

المملكة العربية السعودية وزارة التعليم جامعة أم القرى عمادة الدراسات العليا

4/1/4. Course Specification:

COURSE SPECIFICATIONS Form

Course Title: Numerical Analysis (2)

Course Code: 4046707-4

Course Specifications

Institution: Umm Al-Qura University Date : 31/10/2018 College/Department: Faculty of Applied Science/ Department of Mathematical Sciences

A. Course Identification and General Information

1. Course title and code: Numerical Analysis (2) (4046707-4)					
2. Credit hours: 4hrs					
3. Program(s) in which the course is of	fered.				
(If general elective available in many pr			ist programs)		
	in Mathen				
4. Name of faculty member responsible			Hejazi		
5. Level/year at which this course is of		el 3/ Master			
6. Pre-requisites for this course (if any)					
Numerical Solutions of Dif		quations (1) (4045703	-4)		
7. Co-requisites for this course (if any)	1				
8. Location if not on main campus					
Al-Abidiyah car		Al-Zahir campus			
9. Mode of Instruction (mark all that ap	oply)				
a. traditional classroom	a. traditional classroom $$ What percentage? 85				
b. blended (traditional and online)		What percentage?			
c. e-learning	√	What percentage?	15		
d. correspondence		What percentage?			
f. other		What percentage?			
Comments:					

المملكة العربية السعودية وزارة التعليم جامعة أم القرى عمادة الدراسات العليا

B Objectives

1. What is the main purpose for this course?

The main purpose of this course is to provide students with more advanced numerical methods, numerical techniques and programming skills that will allow them to solve more complex real world problems that involve differential equations. They will become familiar with the methodologies for developing numerical algorithms that can be employed for problems that would otherwise be unsolvable.

2. Briefly describe any plans for developing and improving the course that are being implemented. (e.g. increased use of IT or web based reference material, changes in content as a result of new research in the field)

Search for more online references materials.

C. Course Description (Note: General description in the form used in Bulletin or handbook)

Course Description:

Many real world problems are not solvable analytically, meaning that it is necessary to develop numerical methods to solve these problems. Additionally, applying these methods to large problems requires the algorithms to be implemented in a computer language such as MATLAB. This course addresses both the theoretical development of numerical methods and their implementation in MATLAB

1. Topics to be Covered		
List of Topics	No. of	Contact
	Weeks	hours

how these may be used to adaptively modify the integration step-size to meet a prescribed error tolerance. Possible schemes are Runge-Kutta Fehlberg, Runge-Kutta Cash-Karp, Runge-Kutta Mersen and Runge-Kutta Butcher.
--

المملكة العربية السعودية وزارة التعليم جامعة أم القرى عمادة الدراسات العليا

Linear Multi-Step Methods		
• Illustrate the idea of a linear multi-step method using		
Simpson's rule to integrate the equation $\dot{y} = f(t, y)$ over		
the interval $[x_k - h, x_k + h]$. Briefly discuss the		
advantages and disadvantages of this approach by		
comparison with RK4.		
• Introduce the form of the general linear multi-step method.		
Describe well known examples such as the Implicit Euler		
scheme, Trapezoidal scheme and a low order Adams-		
Bashforth method.		
• Demonstrate how the finite difference operator can be used		
to construct linear multi-step algorithms using backward		
differentiation.		
• Introduce the concept of zero stability and establish the		
classical stability result for the location of the zeros of the		
associated characteristic polynomial, namely that the zeros		
all lie within the unit disc.	4	16
• Briefly describe the distinction between an Adams-		
Bashforth method (explicit) and an Adams-Moulton		
method (implicit). Summarize, consistency, convergence		
and stability properties of these schemes. For example, an		
AdamsMoulton scheme always has larger interval of		
absolute stability than the same order of Adams-Bashforth		
scheme.		
• Describe the idea of a Predictor-Corrector (PC) method.		
State how the accuracy of the PC depends on the orders on		
the predictor and corrector schemes.		
• Introduce the idea of a stiff ODE and use the ODE		
$\dot{y} = \lambda y$ and initial condition $Y(0) = y0$ to demonstrate the		
difficulty with stiff equations.		
• Introduce backward differentiation methods for stiff		
systems and establish Gear's method.		

