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Table 1: Notation we used in this work
G A finite group.

p A prime number.

K A field of characteristic 0.

O A complete discrete valuation ring.

p A maximal ideal of O, with residue field F = O/p.
F An algebraically closed field of characteristic p, residue field of O.

Z Integers.

Zn Integers modulo n.

N Natural numbers = {integers n : n ≥ 0}.
Sn The symmetric group of degree n.

An The alternating group of degree n.

V4 The Klein’s 4-group. V4 = 〈a, b|a2 = b2 = (ab)2 = 1〉.
D2n The dihedral group of order 2n. D2n = 〈a, b|an = b2 = 1, aba = b〉.
FG A group algebra of a finite group G over a field F .

1G The identity element of a finite group G.

a ≡ b mod n n divides a− b where a, b ∈ Z with n > 0.
gcd(a, b) The greatest common divisor of integers a, b.

max(m,n) A maximal elements of m and n where m,n ∈ Z.
R [x1, x2, · · ·, xn] The polynomial ring.

Matn(R) An algebra of (n× n)-matrices with coefficients in a commutative ring R.

RΩ The permutation module of a finite group G over a ring R.

HomR(M,W ) The set of all R-module homomorphism over a ring R.

EndF (V ) The endomorphism algebra of a vector space V over a field F .

AutR(A) The automorphism group of a G-algebra A over a ring R.

IsoG(Q,S) The set of all G-group isomorphism over a finite group G.

MorF(Q,S) The morphism of a fusion system F .

fg The conjugation map where g in a finite group G.

Ker(f) The kernel of a homomorphism f.

Im(f) The image of a homomorphism f .

ψ|P The restriction of a mapping ψ.

|G| The order of a finite group G.

G/H The set of left cosets gH of a subgroup H in a finite group G where g in G.

L \G/H The set of double cosets LgH of subgroups L and H in a finite group G where g in G.

[G/H] The set of representatives of left cosets gH in G where g in G .

[L \G/H] The set of representatives of double cosets LgH in G where g in G.
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Table 2: Notation we used in this work
[G : H] The index of a subgroup H in a finite group G.

∼G The conjugate relation in a finite group G.

≤G An order relation between subgroups of a finite group G.

M1
∼= M2 Modules M1 and M2 are isomorphic.

G1 ×G2 A cartesian product of sets G1 and G2 - A direct product of finite groups G1 and G2.

M ⊕N An internal direct sum of modules M and N .

⊗F A tensor product of F -modules.

Hg A conjugate of a subgroup H of a finite group G by g in G.

ClG(H) The set of H-conjugacy classes of a finite group G.

Ĉ The class sum of a conjugacy class C.

CFG(H) The centralizer of a subgroup H of a finite group G in FG.

CX(P ) The set of fixed points of a basis X under a p-subgroup P of a finite group G.

StabG(x) The stabilizer of x in a finite group G.

NG(H) The normalizer of a subgroup H in a finite group G.

Z(FG) The center of a group algebra FG.

InvH(M) A fixed elements of an FG-module M under the H-action.

MH A fixed elements of an FG-module M under the H-action.

IndGH(W ) The induction of an FH-module W from a subgroup H to a finite group G.

ResGH(M) The restriction of an FG-module M from a finite group G to a subgroup H of G.

TrGH The relative trace map from a subgroup H of a finite group G to G.

MG
H The image of the relative trace map of the module M.

M(H) The Brauer quotient of module M with respect to a subgroup H of a finite group G.

BrMH The Brauer homomorphism of module M.

vx(M) A vertex of an FG-module M .

s(M) A source of an FG-module M .

Sc(G,H) A Scott FG-module with respect to a subgroup H of a finite group G.

sP (M) The Scott coefficient of OG-module M associated with a p-subgroup P of a finite group G.

J(A) The Jacobson radical of a G-algebra.

U(A) A group of units of G-algebra A.

I ER An ideal I of a ring R.

dimF (V ) The dimension of the F -vector space V over a field F .

〈x〉 A cyclic group generated by x.

FP (G) The fusion system of a finite group G over a p-subgroup P of G.

Ob(F) The object of a fusion system F .

Sylp(H) The set of Sylow p-subgroups of H.

np The number of Sylow p-subgroups of a finite group G.

QF The set of all F-conjugate to a subgroup Q of a finite group G in F .
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Abstract

This dissertation is about important types of modules in algebra, Brauer inde-
composable module and Scott module and about system on finite group, saturated
fusion system. More precisely, we will introduce important properties and examples
about them. Then we study the tensor product of Brauer indecomposable module,
Scott module and saturated fusion system.

Key-words

G-algebras, Brauer indecomposable modules, Scott modules, fusion systems, sat-
urated fusion systems, tensor product.
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Introduction

In this dissertation we shall assume that G is a finite group and p a prime number
dividing the order of G. Let O be a complete discrete valuation ring with quotient
field K of characteristic 0. We assume that the residue field F = O/p is an alge-
braically closed field which has characteristic p, where p denotes the unique maximal
ideal of O. With this assumption we refer to the triple (K,O, F ) as a p-modular
system. We let R be O or F.

In (1956), Brauer introduced in case of the group algebra a surjective homo-
morphism between subalgebra of fixed points and Brauer quotient of algebra. This
surjective homomorphism is called Brauer homomorphism. In (1968), Green intro-
duced the notion of G-algebra. In (1980), the idea of defining such a homomorphism
for an arbitrary G-algebra is due to Broué and Puig. The Brauer quotient of mod-
ule is a factor of fixed points of module by the sum of the image of the relative
trace map. The restriction of Brauer quotient is defined a special module called “
Brauer indecomposable module.” This module has an important relationship with
saturated fusion system [24].

A Scott module is the unique summand of an induced module that contains the
trivial module in its base: Scott proved that the trivial module is also in its top.
This work was characteristically left unpublished by Scott; it was later rediscovered
by Alperin who did not publish it either. The first mention of them in the literature
was in (1982), by David Burry [6].

The beginning of fusion of finite groups is due to Burnside in the proof of normal
p-complement theorem for a fixed prime number p. Burnside’s book was published in
(1911). Brauer’s work in representation theory both ordinary and modular made the
foundation for deep theory in this direction of research. Brauer’s work spread from
(1940) to (1970). Alperin contributed in this field for Sylow intersections and fusion
in his paper in journal of algebra (1967). In modern language of this direction of
research, Lluis Puig gave the unifying approach for G-fusion in a Sylow p-subgroup.
In (1980), L.Puig created the notion of Frobenius category on a finite p-group. We
note that L. Puig did not publish his work about fusion system for long time. Then
in (2006), we have seen his first paper in this area of research. In (2009), we have
seen L. Puig’s book which contains deep theory and construction of fusion system.
In fact, in the literature mathematicians call this science Puig theory [3] . The book
of B. Kulshammer, which is published around (1991), contains the core work of
Puig regarding the results about nilpotent blocks. The book by Thévenaz, which is
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published around (1996), contains comprehensive treatment of G-algebra and Puig
theory. The book is very comprehensive treatment of modular representation theory.
Then, we have seen in the book Fusion Systems in Algebra and Topology, by Michael
Aschbacher, Radha Kessar, Bob Oliver, which is published around (2011). This book
gives an excellent treatment of fusion systems and the relationship with topology.
Also we see the book of David Caravan which contains some well organized theory
in fusion system. There is a new book which is due to Marcus Linkelmann as well
as many good paper of him. The title of that book is The Block Theory of Finite
Group Algebras, Volume 1.

This dissertation is divided into four chapters. In Chapter one, we will introduce
some notation and background materials that going to be used in the remainder of
the research. In the first section, we introduce concepts of algebra, Jacobson radical.
We give some examples about them. We introduce several equivalent condition to
definition of local algebra. Then we introduce theorem about endomorphism module
local algebra. In the second section of this chapter, we introduce definitions of a
G -algebra and an interior G-algebra. We introduce the most important concepts
about them. Then we show a relationship between G-algebra and interior G-algebra.
In the third section, we introduce definition of G-conjugate relation and show this
relation is equivalence relation. We introduce definition of conjugation map and
show algebra structure about it. We introduce concept of automizer. We record
some note about Sylow theorems. Then we introduce Burnside theorem.

In Chapter two, we introduce concepts of induced module and restriction module.
Then we give us some properties about them. In the second section, we introduce
concepts of a set of invariant elements and relative trace map on two algebra struc-
tures, modules structure and G-algebras structure. Then we gives some examples
and properties about them. In the third section, We introduce concepts of Brauer
quotient, Brauer homomorphism and important module of our research “ Brauer
indecomposable module”. Then we give us some properties about them. In the
fourth section, we introduce concepts of relative projective module, source module
and vertex subgroup. Then we give us properties about them. In the fifth section,
we introduce concept of a p-permutation module. We give us some examples and
properties about it. In the last section, we introduce concept of an important mod-
ule of our research “Scott module”. We introduce concept of Scott coefficient. Then
we give us some results and properties of Scott module and Scott coefficients.

In Chapter three, we introduce concepts of fused and control fused. Then we
give some examples about them. We introduce concept of an important system in
our research “ fusion system”. We give us types of subgroups in object of fusion
system. Then we give us examples about them. We show some lemmas giving us the
relationship between types of subgroups in object of fusion system. In the second
section, we introduce concept of special case of fusion system “ saturated fusion
system” is important system in our research. Then we introduce Puig’s theorem. We
give us a relationship between subgroups of object in saturated fusion system. We
introduce important theorem gives us equivalent condition to definition of saturated
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fusion system. Then we give us the relationship between Brauer indecomposable
module and saturated fusion system.

In Chapter four, we study that the tensor product of three algebra structures.
In the first section, we study that the tensor product of Brauer indecomposable
modules. In the second section, we study the tensor product of Scott modules.
Finally, we study that the tensor product of fusion systems. The main theorems in
this Chapter:

• Theorem: Let p be a fixed prime number. Let F be an algebraically closed
field of characteristic p. Let G1 and G2 be two finite groups. Let Mi be Brauer
indecomposable FGi-module with i = 1, 2. Then

M1 ⊗F M2

is a Brauer indecomposable FG1 ⊗F FG2-module.

• Theorem: Let p be a fixed prime number. Let F be an algebraically closed
field of characteristic p. Let G1 and G2 be two finite groups. Let Hi be a
subgroup of Gi, with i = 1, 2. Let Wi for i = 1, 2 be FHi-module. Then

IndG1
H1

(W1)⊗F IndG2
H2

(W2) ∼= IndG1×G2
H1×H2

(W1 ⊗F W2).

• Theorem: Let p be a fixed prime number. Let F be an algebraically closed
field of characteristic p. LetG1 andG2 be two finite groups. LetHi be subgroup
of Gi, with i = 1, 2. Let Sc(Gi, Hi) for i = 1, 2 be a Scott FGi-module. Then

Sc(G1, H1)⊗F Sc(G2, H2)

is a Scott FG1 ⊗F FG2- module.

• Theorem: Let p be a fixed prime number. Let F be an algebraically closed
field of characteristic p. Let G1 and G2 be two finite groups. Let Pi be p-
subgroup of Gi, with i = 1, 2. Let Fi be the fusion system of Gi over Pi. Let
FFi for i = 1, 2 be the finite dimensional algebra over F which is associated
with the fusion system FPi

(Gi). Then

F [F1 ×F2] ∼= FF1 ⊗F FF2

as an algebra isomorphism.

• Theorem: Let p be a fixed prime number. Let F be an algebraically closed
field of characteristic p. If Fi is a saturated fusion system for i = 1, 2 then the
fusion system FF1 ⊗F FF2 is a saturated fusion system.

We would like to say that these theorems are written in three papers:

• Tensor product of Brauer indecomposable modules.

• Tensor product of Scott modules.

• Tensor product of fusion systems.

9



Chapter 1

Algebras

We shall introduce in this chapter, concepts of algebra, Jacobson radical and local
algebra. We give some examples about them. Then we introduce theorem tells us
condition of local algebra on endomorphism module is important for become module
an indecomposable module. In second section, we introduce concepts of G-algebra
and interior G-algebra. Then we give some important concepts and examples about
them. We introduce a relationship between G-algebra and interior G-algebra. In
third section, we introduce concept of conjugate relation and algebra structure about
it. We introduce concept of automizer and important property about it. We record
some note about Sylow theorems. Then we introduce Burnside theorem.

1.1 Local algebras

Let p be a fixed prime number. Let G be a finite group. Let (K,O, F ) be a p-
modular system. Let R be O or F. We followed references [2], [4], [10], [12], [16], [17]
and [20].

Definition 1.1.1. [10] An algebra over R is an R-module A with a ring structure,
which must satisfy r(ab) = (ra)b = a(rb) for all r ∈ R and all a, b ∈ A.

We list some examples are about of algebra. The main example is the first one.

Example 1.1.1.

(a) Let G be a finite group. The group algebra FG = {
∑
αigi : αi ∈ F, gi ∈ G}

is an algebra over F where F is the trivial FG-module.

(b) Every ring is an algebra over Z.

(c) Every field is an algebra over itself.

(d) The polynomial ring R [x1, x2, · · ·, xn] is an algebra over R.

(e) The matrix ring (Matn(R),+, ·) is an algebra over R.

10



(f) Consider V as a vector space over F, then the endomorphism ring (EndF (V ),+, ◦)
is an algebra over F .

Definition 1.1.2. [16] The Jacobson radical J(A) of A is intersection of all maximal
left ideals I of A

J(A) = ∩I/AI.

The following example is about of Jacobson radical.

Example 1.1.2.

(a) The Jacobson radical of Z8 is J(Z8) = 〈2〉.

(b) The Jacobson radical of Z6 is J(Z6) = 〈2〉 ∩ 〈3〉 = {0}.

The ideal J(A) is important to study the concept of local algebra.

