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5 
Used to remove cancer in 
brain and other parts 
inside human. 
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Laser Surgery has revolutionized the world of medicine 

A revolution in the world of medicine was achieved through the use of laser technology for 

removing tumor out side skin and inside the breast human, general surgery and cosmetic or skin 

treatment. We do Lectures and papers in those uses: 

 
 

Previous and Next Lectures 

1 
 
We Used magnetic fluid 
hyperthermia to remove 
tumor in outside human 
skin.  

2  

We Used Laser Ablation to 
remove cancer in breast 
human.  

3  

We Used Laser Scalpel   in 
general surgery.  

4 
We Used Laser Pulse with rectangular 
irradiation in Cosmetic or skin 
treatment.  



Important of Laser in general surgery 

 
In medicine, lasers allow surgeons to work at high levels of accuracy by focusing on 

a small area, damaging less of surrounding tissue. You may feel less pain by 

blocking nerve endings, less swelling, less blooding. However, The laser works to 

evaporate the water in the soft tissue and then cut it, so it evaporates bacteria, 

viruses and fungi. 

Purpose  

By using a pulse laser, surgeons can cut very sharply without damage to the 

surrounding tissue. 
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Relationship between Laser Therapy and Mathematic 

• In 1948,  Pennes used mathematical model to describe temperature distribution in the living 

biological tissues. The model known as the Pennes bio-heat transfer equation (PBT), and it 

remains used today. 

• The Pennes bio-heat transfer equation (PBT) is based on the classical Fourier’s law, 

• q 𝑟, 𝑡 = −K𝛻T(𝑟, 𝑡)                                                                                                               (1) 

• Where T is the temperature, K is the heat conductivity, q is the heat flux, and t is the time. 

• The energy conservation equation of bioheat transfer is described as 

• 𝜌𝐶
𝜕𝑇

𝜕𝑡
= − 𝛻q − 𝑊𝑏𝐶𝑏𝜌𝑏 𝑇 − 𝑇𝑏 + (𝑄𝑚𝑒𝑡 + 𝑄𝑒𝑥𝑡)                                                         (2) 

    From the two equations: 

• 𝜌𝐶
𝜕𝑇

𝜕𝑡
= K 𝛻2𝑇 − 𝑊𝑏𝐶𝑏𝜌𝑏 𝑇 − 𝑇𝑏 + (𝑄𝑚𝑒𝑡 + 𝑄𝑒𝑥𝑡)                                                       (3) 
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where  𝜌 is the density, C is the specific heat, 𝐶𝑏 and  𝑊𝑏 are the specific heat and perfusion 

rate of blood. 𝑄𝑚𝑒𝑡 is the metabolic heat generation and 𝑄𝑒𝑥𝑡 is the heat source 𝑇𝑏 is the 

blood temperature.  

• In 1958, Vernott and Cattaneo modified the classical Fourier’s law as  

     q 𝑟, 𝑡 + 𝜏𝑞 = −K𝛻T(𝑟, 𝑡)                                                                                         (4) 

• In 1997, Tzou added 𝜏𝑇 to become the classical Fourier’s law as next and call Dual 

Phase lag (DPL) 

     q 𝑟, 𝑡 + 𝜏𝑞 = −K𝛻T(𝑟, 𝑡 + 𝜏𝑇)                                                                                 (5) 

•  In 2006, Youssef modified (5) to become two temperatures as 

      q 𝑟, 𝑡 + 𝜏𝑞 = −K𝛻𝑇𝐶(𝑟, 𝑡 + 𝜏𝑇)                                                                               (6) 

and 

        𝑇𝐶−𝑇𝐷 = 𝛽𝛻2𝑇𝐶                                                                                                         (7) 

where 𝛽 is a non-negative parameter which is called two-temperature parameter, 𝑇𝐶 is the 

conductive temperature, 𝑇𝐷 is the dynamical temperature. 

 



Formulation of the Problem 

When the laser beam hits the skin surface, the laser energy is absorbed and scattered. 

Lambert expresses the laser power intensity along the tissue by using  depth–Beer’s law, as 

follows: 

   x

0I x, t I e H t
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𝑞0 is the maximum strength of Laser, 𝐼0 is power density of laser irradiation, 𝛿 is the 
penetration depth and H(t) is the Heaviside unit step function. 
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The energy conservation equation of bio-heat transfer is described in the context of the two-
temperature model as: 

   D
b b p D b met ext

T
C q W C T T Q Q

t


       



and 

2

C D CT T T  
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The two temperature model can be rewritten as: 

2 22 2
q 2T

q T C2 2
1 q K 1 T

t 2 t t 2 t

      
                  

The second order DPL (Dual Phase Lag) model can 
be rewritten as: 

(10) 

(11) 

(12) 



Because of the chemical reactions taking place within the tissues, the metabolic heat source is 

valid, and it is assumed to be a constant   
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which gives the value of how deep the laser heat wave can penetrate through the given 

material, H (t) is the unit step function, and  L is the thickness of the skin layer. 

Heat generation due to scattering is assumed to be negligible; therefore, the specific 

absorption rate in the target zone can be expressed as follows [24, 29]: 

     x L

ext 0 0

I
Q x, t I e H t I e H t

x

 
     



Where   2

0I W / m represents  the power density of laser irradiation, 𝛿 represents the penetration depth  

(13) 

(14) 



Consider the following functions: 

   C b D bT T , T T     

Hence, we have  

 

22 2 2 2
qT

T q2 2 2

2 22 2
q q

b b p q q met ext2 2

K 1 C 1
t 2 t x t 2 t t

W C 1 1 Q Q ,
t 2 t t 2 t
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
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Applying Laplace transform  

Thus, we get 

 
     

2

2

2

x,s
s x,s f s , 0 x L

x

 
      



   
0
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

 

(15) 
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where 

The general solution 

     
 

 
x x

1 2 2

f s
x,s c s e c s e , 0 x L

s

      


Apply the boundary conditions 

 
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 

Hence we obtain 

(19) 

(20) 
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 
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Numerical Results 

To determine the temperature distribution of each layer   x, t , we will use a  

Riemann-sum approximation method to obtain the numerical results in which, any function in 

Laplace domain can be inverted to the time domain as  

   
t N

n

n 1

e 1 i n
Z(t) Z Re 1 Z

t 2 t





  
       

  


t 4.7 For faster convergence 
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 x, t and 

(23) 



The thermal damage 

Moritz and Henriques proposed that skin damage could be represented as a chemical rate 

process, which is calculated by using a first order Arrhenius rate equation as 

 
a

D

E /Rt
T x,

0

A e d




  

 DT 37.0 273.0 Kelven  
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  A  is a material parameter (frequency factor) 

a
E is the activation energy 

 is the universal gas parameter 

(24) 
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Conclusion 

A mathematical model of two-temperature bio-heat transfer equations was constructed. 

Thermal damage quantity in the tissue was calculated by using Arrhenius integral. The phase 

lag of the temperature gradient parameter,  the phase lag of the heat flux parameter, power 

density of laser irradiation value, perfusion rate of blood value, and two-temperature 

parameter have significant effects on the conductive temperature increment, the dynamical 

temperature increment, and the thermal damage quantity of the skin tissue. 
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