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Chapter I: Infinite Series, Power Series 

 1. The Geometric Series 

A series is an infinite ordered set of terms combined together by the addition 

operator. The term infinite series is used to confirm the fact that series contain an 

infinite number of terms. 

In the geometric series (progression) we multiply each term by some fixed number 

to get the next term. For example, 

a) 2, 4, 8, 16, 32, …. 

b) ...,
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c) a, ar, ar
2
, ar

3
, …. 

are geometric progressions. Let us consider the following expression  
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                            (1.2) 

This expression is an example of an infinite series, and we are asked to find its 

sum. Not all infinite series have sums. 

Let us find the sum of n terms in (1.2). The formula for the sum of n terms of the 

geometric progression (1.1 c) is  

 
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n
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
                                        (1.3) 

Using (1.3) in (1.2), we find 
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as n increases, 
n

3

2








 decreases and approaches zero. Then the sum of n terms 

approaches 2 as n increases, and we say that the sum of the series is 2. 

Series such as (1.2) whose terms form a geometric progression are called 

geometric series. We can write a geometric series in the form 

a + ar + ar
2
 + ar

3
 + …+ ar

n-1
 + …               (1.5) 

the sum of the geometric series is by definition 

nn SlimS                                             (1.6) 

The geometric series has a sum if and only if 1r  , and in this case the sum is 

r1

a
S


                                                    (1.7) 

Prove: 

 
r1

r1a
ar...ararara

n
1n32




 

 

where a is the first term of the series, and r is the common ratio. We can derive 

this formula as follows: 

Let                                  
1n32 ar...arararas         (1.8) 

Then                               
n432 ar...ararararsr        (1.9) 

Subtracting equations (8) and (9), we find 

nraasrs   

so                                                         nr1ar1s   

 
 r1

r1a
s

n




  
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Repeating decimals 

A repeating decimal can be thought of as a geometric series whose common ratio 

is a power of  
10

1 . For example: 

...
1000

3

100

3

10

3
...3333.0   

Use equation (1.7) to find convert the decimal to a fraction: 

3
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
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Problems 

(1) prove that 

r1

1
...rrr1 32


  

(2) find the fractions that are equivalent to the following repeating decimals: 

(1) 0.5555… (2) 0.818181… (3) 0.583333… 

(4) 0.61111… (5) 0.7777… (6) 0.185185… 

(7) 0.243243… (8) 0.26666… (9) 0.123412341234… 

(10) 0.99999… (11)0.090909… (12)0.14381438… 
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2. Definitions and Notation 

There are many other infinite series besides geometric series. Here are some 

examples: 

(a) ...4321 2222   

(b) ...
2

4

2

3

2

2

2

1
422
                             (2.1) 

(c) ...
4

x

3

x

2

x
x

432

  

 

In general, an infinite series means an expression of the form 

...a...aaaa n4321   

Where na (one for each positive integer n) are numbers or functions given by some 

formula or rule. The three dots mean that the series never ends. 

(a) ...n...4321 22222   

(b) ...
2

n
...

2

4

2

3

2

2

2

1
n432
  

(c) ...
n

x)1(
...

4

x

3

x

2

x
x

n1n432







            (2.2) 

(d) 
 

...
!1n

x)1(
...

2

x
xx

n1n3
2 








 

We can write the series in a shorter abbreviated form using a summation sign  

followed by the formula for the nth term. For example (2.1a) would be written  
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





1n

22222 n...4321  

The series (2.1d) would be written 

 










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2
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x
xx  

 

Problems 

1. Write out several terms of the following series: 

(a)  


1n
22

n
 (b) 

 







1n

n

n

1
 (c) 



 1n 5n

n
 

(d) 


 1n 1n

n
 (e) 

 



 



1n 5n3

1n2n2
 (f) 

 
 



1n

2

!n2

!n
 

 

2. Write the following series in the abbreviated  form. 

(a) ...
6.5

1

5.4

1

4.3

1

3.2

1
  (d) ...

32

1

16

1

8

1

4

1
  

(b)  ...
25

1

16

1

9

1

4

1
  (e) ...

5

5ln

4

4ln

3

3ln

2

2ln
  

(c) ...
13

4

11

3

9

2

7

1
  (f) ...

