

المملكة العربية السعودية وزارة التعليم جامعة أم القرى عمادة الدراسات العليا

4/1/4. Course Specification:

COURSE SPECIFICATIONS Form

Course Title: Advanced Mathematical Methods (2)

Course Code: 4046505-4

Course Specifications

Institution: Umm Al-Qura University Date: 31/10/2018 College/Department: Faculty of Applied Science/ Department of Mathematical Sciences

A. Course Identification and General Information

1. Course title and code: Advanced Ma	thematical Methods (2) (4046505-4)			
2. Credit hours: 4 Hours				
3. Program(s) in which the course is offered.				
(If general elective available in many programs indicate this rather than list programs)				
Master in Mathematics				
4. Name of faculty member responsible for the course: Dr. Muntaser Safan				
5. Level/year at which this course is offered: Leve 3/ Master				
6. Pre-requisites for this course (if any) : Advanced Mathematical Methods (1)				
7. Co-requisites for this course (if any):				
8. Location if not on main campus: Al-Abidiyah campus and Al-Zahir campus				
9. Mode of Instruction (mark all that ap	oply)			
a. traditional classroom	\checkmark What percentage? 85			
b. blended (traditional and online)	What percentage?			
c. e-learning	\checkmark What percentage? 15			
d. correspondence	What percentage?			
f. other	What percentage?			
Comments: The course is suitable for postgraduates at Master/Doctoral level.				

B Objectives

1. What is the main purpose for this course?

The role of the course is to introduce a selection of advanced mathematical topics that are relevant to research in Applied Mathematics. It is likely that most students entering this course will have previously taken Advanced Mathematical Methods - Part I, but this is not essential. This course will focus on aspects of Dynamical and Integral Systems.

2. Briefly describe any plans for developing and improving the course that are being implemented. (e.g. increased use of IT or web based reference material, changes in content as a result of new research in the field)

- 1. Updating references used in teaching process.
- 2. Using e-learning facilities more efficiently.
- 3. Encouraging students to collect problems from web based references and supervise

discussions in the class.

C. Course Description (Note: General description in the form used in Bulletin or handbook)

Course Description:

This is a 4 credit course comprising approximately 52 hours of lectures.

1. Topics to be Covered		
List of Topics	No. of Weeks	Contact hours
 Chapter 1 - Introduction Review properties of ordinary differential equations:- Lipshitz condition Existence and uniqueness of solution Fixed point theory Stability of fixed point algorithms Linear stability analysis Stable and overstable modes. 	3	12

Chapter 2 - Bifurc	ation Theory		
- State what	is meant by a bifurcation.		
- Introduce and describe the properties of various types of bifurcation, e.g.			
• Sac	Idle Node bifurcation		
• Tra	ns-critical bifurcation		
• Ho	pf bifurcation	2	10
• Pite	chfork bifurcation.	5	12
- Give exam	ples of these bifurcations with reference to		
dynamical	problems from mechanics and biology etc.		
- Discuss ur	iform and non-uniform oscillators		
- Provide ar	d investigate physical examples of each type of		
oscillator.			
Chapter 3 - Two d	imensional dynamical systems		
 Briefly rev 	iew the concepts of Phase portrait, Orbits and		
Index The	Dry.		
- Introduce	he concept of a Limit Cycle.		
- Introduce	he Poincare-Bendixson Theorem.	3	12
- Discuss re	axation oscillations and weakly nonlinear	5	12
oscillation	S.		
- Introduce l	Poincare maps.		
 Provide pł 	sical examples illustrating these concepts.		
Chapter 4 - Solito	n equations		
- Discuss tl	ne meaning of integrability for Ordinary and		
Partial Dif	ferential equations. Introduce the notion of Lie		
symmetrie	s and their role in the search for general		
solutions.			
- Introduce	several examples of soliton equations with their		
histories,	e.g. the Korteweg de Vries (KdV) and Sine-	3	12
Gordon eq	uations.	5	12
- Derive the	KdV equation and develop the classical one-		
soliton sol	ution. Briefly discuss the properties of the two-		
soliton sol	ution.		
- Introduce	Backlund transformations and use them to treat		
the Sine-G	ordon equation.		

