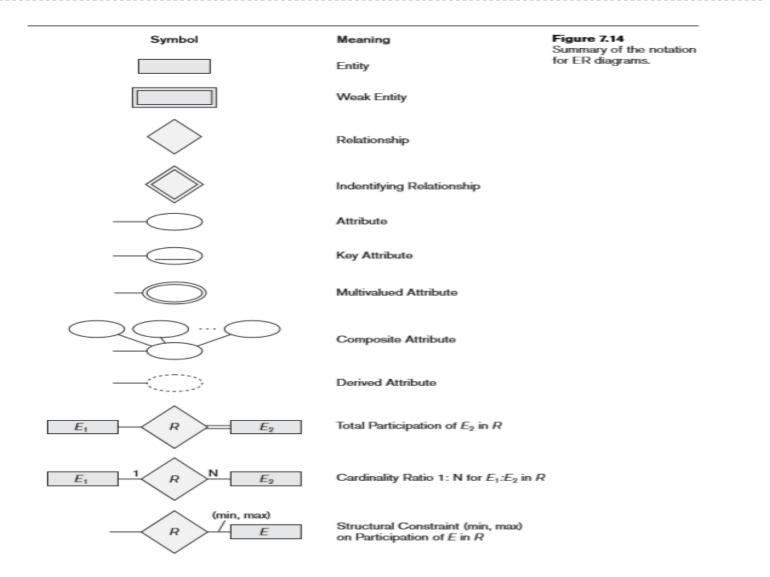
| ID | Name | Age |
|----|------|-----|
| 1  | Ram  | 12  |
| 2  | Sam  | 13  |

Find out the entity type, entity attributes, entity instances, and entity set for the above table.

# Key Attributes of an Entity Type

- Key Attributes are attributes whose values are distinct for each individual entity in the entity set.
- For example, the Name attribute is a key of the COMPANY entity type because no two companies are allowed to have the same name.
- An entity type may have more than one key, meaning that the combination of the attribute values must be distinct for each entity.
  - For example, The CAR entity type may have two keys:
    - VehicleIdentificationNumber (popularly called VIN)
    - VehicleTagNumber (Number, State), aka license plate number.

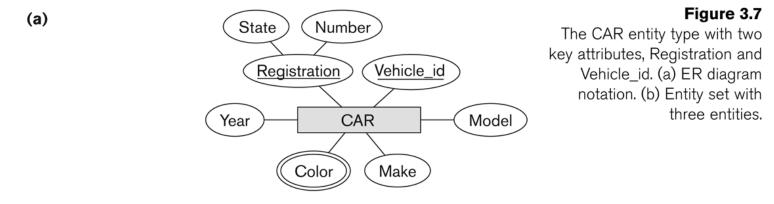
# Key Attributes of an Entity Type (Contd.)


• A key attribute may be composite.

VehicleTagNumber is a key of the CAR entity type with components (Number, State).

Must be minimal.

 Value Sets (domain of values)- specifies the set of values that may be assigned to that attribute for each individual entity. Not represented in ER, but specified in integer, Boolean, float, string, etc.


## SUMMARY OF ER-DIAGRAM NOTATION FOR ER SCHEMAS



# Displaying an Entity type in ER diagram

- In ER diagrams, an entity type is displayed in a rectangular box.
- Attributes are displayed in ovals
  - Each attribute is connected to its entity type
  - Components of a composite attribute are connected to the oval representing the composite attribute
  - Each key attribute is underlined
  - Multivalued attributes displayed in double ovals
- See CAR example on next slide

# Entity Type CAR with two keys and a corresponding Entity Set





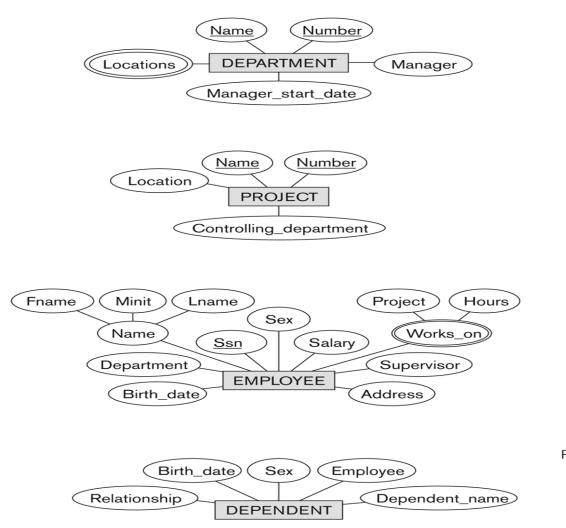
(b)