11

16

9

8

7

4

5

2

3

1
  
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3. Convergent and Divergent Series 

We have been talking about series which have a finite sum. We have also seen that 

there are series which do not have finite sums, for example (2.1 a).  

...4321 2222   

If a series has a finite sum, it is called convergent. Otherwise it is called divergent. 

If we have the series na  

...a...aaaa n4321   

Now consider the sums nS  that we obtain by adding more and more terms of the series. 

We define 

11 aS   

212 aaS   

3213 aaaS   

n321n a...aaaS   

Each nS  is called a partial sum; it is the sum of the first n terms of the series. as n 

increases, the partial sums may increase without any limit as in the series (2.1a). 

They may oscillate as in the series ...54321   (which has partial sums 1, -

1, 2, -2, 3,…) or they may have some more complicated behavior. 

One possibility is that the Sn’s may, after a while, not change very much any more; 

the an’s become very small, and the Sn’s come closer and closer to some value S.  

SSlim nn                                (3.1)       
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It is understood that S is a finite number. If this happens, we make the following 

definitions: 

(1) If the partial sums Sn of an infinite series tend to a limit S, the series is 

called convergent. Otherwise it is called divergent. 

(2) The limiting value S is called the sum of the series. 

(3) The difference Rn = S-Sn is called the remainder. From equation (3.1), we 

see that 

  0SSSSlimRlim nnnn    

 

4. Testing Series for Convergence; The Preliminary Test 

Preliminary test. 

If 0alim nn   , the series is  divergent . 

If 0alim nn  , we must test further. 

This is not a test for convergence; the preliminary test can never tell you that a series 

converges. For example, the harmonic series  

...
5

1

4

1

3

1

2

1

1

1
  

The nth term certainly tends to zero, but we shall soon show that the series  


1n
n

1  is 

divergent. On the other hand, in the series 




 


1n 1n

n
...

5

4

4

3

3

2

2

1
 

The terms are tending to 1, so by the preliminary test, this series diverges and no further 

testing is needed. 
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Problems: 

Use the preliminary test to decide whether the following series are divergent or require 

further testing.  

(1) ...
37

36

26

25

17

16

10

9

5

4

2

1
  (2) ...

5

6

4

5

3

4

2

3
2   

(3) 


 



1n
2 n10n

3n
 (4) 

 
 




 



1n
2

22

1n

n1
 

(5) 


 1n 1!n

!n
 (6) 

 


 1n !1n

!n
 

(7) 


 



1n
3

n

1n

n)1(
 (8) 



1n n

nln
 

(9) 


 1n
nn

n

32

3
 (10) 















1n
2n

1
1  
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5. Tests for Convergence of Series of Positive Terms; Absolute Convergence 

A. The Comparison test: 

The terms of the sequence an are compared to those of another sequence bn. if,  

For all n, nn ba 0 , and 


1n

nb  converges, then so 


1n

na  converges. 

For all n, nn ba  , and  


1n

nb  diverges, then so 


1n

na  diverges. 

 

Example.            Test         





1n

...
24

1

6

1

2

1

1

1

!n

1
        for convergence. 

As a comparison series, we choose the geometric series 







1n

n
...

16

1

8

1

4

1

2

1

2

1
 

Notice that we do not care about the first few terms in a series, because they can affect 

the sum of the series but not whether it converges. 

In our example, the terms of 













1n
!n

1  are smaller than the corresponding terms of 

 


1n

n2
1  for all 3n  . We know that the geometric series converges because its ratio is 










2

1
. Therefore 














1n
!n

1  converges also. 

 

 

 



Mathematical Methods for Physics -Part I    -I-    Phys. Dept. Fac. Sci. Umm AlQura Univ. 

 - 10 - 

Problems 

1. Show that n2!n   for all 3n  . 

2. Use the comparison test to prove the convergence of the series  












1n
n2n

1
 , and  














1n
nn 32

1
 

 

B. The Integral test: 

We can use this test when the terms of the series are positive and not increasing, that 

is, when n1n aa  . This test can still be used even if the condition n1n aa   does 

not hold for a finite number of terms. 