 Introduce the concept of bound and scattering states, and wave function as understood within the framework of Quantum Mechanics. Introduce Schrodinger's equation and solve the problem of a particle held within a potential well. Discuss the meaning of the solution and contrast how the quantum and classical views of the world differ. Describe the aim of the inverse scattering problem and why it is an important practical problem. State the Gelfand-Levitan-Marchenko (GLM) theorem. Introduce the notion of a Quasi-Newton algorithm. Discuss direct scattering in the context of the one-dimensional scattering of a particle on a potential. 	
 Discuss the inverse scattering problem in one dimension by which the potential is recovered from reflected data and energy levels using the GLM theory. State and prove Lax's theorem on the time independence of eigenstates. 	
 Introduce the notion of a Quasi-Newton algorithm. Discuss direct scattering in the context of the one- dimensional scattering of a particle on a potential. 	
 Introduce the notion of a Quasi-Newton algorithm. Discuss direct scattering in the context of the one- dimensional scattering of a particle on a potential. 12 	
- Discuss direct scattering in the context of the one- dimensional scattering of a particle on a potential.	
dimensional scattering of a particle on a potential.	
- Discuss the inverse scattering problem in one dimension by	
which the potential is recovered from reflected data and energy levels using the GLM theory.	
- State and prove Lax's theorem on the time independence of eigenstates.	
 Construct the N-soliton solution of the KdV equation and particularise it to the 2-soliton case to show that, asymptotically, two interacting solitons are not distorted by the interaction but that the interaction generates a phase shift. 	

2. Course components (total contact hours and credits per semester):						
	Lecture	Tutorial	Laboratory or Studio	Practical	Other:	Total
Contact Hours	60					60
Credit	4					4

3. Additional private study/learning hours expected for students per week. Four hours weekly for homework and revision

4. Course Learning Outcomes in NQF Domains of Learning and Alignment with Assessment Methods and Teaching Strategy

On the table below are the five NQF Learning Domains, numbered in the left column.

First, insert the suitable and measurable course learning outcomes required in the

المملكة العربية السعودية وزارة التعليم جامعة أم القرى عمادة الدراسات العليا

appropriate learning domains (see suggestions below the table). <u>Second</u>, insert supporting teaching strategies that fit and align with the assessment methods and intended learning outcomes. <u>Third</u>, insert appropriate assessment methods that accurately measure and evaluate the learning outcome. Each course learning outcomes, assessment method, and teaching strategy ought to reasonably fit and flow together as an integrated learning and teaching process. (Courses are not required to include learning outcomes from each domain.)

Code	NQF Learning Domains	Course Teaching	Course
#	And Course Learning Outcomes	Strategies	Assessment
			Methods
1.0	Knowledge: upon completion of this course, the st	udent is expected to	1
1.1	Develop knowledge and understanding on	Lectures and	Short quizzes,
	the bifurcation Theory and its applications.	tutorials	periodical and
			finalexams
1.2	Be aware of Poincare-Bendixson theorem	Lectures and	Short quizzes,
	and the inverse scattering transform.	tutorials	periodical and
			finalexams
2.0	Cognitive Skills: upon completion of this course, t	he student is expected	l to
2.1	Discuss relaxation oscillations and weakly	Lectures and	Short quizzes,
	nonlinear oscillations	tutorials	periodical and
			finalexams
2.2	Discuss the meaning of integrability for	Lectures and	Short quizzes,
	Ordinary and Partial Differential	tutorials	periodical and
	equations. Introduce the notion of Lie		finalexams
	symmetries and their role in the search for		
	general solutions.		
3.0	Interpersonal Skills & Responsibility: upon comp	letion of this course, t	he student is
	expected to		
3.1	Describe the aim of the inverse scattering	Lectures and	Short quizzes,
	problem and why it is an important	tutorials	periodical and
	practical problem. State the Gelfand-		finalexams
	Levitan-Marchenko (GLM) theorem.		
3.2	Use Poincare-Bendixson Theorem in	Lectures and	Short quizzes,
	studying dynamical systems	tutorials	periodical and
			finalexams
4.0	Communication, Information Technology, Numer	ical: upon completion	of this course, the
	student is expected to		
4.1	Work effectively in groups and	Tasks assigned	Marking the
	independently	and homework	assignments.
4.2	Solve problems concerning the topics of	Homework	Evaluating the
	the course.		homework
5.0	Psychomotor		
5.1	Not applicable	Not applicable	Not applicable