Lemma 1.1.1. [14] Let A be a finite dimension algebra over F . Then the following
condition are equivalent:

(i) A contains exactly two idempotents.

(ii) Every element in A is either nilpotent or unit.

(iii) A/J(A) ∼= F as field.

(iv) A is the disjoint union of J(A) and U(A).

Definition 1.1.3. An algebra A over a field F is called local algebra if it satisfies
any condition of Lemma 1.1.1.

Example 1.1.3. All field (and skew field) are local algebras over itself.

Theorem 1.1.1. [2] Let M be a finite dimensional F -module. Then M is indecom-
posable F -module if and only if every endomorphism algebra of M is either unit or
nilpotent.

Proof. (⇐) to prove by contradiction. Suppose that every endomorphism of M
is either unit or nilpotent and M is not indecomposable F -module. So, suppose
M = N1⊕N2 where N1 and N2 are non-zero F -submodules of M . Also suppose i1 :
N1 −→M is an inclusion map defined by i1(x) = (x, 0),∀x ∈ N1 and π1 : M −→ N1

is a projection map defined by π1(x, y) = x, ∀x ∈ N1, ∀y ∈ N2. Also suppose i2 :
N2 −→M is an inclusion map defined by i2(y) = (0, y), ∀y ∈ N2 and π2 : M −→ N2

is a projection map defined by π2(x, y) = y, ∀x ∈ N1, ∀y ∈ N2. Now note that,
i1π1 and i2π2 are both endomorphisms of M with i1π1(x, y) = i1(π1(x, y)) = i1(x) =
(x, 0). So (i1π1)2(x, y) = i1π1(i1π1(x, y)) = i1π1(x, 0) = i1(π1(x, 0)) = i1(x) = (x, 0)
by induction (i1π1)n(x, y) = (x, 0), ∀x ∈ N1. This means (i1π1)n 6= 0, ∀n ∈ N.
Hence i1π1 is not nilpotent. By assumption i1π1 is unit. In the same way i2π2 is not
nilpotent, so i2π2 is also unit by assumption. But

11



(i1π1)(i2π2) = 0 (1.1)

since (i1π1)(i2π2)(x, y) = i1π1(0, y) = (0, 0). Also since i1π1 is unit then (i1π1)−1

exists. By multiply the equation (1.1) from left by (i1π1)−1, we have i2π2 = 0. This
is contradict that i2π2 is unit. Hence M is indecomposable F -module.

(⇒) Suppose that M is a finite dimensional indecomposable F -module and f ∈
EndF (M). Now we have

M ⊃ Imf ⊃ Imf 2 ⊃ · · ·

and
M ⊃ kerf ⊃ kerf 2 ⊃ · · ·

are two descending chains of F -submodules ofM . But sinceM is a finite dimensional
then there exist positive integer n such that:

Imfn = Imfn+1 = Imfn+2 = · · ·

and there exist positive integer m such that:

kerfm = kerfm+1 = kerfm+2 = · · · .

If we take k = max(m,n), then it follows that:

Imfk = Imf 2k and kerfk = kerf 2k. (1.2)

Now if x ∈ kerfk ∩ Imfk, then x ∈ kerfk and x ∈ Imfk. So x = fk(y), y ∈ M
and fk(x) = 0. Thus fk(fk(y)) = fk(x) = 0 and f 2k(y) = 0 then y ∈ kerf 2k. But
from (1.2) we have y ∈ kerfk. Thus fk(y) = 0, then x = 0. Hence kerfk ∩ Imfk =
{0}. Now suppose x ∈ M then fk(x) = f 2k(y) for some y ∈ M . Since fk is a
homomorphism, then fk(x− fk(y)) = fk(x)− f 2k(y) = 0. Hence x− fk(y) ∈ kerfk,
so x ∈ kerfk + fk(y) ⊆ kerfk + Imfk. Then M ⊆ kerfk + Imfk. Also since
kerfk + Imfk ⊆ M . Then M = kerfk + Imfk, hence M = kerfk ⊕ Imfk. But
since M is indecomposable F -module then either Imfk = {0} or kerfk = {0}. If
Imfk = {0}, then fk = 0. Hence f is nilpotent. If kerfk = {0}, then f is one to
one. Since f is endomorphism thus f is onto. Hence f is unit.

Corollary 1.1.1. A finite dimension F -module is indecomposable if and only if the
endomorphism algebra of it is local algebra.

1.2 G-algebras

Throughout this section, G denotes a finite group and p a prime number. Let
(K,O, F ) be a p-modular system. Let R be O or F. We followed references [3], [8],
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[13], [14], [23] and [24].

Definition 1.2.1. [3] Let A be an algebra over R. A G-algebra over R is a group
homomorphism ψ : G −→ Aut(A) defined by ψ(g)(a) = ag for all a ∈ A and all
g ∈ G. We denotes ag for the image of a under the map ψ(g) ∈ Aut(A), for all
r ∈ R, a, b ∈ A and all g, h ∈ G we have:

(i) a1G = a , ∀a ∈ A.

(ii) (ag)h = agh.

(iii) (a+ b)g = ag + bg.

(iv) (ab)g = ag bg.

(v) (ra)g = rag.

Then we called A a G-algebra over R.

Remark 1.2.1.

The G-algebra structure corresponds to the conjugation action ag = g−1ag by
g ∈ G.

The following examples are about of G-algebra.

Example 1.2.1.

The group algebra FG has a G-algebra structure over F by inclusion map of G
in FG with conjugation tg = g−1tg where g ∈ G and t ∈ FG. Also if N is a normal
subgroup of G then FN is a G-algebra over F by restriction of the action G on FG
to FN.

Example 1.2.2.

Consider M as an FG-module. The endomorphism algebra of M over F has
a G-algebra structure over F satisfies (φ)g(m) = φ(mg−1)g for all φ ∈ EndF (M),
g ∈ G and all m ∈M.

Lemma 1.2.1. Let G be a finite group. Let H be a subgroup of G. If A is a
G-algebra over R then A is an H-algebra over R.

Proof. Since A is a G-algebra over R thus there is a group homomorphism ψ : G −→
Aut(A). The restriction of ψ to ψ̄ : H −→ Aut(A) is also group homomorphism.
Hence A is an H-algebra over R.

Definition 1.2.2. Let G be a finite group. Let A be a G-algebra over R. The
G-subalgebra of A is a subalgebra B of A satisfying bg ∈ B for g ∈ G and b ∈ B.

Definition 1.2.3. Let G be a finite group. Let A be a G-algebra over R. The
G-ideal of A is an ideal I of A satisfying xg ∈ I for g ∈ G and x ∈ I.

13



The following lemma gives us the algebra structure for factor of G-algebra by
G-ideal of G-algebra.

Lemma 1.2.2. Let G be a finite group. Let A be a G-algebra over R. Let I be a
G-ideal of A. Then A/I is a G-algebra over R.

Proof. We will prove this map ψ : G −→ Aut(A/I) is define by ψ(g)(a + I) =
(a+ I)g = ag + I is a group homomorphism for g ∈ G and a+ I ∈ A/I.
Suppose that g1, g2 ∈ G and a+ I ∈ A/I. From definition of ψ we have

ψ(g1g2)(a+ I) = (a+ I)g1g2

= (ag1g2 + I)
= ((ag1)g2 + I)
= (ag1 + I)g2

= ((a+ I)g1)g2

= ψ(g2)(a+ I)g1

= ψ(g2)ψ(g1)(a+ I)

Hence ψ is a group homomorphism. Then A/I is a G-algebra over R.

The following definition about the morphism that connect between G-algebras.

Definition 1.2.4. Let G be a finite group. Let A and B be two G-algebras over
R. A homomorphism Ψ : A −→ B is a homomorphism of G-algebras satisfying
(Ψ(a))g = Ψ(ag) for g ∈ G and a ∈ A.

Now we will introduce definition of the spacial and important structure of G-
algebra.

Definition 1.2.5. [3] Let G be a finite group. Let A be an algebra over R. An
interior G-algebra over R is a group homomorphism ϕ : G −→ U(A) satisfy ϕ(g)a =
g.a and aϕ(g) = a.g for all a ∈ A and g ∈ G.

The following theorem gives us the relationship between G-algebra and interior
G-algebra.

Theorem 1.2.1. Every interior G-algebra A over R is a G-algebra over R by

ψ(g)(a) = aϕ(g), for g ∈ G, a ∈ A.

Remark 1.2.2. The converse of the above theorem does not hold in general. For
example, if we take F = Z2 is the field which has characteristic 2,
G = V4 the Klein 4-group which has order 4 and
H = 〈a〉 is a normal subgroup of V4 which has order 2.
The group algebra Z2V4 = {0, 1, a, b, c, 1 + a, 1 + b, 1 + c, a + b, a + c, b + c, 1 + a +
b, 1 + a+ c, 1 + b+ c, a+ b+ c, 1 + a+ b+ c} is a V4-algebra over Z2.
Also Z2V4 is interior V4-algebra over Z2.
The subalgebra Z2〈a〉 = {0, 1, a, 1 + a} is a V4-algebra over Z2 but it is not interior
V4-algebra over Z2. Because is has not group homomorphism from V4 to U(Z2〈a〉) =
{1, a}.

The following examples are about of interior G-algebra.
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Example 1.2.3. The group algebra FG is an interior G-algebra over F by the
inclusion map of G in FG. If N is a normal subgroup of G then the subalgebra FN
may be not has structure interior G-algebra see Remark 1.2.2.

Example 1.2.4. Consider M as an FG-module. The endomorphism algebra of M
over F is an interior G-algebra by the group homomorphism ϕ : G −→ AutF (M)
where U(EndF (M)) = AutF (M).

The following lemma describes structure of interior G-algebra on subgroup of G.

Lemma 1.2.3. Let G be a finite group. Let H be a subgroup of G. If A is an
interior G-algebra over R then A is an interior H-algebra over R.

Proof. Since A is an interior G-algebra over R thus there is a group homomorphism
ϕ : G −→ U(A). The restriction of ϕ to ϕ̄ : H −→ U(A) is also group homomor-
phism. Hence A is an interior H-algebra over R.

The following definition of the morphism between the interior G-algebras.

Definition 1.2.6. Let G be a finite group. Let A and B be two interior G-algebras
over R. A homomorphism Φ : A −→ B such that Φ(g.a) = g.Φ(a) and Φ(a.g) =
Φ(a).g for all g ∈ G and a ∈ A is called a homomorphism of interior G-algebras.

1.3 Conjugation and Sylow theory

In this section, we shall introduce a deep theorem which is due to Burnside. That
theorem is the beginning of the concept of control fusion in finite group theory.

However, we shall start by revise the concept of conjugation in group’s elements
as well as the conjugation of p-subgroups for fixed p prime number. Then we will
mention the embbeding of the automizer of the automorphism group for p-local
subgroup P of G. We followed references [7], [10], [12], [19] and [20].

Let G be a finite group. Then we can consider the action of G on itself. There
are many ways to do such action. One of them is the action by conjugation.

Definition 1.3.1. For all x, y ∈ G, we say that x is G-conjugate to y and denoted
x ∼G y if there exists an element g ∈ G such that x = g−1yg = yg.

Lemma 1.3.1. The G-conjugate relation in above is an equivalence relation on G.

Remark 1.3.1.

• The equivalence classes of the G-conjugation relation as above are called con-
jugation classes of G. (orbits)

• These orbits are partition of G. Namely,

G = [x1] ∪̇ [x2] · · · [xt] .
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• We can consider the conjugation action of X = {H : H ≤ G}. Then we
have G-conjugate classes of subgroups of G where their number is the index
[G : NG(H)] .

In particular for fixed prime p. We can consider the set X of all p-subgroups
of G as the following

X = {P : P ≤ G}.

Then G acts on X by conjugation.

We give the following map.

Definition 1.3.2. Let G be a finite group, we define the conjugation map for all
g ∈ G as the following

fg : G −→ G

such that
fg(x) = g−1xg, ∀x ∈ G.

Lemma 1.3.2. For all g ∈ G we have fg is an automorphism (inner automorphism)
of G with Ker(fg) = CG(g).

Proof. Suppose that x, y ∈ G then
fg(xy) = g−1xyg

= (g−1xg)(g−1yg)
= fg(x)fg(y).

Hence fg is a group homomorphism. Also,
Kerfg = {x ∈ G : fg(x) = x}

= {x ∈ G : g−1xg = x}
= {x ∈ G : xg = gx}
= CG(g).

Hence fg is monomorphism. Moreover, fg is epimorphism. Since that for all y ∈ G
there is x = gyg−1 ∈ G such that fg(x) = fg(gyg

−1) = y. Hence fg is automorphism.

We remark that, now have a map from G to Aut(G). define as the following

ψ : G −→ Aut(G)

such that
ψ(g) = fg, ∀g ∈ G.

In fact, this map is a group homomorphism.

Definition 1.3.3. Let G be a finite group. Let H be a subgroup of G. The quotient
group NG(H)/CG(H) is called the automizer of H in G.

proposition 1.3.1. Let G be a finite group. Let H be a subgroup of G. Then the
automizer group of H in G is isomorphic to a subgroup of the automorphism group
of H. N G(H)/CG(H) . AutG(H).
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In particular, if H is normal in G, then G/CG(H) . AutG(H).

Now we recorded some note of Sylow theorem, which is related to fusion system.
For finite group G, we can fix a prime number p. Then the order of G, |G| can be
written as |G| = pm.r where gcd(p, r) = 1 and m, r ∈ N. It is well known that in
finite group theory there exists a p-subgroup of G of order pm and such p-subgroup is
called Sylow p-subgroup of G. In particular, G contains a p-subgroup of order pt for
all 1 ≤ t ≤ m. Each p-subgroup of G is contained in a Sylow p-subgroup of G. The
number of Sylow p-subgroup of G is the index [G : NG(P )] for any particular Sylow
p-subgroup of G. That number np of Sylow p-subgroups satisfies the congruence
relation.

np ≡ 1 mod (p).