The integral test states that: 

If dna n


 is finite    →


na  is convergent series 

If dna n


 is infinite    →


na  is divergent series 

Example.  Test for convergence the harmonic series 

...
5

1

4

1

3

1

2

1
1   

Using the integral test, we evaluate 

   



 nlndn
n

1
 

Since the integral is infinite, the series diverges. 
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Problems 

Use the integral test to find whether the following series converge or diverge. 

(1)  


 2n n

nln
, where  2

2

1
nlndn

n

nln




 

(2) 


 1n
2 4n

n
, where  4

2

1

4

2

2





nln
n

dnn
 

(3) 


 1n 1n

1
, where 12

1






n
n

dn
 

 

C. Ratio Test 

The integral test depends on your being able to integrate dna n ; this is not always easy. 

We consider another test which will handle many cases in which we cannot evaluate the 

integral. 

Assume that for all n, 0an  . Suppose that there exists r such that 

r
a

a
lim

n

1n
n 

                                 (5.1) 

If 1r  , then the series converges. If 1r  , then the series diverges. If 1r  , the ratio is 

inconclusive, and the series may converge or diverge. 

 

Example 1: Test for convergence the series 

...
!n

1
...

!4

1

!3

1

!2

1
1   

Using equation (5.1), we find 
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   
 

   

0
1n

1
lim

1n

1

1.2.3...1nn1n

1.2.3...1nn

!1n

!n

!n

1

!1n

1

n 

















































 

So, the series converges. 

Example 2: Test for convergence the harmonic series 

...
n

1
...

4

1

3

1

2

1
1   

We find 

1

n

1
1

1
lim

1n

n
lim

1n

n

n

1

1n

1

nn 















































 

Here the test tells us nothing and we must use some different test. 

 

Problems: 

Use the ratio test to find whether the following series converge or diverge: 

(1) 


1n
2

n

n

2
 (2) 



0n
n2

n

2

3
 (3) 

 


0n !n2

!n
 

(4) 
 

 


0n

2n

!n2

!n5
 (5) 

 


1n
2

n

!n

10
 (6) 



1n
n100

!n
 

(7) 


0n
n3

n2

2

3
 (8) 



0n

n

!n

e
 (9) 



0n

n33

!)n3(

e)!n(
 

(10) 


 0n
200

n

n

100
 (11) 



 0n !)n3(

!)n2(!n
 (12) 

 



 0n !n

!n2
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D. A Special Comparison Test 

This test has two parts: (a) a convergence test, and (b) a divergence test. 

(a) If 


1n

nb  is a convergent series of positive terms and 0an   and nn ba  tends to a 

finite limit, then


1n

na converges. 

(b) If 


1n

nd is a divergent series of positive terms and 0an   and nn da  tends to a 

limit greater than 0 (or tends to  ), then 


1n

na  diverges. 

Example 1. Test for convergence 




 



3n
23

2

2n7n4

1n5n2
 

For large n, we find 1n5n2 2   is nearly 2n2  to quite high accuracy. Similarly, the 

denominator is nearly 3n4 . 

So we consider as a comparison series just 











3n

2
3n

3

2

n

1

n

n
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4

2

n

2

n

7
4

n

1

n

5
2

lim

2n7n4

1n5n2n
lim

n

1

2n7n4

1n5n2
lim

b

a
lim

2

2

n

23

22

n

223

2

n

n

n
n








































































 

This is a finite limit, so the given series converges. 

Example 2. Test for convergence 




 



2n
25

3n

n5n

n3
 

Here we must decide which is the important term as n ; is it n3  or 3n ? We find out 

by comparing their logarithms since ln N and N increase or decrease together. We have 

3lnn3ln n  , and nln3nln 3  . Now ln n is much smaller than n, so for large n we have 

nln33lnn  , and 3n n3  . Thus the comparison series is 












2n
5

n

n

3
. It is clear that this 

series is divergent. 

Now by test (b) 

1

n

5
1

3

n
1

lim
n

3

n5n

n3
lim

3

n

3

n5

n

25

3n

n 


















  

Which is greater than zero, so the given series diverges. 
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Problems 

Use the special comparison test to find whether the following series converge or diverge. 

