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Definition 
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• Hyper=Over 
• Therm=heat 
• ia=Suffix 

 

• Hyperthermia is elevated body temperate to high temperatures (up to 42°C) to 

damage and kill cancer cells.  

• It (also called thermal therapy or thermotherapy) is a kind of medical treatment in cancer 

therapy.  
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Important of Hyperthermia 
• Hyperthermia is almost used with other forms of cancer therapy, such as radiation therapy and 

chemotherapy to treat cancer. 

• Thermotherapy make cancer cells more motivate to radiation or harm other cancer cells that 

radiation cannot damage . 
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• The goal of thermotherapy is to alter tissue temperature in a targeted region over time.  

• The majority of thermotherapies are designed to deliver the thermal therapy to a target 

tissue volume with minimal impact on surrounding tissues. 
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feedback 

Q1: What is hyperthermia? 
a- fever 
b- thermotherapy 

c- thermoelastic 

Q2: We can use hyperthermia with: 
a- radiation and drugs for cancer. 
b- cancer surgery. 
c- radiation for cancer only. 

Q3: The majority of thermotherapy is: 
a- distributing the heat energy to the diseased tissue. 
b- distributing the heat energy to the diseased tissue and surrounding it. 
c- distributing the heat energy to the diseased tissue without affecting the healthy tissue.  
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• In 1948,  Pennes used mathematical model to describe temperature distribution in the 

living biological tissues. The model known as the Pennes bio-heat transfer 

equation (PBT), and it remains used today. 

• The connection between arterial blood and the heat transfer in a living tissue are 

taken.  

• The Pennes bio-heat transfer equation (PBT) is based on the classical Fourier’s law, 

taken into account a blood perfusion term, which is proportional to the volumetric 

rate of blood perfusion and the difference between the average arterial blood and 

tissue temperatures. 

• In 2006, Youssef modified the theory of heat conduction which have been 

investigated by Chen and Gurtin, which depends upon two distinct temperatures, the 

conductive temperature and the thermodynamic temperature and the difference 

between these two temperatures is proportional to the heat supply. 

Relationship between Hyperthermia and Mathematic 
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Formulation of the Problem 

In a magnetic fluid hyperthermia, magnetic particles are injected into at the center 

of tumor surrounded by the normal tissue and radially diffuse from the injected 

point in Gaussian distribution. For excitation of an alternating magnetic field, 

magnetic particles become the space-dependent heating sources in the tissue.  

For t > 0 the heat is transferring in the radius direction symmetrically. The small 

tumor is regarded as a solid sphere with the radius R 

The temperature distribution in the tumor tissue   0 r R

The temperature distribution in the normal tissue  R r h

11 
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Consider the following functions: 
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0r is a parameter which determines how far the diffusion of the injected magnetic particles occurs 

determines the maximum strength of the spatial heating source at the injection site 0q
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Gaussian distribution 

H(t) is the unit step function  
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Applying Laplace transform     
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The general solution 
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The thermal damage 

Moritz and Henriques proposed that skin damage could be represented as a 

chemical rate process, which is calculated by using a first order Arrhenius rate 

equation. The measure of thermal damage    was introduced, and its rate                             

were postulated to satisfy  
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  A is a material parameter (frequency factor) 

a
E is the activation energy 

 is the universal gas constant 

𝑇 is the Kelvin temperature 
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Numerical Results 

To determine the distribution                 of each layer, a Riemann-sum approximation 

method will be used to obtain the numerical results in which, any function in 

Laplace domain can be inverted to the time domain as (Tzou Method): 
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Figures 



4th Int. Conf.  on Science, Engineering & Environment (SEE), Nagoya, Japan, Nov.12-14, 2018 

22 



4th Int. Conf.  on Science, Engineering & Environment (SEE), Nagoya, Japan, Nov.12-14, 2018 

23 



4th Int. Conf.  on Science, Engineering & Environment (SEE), Nagoya, Japan, Nov.12-14, 2018 

24 



4th Int. Conf.  on Science, Engineering & Environment (SEE), Nagoya, Japan, Nov.12-14, 2018 

25 



4th Int. Conf.  on Science, Engineering & Environment (SEE), Nagoya, Japan, Nov.12-14, 2018 

26 

Conclusion 

1- The parameters of the relaxations times have significant effects on the 

temperature increment and the value of the damage. 

2- The two-temperature parameter has significant effects on the temperature 

increment and the value of the damage. 

3- Dual-phase-lag  heat  conduction model of type III offers more irreversible 

damage than type I, then Type II. 
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