Now, we study Burnside theorem which explains the relationship betweenG-conjugate
elements in P and NG(P )-conjugate elements in P, where in this case P is an abelian
Sylow p-subgroup of G.

Theorem 1.3.1. (Burnside). Let p be a fixed prime number. Let G be a finite
group. Let P be a Sylow p-subgroup of G. Assume that P is abelian. Then for all
elements x and y in P , we have that x and y are G-conjugate if and only if x and
y are NG(P )-conjugate.

Proof. (⇒) Suppose that x is G-conjugate to y then there exists g ∈ G such that
x = g−1yg. Since P is abelian and x, y ∈ P we have P ≤ CG(x) and P ≤ CG(y). Also,
P g = g−1Pg ≤ CG(x). Thus P and P g are Sylow p-subgroups of CG(x). From Sylow’s
theorem we have there exists z ∈ CG(x) such that P gz = P. Thus gz = n ∈ NG(P )
and x = z−1xz = z−1g−1ygz = n−1yn. Hence x is NG(P )-conjugate to y.
(⇐) Suppose that x is NG(P )-conjugate to y then there exists g ∈ NG(P ) such that
x = g−1yg. Since NG(P ) ≤ G then g ∈ G. Hence x is G-conjugate to y.

Remark 1.3.2.

• Burnside theorem is the starting point of the concept of fusion and control
fusion.

• We remark that, we can consider non-abelian Sylow p-subgroup P and in this
case Burnside theorem can be stated as following: If P is any Sylow p-subgroup
of G, then two normal subsets “ conjugate classes ” of P are conjugate in G if
and only if they are conjugate in the normalizer NG(P ).

As corollary, we mention that two elements of the center of P , are conjugate in G if
and only if they are conjugate in NG(P ). This is a special case of Theorem 1.3.1.
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Chapter 2

Brauer Indecomposable Modules
and Scott Modules

In this chapter we introduce several concepts in important types of modules, Brauer
indecomposable module and Scott module. We introduce concepts of induced mod-
ule and restriction module. Then we give some examples and properties about them.
In second section, we introduce concepts of the set of invariant elements and rela-
tive trace map in two algebra structure, modules structure and G-algebras structure.
We give some examples and properties about them. In third section, we introduce
concepts of Brauer quotient and Brauer homomorphism in modules structure and
G-algebras structure. We give some properties about them. Also we introduce con-
cept of Brauer indecomposable module. In fourth section, we introduce concept of
relative projective module. We give some important properties about it. In fifth
section, we introduce concept of p-permutation module in modules structure and
G-algebras structure. Then we give some properties about it. In the last section, we
introduce concepts of Scott module and Scott coefficient. Then we give important
properties about them.

Throughout this chapter, G denotes a finite group and p a prime number. Let
(K,O, F ) be a p-modular system. Let R be O or F.

2.1 Induced modules

In this section, we consider how to construct module of a group from a module
of its subgroup. We followed references [4], [5], [7], [16], [23] and [24].

The following definition of induced module and restriction module.

Definition 2.1.1. [16] Let G be a finite group. Let H be a subgroup of G. Let W
be an RH-module. The induced module of W from H to G is an RG-module. We
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regarded it from the following form

IndGH(W ) = W ⊗RH RG =

[G:H]⊕
i=1

W ⊗RH ti

where ti ∈ [G/H]. It is clear W ⊆ IndGH(W ). The dual notion to induction is the of
restriction. Let M be an RG-module. Then the restriction module of M from G to
H is an RH-module which is denoted by ResGH(M).

Remark 2.1.1.

Let p be a fixed prime number. Let G be a finite group. Let P be a p-subgroup of
G. Let M be an RG-module. Then ResGP (M) is a direct sum of modules isomorphic
to IndPQ(R) where IndPQ(R) is indecomposable RP -module and Q is a subgroup of
P.

Now we introduce examples are about of induced module.

Example 2.1.1.

Let G be a finite group. The group algebra RG over R obtained by induced of
the trivial RG-submodule R from identity subgroup 1G to G has the form

IndG1G(R) ∼= R⊗R1G RG
∼= RG.

Example 2.1.2.

Let F = Z2 be a field which has characteristic 2. Let G = D8 be a dihedral group
of degree 4. If we fixed the prime number p = 2 and we take H = 〈b〉 = {1, b} is a
subgroup of D8 which has order 2. The index of 〈b〉 in D8 is [G : H] = 4. The set of
left cosets representatives of 〈b〉 in D8 is [D8/ 〈b〉] = {1, a, a2, a3}. Then induced of
trivial Z2D8-module Z2 from 〈b〉 to D8 as the form

IndD8

〈b〉 (Z2) ∼= Z2 ⊗Z2〈b〉 Z2D8
∼=

4⊕
i=1

Z2 ⊗Z2〈b〉 ti where ti ∈ [D8/ 〈b〉] .

Thus

IndD8

〈b〉 (Z2) ∼= (Z2 ⊗Z2〈b〉 1)⊕ (Z2 ⊗Z2〈b〉 a)⊕ (Z2 ⊗Z2〈b〉 a
2)⊕ (Z2 ⊗Z2〈b〉 a

3).

proposition 2.1.1. Let G be a finite group. Let M be an RG-module isomorphic
the direct sum of the R-submodules {gV |g ∈ G} where V be an R-submodule of M .
Let H = {g ∈ G|gV = V }. Then M ∼= IndGH(V ).

The following definition of permutation module. This module has a relationship
with induced module.
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Definition 2.1.2. [16] Let G be a finite group. Let Ω be a set with an action of G.
Then RΩ ∼=

⊕
w∈ΩRw is the permutation RG-module on Ω.

Remark 2.1.2. If G in above definition acts on Ω transitively then we said RΩ is
a transitive permutation RG-module on Ω.

The following example describes when the permutation module isomorphic to
the induced module of R.

Example 2.1.3.

Consider G is a finite group and Ω is a set with an action transitively of G by
permutations. If we take w ∈ Ω and H = StabG(w) where H is a subgroup of G
Then H is the stabilizer of Rw and the permutation module RΩ ∼= IndGH(R).

The following lemmas give us some properties about of induced module.

Lemma 2.1.1. Let G be a finite group. Let H and L be two subgroups of G where
L ≤ H. Let W be an RL-module. Then

IndGH(IndHL (W )) ∼= IndGL(W ).

Proof. From Definition 2.1.1 we have

IndGH(IndHL (W )) ∼= IndGH(W ⊗RL RH) ∼= (W ⊗RL RH)⊗RH RG.

From the associativity of the tensor product we have

(W ⊗RL RH)⊗RH RG ∼= W ⊗RL (RH ⊗RH RG) ∼= W ⊗RL RG.

Then
IndGH(IndHL (W )) ∼= W ⊗RL RG.

Thus from Definition 2.1.1 we have

W ⊗RL RG ∼= IndGL(W ).

Hence
IndGH(IndHL (W )) ∼= IndGL(W ).

Lemma 2.1.2. Let G be a finite group. Let H be a subgroup of G. Let M be an
RG-module. Let W be an RH-module. Then

M ⊗R IndGH(W ) ' IndGH(ResGH(M)⊗RW ).

Lemma 2.1.3. Let G be a finite group. Let H be a subgroup of G. Let M be an
RG-module. Let W be an RH-module. Then
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(i) IndGH(HomR(ResGH(M),W ) ' HomR(M, IndGH(W )) as RG-isomorphism.

(ii) IndGH(HomR(W,ResGH(M)) ' HomR(IndGH(W ),M) as RG-isomorphism.

Lemma 2.1.4. Let p be a prime number. Let G be a finite group. Let H be a
subgroup of G. Let W be an FH-module. Then for all g ∈ G we have

IndGH(W ⊗ g) ∼= IndGH(W ).

Lemma 2.1.5. Let G be a finite group. Let H be a subgroup of G. Let W be an
RH-module. Let g ∈ G. Then

IndGH(W ) ∼= IndGHg(W g).

Lemma 2.1.6. Let G be a finite group. Let H be a subgroup of G. Let W be a
free RH-module. Then IndGH(W ) is a free RG-module.

Proof. Since W is a free RH-module thus it has a basis X = {x1, · · · , xw} ⊆ W .
then

IndGH(X) ∼= X ⊗RH RG ⊆ W ⊗RH RG.

From Definition 2.1.1 we have

W ⊗RH RG ∼= IndGH(W ).

Hence IndGH(X) ⊆ IndGH(W ). Also from Definition 2.1.1 we have

IndGH(X) ∼= X ⊗RH RG ∼=
r⊕
i=1

X ⊗RH ti where ti ∈ [G/H] .

Thus

IndGH(X) ∼= x1 ⊗RH t1 ⊕ · · · ⊕ xw ⊗RH t1 ⊕ · · · ⊕ x1 ⊗RH tr ⊕ · · · ⊕ xw ⊗RH tr.

Since that X is a linear independent and spans W then IndGH(X) is also linear
independent and spans IndGH(W ). Hence IndGH(X) is a basis of IndGH(W ). Then
IndGH(W ) is a free RG-module.

2.2 Relative trace map

In this section, we introduce the concepts of the set of invariant elements and relative
trace map in two algebra structures, modules structure and G-algebras structure.
We followed references [3], [4], [5], [8], [14], [16], [23] and [24].

Now we begin by modules structure. We start by definition of the set of invariant
elements of module.
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Definition 2.2.1. [16] Let G be a finite group. Let H be a subgroup of G. Let M
be an RG-module. The H-invariant elements (H-fixed points) of M defined by the
following:

InvH(M) = {m ∈M : mh = m,∀h ∈ H}.

Remark 2.2.1.

• We write MH to denote InvH(M).

• Consider G a finite group, H and L two subgroups of G where H ≤ L and
M is an RG-module. Then ML ⊂ MH . In particular MG ⊂ MH then MG

is smallest submodule of M and the largest is M1G where 1G is the trivial
subgroup of G.

The following examples are about of the set of invariant elements of modules.

Example 2.2.1.

Let F = Z2 be a field which has characteristic 2. Let G = S3 be the symmetric
group of three letters which has order 6. The group algebra is FG = Z2S3. If we
take H = A3 is the alternating subgroup of S3 which has order 3 then M = Z2A3 =
{0, 1, (123), (132), 1+(123), 1+(132), (123)+(132), 1+(123)+(132)} is Z2S3-module.
The H-invariant elements of M is InvA3(Z2A3) = {0, 1 + (123) + (132)}.

Example 2.2.2.

Consider G a finite group and M,W are two RG-modules. The set of all R-
module homomorphism HomR(M,W ) is an R-module then

(HomR(M,W ))G = HomRG(M,W ).

The following lemma gives us the relationship between sets of invariant elements
of module and G-conjugate subgroups of G.

Lemma 2.2.1. Let G be a finite group. Let H be a subgroup of G. Let M be an
RG-module. Let g ∈ G. Then

MHg = MHg

.

The set of invariant elements of module has special algebra structures. We show
it in the following lemmas.

Lemma 2.2.2. Let G be a finite group. Let H be a subgroup of G. Let M be an
RG-module. Then MH is an RG-submodule of M.

Proof. Since 0M ∈ M and 0Mh = 0M for all h ∈ H, then 0M ∈ MH . Hence from
Definition 2.2.1 we have clearly ∅ 6= MH ⊆ M . Now suppose that m1,m2 ∈ MH

thus m1h = m1 and m2h = m2 for all h ∈ H. Since that M is an RG-module we
have
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(m1 −m2)h = (m1 + (−m2))h
= m1h+ (−m2)h
= m1h+ (−(m2h))
= m1 + (−m2)
= m1 −m2.

Hence m1 −m2 ∈ MH . Also suppose that r ∈ RG and m ∈ MH thus mh = m
for all h ∈ H. Since that M is an RG-module we have

(rm)h = r(mh)
= rm.

Hence rm ∈MH . So MH is an RG-submodule of M .

Lemma 2.2.3. Let G be a finite group. Let H be a subgroup of G. Let M be an
RG-module. Then MH is an FNG(H)/H-module.

Proof. From Definition 2.2.1 clearly we have H acts trivial on MH . Also from
Lemma 2.2.1 for g ∈ G we have MHg = MHg

. If g ∈ NG(H) then Hg = H. Thus
MHg = MH . Hence we can consider MH as an FNG(H)-module. Also we can
consider MH as an FNG(H)/H-module.

Now we will introduce definition of relative trace map.

Definition 2.2.2. [16] Let G be a finite group. Let H be a subgroup of G. Let M
be an RG-module. A relative trace map from MH to MG is defined by the following:

TrGH : MH −→MG

TrGH(m) =
∑

t∈[G/H]

mt, ∀m ∈MH .

The inclusion map ResGH : MG −→MH is the restriction map.

Remark 2.2.2.

We write MG
H to denote the image of TrGH(MH).

The following lemma tells us when the relative trace map is surjective.

Lemma 2.2.4. Let G be a finite group. Let H be a subgroup of G. Let Q be a
Sylow p-subgroup of H. Let M be an RG-module. Then MH = MH

Q .

Lemma 2.2.5. Let G be a finite group. Let H be a subgroup of G. Let M be an
RG-module. The relative trace map TrGH : MH −→MG has the following properties:

(i) TrGH is well-defined.

(ii) TrGH is an R-linear map.

(iii) TrHH , ResHH are identity maps for all H ≤ G.
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(iv) (Transitivity) If H ≤ L ≤ G then TrGH = TrGL ◦ TrLH .

(v) TrGH(M) = TrGHg(M).

(vi) If H ≤G L then TrGH(M) ⊂ TrGL(M).