(1) 
  




 



9n
2 73n

5n31n2
 (2) 

 
   



 



0n
2

3n2n

1nn
 (3) 



 5n
2n n2

1
 

(4) 


 



1n
34

2

3n6n7n

4n3n
 (5) 

 



 



3n
24

2

1n3n5

nlnn
 (6) 



 



1n
32

3

nsinn

1n5n
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6.  Alternating Series 

An alternating series is an infinite series of the form 

 





0n

n

n
a1                               (6.1) 

with 0an   (or 0an  ) for all n. Its terms alternate between positive and negative. Like any 

series, an alternating series converges if and only if the associated sequence of partial sums 

converges. 

 

Alternating series test 

We ask two questions about an alternating series. Does it converge? Does it converge absolutely 

(that is, when we make all signs positive)? Let us consider the second question first. The series of 

absolute values 

...
n

1
...

4

1

3

1

2

1

1

1
  

is the harmonic series, which diverges. We say the series (6.1) is not absolutely convergent. Next 

we must ask whether (6.1) converges as it stands. If it had turned out to be absolutely convergent, 

we would not have to ask this question since an absolutely convergent series is also convergent. 

However, a series which is not absolutely convergent may converge or it may diverge. For 

alternating series the test is very simple: 

Test for alternating series:-  

An alternating series converges if the absolute value of the terms decreases steadily to zero, that 

is, if n1n aa   and 0alim nn   

In our example 
n

1

1n

1



, and 0

n

1
limn  , so series (6.1) converges. 

The series which is convergent absolutely, so the alternating series is convergent 
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The series which is convergent conditionally, it’s not absolute convergent and the 

alternating series is convergent. 

 

Problems 

Test the following series for convergence. 

(1) 
 








1n

n

n

1
 (2) 

 







1n
2

n

n

2
 (3) 

 







1n
2

n

n

1
 (4) 

 







1n

n

!n

3
 

(5) 
 








2n

n

nln

1
 (6) 

 



 



1n

n

5n

n1
 (7) 

 



 



1n
2

n

n1

n1
 (8) 

 



 



1n

n

2n

n101
 

 

7. Useful facts about series 

We state the following facts: 

1. The convergence or divergence of a series is not affected by multiplying every term of 

the series by the same constant. Neither is it affected by changing a finite number of 

terms (for example, omitting the first few terms). 

2. Two convergent series 


1n na  and 


1n nb  may be added (or subtracted) term by term 

(an + bn). The resulting series is convergent, and its sum is obtained by adding 

(subtracting) the sums of the two given series. 

3. The terms of an absolutely convergent series may be rearranged in any order without 

affecting either the convergence or the sum. 

 

 

 

8. Power Series; Interval of Convergence 
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Series with their general term given as   n

nn xaxu   are called power series; 

  





0n

n

n

2

210 xa...xaxaaxf  

Where the coefficients na  are independent of x. To use the ratio test we write 

x
a

a

xa

xa

u

u

n

1n

n

n

1n

1n

n

1n 


   

and find the limit 

R

1

a

a
lim

n

1n

n 


  

Hence the condition for the convergence of a power series is obtained as  

RxRRx   

where R is called the radius of convergence. At the end points the ratio test fails; hence these 

points must be analyzed separately. 

Example 1: For the power series 

...
n

x
...

4

x

3

x

2

x
x1

n432

  

We use the ratio test 

x
1n

n

n

x

1n

x

u

u n1n

n

1n


























 

1
1n

n
limn 


  

1
n

1
1lim

n

1n
limR nn 


   
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So the radius of convergence R is 1; thus the series converges in the interval 1x1  . On the 

other hand, at the end point x=1 it is divergent, while at the other end point, x=-1, it is 

convergent. So the interval of convergence is 1x1   

 

Example 2: For the power series 

...x!n...x!3x!2x1 n32   

The ratio 

 
 1n

!n

!1n

a

a

n

1n 



 

gives 

  
R

1
1nlimn  

Thus the radius of convergence is zero. Note that this series converges only for x=0. 

 

Example 3: For the power series 

...
!n

x
...

!3

x

!2

x
x1

n32

  

we find 

   1n

1

!1n

!n

a

a

n

1n







 

and 

0
R

1

1n

1
limn 


  

Hence the radius of convergence is infinity. This series converges for all x values. 
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Example 4: For power series 

 
 

...
!1n2

x1
...