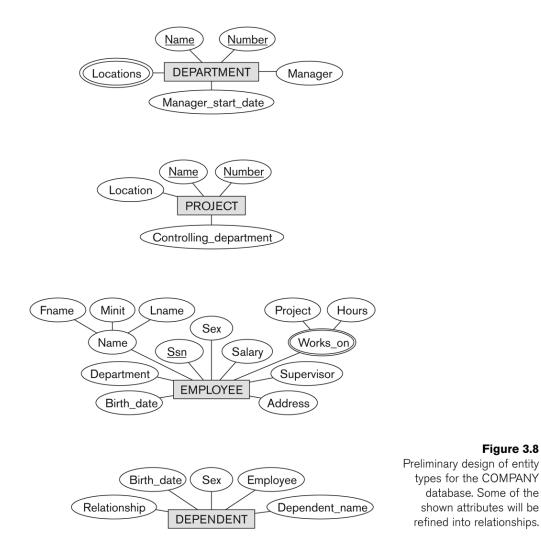
CAR<sub>1</sub> ((ABC 123, TEXAS), TK629, Ford Mustang, convertible, 2004 {red, black}) CAR<sub>2</sub> ((ABC 123, NEW YORK), WP9872, Nissan Maxima, 4-door, 2005, {blue}) CAR<sub>3</sub> ((VSY 720, TEXAS), TD729, Chrysler LeBaron, 4-door, 2002, {white, blue})

# Initial Design of Entity Types for the COMPANY Database Schema

- Based on the requirements, we can identify four initial entity types in the COMPANY database:
  - DEPARTMENT
  - PROJECT
  - **EMPLOYEE**
  - DEPENDENT
- Their initial design is shown on the following slide
- The initial attributes shown are derived from the requirements description

# Initial Design of Entity Types: EMPLOYEE, DEPARTMENT, PROJECT, DEPENDENT





Figure 3.8

Preliminary design of entity types for the COMPANY database. Some of the shown attributes will be refined into relationships.

# Initial Design of Entity Types for the COMPANY Database Schema

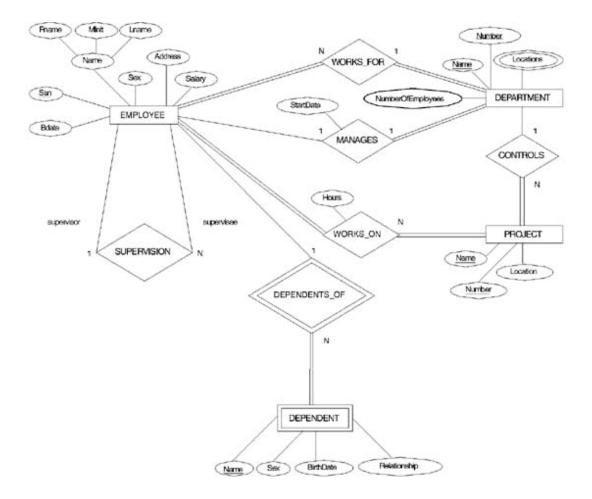
- Based on the requirements, we can identify four initial entity types in the COMPANY database:
  - DEPARTMENT
  - PROJECT
  - **EMPLOYEE**
  - DEPENDENT
- Their initial design is shown on the following slide
- The initial attributes shown are derived from the requirements description

#### Initial Design of Entity Types: EMPLOYEE, DEPARTMENT, PROJECT, DEPENDENT



### Exercise 2

#### Draw an initial conceptual design of the entity type: Students


| ID | First Name | Last name | Bdate | Age | sec |
|----|------------|-----------|-------|-----|-----|
| 1  | Ram        | Jack      | 1980  | 12  | Μ   |
| 2  | Sam        | Michel    | 1989  | 13  | Μ   |

# Refining the initial design by introducing **relationships**

- The initial design is typically not complete
- Some aspects in the requirements will be represented as relationships
- ER model has three main concepts:
  - Entities (and their entity types and entity sets)
  - Attributes (simple, composite, multivalued)
  - Relationships (and their relationship types and relationship sets)

# Refining the initial design by introducing **relationships**

• We will introduce relationship concepts next lecture