Theorem 2.2.1. Let G be a finite group. Let H and L be two subgroups of G. Let
M be an RG-module. The relative trace map TrGH : MH −→ MG has the following
statements hold:

(i) (Mackey decomposition) TrGH(m) =
∑

t∈[H\G/L] TrLHt∩L(mt) for m ∈MH .

(ii) TrGH(M) ⊂
∑

t∈[H\G/L] TrLHt∩L(M).

(iii) (Mackey formula) ResGHTrGL =
∑

t∈[H\G/L] TrHLt∩HResL
t

Lt∩Hft.

Lemma 2.2.6. Let G be a finite group. Let H and L be two subgroups of G. Let
W be an RH-module. Then there is an isomorphism :

TrGH : WH −→ (IndGH(W ))G

such that
TrGH(w) =

∑
t∈[G/H]

w ⊗RH t, ∀w ∈ WH .

Now we begin by G-algebra structure.

Definition 2.2.3. [24] Let G be a finite group. Let H be a subgroup of G. Let A
be a G-algebra over R. The H-invariant elements (H-fixed points) of A, namely

InvH(A) = {a ∈ A : ah = a, ∀h ∈ H}.

Remark 2.2.3.

• We write AH to denote InvH(A).

• Consider G as a finite group, H and L are two subgroups of G where H ≤ L
and A is a G-algebra over R. Then AL ≤ AH . In particular AG ≤ AH thus
AG is smallest and the largest is A1G where 1G is the trivial subgroup of G.

• Let G be a finite group, H be a subgroup of G and A = RG be a G-algebra over
R. Then the G-invariant elements of A is AG = Z(RG) =

⊕n
i=1RĈi where

Ĉi =
∑

x∈Ci
x and Ci is a G-conjugacy class of G. The set of all G-conjugacy

class of G denoted by Cl(G) then {Ĉ}C∈Cl(G) is a basis of Z(RG). The H-
invariant elements of A is AH = CRG(H) where H acts on G by conjugation.
The H-orbits are H-conjugacy classes of G. The set of all H-conjugacy classe
of G denoted by ClH(G) where {D̂}D∈ClH(G) is a basis of CRG(H).

The following examples are about of set of invariant elements.
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Example 2.2.3.

Let F = Z2 be a field which has characteristic 2. Let G = V4 be the Kelin 4-group
which has order 4. The group algebra A = FG = Z2V4 = {0, 1, a, b, c, 1+a, 1+ b, 1+
c, a+ b, a+ c, b+ c, 1 +a+ b, 1 +a+ c, 1 + b+ c, a+ b+ c, 1 +a+ b+ c} is a V4-algebra
over Z2. The V4-invariant elements of Z2V4 is AG = Z(Z2V4) = Z2V4. If we take
H = 〈a〉 is a subgroup of V4 which has order 2. Then the 〈a〉-invariant elements of
Z2V4 is AH = CZ2V4(〈a〉) = Z2V4.

Example 2.2.4.

Let F = Z3 be a field which has characteristic 3. Let G = S2 be the symmetric
group of two letters which has order 2. The group algebra A = FG = Z3S2 =
{0, 1, 2, (1), (12), 1 + (1), 1 + (12), 2 + (1), 2 + (12)} is a S2-algebra over Z3. The
S2-invariant elements of Z3S2 is AG = Z(Z3S2) = Z3S2. If we take H = 〈1S2〉
is the trivial subgroup of S2. Then the 〈1S2〉-invariant elements of Z3S2 is AH =
CZ3S2(〈1S2〉) = Z3S2.

Example 2.2.5.

Let G be a finite group, H be a subgroup of G and M be an RG-module.
The endomorphism algebra EndR(M) is a G-algebra over R. Then (EndR(M))G =
EndRG(M) and (EndR(M))H = EndRH(M).

The following lemma describes a relationship between the sets of invariant ele-
ments of G-algebra by G-conjugate subgroups of G.

Lemma 2.2.7. Let G be a finite group. Let H be a subgroup of G. Let A be a
G-algebra over R. Let g ∈ G. Then

AH
g

= (AH)g.

The following lemmas describe algebra structures of the set of invariant elements
of G-algebra.

Lemma 2.2.8. Let G be a finite group. Let H be a subgroup of G. Let A be a
G-algebra over R. Then AH is an R-subalgebra of A and it has the same unity
element of A.

Proof. From definition of AH clearly we have AH ⊆ A. Also since 0A ∈ A and
satisfy 0hA = 0A for all h ∈ H then 0A ∈ AH . Hence ∅ 6= AH ⊆ A. Now suppose
that a1, a2 ∈ AH then ah1 = a1 and ah2 = a2 for all h ∈ H. Since that A is a G-algebra
over R then we have

(a1 − a2)h = (a1 + (−a2))h

= ah1 + (−a2)h

= ah1 + (−ah2)
= a1 + (−a2)
= a1 − a2.
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Hence a1 − a2 ∈ AH . Also since that a1, a2 ∈ A and A is a G-algebra over R
then we have

(a1a2)h = ah1a
h
2

= a1a2.

Hence a1a2 ∈ AH . Also suppose that r ∈ R and a ∈ AH thus ah = a for all
h ∈ H. Since that A is a G-algebra over R then we have

(ra)h = rah

= ra.

Hence ra ∈ AH . Hence AH is an R-subalgebra of A. If A has unit element 1A
then we have 1hA = 1A for all h ∈ H. Thus 1A ∈ AH . Hence AH has the same unit
element of A.

Lemma 2.2.9. Let G be a finite group. Let H be a subgroup of G. Let A be a
G-algebra over R. Then AH is an NG(H)/H-algebra over R.

Proof. From Definition 2.2.3 clearly we have H acts trivial on AH . Also since for
g ∈ G we have (AH)g = AH

g
. If g ∈ NG(H) then Hg = H. Thus (AH)g = AH . Hence

we can consider AH as an NG(H)-algebra over R. Also we can consider AH as an
NG(H)/H-algebra over R.

The following definition of a homomorphism of NG(H)/H-algebra.

Definition 2.2.4. Let G be a finite group. Let H be a subgroup of G. Let A and
B be two G-algebras over R. Let Ψ : A −→ B be a homomorphism of G-algebras.
Then Ψ(AH) ⊆ BH and the restriction ΨH : AH −→ BH is a homomorphism of
NG(H)/H-algebra.

Definition 2.2.5. [24] Let G be a finite group. Let H be a subgroup of G. Let A
be a G-algebra over R. The relative trace map from AH to AG is defined by:

TrGH : AH −→ AG

TrGH(a) =
∑

t∈[G/H]

at, ∀a ∈ AH .

The inclusion map ResGH : AG −→ AH is the restriction map.

Remark 2.2.4.

We write AGH to denote the image of TrGH(AH).

The following lemma tells us when the relative trace map is surjective.

Lemma 2.2.10. Let G be a finite group. Let H be a subgroup of G. Let Q be a
Sylow p-subgroup of H. Let A be a G-algebra over R. Then AH = AHQ .

26



Lemma 2.2.11. Let G be a finite group. Let H be a subgroup of G. Let A be a
G-algebra over R. The relative trace map and the restriction map have the following
properties:

(i) TrHH , ResHH are identity maps for all H ≤ G.

(ii) (Transitivity) TrGHTrHL = TrGL and ResHL ResGH = ResGL for all L ≤ H ≤ G.

(iii) (Frobenius relations) TrHL (ab) = aTrHL (b) and TrHL (ba) = TrHL (b)a for all L ≤
H ≤ G,a ∈ AH and all b ∈ AL. In particular if I is an ideal of AL then TrHL (I)
is an ideal of AH .

(iv) For a ∈ AH and b ∈ AL we have TrGH(a)TrGL(b) =
∑

t∈[H\G/L] TrGHt∩L(atb).

(v) If L ≤ H, a ∈ AL and g ∈ G we have (TrHL (a))g = TrH
g

Lg (ag).

(vi) (Mackey decomposition formal) If N,L ≤ H and a ∈ AN then

ResHL TrHN(a) =
∑

h∈[L\H/N ]

TrLL⋂
NhResN

h

L
⋂
Nh(ah).

(vii) For all L ≤ H ≤ G and all a ∈ AH we have TrHL (a) = [H : L] .a

(viii) For L ≤ H ≤ G and a ∈ AH we have TrHL ResHL (a) = [H : L] .a

Lemma 2.2.12. Let G be a finite group. Let H be a subgroup of G. Let A be
a G-algebra over R. The relative trace map TrGH : AH −→ AG has the following
properties:

(i) The relative trace map is independent of the choice of coset representatives.

(ii) TrGH(a) ∈ AG.

(iii) Im(TrGH)E AG.

(iv) The relative trace map is a linear map.

(v) The relative trace map is not an algebra homomorphism in general.

Proof. (i) Suppose that

T = {t1, t2, . . . , tn} and M = {m1,m2, . . . ,mn}

are two sets of cosets representatives of H in G. Then for any ti ∈ T there is mj ∈M
such that ti ∈ Hmj. So ti = hmj where h ∈ H. Thus for a ∈ AH we have
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TrGH(a) =
∑

ti∈T a
ti

=
∑

hmj∈T a
hmj

=
∑

hmj∈T (ah)mj

=
∑

mj∈M amj .

Hence TrGH is independent of sets of cosets representatives of H in G.

(ii) Suppose that [G : H] = n and T = {1, t2, t3, ...., tn.} is a set of cosets rep-
resentatives of H in G. For g ∈ G we have Tg = {tg : t ∈ T} is a set of cosets
representatives of H in G. For a ∈ AH we have

(TrGH(a))g = (
∑

t∈T a
t )g

=
∑

tg∈Tg a
tg

= TrGH(a).

Hence TrGH(a) ∈ AG.

(iii) Im(TrGH) = {a ∈ AG : ∃b ∈ AH such that: TrGH(b) = a} ⊆ AG. Since
that 0A ∈ AG and 0A = 0tA =

∑
t∈T 0tA = TrGH(0A) where T is a set of cosets

representatives of H in G. Hence 0A ∈ Im(TrGH) thus ∅ 6= Im(TrGH) ⊆ AG. Now
suppose that a1, a2 ∈ Im(TrGH) thus there are b1, b2 ∈ AH such that TrGH(b1) = a1

and TrGH(b2) = a2. Then

a1 − a2 = TrGH(b1)− TrGH(b2)
=

∑
t∈T b

t
1 −

∑
t∈T b

t
2

=
∑

t∈T (bt1 − bt2)
=

∑
t∈T (b1 − b2)t

= TrGH(b1 − b2).

Hence a1 − a2 ∈ Im(TrGH). Also suppose that x ∈ AG and a ∈ Im(TrGH) thus
there is b ∈ AH such that TrGH(b) = a. Then

x.a = x.TrGH(b)
= x.

∑
t∈T b

t

=
∑

t∈T x.b
t

=
∑

t∈T (x.b)t

= TrGH(xb).

So x.a ∈ Im(TrGH). Similar for a.x we have a.x ∈ Im(TrGH). Hence Im(TrGH)EAG.

(iv) Suppose that a1, a2 ∈ AH . Thus

TrGH(a1 + a2) =
∑

t∈T (a1 + a2)t

=
∑

t∈T (at1 + at2)
=

∑
t∈T a

t
1 +

∑
t∈T a

t
2

= TrGH(a1) + TrGH(a2).

Also suppose that r ∈ R and a ∈ AH . Thus
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TrGH(ra) =
∑

t∈T (ra)t

=
∑

t∈T ra
t

= r
∑

t∈T a
t

= rTrGH(a).

Hence relative trace map is a linear map.

(v) If we take a ∈ AH and b ∈ AG then

TrGH(ab) =
∑
t∈T

(ab)t

where T is a set of cosets representatives of H in G. From (Frobenius relations) we
have

TrGH(ab) =
∑

t∈T (ab)t

=
∑

t∈T a
tb

= (
∑

t∈T a
t)b

= TrGH(a)b 6= TrGH(a)TrGH(b).

Hence relative trace map is not algebra homomorphism in general.

2.3 Brauer indecomposable modules

In this section, we introduce the concepts and properties of the Brauer quotient
and Brauer homomorphism in two algebra structures, modules structure and G-
algebras structure. We introduce concept of Brauer indecomposable module. We
followed references [1], [3], [5], [11], [14], [22], [23] and [24].

Now we begin by modules structure.

Definition 2.3.1. [5] Let G be a finite group. Let H be a subgroup of G. Let M
be an RG-module. A Brauer quotient (Brauer construction) of M with respect to
H is defined as the following:

M(H) = MH/IH(M) where IH(M) =
∑
L<H

MH
L .

Lemma 2.3.1. Let G be a finite group. Let H be a subgroup of G. Let M be an
RG-module. Then M(H) is an FNG(H)/H-module.

Proof. From Definition 2.2.1 clearly we have H acts trivial on MH . Also since that
for g ∈ G we have (MH)g = MHg

. If g ∈ NG(H) then H = Hg. Thus (MH)g = MH .
Hence MH is an FNG(H)/H-module. Also since that
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(IH(M))g = (
∑

L<HM
H
L )g

= (
∑

L<H Tr
H
L (ML))g

=
∑

L<H Tr
Hg

Lg (ML)g

=
∑

L<H Tr
Hg

Lg (MLg
)

=
∑

L<HM
Hg

Lg

= IHg(M).

If g ∈ NG(H), then (IH(M))g = IH(M). Hence IH(M) is an FNG(H)/H-
submodule of MH . Then M(H) = MH/IH(M) is an FNG(H)/H-module.

Lemma 2.3.2. Let G be a finite group. Let H be a subgroup of G. Let M be an
RG-module. If M(H) 6= 0 then H is a p-group.

Definition 2.3.2. [5] Let G be a finite group. Let H be a subgroup of G. Let M
be an RG-module. A Brauer homomorphism BrMH is the canonical surjective map
which is defined as the following:

BrMH : MH �M(H).