!7

x

!5

x

!3

x
x

1n21n753









 

The ratio 

      n21n2

x

!1n2

x

!1n2

x

u

u 21n21n2

n

1n













 

  
0

n21n2

x
lim

2

n 


  

So the radius of convergence is infinity. This series converges for all x values. 

 

Example 5: For the power series 

     
...

1n

2x
...

3

2x

2

2x
1

n2











  

The ratio 

   
 

2n

1n
2x

1n

2x

2n

2x

u

u
n1n

n

1n



















 

and 

  2x
2n

1n
2xlimn 












  

The series converges for 12x  ; that is, for ,12x1   or 1x3  . 

 

If x = -3, the series is 
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...
4

1

3

1

2

1
1   

This is convergent by the alternating series test. 

For x = -1, the series is 




 


0n 1n

1
...

3

1

2

1
1  

This is divergent by the integral test. Thus the series converges for 1x3   

 

Problems 

Find the interval of convergence of each of the following power series: 

(1)  





0n

nn
x1  (2) 

 



0n
n

n

3

x2
 (3) 

 
 



 



1n

nn

1nn

x1
 

(4) 


1n
2n

n2

n2

x
 (5) 



1n

n3

n

x
 (6) 














1n

n

5

x

n

1
 

(7) 
 




 



1n
2

n

1n

xn
 (8) 

 







1n
n

n

3

2x
 (9)  






1n

n
x2n  
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9. Theorems about Power Series 

 A power series may be differentiated or integrated term by term; the resulting series 

converges to the derivative or integral of the function represented by the original series 

within the same interval of convergence as the original series (that is, not necessarily at 

the endpoints of the interval). 

 Two power series may be added, subtracted, or multiplied; the resultant series converges 

at least in the common interval of convergence. You may divide two series if the 

denominator series is not zero at x=0. The resulting series will have some interval of 

convergence. 

 One series may be substituted in another provided that the values of the substituted series 

are in the interval of convergence of the other series. 

 The power series of a function is unique, that is, there is just one power series of the form 




0n

n

n xa  which converges to a given function. 

 

1. Addition and subtraction 

When two functions f and g are decomposes into power series around the same center c, the 

power series of the sum or difference of the functions can be obtained by termwise addition and 

subtraction. That is, if 

   





0n

n

n cxaxf  

   





0n

n

n cxbxg  

Then  

      





0n

n

nn cxbaxgxf  
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2. Differentiation and Integration 

Once a function is given as a power series, it is differentiable on the interior of the domain of 

convergence. It can be differentiated and integrated quite easily, by treating every term 

separately: 

       













1n 0n

n

1n

1n

n cx1nacxnaxf  

 
 
 

 
k

n

cxa
k

1n

cxa
dxxf

1n

n

1n

0n

1n

n 






 












 

Both of these series have the same radius of convergence as the original one. 

 

10. Expanding Functions in Power Series 

It is useful to find power series that represent given functions. We illustrate one method of 

obtaining such series by finding the series for xsin . In this method we assume that there is such 

a series and set out to find what the coefficients in the series must be. Thus we write 

...xa...xaxaaxsin n

n

2

210          (10.1) 

and try to find numerical values of the coefficients na  to make (10.1) an identity (within the 

interval of convergence of the series). Since the interval of convergence of a power series 

contains the origin, (10.1) must hold when x=0. If we substitute x=0 into (10.1), we get 0a0  . 

Then to make (10.1) valid at x=0, we must have 0a0  . 

Next we differentiate (10.1) term by term to get 

...xa3xa2axcos 2

321                            (10.2) 

Again putting x=0, we get 1a1  . We differentiate again, and put x=0 to get 
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...xa)3()4(xa)2()3(a2xsin 2

432          (10.3) 

2a20  

Continuing the process of taking successive derivatives of (10.1) and putting x=0, we get 

...xa)2()3()4(a)2()3(xcos 43                            (10.4) 

!3

1
aa!31 33


  

...xa)2()3()4()5(a)2()3()4(xsin 54   

4a0  

...xa)2()3()4()5()6(a)2()3()4()5(xcos 65   

!5

1
aa!51 55   

We substitute these values back into (10.1) and get 

 
 

...
!1n2

x1
...