المملكة العربية السعودية وزارة التعليم جامعة أم القرى عمادة الدراسات العليا

Finite Element Method in 1D		
• Introduce the idea of the variational formulation of a problem.		
 Introduce the notion of an element and state how the solution of the variational problem is expressed in terms of the elements and demonstrate that the underlying variational problem is uniquely solvable. Describe the set of tent-functions over a finite dissection of [a,b] and construct all possible inner products of tent functions. Introduce the idea of a reference element and the element mapping and element stiffness matrix. Show how these components are assembled into a final linear problem. Discuss how different boundary conditions are incorporated into the procedure. For example, Dirichlet boundary conditions enter through the space of finite elements whereas Neumann boundary conditions enter through the variational formulation of the problem. Briefly introduce quadratic elements and indicate what changes need to be made to accommodate these elements. Do several specimen examples involving the solution of linear and nonlinear problems over [0,1] for various choices of boundary conditions involves minimalist changes to the formulation of the numerical problem 	4	16

	1	
Spectral and Pseudo-Spectral Methods		
• Describe the benefits of a spectral approach to the solution		
of differential equations over finite element, finite		
difference, Runge-Kutta and multi-step methods.		
Distinguish between a pseudospectral (or collocation)		
approach to the solution of a differential equation, a		
Galerkin spectral approach and a Tau spectral approach.		
• Introduce the Chebyshev and Legendre families of		
orthogonal polynomials. Develop basic properties of these		
polynomial families, and specifically how the derivatives		
of family members are expressible as spectral series within		
the family. Explain why these polynomial families allow		
spectral accuracy if the underlying unknown is arbitrarily		
smooth.	4	1.0
• Use polynomial interpolation to construct the pseudo-	4	16
spectral differentiation matrix for Chebyshev polynomials.		
• Develop the Chebyshev transform pair by which function		
values are determined from Chebyshev spectral		
coefficients and vice-versa. Indicate how the Chebyshev		
transform pair can be implemented using the Fast Fourier		
Transform.		
• Provide examples in the use of spectral and pseudo-		
spectral methods in solving, for example, the Diffusion		
equation and Burger's equation.		
• Discuss the extension of spectral methods to higher		
dimensional regions, for example a rectangular region or a		
disk, or a cylinder.		

2. Course components (total contact hours and credits per semester):						
	Lecture	Tutorial	Laboratory or Studio	Practical	Other:	Total
Contact Hours	60					60
Credit	4					4

3. Additional private study/learning hours expected for students per week. Four hours weekly for homework and revision

4. Course Learning Outcomes in NQF Domains of Learning and Alignment with Assessment Methods and Teaching Strategy

On the table below are the five NQF Learning Domains, numbered in the left column.

First, insert the suitable and measurable course learning outcomes required in the appropriate learning domains (see suggestions below the table). <u>Second</u>, insert supporting teaching strategies that fit and align with the assessment methods and intended learning outcomes. <u>Third</u>, insert appropriate assessment methods that accurately measure and evaluate the learning outcome. Each course learning outcomes, assessment method, and teaching strategy ought to reasonably fit and flow together as an integrated learning and teaching process. (Courses are not required to include learning outcomes from each domain.)

Code	NQF Learning Domains	Course Teaching	Course Assessment
#	And Course Learning Outcomes	Strategies	Methods
1.0	Knowledge		
	Upon completion of the course, the student is expected to		
1.1	Have knowledge and understanding of	Lectures -	Short quizzes,
	various numerical methods (e.g.,	Discussions,	periodical and
	Taylor, Runge-Kutta, Linear Multi-	and homework	final exams.
	Step, finite element, Spectral and		
	Pseudo-Spectral Methods) used to solve		
	differential equations problems.		
1.2	Be able to integrate related topics from	Lectures -	Short quizzes,
	separate parts of the course	Discussions,	periodical and
		and homework	final exams.
2.0	Cognitive Skills		
	Upon completion of the course, the student is expected to		
2.1	Be able to follow specialized and	Lectures -	Short quizzes,
	application-oriented technical literature	Discussions,	periodical and
	in the area	and homework	final exams.
2.2	Formulate and solve relatively	Lectures -	Short quizzes,
	complicated mathematical models for	Discussions,	periodical and
	real world problems where there is	and homework	final exams.
	dependence in both time and space.		
3.0	Interpersonal Skills & Responsibility		
	Upon completion of the course, the student is expected to		
3.1	Effectively work alone and in groups on	Lectures -	Short quizzes,
	the solution of problems	Discussions,	periodical and
		and homework	final exams.
3.2	Develop and implement in MATLAB	Lectures -	Short quizzes,
	advanced algorithms for solving	Discussions,	periodical and
	nonlinear systems of algebraic equations	and homework	final exams.
	and one and two-dimensional nonlinear		