Remark 2.3.1.

A kernel of Brauer homomorphism is

Ker(BrMH ) = {m ∈MH : BrMH (m) = 0M(H)}.

From the first isomorphism theorem and since that BrMH is the canonical surjective
map we have Ker(BrMH ) = IH(M).

The following lemmas give us some properties of Brauer homomorphism.

Lemma 2.3.3. Let G be a finite group. Let H and L be two subgroups of G. Let M
be an RG-module. If BrMH (TrGL(m)) 6= 0 for some m ∈ML then H is a G-conjugate
to a subgroup of L.

Lemma 2.3.4. Let p be a fixed prime number. Let G be a finite group. Let P be
a p-subgroup of G. Let M be an RG-module. Then

Tr
NG(P )/P
1G

◦ BrMP = BrMP ◦ TrGP .

In particular
BrMP (MG

P ) = (M(P ))
NG(P )/P
1G

.

Lemma 2.3.5. Let p be a fixed prime number. Let G be a finite group. Let P be
a p-subgroup of G. Let M1, M2 and M3 be RG-modules. Let f : M1 ×M2 −→ M3

be a bi-linear map stable under G-action. Then f induces a bi-linear map fP :
M1(P )×M2(P ) −→M3(P ) stable under NG(P )/P -action such that

fP (BrM1
P (m1),BrM2

P (m2)) = BrM3
P (f(m1,m2))
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for all m1 ∈M1 and m2 ∈M2.

The following definition of important module in our research.

Definition 2.3.3. [11] Let G be a finite group. Let H be a subgroup of G. Let M
be an FG-module. Then we said that M is a Brauer indecomposable FG-module
if M(H) is indecomposable or zero as an FHCG(H)-module.

Now we will begin by G-algebra structure.

Definition 2.3.4. [24] Let G be a finite group. Let H be a subgroup of G. Let A
be a G-algebra over R. A Brauer quotient of A with respect to H is defined as the
following:

A(H) = AH/IH(A) where IH(A) =
∑
L<H

AHL .

Lemma 2.3.6. Let G be a finite group. Let H be a subgroup of G. Let A be a
G-algebra over R. Then A(H) is an NG(H)/H-algebra over F .

Proof. From Definition 2.2.3 clearly we have H acts trivial on AH . Also since that
for g ∈ G we have (AH)g = AH

g
. If g ∈ NG(H) then H = Hg. Thus (AH)g = AH .

Hence AH is an NG(H)/H-algebra over F . Also since that

(IH(A))g = (
∑

L<H A
H
L )g

= (
∑

L<H Tr
H
L (AL))g

=
∑

L<H Tr
Hg

Lg (AL)g

=
∑

L<H Tr
Hg

Lg (AL
g
)

=
∑

L<H A
Hg

Lg

= IHg(A).

If g ∈ NG(H), then (IH(A))g = IH(A). Hence IH(A) is an NG(H)/H-ideal in
AH . Then A(H) = AH/IH(A) is an NG(H)/H-algebra over F.

Lemma 2.3.7. Let p be a fixed prime number. Let G be a finite group. Let H be
a subgroup of G. Let A be a G-algebra over R. If A(H) 6= 0 then H is a p-group.

Remark 2.3.2.

Consider G is a finite group, H a subgroup of G and A is a G-algebra over K.
Then A(H) 6= 0 if H = 1.

Definition 2.3.5. [24] Let G be a finite group. Let H be a subgroup of G. Let
A be a G-algebra over R. A Brauer homomorphism BrAH is the canonical surjective
map which is defined as the following:

BrAH : AH � A(H).

Remark 2.3.3.
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A kernel of Brauer homomorphism is

Ker(BrAH) = {a ∈ AH : BrAH(a) = 0A(H)}.

From the first isomorphism theorem and since that BrAH is the canonical surjective
map we have Ker(BrAH) = IH(A).

The following definition of a homomorphism of Brauer quotient for NG(H)/H-
algebra.

Definition 2.3.6. Let G be a finite group. Let H be a subgroup of G. Let A and
B be two G-algebras over R. A homomorphism of NG(H)/H-algebra over F is

Ψ(H) : A(H) −→ B(H)

Ψ(BrAH(a)) −→ BrBH(Ψ(a)), ∀a ∈ AH

where Ψ : A −→ B is a homomorphism of G-algebras. In fact Ψ is an induce of
Ψ(H).

The following lemma gives us the relationship between Brauer homomorphism
and relative trace map.

Lemma 2.3.8. Let G be a finite group. Let H and L be two subgroups of G where
L ≤ H. Let A be a G-algebra over R . Then for a ∈ AL we have

BrAL(TrHL (a)) = Tr
NH(L)/L
1G

(BrAL(a)).

2.4 Relative projective modules

In this section, we have just generalized the notion of free modules. We shall
now do the same for projective modules. This will allow us to establish the first
connection between FG-modules and modules for p-subgroups. We will describe the
theory of vertices and sources of indecomposable modules. We followed references
[5], [7], [16], [23] and [24].

The following definition of an H-projective module.

Definition 2.4.1. [16] Let G be a finite group. Let H be a subgroup of G. Let M
be an RG-module. If there is an RH-module N such that:

M | IndGH(N).

This means L⊕M ∼= IndGH(N) where L is an RG-module. Then M is said to be an
H-projective RG-module or projective RG-module relative to H.

Remark 2.4.1.
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• If P is a minimum p-subgroup of a finite group G and M is a P -projective
RG-module

M | IndGP (N)

where N is an RP -module. Then we called P is a vertex of M denoted by
vx(M) = P. Also we called N a source of M which is denoted by s(M) = N.

• A source of M in above is satisfies the following three conditions:

(i)M | IndGP (N) (ii)N | ResGP (M) (iii) vx(N) = P.

• If a source of M in above is equal to trivial RP -submodule R. Then we called
N is a trivial source of M and we said M has a trivial source module.

• If M is an RG-module with vertex P and source RP -module N , then for any
g ∈ G and from Lemma 2.1.4 we have g−1Pg is a vertex of M and N ⊗ g is a
source of M .

The following lemma gives us property of vertex.

Lemma 2.4.1. Let G be a finite group. Let H be a subgroup of G. Let M be an
RG-module. Let N be an RH-module. Then if M is an H-projective RG-module,
then vx(M) ≤G vx(N).

Proof. Suppose that vx(M) = P , thus M | IndGP (L) where L is an RP -module.
Also, suppose that vx(N) = Q, thus N | IndHQ (T ) where T is an RQ-module. Then

from properties of induced module and since that M | IndGH(N) we have

M | IndGH(N) | IndGH(IndHQ (T )) ∼= IndGQ(T ).

Hence M | IndGQ(T ). Thus M is an Q-projective RG-module. Hence vx(M) = P ≤G
Q = vx(N).

The following example is about of relative projective module.

Example 2.4.1.

Consider F = Z2 is a field which has characteristic 2 and G = V4 the Kelin
4-group which has order 4. The group algebra M = Z2V4 is V4-projective module

Z2V4
∼= IndV4

V4
(Z2V4).

The following lemmas give us properties of relative projective module.

Lemma 2.4.2. Let G be a finite group. Let H be a subgroup of G. Let M be
an RG-module. Then M is an H-projective RG-module if and only if there exists
RH-module W which satisfies the following three conditions:

(i)M | IndGH(W ) (ii)W | ResGH(M) (iii) vx(M) =G vx(W ).
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Lemma 2.4.3. LetG be a finite group. LetH be a subgroup ofG. LetM be an RG-
module. Then M is an H-projective RG-module if and only if M | IndGH(ResGH(M)).

Proof. ( ⇒ ) Suppose that M is an H-projective RG-module, then from Definition
2.4.1 we have

M | IndGH(W )

where W is an RH-module. If we take W = ResGH(M), then M | IndGH(ResGH(M)).
( ⇐ ) Suppose that M | IndGH(ResGH(M)). If we take W = ResGH(M) is an RH-
module, then M | IndGH(W ). Hence M is an H-projective RG-module.

Lemma 2.4.4. Let G be a finite group. Let H and L be two subgroups of G
where H ≤ L. Let M be an H-projective RG-module. Then M is an L-projective
RG-module.

Proof. Since M is an H-projective RG-module, then from Definition 2.4.1 we have

M | IndGH(W )

where W is an RH-module. Since H ≤ L, then from properties of induced module
we have

IndGH(W ) ∼= IndGL(IndLH(W )) ∼= IndGL(N)

where N = IndLH(W ). Thus M | IndGL(N). Hence M is an L-projective RG-module.

Lemma 2.4.5. Let G be a finite group. Let H be a subgroup of G. Let M be
an H-projective RG-module. Then for some g ∈ G we have M is Hg-projective
RG-module.

Proof. Since M is an H-projective RG-module, then from Definition 2.4.1 we have

M | IndGH(W )

where W is an RH-module. From properties of induced module and for some g ∈ G
we have

IndGH(W ) ∼= IndGHg(W g).

Thus M | IndGHg(W g). Hence M is an Hg-projective RG-module.

Lemma 2.4.6. Let G be a finite group. Let H be a subgroup of G. Let M ∼=
W1⊕W2 be an H-projective RG-module where W1 and W2 be two RG-submodules
of M . Then W1 and W2 are H-projective RG-modules.

Proof. Since M is an H-projective RG-module, then from Definition 2.4.1 we have

M | IndGH(W )

where W is an RH-module. Also, since M ∼= W1 ⊕W2, then

W1 ⊕W2 | IndGH(W ).

Hence W1 and W2 are H-projective RG-modules.
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Lemma 2.4.7. Let G be a finite group. Let H be a subgroup of G. Let M be an H-
projective RG-module. Let N be an RG-module. Then M ⊗RN is an H-projective
RG-module.

Proof. Since M is an H-projective RG-module, then from Definition 2.4.1 we have

M | IndGH(W )

where W is an RH-module. Thus

M ⊗R N | IndGH(W )⊗R N.

From properties of induced module we have

IndGH(W )⊗R N ∼= IndGH(W ⊗R ResGH(N)).

Then
M ⊗R N | IndGH(W ⊗R ResGH(N)).

Hence M ⊗R N is an H-projective RG-module.

Lemma 2.4.8. Let G be a finite group. Let H be a subgroup of G. Let M be
an H-projective RG-module. Let N be an RG-module. Then HomR(M,N) is an
H-projective RG-module.

Proof. Since M is an H-projective RG-module, then from Definition 2.4.1 we have

M | IndGH(W )

where W is an RH-module. Thus

HomR(M,N) | HomR(IndGH(W ), N).

From properties of induced module we have

HomR(IndGH(W ), N) ∼= IndGH(HomR(W,ResGH(N)).

Thus
HomR(M,N) | IndGH(HomR(W,ResGH(N)).

Hence HomR(M,N) is an H-projective RG-module.

Lemma 2.4.9. Let G be a finite group. Let H be a subgroup of G. Let M be
an H-projective RG-module. Let N be an RG-module. Then HomR(N,M) is an
H-projective RG-module.

Proof. Since M is an H-projective RG-module, then from Definition 2.4.1 we have

M | IndGH(W )

where W is an RH-module. Thus

HomR(N,M) | HomR(N, IndGH(W )).
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From properties of induced module we have

HomR(N, IndGH(W )) ∼= IndGH(HomR(ResGH(N),W ).

Thus
HomR(N,M) | IndGH(HomR(ResGH(N),W ).

Hence HomR(N,M) is an H-projective RG-module.

Lemma 2.4.10. (Higman’s criterion). Let G be a finite group. Let H be a subgroup
of G. Let M be an RG-module. Then M is an H-projective RG-module if and only
if 1M lies in the image of TrGH : EndRH(M) −→ EndRG(M).

Lemma 2.4.11. Let p be a fixed prime number. Let G be a finite group. Let H be a
subgroup of G where [G : H] is invertible. Then every RG-module M is H-projective
RG-module. In particular, M is P -projective RG-module if P ∈ Sylp(G).

Proof. Since [G : H] is invertible of R, then for any RG-module M we have

1M = [G : H]−1 TrGH(1M).

Hence from Lemma 2.4.10 we have M is H-projective RG-module.

Lemma 2.4.12. Let p be a fixed prime number. Let G be a finite group. Let H
be a subgroup of G and Q be a Sylow p-subgroup of H. If M is an H-projective
RG-module, then M is a Q-projective RG-module.

Proof. Since M is an H-projective RG-module, thus there is an RH-module N such
that M | IndGH(N). If we take N = IndHQ (W ) where W is an RQ-module, then

M | IndGH(IndHQ (W )).

From properties of induced module we have

IndGH(IndHQ (W )) ∼= IndGQ(W ).

Thus
M | IndGQ(W ).

Hence M is a Q-projective RG-module.

Lemma 2.4.13. Let G be a finite group. Let H be a subgroup of G. Let M be an
RG-module. Then M is projective RG-module if and only if M is {1}-projective
RG-module.

Proof. ( ⇒ ) Suppose that M is projective RG-module, then M | RG. Since RG ∼=
IndG1G(R), then M | IndG1G(R). Hence M is {1}-projective RG-module.
( ⇐ ) Suppose that M is {1}-projective RG-module. Thus from Lemma 2.4.3 we
have M | IndG1G(ResG1G(M)). Thus if M is free as an R-module, then M | IndG1G(R) ∼=
RG. Hence M is projective RG-module.
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Lemma 2.4.14. Let p be a fixed prime number. Let G be a finite group. Let H be
a subgroup of G and let P be a p-subgroup of G. Let M be an H-projective RG-
module. If M(P ) = 0 then P is not G-conjugate to a subgroup of H. In particular
if W is any RH-module and (IndGH(W ))(P ) = 0 then P is not G-conjugate to a
subgroup of H.

2.5 p-permutation modules

The aim of this section is to introduce concept of a p-permutation module and
we give us the main properties about it. We followed references [3], [5] and [24].