!7

x

!5

x

!3

x
xxsin

1n2n753









               (10.5) 

The xsin series converges for all x. series obtained in this way are called Maclaurin series or 

Taylor series about the origin. 

Taylor series means a series of powers of (x-a), where a is constant. It is found by writing (x-a) 

instead of x on the right hand side of equation (10.1), differentiating just as we have done, but 

substituting ax   instead of 0x   at each step. 
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We assume that there is a Taylor series for  xf , and write 

          ...axa...axaaxaaxaaxf
n

n

3

3

2

210   

        ...axan...axa3axa2axf
1n

n

2

321 


 

        ...axa)1n)(n(..axa)3)(4(axa)2()3(a2xf
2n

n

2

432 


 

      ...axa)2n)(1n)(n(..axa)2()3)(4(a)2()3(xf
3n

n43 


 

      ...axa)2n)(1n)(n(..axa)2()3)(4(a!3xf
3n

n43 


 

n

)n( a1...)2n()1n(n)x(f  + terms containing powers of (x-a)           (10.6) 

The symbol f
(n)

 (x) means the nth derivative of f(x). we now put x=a in each equation and obtain 

n

)n(

4

3210

a!n)a(f,...,a!4)a(f

,a!3)a(f,a2)a(f,a)a(f,a)a(f




                                       (10.7) 

We can then write the Taylor series for f(x) about x = a: 

      ...)a(fax
!n

1
...)a(fax

!3

1
)a(fax

!2

1
)a(f)ax()a(f)x(f )n(n32

    

(10.8) 

The Maclaurin series for f(x) is the Taylor series about the origin. Putting a = 0 in (10.8), we 

obtain the Maclaurin series for f(x): 

...)0(f
!n

x
...)0(f

!3

x
)0(f

!2

x
)0(fx)0(f)x(f )n(

n32

   (10.9) 
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11. Techniques for Obtaining Power Series Expansions 

There are often simpler ways for finding the power series of a function than the 

successive differentiation process. Theorem 4 in section 10 tells us that for a given 

function there is just one power series, that is, series of the form 


0n

n

n xa . 

(11.1) 
 
 












0n

1n2n753

!1n2

x1
...

!7

x

!5

x

!3

x
xxsin  Convergent for all x 

(11.2) 
 
 








0n

n2n642

!n2

x1
...

!6

x

!4

x

!2

x
1xcos  Convergent for all x 

(11.3) 





0n

n432
x

!n

x
...

!4

x

!3

x

!2

x
x1e  Convergent for all x 

(11.4)  
 










1n

n1n432

n

x1
...

4

x

3

x

2

x
xx1ln  

Convergent for 

1x1   

(11.5) 
  ...x

!3

)2p()1p(p
x

!2

)1p(p
px1x1 32p







  

Binomial series; p is any real number, positive or 

negative 

Convergent for 1x   

 

We give examples of various useful methods of obtaining series expansions. 
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A. Multiplication of a Series by a Polynomial or by another series 

Example 1: To find the series for xsin)1x(   

we multiply (x+1) times the series (11.1) and collect terms, 

    







 ...

!5

x

!3

x
x1xxsin1x

53

 

  ...
!5

x

!5

x

!3

x

!3

x
xxxsin1x

6543
2   

You can see that this is easier to do than taking the successive derivatives of the product 

xsin)1x(  , and Theorem 4 assures us that the result are the same. 

 

Example 2: To find the series for xcosex , we multiply (11.2) by (11.3): 


















 ...

!4

x

!2

x
1...

!4

x

!3

x

!2

x
x1xcose

42432
x

 

...
!4

x
...

!2!2

x

!2

x

!2

x
...

!4

x

!3

x

!2

x
x1xcose

4432432
x   

...
6

x

3

x
x1...

6

x

3

x
x0x1xcose

4343
2x   

 

B. Division of Two Series or of a series by a Polynomial 

Example 1: To find the series for  x1ln
x

1









 we divide (11.4) by x: 

 

...
4

x

3

x

2

x
1

...
4

x

3

x

2

x
x

x

1
x1ln

x

1

32

432












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Example 2: To find the series for tan x, we divide the series for sin x by the series for 

cos x by long division: 

etc...
15

x2

...
6

x

3

x

...
30

x

3

x

!4

x

!2

x
x

...
15

x2

3

x
x

...
!5

x

!3

x
x...