5. Schedule of Assessment Tasks for Students During the Semester				
	Assessment task (e.g. essay, test, group project, examination, speech, oral presentation, etc.)	Week Due	Proportion of Total Assessment	
1	First midterm exam	Week 6	20	
2	Second midterm exam	Week10	20	
3	Homework and tutorial activities	Over all weeks	20	
4	Final exam		40	

D. Student Academic Counseling and Support

1. Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice. (include amount of time teaching staff are expected to be available each week) The instructor is equilable for at least 8 hours non-week. He is also equilable or

The instructor is available for at least 8 hours per week. He is also available on appointments.

E Learning Resources

1. List Required Textbooks
- S.H. Strogatz, Nonlinear Dynamics and Chaos: With Applications To Physics,
Biology, Chemistry, And Engineering (Studies in Nonlinearity), 2nd Ed. (2015).
- L.D. Landau and E.M. Lifshitz, Course of Theoretical Physics. Vol I and II,
Butterworth-Heinemann, (1995).
- M. Dunajski, Solitons, Instantons and Twistors, Oxford Graduate Texts in
Mathematics, OUP, (2009).
2. List Essential References Materials (Journals, Reports, etc.)
Journal of Advanced Mathematics and Applications
3. List Recommended Textbooks and Reference Material (Journals, Reports, etc)
Advanced Mathematical Methods for Scientists and Engineers I
4. List Electronic Materials, Web Sites, Facebook, Twitter, etc.
http://www.lmm.jussieu.fr/~lagree/COURS/M2MHP/Bender-Orszag-chap9-11.pdf
5. Other learning material such as computer-based programs/CD, professional standards
or regulations and software.

Not applicable

F. Facilities Required

Indicate requirements for the course including size of classrooms and laboratories (i.e. number of seats in classrooms and laboratories, extent of computer access etc.)

1. Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.) Classroom with the capacity of 10-20 students

2. Computing resources (AV, data show, Smart Board, software, etc.)

Smart board.

- Classroom is equipped with a computer.

- Provide projectors and related items.

- Matlab software

3. Other resources (specify, e.g. if specific laboratory equipment is required, list requirements or attach list)

Not applicable

G Course Evaluation and Improvement Processes

1 Strategies for Obtaining Student Feedback on Effectiveness of Teaching Student feedback on effectiveness of teaching.

2 Other Strategies for Evaluation of Teaching by the Instructor or by the Department Monitoring the achievement of the students in solving homework and periodical exams.

3 Processes for Improvement of Teaching

Following up the student's homework. Encouraging the students to read and practice more.

4. Processes for Verifying Standards of Student Achievement (e.g. check marking by an independent member teaching staff of a sample of student work, periodic exchange and remarking of tests or a sample of assignments with staff at another institution) The instructors watch and give their feedbacks to their students through all work done by them, including exams to verify standards of achievements for different domains of learning outcomes

5. Describe the planning arrangements for periodically reviewing course effectiveness and planning for improvement.

Reviewing the course reports submitted at the end of each semester.

Name of Instructor: Dr. Muntaser Safan Signature:_Muntaser Safan ____Date Report Completed: 31/10/218

Name of Field Experience Teaching Staff

Program Coordinator:_____

Signature: _____

Date Received:_____