Definition 2.5.1. [24] Let p be a fixed prime number. Let G be a finite group.
Let P be a p-subgroup of G. Then the p-permutation OG-module M is a free
OG-module where the basis of it stabilized by P .

Remark 2.5.1.

• If P is a p-subgroup of G and stabilizer the basis of OG-module M then P g

is also stabilizer the basis of M where g ∈ G.

The following examples are about of p-permutation modules.

Example 2.5.1.

Let F = Z2 be a field which has characteristic p = 2. Let G = S3 be the
symmetric group of three letters which has order 6. The group algebra A = Z2S3.
If H = A3 the alternating subgroup of S3 which has order 3. The cosets of A3 in
S3 are S3/A3 = {A3, (12) ◦ A3}. The stabilized of S3/A3 is 〈(1)〉 . The permutation
module given by this cosets is M =

⊕2
i=1 Z2giH = Z2A3 ⊕ Z2(12) ◦ A3 which is a

1-permutation Z2S3-module.

Example 2.5.2.

Let F = Z3 be a field which has characteristic p = 3. Let G = V4 be the
Klein 4-group which has order 4. The group algebra A = Z3V4. If H = 〈a〉 the
subgroup of V4 which has order 2. The cosets of 〈a〉 in V4 are V4/ 〈a〉 = {〈a〉 , b 〈a〉}.
The stabilized of V4/ 〈a〉 is 〈e〉. The permutation module given by this cosets is
M =

⊕2
i=1 Z3giH = Z3 〈a〉 ⊕ Z3b 〈a〉 which is a 1-permutation Z3V4-module.

Example 2.5.3.

Consider F = Z2 is a field which has characteristic 2. Let G = D8 be the dihedral
group of degree 4. The group algebra A = Z2D8. If H = 〈a〉 is a subgroup of D8

which has order 4. The cosets of 〈a〉 in D8 are D8/ 〈a〉 = {〈a〉 , b 〈a〉}. The stabilized
of D8/ 〈a〉 is 〈a2〉 . The permutation module given by this cosets M =

⊕2
i=1 Z2giH =

Z2 〈a〉 ⊕ Z2b 〈a〉 is a 2-permutation Z2D8-module.

Now we will introduced lemmas that give us the most important properties of
the p-permutation module.

37



Lemma 2.5.1. Let p be a fixed prime number. Let G be a finite group. Let H be
a subgroup of G and P be a p-subgroup of G. If W is a p-permutation OH-module.
Then IndGH(W ) is a p-permutation OG-module.

Proof. Since W is a p-permutation OH-module then it has a basis stabilized by
P. Suppose that X is a basis of W and stabilized by P . Then from properties of
induced module we have IndGH(X) is a basis for IndGH(W ) and stabilized by P . Hence
IndGH(W ) is a p-permutation OG-module.

Lemma 2.5.2. Let p be a fixed prime number. Let G be a finite group. Let H be
a subgroup of G and P be a p-subgroup of G. If M is a p-permutation OG-module.
Then ResGH(M) is a p-permutation OH-module.

Proof. Since M is a p-permutation OG -module then it has a basis stabilized by
P . Consider X is a basis of M and stabilized by P . Then ResGH(X) is a basis for
ResGH(M) and stabilized by P . Hence ResGH(M) is a p-permutation OH-module.

Lemma 2.5.3. Let p be a fixed prime number. Let G be a finite group. Let P
be a p-subgroup of G. Let M1 and M2 be two p-permutation OG -modules. Then
M1 ⊕M2 is a p -permutation OG-module.

Proof. Since M1 is a p-permutation OG-module then it has a basis stabilized by P .
Consider X1 is a basis of M1 and stabilized by P . Also since M2 is a p-permutation
OG-module then it has a basis stabilized by P . Consider X2 is a basis of M2

stabilized by P . Then X1 ∪X2 is a basis for M1 ⊕M2 and stabilized by P . Hence
M1 ⊕M2 is a p-permutation OG -module.

Lemma 2.5.4. Let p be a fixed prime number. Let G be a finite group. Let P be a p-
subgroup of G. Let M be an OG-module such that M ∼= M1⊕M2⊕M3⊕ ......⊕Mr

where Mi be indecomposable OG-submodules of M. Then M is a p-permutation
OG-module if and only if each Mi are p-permutation OG-modules.

Proof. (⇐) Suppose that Mi are p-permutation OG-modules. Since M ∼= M1⊕M2⊕
M3⊕ ......⊕Mr then from Lemma 2.5.3 we have M is a p-permutation OG-module.
(⇒) Suppose that M is a p- permutation OG-module then it has a basis stabilized
by P . Consider X = X1 ∪ X2 ∪ · · · ∪ Xr is a basis of M stabilized by P where
X1 is a basis of M1 stabilized by P , X2 is a basis of M2 stabilized by P , · · · and
Xr is a basis of Mr stabilized by P. Hence M1, M2, · · · and Mr are p-permutation
OG-modules.

Lemma 2.5.5. Let p be a fixed prime number. Let G be a finite group. Let P
be a p-subgroup of G. Let M1 and M2 be two p-permutation OG-modules. Then
M1 ⊗M2 is a p-permutation OG-module.

Proof. Since M1 is a p-permutation OG-module then it has a basis stabilized by P .
Consider X1 is a basis of M1 stabilized by P . Also since M2 is a p-permutation OG-
module then it has a basis stabilized by P . Consider X2 is a basis of M2 stabilized
by P . Then we have X1⊗X2 is a basis of M1⊗M2 stabilized by P . Hence M1⊗M2

is a p -permutation OG-module.
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An article Broué [5] gives us an equivalent condition to definition of p-permutation
module. We show it in the following theorem.

Theorem 2.5.1. Let p be a fixed prime number. Let G be a finite group. Let H be a
subgroup of G and P be a p-subgroup of G. Let M be an indecomposable OG-module.
Then M is a p-permutation OG-module if and only if one of the following hold:

(i) M isomorphic to a summand of IndGH(O).

(ii) M has trivial source.

Proof. ( ⇒ ) Suppose that M is a p-permutation OG-module and P -projective
OG-module. Thus M is a summand of IndGP (ResGP (M)). But from definition of
ResGP (M), there exists a subgroup Q of P such that ResGP (M) ∼= IndPQ(O). Thus

M is a summand of IndGP (IndPQ(O)). From properties of induced module we have

IndGP (IndPQ(O)) ∼= IndGQ(O). Hence M is a summand of IndGQ(O). If P is a vertex of

M then Q = P . Thus M ∼= IndGP (O). Hence M has a trivial source.
(⇐ ) Suppose that M isomorphic to a summand of IndGH(O). Since IndGH(O) is a p-
permutationOG-module and from Lemma 2.5.4 we have every summand of IndGH(O)
is p-permutation OG-module. Since M isomorphic to a summand of IndGH(O) then
M is a p-permutation OG-module.

Lemma 2.5.6. Let p be a fixed prime number. Let G be a finite group. Let P be a
p-subgroup of G. Let M be a p-permutation OG-module. Then M(P ) the Brauer
quotient of M with respect to P is a p-permutation FNG(P )/P -module.

Definition 2.5.2. Let p be a fixed prime number. Let G be a finite group. Let P
be a p-subgroup of G. Let M be a p-permutation OG-module. Then M(P ) has for
F -basis the set BrMP (CX(P )) Where X is a basis of M stabilized by P.

The following lemma describes vertex of p-permutation module.

Lemma 2.5.7. Let p be a fixed prime number. Let G be a finite group. Let M
be an indecomposable p-permutation OG-module. The vertex of M is a maximal
p-subgroup P of G such that M(P ) 6= 0.

The following lemma gives us equivalent condition for vertex of p-permutation
module.

Lemma 2.5.8. Let p be a fixed prime number. Let G be a finite group. Let P be
a p-subgroup of G. Let M be a p-permutation OG-module. Then M has a vertex
P if and only if M(P ) is nontrivial and a projective FNG(P )/P -module.

The following definition of p-permutation G-algebra.

Definition 2.5.3. Let G be a finite group. Let A be a G-algebra over F. Then
A is a p-permutation G-algebra if the basis of A stabilized by P where P is any
p-subgroup of G.

Example 2.5.4. The group algebra FG is a p-permutation G-algebra. Since it
basis are elements of G and stabilized by any subgroup P of G. Similarly for group
algebra FN where N is a normal subgroup of G.
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Lemma 2.5.9. Let p be a fixed prime number. Let G be a finite group. Let P be
a p-subgroup of G. Let A be a G-algebra over F. Then A(P ) is a p-permutation
NG(P )/P -algebra over F such that A(P ) 6= 0.

The following definition of a Brauer homomorphism of p-permutation G-algebra.

Definition 2.5.4. Let p be a fixed prime number. Let G be a finite group. Let
P be a p-subgroup of G. Let A be a p-permutation G-algebra over F . A Brauer
homomorphism define as the following

BrAP : AP −→ A(P ).

Remark 2.5.2.

Let p be a fixed prime number. Let G be a finite group. Let P and Q be two
p-subgroups of G where Q ≤ P . Let A be a p-permutation G-algebra over F . Then
Ker(BrAQ) ∩ AP ⊆ Ker(BrAP ).

Definition 2.5.5. Let p be a fixed prime number. Let G be a finite group. Let P
and Q be two p-subgroups of G where Q ≤ P . Let A be a p-permutation G-algebra
over F. A homomorphism define as the following

BrAP,Q : BrAQ(AP ) −→ A(P )

such that
BrAP,Q(BrAQ(a)) = BrAP (a), ∀a ∈ AP .

is a surjective map.

Lemma 2.5.10. Let p be a fixed prime number. Let G be a finite group. Let P
and Q be two p-subgroups of G where QE P . Let A be a p-permutation G-algebra
over F . Then

A(Q)P = BrAQ(AP ) and Ker(BrAP,Q) = Ker(Br
A(Q)
P ).

2.6 Scott modules

In this section, we introduce concept of the important type of indecomposable
p-permutation FG-module which called Scott module. We introduce concept of
Scott coefficient. Then we give us important properties about them. We followed
references [5], [11] and [16].

The following definition of important module in our research.

Definition 2.6.1. [11] Let G be a finite group. Let H be a subgroup of G. Let
M be an FG-module. Then M is called a Scott FG-module with respect to H and
is denoted by Sc(G,H) if M is the unique indecomposable summand of IndGH(F )
which contains F .
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Remark 2.6.1.

• If P is a p-subgroup of G, then we called Sc(G,P ) is a Scott module with
vertex P.

• A Scott FG-module Sc(G,H) is an H-projective FG-module.

• From Definition 2.6.1. and from Theorem 2.5.1. we have Sc(G,P ) is a p-
permutation FG-module.

• There is another definition of a Scott module in [?] , Let p be a fixed prime
number, Let G be a finite group. Let P be a p-subgroup of G. There ex-
ists an indecomposable p-permutation FG-module with vertex P denoted by
SP (G,F ), uniquely determined up to isomorphism by one of the following
properties:

(i) F is isomorphic to a submodule of SP (G,F ).

(ii) F is isomorphic to a quotient of SP (G,F ).

The module SP (G,F ) is called a Scott module of G associated to P .

The following theorem gives us some conditions of Scott module.

Theorem 2.6.1. Let p be a fixed prime number. Let G be a finite group. Let P be
a p-subgroup of G. The Scott module M = Sc(G,P ) satisfies one of the following :

(i) HomOG(M,O) 6= 0,

(ii) HomOG(O,M) 6= 0,

and we have HomOG(O,M) ' HomOG(M,O) ' O.

The following lemma gives us condition of isomorphic between Scott modules.

Lemma 2.6.1. Let p be a fixed prime number. Let G be a finite group. Let Hi be
subgroup of G, with i = 1, 2. Let Pi for i = 1, 2 be Sylow p-subgroup of Hi. Then

Sc(G,H1) ' Sc(G,H2)⇔ P1 =G P2.

In particular, Sc(G,Hi) ' Sc(G,Pi).

The following definition of a Scott coefficient.

Definition 2.6.2. Let p be a fixed prime number. Let G be a finite group. Let P
be a p-subgroup of G. Let M be a p-permutation OG-module. A Scott coefficient
of M associated with P is the integer number of factors isomorphic to Sc(G,P ) in
a decomposition of M/pM into direct sum of indecomposable modules. We denote
it by sP (M) and regarded it by the following form

sP (M) = dimF (BrMP (MG
P )).
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Remark 2.6.2.

From Lemma 2.3.4 we have

sP (M) = dimF ((M(P ))
NG(P )/P
1G

).

The following lemmas gives us properties of the Scott coefficient.

Lemma 2.6.2. Let p be a fixed prime number. Let G be a finite group. Let P
be a p-subgroup of G. Let M and L be two p-permutation OG-modules. Then
sP (M ⊕ L) = sP (M) + sP (L).

Proof.

sP (M ⊕ L) = dimF (((M ⊕ L)(P ))
NG(P )/P
1G

)

= dimF (((M)(P )⊕ L(P ))
NG(P )/P
1G

)

= dimF ((M(P ))
NG(P )/P
1G

⊕ (L(P ))
NG(P )/P
1G

)

= dimF ((M(P ))
NG(P )/P
1G

) + dimF ((L(P ))
NG(P )/P
1G

)
= sP (M) + sP (L).

Lemma 2.6.3. Let p be a fixed prime number. Let G be a finite group. Let P be
a p-subgroup of G. Let M be a p-permutation OG-module. Then

sP (M) = sP (HomO(M,O)).