!4

x

!2

x
1

5

53

53

53

53

5342











 

Example 3: To find the series for  x1/1   we do the long division: 

...xxx1

x

xx

x

xx

x

x1

1x1

32

3

32

2

2














 

 

C. Binomial Series 

Series (11.5) looks like the beginning of the binomial theorem for the expansion 

 nba  if we put a=1, b=x, and n=p. The difference here is that we allow p to be negative 

or fractional, and in these cases the expansion is an infinite series. The series converges 

for 1x   as you can verify by the ratio test. 
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Example 1. We again find the series of )x1/1(  by using the binomial series (11.5): 

 

...xxx1

...x
!3

)3)(2)(1(
x

!2

)2)(1(
x1x1

x1

1

32

321














 

 

D. Substitution of a Polynomial or a series for the variable in another series 

Example 1: Find the series for 
2xe . Since we know the series (11.3) for xe , we simply 

replace the x there by 2x  to get 

...
!4

x

!3

x

!2

x
x1e

432
x   

   
..

!3

x

!2

x
)x(1e

3222
2x 2









 

...
!3

x

!2

x
x1e

64
2x 2



 

Example 2: Find the series for 2xsin . We must replace the x in (11.1) by x
2
 

...
!7

x

!5

x

!3

x
xxsin

753

  

...
!7

)x(

!5

)x(

!3

)x(
xxsin

725232
22 

 

...
!7

x

!5

x

!3

x
xxsin

14106
22 
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E. Combination of Methods 

Example 1: Find the series for xtanarc , where xtanxtanarc 1 . Since 

  xtanarcttanarc
t1

td
x

0

x

0 2


  

We first write out (as a binomial series)   12t1


  and then integrate term by term: 

  ...ttt1t1 64212 


 

x

0

x

0

753

2
...

7

t

5

t

3

t
t

t1

dt
 











 

Thus, we have 

...
7

x

5

x

3

x
xxtanarc

753

  

 

F. Taylor Series using the Basic Maclaurin series 

Example 1: Find the first terms of the Taylor series for xln  about x=1. (This means a 

series of powers of (x-1) rather than powers of x) 

  1x1lnxln   

and use (11.4) with replaced by (x-1): 

  ...
4

x

3

x

2

x
xx1ln

432

  

           ...1x
4

1
1x

3

1
1x

2

1
1x1x1lnxln

432
  
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Example 2: Expand xcos  about  2/3x  . We write 

...
2

3
x

!5

1

2

3
x

!3

1

2

3
x

2

3
xsin

2

3
x

2

3
cosxcos

53








 








 








 









 
















 





 

 

 

Problems: 

Find few terms of the Maclaurin series for each of the following functions: 

(1)  x1lnx2   (2) xsinex  (3) xtan2  

(4) x1x   (5) xsin
x

1
 (6)

x1

ex


 

(7) 
2xx1

1


 (8) 

xcos

1
xsec   (9)

2x1

1


 

(10) cos x2 
(11) xsine  

(12)
2

ee
xcosh

xx 
  

(13) 
xsin

x
 (14) 

x

0
t

dttsin
 (15) 




x

0 2t1

dt
xsinarc  
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12. Some Uses of Series 

 

A. Numerical Computation: Let us do some numerical problems to illustrate 

computation using series.  

Example 1: Evaluate 
 
 

xtan
x1

x1
ln 




 at x=0.0015. 

First, we find  




 x

0 2t1

td

x1

x1
ln

 

 


















x

0

32222
x

0

12
x

0 2
dt...)t(

!3

)3)(2)(1(
)t(

!2

)2)(1(
)t)(1(1dt)t1(

t1

td
 














...

7

x

5

x

3

x
x

x1

x1
ln

753

 

Thus  

16

0015.0x

75

753753

0015.0x

1006.5...
45

x4

15

x

...
315

x17

15

x2

3

x
x...

7

x

5

x

3

x
xxtan

x1

x1
ln

















































 

 

Example 2: Evaluate 

1.0x

2

4

4

xsin
x

1

dx

d



















 

First we find the four derivatives and then compute the result. However, it is easier to 

write out the series for 2xsin , divide by x, and then differentiate: 

...
!5

x

!3

x
x...