	partial differential equations on regular		
	structured grids		
4.0	Communication, Information Technology, Numerical		
	Upon completion of the course, the studer	nt is expected to	
4.1	Be able to use commercial software with	Lectures -	Short quizzes,
	understanding of fundamental methods,	Discussions,	periodical and
	properties, and limitations	and homework	final exams.
4.2	Engage critical, analytical and	Lectures -	Short quizzes,
	communication skills though a	Discussions,	periodical and
	combination of report writing, group	and homework	final exams.
	collaboration, individual problem		
	solving and computer programming.		
5.0	Psychomotor		
5.1	Not applicable	Not applicable	Not applicable

5. So	5. Schedule of Assessment Tasks for Students During the Semester				
	Assessment task (e.g. essay, test, group project, examination, speech, oral presentation, etc.)	Week Due	Proportion of Total Assessment		
1	Periodic exam(1)	8	20		
2	Periodic exam(2)	14	20		
3	Home work	During the semester	20		
4	Final exam	End of semester	40		

D. Student Academic Counseling and Support

1. Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice. (include amount of time teaching staff are expected to be available each week)

The subject's lecturers will be available for individual student consultations and advice in their specified office hours

E Learning Resources

1. List Required Textbooks

- Numerical Methods for Ordinary Differential Equations J.C. Butcher (2003).
- The mathematical theory of finite element methods, S.C. Brenner and R. Scott, 2ed, Springer, 2002.

• Spectral Methods in Fluid Dynamics, C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang (1988).

2. List Essential References Materials (Journals, Reports, etc.) Journal of Computational and Applied Mathematics

3. List Recommended Textbooks and Reference Material (Journals, Reports, etc)

4. List Electronic Materials, Web Sites, Facebook, Twitter, etc. https://en.wikipedia.org/wiki/Numerical_partial_differential_equations

5. Other learning material such as computer-based programs/CD, professional standards or regulations and software.

None

F. Facilities Required

Indicate requirements for the course including size of classrooms and laboratories (i.e. number of seats in classrooms and laboratories, extent of computer access etc.)

1. Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.) Classroom with the capacity of 10-20 students

2. Computing resources (AV, data show, Smart Board, software, etc.) Smart board.

- Classroom is equipped with a computer.

- Provide projectors and related items.

Matlab software – Smart board

3. Other resources (specify, e.g. if specific laboratory equipment is required, list requirements or attach list)

None

G Course Evaluation and Improvement Processes

1 Strategies for Obtaining Student Feedback on Effectiveness of Teaching		
Student feedback on effectiveness of teaching		
2 Other Strategies for Evaluation of Teaching by the Instructor or by the Department		
Monitoring the achievement of the students in solving homework and periodical exams		
3 Processes for Improvement of Teaching		
Following up the student's homework. Encouraging the students to read and practice		
more.		
4. Processes for Verifying Standards of Student Achievement (e.g. check marking by		
an independent member teaching staff of a sample of student work, periodic exchange		
and remarking of tests or a sample of assignments with staff at another institution)		
The instructors watch and give their feedbacks to their students through all work done		
by them, including exams to verify standards of achievements for different domains of		
learning outcomes.		
5 Describe the planning arrangements for periodically reviewing course effectiveness		

and planning for improvement. Reviewing the course reports submitted at the end of each semester.

Name of Instructor: Dr. Hala Ahmad Hejazi				
Signature:	Hala Ahmad Hejazi	Date Report Completed: 31/10/2018		
Name of Fiel	d Experience Teaching Staff			
Program Coordinator:				
Signature:		Date Received:		

11