Proof. Since that M is a p-permutation OG-module then it is has a basis stabi-
lized by P . Consider X is an O-basis of M stabilized by P . Then also since
that HomO(M,O) is a p-permutation OG-module then it is has a basis stabi-
lized by P . Consider Y is an O-basis of HomO(M,O) stabilized by P where
the operations of P on X and Y are isomorphic. From Lemma 2.3.5 we have
M × HomO(M,O) −→ O induces to M(P ) × HomO(M(P ),O) −→ F . Thus it
induces an FNG(P )/P -homomorphism HomO(M,O)(P ) −→ HomO(M(P ),O) and

sends the basis Br
HomO(M,O)
P (CY (P )) on to the basis of BrMP (CX(P )). Hence it is

an isomorphism. Then sP (M) = sP (HomO(M,O)).

Lemma 2.6.4. Let p be a fixed prime number. Let G be a finite group. Let H be a
subgroup of G and let P be a p-subgroup of G. If P is not G-conjugate to a Sylow
p-subgroup of H then sP (IndGH(O)) = 0, in which case sP (IndGH(O)) = 1.

Proof. Suppose that P is not G-conjugate to a Sylow p-subgroup of H then from
Lemma 2.4.14 we have (IndGH(O))(P ) = 0. Thus

sP (IndGH(O)) = dimF (((IndGH(O))(P ))
NG(P )/P
1G

)
= dimF (0) = 0.

The following lemma describes the Scott coefficient of Scott module.
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Lemma 2.6.5. Let p be a fixed prime number. Let G be a finite group. Let P
be a p-subgroup of G. Then there exists a unique indecomposable p-permutation
OG-module Sc(G,P ) such that sP (Sc(G,P )) 6= 0. We have sP (Sc(G,P )) = 1 and
Sc(G,P ) is isomorphic to its dual.
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Chapter 3

Fusion Systems and Saturated
Fusion Systems

In Section 1.3, we introduce Burnside theorem and we know it is starting point
of the concepts of fusion and control fusion. In this chapter, we introduce this
concepts.

In first section, we shall introduce concept of fused of elements in G and fused of
subgroups of G. Also, We introduce concept of control fused. Then we give us some
examples about them. After that, we introduce concept of fusion system and types
of subgroups in fusion system. We give us relationship between some of these types
of subgroups. We give us some examples of types of subgroups in fusion system.

In second section, we introduce when fusion system become to saturated. We
introduce theorem gives us equivalent condition to definition of saturated fusion
system. We give us relationship between types of subgroups in saturated fusion
system. We give us a relationship between saturated fusion system and Brauer
indecomposable module. We followed references [3], [9], [11], [12], [13], [18], [19], [22]
and [24].

Throughout this chapter, G denotes a finite group and p a prime number dividing
order G. Let (K,O, F ) be a p-modular system. Let R be O or F.

3.1 Fusion systems

Definition 3.1.1. Let G be a finite group. Let H be a subgroup of G. Let g1 and
g2 be two elements in H. If g1 ∼G g2 but g1 �H g2, then g1 and g2 are fused in
H by G. Similarly, for subgroups of H. Let H1 and H2 be two subgroups of H. If
H1 ∼G H2 but H1 �H H2, then H1 and H2 are fused in H by G. If g1 ∼G g2 and
g1 ∼H g2, then we called H a control fused in G.

The following examples are about fused of elements and fused of subgroups and
control fused of subgroups.
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Example 3.1.1.

Consider G = S3 = {(1), (12), (13), (23), (123), (132)} is the symmetric group of
three letters which has order 6. In case p = 2 the set of all elements in S3 has order
power of 2 is X = {(12), (13), (23)}. S3 acts on X by conjugation. In this case S3

has not fused elements and has not control fused of subgroups. In case p = 3 the
set of all elements in S3 has order power of 3 is Y = {(123), (132)}. S3 acts on Y
by conjugation. If we take the alternating subgroup H = A3 = {(1), (123), (132)}
which has order 3. Then we have a fused elements in A3 by S3 are (123) and (132).
Also we have fused subgroups in A3 by S3 are 〈(123)〉 and 〈(132)〉 . But in this case
S3 has not control fused of subgroup.

Example 3.1.2.

ConsiderG = S4 = {(1), (12), (13), (14), (23), (24), (34), (12)(34), (13)(24), (14)(23)
, (123), (124), (132), (134), (142), (143), (234), (243), (1234), (1243), (1324), (1342), (1423)
, (1432)} is the symmetric group of four letters which has order 24. In case p = 2 the
set of all elements in S4 which has order power of 2 isX = {(12), (13), (14), (23), (24), (34),
(12)(34), (13)(24), (14)(23), (1234), (1243), (1324), (1342), (1423), (1432)}. S4 acts on
X by conjugation. If we take the subgroupH1 = V4 = {(1), (12)(34), (13)(24), (14)(23)}
is the Klein 4-group which has order 4. Then we have fused elements in H1 by S4

are (12)(34), (13)(24) and (14)(23). Also we have fused subgroups in in H1 by S4 are
〈(12)(34)〉 , 〈(13)(24)〉 and 〈(14)(23)〉 . H1 is not control fused in this case. If we take
the subgroup H2 = {(1), (12)(34), (1324), (1423)} which has order 4. Then we have
fused elements in in H2 by S4 are (1324) and (1423). Also we have fused subgroups
in H2 by S4 are 〈(1324)〉 and 〈(1423)〉 . H2 is not control fused in this case. If we take
the subgroup H3 = {(1), (13)(24), (1234), (1432)} which has order 4. Then we have
fused elements in H3 by S4 are (1234) and (1432). Also we have fused subgroups in
H3 by S4 are 〈(1234)〉 and 〈(1432)〉 . H3 is not control fused in this case. If we take
the subgroup H4 = {(1), (14)(23), (1234), (1342)} which has order 4. Then we have
fused elements in H4 by S4 are (1234) and (1342). Also we have fused subgroups in
H4 by S4 are 〈(1234)〉 and 〈(1342)〉 . H4 is not control fused in this case. If we take
the subgroup H5 = {(1), (12), (12)(34), (34)} which has order 4. Then we have fused
elements in H5 by S4 are (12), (12)(34) and (34). Also we have fused subgroups in
H5 by S4 are 〈(12)〉 , 〈(12)(34)〉 and 〈(34)〉 . H5 is not control fused in this case. If we
take the subgroup H6 = {(1), (13), (13)(24), (24)} which has order 4. Then we have
fused elements in H6 by S4 are (13), (13)(24) and (24). Also we have fused subgroups
in H6 by S4 are 〈(13)〉 , 〈(13)(24)〉 and 〈(24)〉 . H6 is not control fused in this case.
If we take the subgroup H7 = {(1), (14), (14)(23), (23)} which has order 4. Then
we have fused elements in H7 by S4 are (14), (14)(23) and (23). Also we have fused
subgroups in H7 by S4 are 〈(14)〉 , 〈(14)(23)〉 and 〈(23)〉 . H7 is not control fused in
this case. If we take the subgroup H8 = {(1), (12), (13), (23), (123), (132)} which
has order 6. It is a control fused in S4 in this case p = 2. If we take the subgroup
H9 = {(1), (14), (24), (12), (124), (142)} which has order 6. It is a control fused in S4

in this case p = 2. If we take a subgroup H10 = {(1), (13), (14), (34), (134), (143)}
which has order 6. It is a control fused in S4 in this case p = 2. If we take the subgroup
H11 = {(1), (23), (24), (34), (234), (243)} which has order 6. It is a control fused in S4

in this case p = 2. If we take the subgroup H12 = {(1), (12), (12)(34), (13)(24), (14)
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(23), (34), (1324), (1423)} which has order 8. Then we have fused elements in H12

by S4 are (12)(34) fused with {(12), (34), (13)(24), (14)(23)}, (12), (34) fused with
{(13)(24), (14)(23)}. Also we have fused subgroups in in H12 by S4 are 〈(12)(34)〉
fused with {〈(12)〉 , 〈(34)〉 , 〈(13)(24)〉 , 〈(14)(23)〉}. 〈(12)〉 , 〈(34)〉 fused with {〈(13)(24)〉 ,
〈(14)(23)〉}. H12 is not control fused in this case. If we take the subgroup

H13 = {(1), (13), (12)(34), (13)(24), (14)(23), (24), (1234), (1432)}

which has order 8. Then we have fused elements in in H13 by S4 are (13)(24) fused
with {(13), (24), (12)(34), (14)(23)}, (13), (24) fused with {(12)(34), (14)(23)}. Also
we have fused subgroups inH13 by S4 are 〈(13)(24)〉 fused with {〈(13)〉 , 〈(24)〉 , 〈(12)(34)〉
, 〈(14)(23)〉}. 〈(13)〉 , 〈(24)〉 fused with {〈(12)(34)〉 , 〈(14)(23)〉}. H13 is not control
fused in this case. If we take the subgroup

H14 = {(1), (23), (12)(34), (13)(24), (14)(23), (14), (1234), (1342)}

which has order 8. Then we have fused elements in H14 by S4 are (14)(23) fused with
{(14), (23), (13)(24), (12)(34)}. (14), (23) fused with {(13)(24), (12)(34)}. Also we
have fused subgroups inH14 by S4 are 〈(14)(23)〉 fused with {〈(14)〉 , 〈(23)〉 , 〈(13)(24)〉
, 〈(12)(34)〉}. 〈(14)〉 , 〈(23)〉 fused with {〈(13)(24)〉 , 〈(12)(34)〉}. H14 is not control
fused in this case. If we take the subgroupH15 = A4 = {(1), (12)(34), (13)(24), (14)(23)
, (123), (132), (124), (142), (134), (143), (234), (243)} is the alternating subgroup of
degree 4 which has order 12. It is a control fused in S4 in this case. In case p = 3 the
set of all elements in S4 which has order power of 3 is Y = {(123), (132), (124), (142), (134)
, (143), (234), (243)}. S4 acts on Y by conjugation. If we take the subgroup N1 =
{(1), (123), (132)} which has order 3. Then we have fused elements in N1 by S4 are
(123) and (132). Also we have fused subgroups N1 by S4 are 〈(123)〉 and 〈(132)〉 .
N1 is not control fused in this case. If we take the subgroup N2 = {(1), (124), (142)}
which has order 3. Then we have fused elements N2 by S4 are (124) and (142). Also
we have fused subgroups N2 by S4 are 〈(124)〉 and 〈(142)〉 . N2 is not control fused in
this case. If we take the subgroup N3 = {(1), (134), (143)} which has order 3. Then
we have fused elements N3 by S4 are (143) and (134). Also we have fused subgroups
N3 by S4 are 〈(143)〉 and 〈(134)〉 . N3 is not control fused in this case. If we take the
subgroup N4 = {(1), (234), (243)} which has order 3. Then we have fused elements
N4 by S4 are (234) and (243). Also we have fused subgroups N4 by S4 are 〈(234)〉
and 〈(243)〉 . N4 is not control fused in this case. If we take the subgroup

N5 = {(1), (12), (13), (23), (123), (132)}

which has order 6. N5 is control fused in this case. If we take the subgroup

N6 = {(1), (14), (24), (12), (124), (142)}

which has order 6. N6 is control fused in this case. If we take the subgroup

N7 = {(1), (13), (14), (34), (134), (143)}
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which has order 6. N7 is control fused in this case. If we take a subgroup

N8 = {(1), (23), (24), (34), (234), (243)}

which has order 6. N8 is control fused in this case. If we take a subgroup N9 = H15 =
A4 = {(1), (12)(34), (13)(24), (14)(23), (123), (132), (124), (142), (134), (143), (234), (243)}
is the alternating subgroup of degree 4 which has order 12. Then we have fused el-
ements N9 by S4 are (123), (142), (134), (243) fused with (132), (124), (143), (234).
Also we have fused subgroups N9 by S4 are 〈(123)〉 , 〈(142)〉 , 〈(134)〉 , 〈(243)〉 fused
with 〈(132)〉 , 〈(124)〉 , 〈(143)〉 , 〈(234)〉 . N9 is not control fused in this case.

The following lemma gives us equivalent conditions for the control fusion sub-
group.

Lemma 3.1.1. Let p be a fixed prime number. Let H be a subgroup of a finite
group G. Then H is a control fusion in G if and only if the following two conditions
are satisfied:

(i) H contains a Sylow p-subgroup of G.

(ii) If g ∈ G and if Q is a p-subgroup of H such that Qg 6 H, then g = ch where
c ∈ CG(Q) and h ∈ H.

Proof. (⇒) Suppose that H is a control fusion in G. Thus p-subgroups of H are
conjugate in H. Since that p-subgroup contained in a Sylow p-subgroup P of G,
then some conjugate of every p-subgroup is contained in H if and only if some con-
jugate of P is contained in H. This means H contains a Sylow p-subgroup of G.
Also since that if Q 6 H where Q is a p-subgroup of H, then Qg 6 H where g ∈ G.
Then there exists q ∈ Q and h ∈ H such that g−1qg = h. Thus g = q−1gh = ch
where c = q−1g ∈ CG(Q). Hence two conditions are satisfied.
(⇐) Suppose that two conditions are satisfied. From (i) since that Sylow p-subgroups
are conjugate and H contains it. Also from (ii) H contains a p-subgroup and con-
jugate of it. Hence H is a control fusion in G.

Definition 3.1.2. Let p be a fixed prime number. Let G be a finite group. Let P be
a p-subgroup of G. A fusion system F = FP (G) of G over P is the category whose
object Ob(F) is the set of all subgroups of P and whose morphism MorF(Q,S)
is the set of all group monomorphisms from Q to S induced by conjugation with
elements in G :

MorF(Q,S) = HomF(Q,S) = HomP (Q,S), ∀Q,S ≤ P.

The following definition deals with conjugation on fusion system.

Definition 3.1.3. Let p be a fixed prime number. Let FP (G) be a fusion system of
G over P where G a finite group and P a p-subgroup of G. The subgroups Q and
S of P are F -conjugate if:

(i) |Q| = |S|.
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(ii) MorF(Q,S) 6= ∅.

i.e., if there exists g ∈ G such that Q = g−1Sg. We denoted QF for the set of all
subgroup of P which are F -conjugate to Q.