!5

x

!3

x
x

x

1
xsin

x

1 95106
22 








  
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We differentiate this four times and evaluate at x=0.1: 

...000252.02

....
!5

x)6)(7)(8)(9(

!3

x)2)(3)(4)(5(
f

....
!5

x)7)(8)(9(

!3

x)3)(4)(5(
f

....
!5

x)8)(9(

!3

x)4)(5(
f

...
!5

x9

!3

x5
1f

5

62

73

84











 

B. Summing Series: If you can recognize a numerical series as the series of some 

function for a particular value of x, then you can find the sum of the series. 

 

Example 1: Find the sum of the alternating harmonic series 

...
4

1

3

1

2

1
1   

Start with the series (11.4), 

  ...
4

x

3

x

2

x
xx1ln

432

  

and put x=1. Then we get 

...
4

1

3

1

2

1
12ln 

 

 

 

Example 2: Use the series you know to show that

  

4
...

7

1

5

1

3

1
1




 

Start with the series of arc tanx,  
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...
7

x

5

x

3

x
xxtanarc

753

  

and put x=1. Then we get 

4
...

7

1

5

1

3

1
11tanarc




 

 

Example 3: Use series you know to show that: 

   
2...

!3

3ln

!2

3ln
3ln

32


 

We start with  

...
!4

x

!3

x

!2

x
x1e

432
x 

 

and 

...
!4

x

!3

x

!2

x
x1e

432
x 

 

Then we put x=ln 3, we find 

     
2...

!4

3ln

!3

3ln

!2

3ln
3ln1e

432

3ln 

 

 

Example 4: Use the series you know to show that 

1...
!7!5!3

642










 

We begin with the series of  sin x 
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...
!7

x

!5

x

!3

x
xxsin

753



 

And put x=, we find 

...
!7!5!3

sin
753












 

Divide the previous eq. by , we get 

...
!7!5!3

1
sin 642















 

and 

1...
!7!5!3

sin
1

642














 



C. Evaluation of Definite Integrals:  

Example 1: The Fresnel integrals (integrals of 2xsin  and 2xcos ) occur in the problem of 

Fresnel diffraction in optics. We find 

31027.0

...000013.000076.002381.033333.0

...
!7.15

1

!5.11

1

!3.7

1

3

1

...
!7.15

x

!5.11

x

!3.7

x

3

x
dx...

!7

x

!5

x

!3

x
xdxxsin

1

0

1511731

0

14106
2

1

0

2
























 

 

 

Example 2: Find the integral 
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 


















1.0

0

423222
2

1.0

0

x dx...
!4

)x(

!3

)x(

!2

)x(
)x(1dxe

2

 
 










1.0

0

864
2

1.0

0

x dx...
!4

x

!3

x

!2

x
x1dxe

2

 1.0
10

00001.0

3

001.0
1.0..

!4.9

x

!3.7

x

!2.5

x

3

x
xdxe

1.0

0

9753
1.0

0

x2





















 

 

D. Evaluation of Indeterminate forms 

Suppose we want to find 

x

e1
lim

x

0x


  

If we try to substitute x=0, we get  00 . Expressions that lead us to such meaningless 

results when we substitute are called indeterminate forms. Many times they can be 

evaluated by using series. For example 

1...
!3

x

!2

x
1lim

x

...
!3

x

!2

x
x

lim

x

...
!3

x

!2

x
x11

lim
x

e1
lim

2

0x

32

0x

32

0x

x

0x



















































 

 

Example 1: Use Maclaurin series to evaluate the limits  
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30x
x

xxsin
lim




 

First, we write the series 

166666.0
6

1

...
!7

x

!5

x

!3

1
lim

x

...
!7

x

!5

x

!3

x

lim

x

x...
!7

x

!5

x

!3

x
x

lim
x

xxsin
lim

42

0x

3

753

0x

3

753

0x30x












































 

 

Example 2: Find the limits 

x

)x1(ln
lim 0x




 

First, we write the series 

1

...
4

x

3

x

2

x
1lim

x

...
4

x

3

x

2

x
x

lim

x

...
4

)x(

3

)x(

2

)x(
)x(

lim
x

)x1(ln
lim

32

0x

432

0x

432

0x0x





















































 