Remark 3.1.1.

• From above definition we have all morphisms between F -conjugate subgroup
of P are isomorphisms induced by conjugation

MorF(Q,S) = IsoF(Q,S) = IsoP (Q,S).

• For all Q ≤ P we have ϕ ∈ MorF(Q,Q) = AutF(Q) is an automorphism.

The following definition of control fusion in fusion system FP (G).

Definition 3.1.4. Let p be a fixed prime number. Let G be a finite group. Let H
be a subgroup of G and P be a p-subgroup of G where P ≤ H. Let FP (G) be a
fusion system of G over P. Then H is a control fusion in P if FP (H) = FP (G).

We introduced the theory of Burnside in the Section 1.3. Now we will introduce
and study it on fusion system.

Theorem 3.1.1. (Burnside). Let p be a fixed prime number. Let G be a finite group.
Let P be a Sylow p-subgroup of G. If P is abelian, then FP (G) = FP (NG(P )).

Proof. Suppose that φ ∈ MorFP (G)(Q,S) where Q,S ≤ P. For some g ∈ G we have
φ(q) = g−1qg. Since P is abelian then Qg ≤ P. Also, if g−1pg ∈ P g and g−1qg ∈ Qg

then
g−1pgg−1qg = g−1pqg = g−1qpg = g−1qgg−1pg.

Hence P g centralizes Qg. Then P and P g are Sylow p-subgroup of CG(Qg). Thus
there exists x ∈ CG(Qg) such that P = P gx this mean gx ∈ NG(P ). For y ∈ Q
satisfy ygx = x−1g−1ygx = g−1yg = φ(y). Hence FP (G) = FP (NG(P )).

The following example shows the importance of the abelian condition for the
Sylow p-subgroup to become control fusion.

Example 3.1.3. Consider G = S4 is the symmetric group of four letters which
has order 24. The non abelian Sylow 2-subgroup of S4 is P = 〈(1234), (12)(34)〉 =
{(1), (1234), (12)(34), (13), (14)(23), (24), (1432), (13)(24)}. It is has order 8 andNS4(P ) =
P. Then we have (13)(24) ∼S4 (12)(34) but (13)(24) �P (12)(34). Hence N(P ) is
not control fusion in P.

Definition 3.1.5. Let p be a fixed prime number. Let FP (G) be a fusion system
of G over P where G a finite group and P a p-subgroup of G. A fully normalized
subgroup Q in FP (G) satisfy |NP (Q)| ≥ |NP (S)| for all S ∈ QF .
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Definition 3.1.6. Let p be a fixed prime number. Let FP (G) be a fusion system of
G over P where G a finite group and P a p-subgroup of G. A subgroup Q in FP (G)
is called fully centralized if |CP (Q)| ≥ |CP (S)| for all S ∈ QF .
Definition 3.1.7. Let p be a fixed prime number. Let FP (G) be a fusion system
of G over P where G a finite group and P a p-subgroup of G. A fully automized
subgroup Q in FP (G) satisfy AutP (Q) ∈ Sylp(AutF(Q)).

Definition 3.1.8. Let p be a fixed prime number. Let FP (G) be a fusion system
of G over P where G a finite group and P a p-subgroup of G. A receptive subgroup
Q in FP (G) satisfy for every morphisms φ from S to Q where S ≤ QF such that:
φ(S) is fully normalized in FP (G), extends to a morphism ψ from Nφ to P where
Nφ = {y ∈ NP (S) : ∃z ∈ NP (φ(S)) such that φ(y−1uy) = z−1φ(u)z,∀u ∈ S}.
Remark 3.1.2.

• For Nφ in above definition we have CP (S) ≤ Nφ and SCP (S)ENφ ENP (S).

• For ψ and φ in above definition we have ψ|S = φ.

• If subgroup in FP (G) is fully normalized and fully centralized, then it is must
be fully automized subgroup.

The following lemmas give us equivalent condition to fully normalized subgroup
and fully centralized subgroup when we take fusion system over a Sylow p-subgroup
of G.

Lemma 3.1.2. Let p be a fixed prime number. Let FP (G) be a fusion system
of G over P where G a finite group and P a Sylow p-subgroup of G. Let Q be
a subgroup of P . Then Q is fully centralized subgroup in FP (G) if and only if
CP (Q) ∈ Sylp(CG(Q)).

Proof. Suppose that S ∈ Sylp(CG(Q)) such that CP (Q) ≤ S. From Sylow’s the-
orem we have there exists g ∈ G such that (QS)g ≤ P and we have Q ∼= Qg.
Suppose that x ∈ Sg and g−1xg ∈ CG(Q) which implies that g−1xgyg−1x−1g =
y ⇔ x(gyg−1)x−1 = gyg−1 for all y ∈ Q. Hence S ≤ CG(Qg) ∩ P = CP (Qg).
Thus |CP (Q)| ≤ |S| ≤ |CP (Qg)|. Hence Q is fully centralized subgroup if and only
if |S| = |CP (Q)| means Q is fully centralized subgroup if and only if CP (Q) ∈
Sylp(CG(Q)).

Lemma 3.1.3. Let p be a fixed prime number. Let FP (G) be a fusion system
of G over P where G a finite group and P a Sylow p-subgroup of G. Let Q be
a subgroup of P . Then Q is fully normalized subgroup in FP (G) if and only if
NP (Q) ∈ Sylp(NG(Q)).

Proof. Suppose that S ∈ Sylp(NG(Q)) such that NP (Q) ≤ S. From Sylow’s the-
orem we have there exists g ∈ G such that (QS)g ≤ P and we have Q ∼= Qg.
Suppose that x ∈ Sg and g−1xg ∈ NG(Q) which implies that g−1xgyg−1x−1g =
y ⇔ x(gyg−1)x−1 = gyg−1 for all y ∈ Q. Hence S ≤ NG(Qg) ∩ P = NP (Qg).
Thus |NP (Q)| ≤ |S| ≤ |NP (Qg)|. Hence Q is fully normalized subgroup if and only
if |S| = |NP (Q)| means Q is fully normalized subgroup if and only if NP (Q) ∈
Sylp(NG(Q)).
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The following examples are about of fully normalized subgroups and fully cen-
tralized subgroups.

Example 3.1.4.

Consider G = S3 = {(1), (12), (13), (23), (123), (132)} is the symmetric group of
three letters which has order 6. In case p = 2 we take P = 〈(12)〉 is the Sylow
2-subgroup of S3 which has order 2. The fusion system of S3 over 〈(12)〉 has one
subgroup of P is Q =

〈
1〈(12)〉

〉
. The centralizer of Q =

〈
1〈(12)〉

〉
in G is CG(Q) =

G = S3. The centralizer of Q =
〈
1〈(12)〉

〉
in P is CP (Q) = P = 〈(12)〉. Since

〈(12)〉 ∈ Syl2(S3), then from Lemma 3.1.2 we have Q =
〈
1〈(12)〉

〉
is fully centralized

subgroup in F〈(12)〉(S3). The normalizer of Q =
〈
1〈(12)〉

〉
in G is NG(Q) = G = S3.

The normalizer of Q =
〈
1〈(12)〉

〉
in P is NP (Q) = P = 〈(12)〉. Since 〈(12)〉 ∈

Syl2(S3), then from Lemma 3.1.3 we have Q =
〈
1〈(12)〉

〉
is fully normalized subgroup

in F〈(12)〉(S3). In case p = 3 we take P = A3 is the alternating Sylow 3-subgroup
of S3 which has order 3. The fusion system of S3 over A3 has one subgroup is
S = 〈1A3〉 . S is fully centralized and fully normalized subgroup in FA3(S3) because
the centralizer of S = 〈1A3〉 in G is CG(S) = G = S3. The centralizer of S = 〈1A3〉
in P is CP (S) = P = A3. Since A3 ∈ Syl3(S3), then from Lemma 3.1.2 we have
S = 〈1A3〉 is fully centralized subgroup in FA3(S3). The normalizer of S = 〈1A3〉
in G is NG(S) = G = S3. The normalizer of S = 〈1A3〉 in P is NP (S) = P = A3.
Since A3 ∈ Syl3(S3), then from Lemma 3.1.3 we have S = 〈1A3〉 is fully normalized
subgroup in FA3(S3).

Example 3.1.5. Consider G = A4 = {(1), (12)(34), (13)(24), (14)(23), (123), (132)
, (124), (142), (134), (143), (234), (243)} is the alternating group of degree 4 which
has order 12. In case p = 2 we take P = V4 is the Klein 4-group and Sylow
2-subgroup of A4 which has order 4. The fusion system of A4 over V4 has four
subgroups in Ob(FV4(A4)) are Q1 = 〈1V4〉, Q2 = 〈(12)(34)〉, Q3 = 〈(13)(24)〉 and
Q4 = 〈(14)(23)〉. This subgroups are fully normalized and fully centralized and
fully subgroups in FV4(A4) because the centralizer of the subgroup Q1 = 〈1V4〉 in
G is CG(Q1) = G = A4. The centralizer of Q1 in P is CP (Q1) = P = V4. Since
V4 ∈ Syl2(A4), then from Lemma 3.1.2 we have Q1 = 〈1V4〉 is fully centralized
subgroup in FV4(A4). The normalizer of Q1 = 〈1V4〉 in G is NG(Q1) = G = A4.
The normalizer of Q1 in P is NP (Q1) = P = V4. Since V4 ∈ Syl2(A4), then
from Lemma 3.1.3 we have Q1 = 〈1V4〉 is fully normalized subgroup in FV4(A4).
The centralizer of the subgroup Q2 = 〈(12)(34)〉 in G is CG(Q2) = P = V4. The
centralizer of Q2 in P is CP (Q2) = P = V4. Since V4 ∈ Syl2(V4), then from
Lemma 3.1.2 we have Q2 = 〈(12)(34)〉 is fully centralized subgroup in FV4(A4).
The normalizer of Q2 = 〈(12)(34)〉 in G is NG(Q2) = P = V4. The normalizer
of Q2 in P is NP (Q2) = P = V4. Since V4 ∈ Syl2(V4), then from Lemma 3.1.3
we have Q2 = 〈(12)(34)〉 is fully normalized subgroup in FV4(A4). The centralizer
of the subgroup Q3 = 〈(13)(24)〉 in G is CG(Q3) = P = V4. The centralizer of
Q3 in P is CP (Q3) = P = V4. Since V4 ∈ Syl2(V4), then from Lemma 3.1.2 we
have Q3 = 〈(13)(24)〉 is the fully centralized subgroup in FV4(A4). The normalizer
of Q3 = 〈(13)(24)〉 in G is NG(Q3) = P = V4. The normalizer of Q3 in P is
NP (Q3) = P = V4. Since V4 ∈ Syl2(V4), then from Lemma 3.1.3 we have Q3 =
〈(13)(24)〉 is fully normalized subgroup in FV4(A4). The centralizer of the subgroup
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Q4 = 〈(14)(23)〉 in G is CG(Q4) = P = V4. The centralizer of Q4 in P is CP (Q4) =
P = V4. Since V4 ∈ Syl2(V4), then from Lemma 3.1.2 we have Q4 = 〈(14)(23)〉
is fully centralized subgroup in FV4(A4). The normalizer of Q4 = 〈(14)(23)〉 in G
is NG(Q4) = P = V4. The normalizer of Q4 in P is NP (Q4) = P = V4. Since
V4 ∈ Syl2(V4), then from Lemma 3.1.3 we have Q4 = 〈(14)(23)〉 is fully normalized
subgroup in FV4(A4). In case p = 3 we take P = 〈(123)〉 is a Sylow 3-subgroup of
A4 which has order 3. The fusion system of A4 over P = 〈(123)〉 has one subgroup
in Ob(F〈(123)〉(A4)) is S =

〈
1〈(123)〉

〉
. The centralizer of the subgroup S =

〈
1〈(123)〉

〉
in G is CG(S) = G = A4. The centralizer of S in P is CP (S) = P = 〈(123)〉. Since
〈(123)〉 ∈ Syl3(A4), then from Lemma 3.1.2 we have S =

〈
1〈(123)〉

〉
is fully centralized

subgroup in F〈(123)〉(A4). The normalizer of S =
〈
1〈(123)〉

〉
in G is NG(S) = G = A4.

The normalizer of S in P is NP (S) = P = 〈(123)〉. Since 〈(123)〉 ∈ Syl3(A4), then
from Lemma 3.1.3 we have S =

〈
1〈(123)〉

〉
is fully normalized subgroup in F〈(123)〉(A4).

The following lemma gives us relationship between receptive subgroup and fully
centralized subgroup in FP (G) when P is a p-subgroup of G.

Lemma 3.1.4. Let p be a fixed prime number. Let FP (G) be a fusion system of G
over P where G a finite group and P a p-subgroup of G. Then all Q ≤ P which is
receptive subgroup in FP (G) is fully centralized subgroup in FP (G).

Proof. Suppose that Q ≤ P receptive subgroup in FP (G) and S ∈ QF . Also,
suppose that φ ∈ IsoF(S,Q). Since Q is receptive subgroup in FP (G). Then φ
extension to ψ from Nφ to P . Since that CP (S) ≤ Nφ and since that ψ is the
homomorphism, then ψ(CP (S)) ≤ CP (ψ(S)) = CP (Q). Thus |CP (S)| ≤ |CP (Q)|.
Since this holds for all S ∈ QF . Hence Q is a fully centralized subgroup in FP (G).

The following lemma gives us a relationship between receptive subgroup, fully
automized subgroup and fully normalized subgroup in FP (G) when P is a p-subgroup
of G.

Lemma 3.1.5. Let p be a fixed prime number. Let FP (G) be a fusion system of G
over P where G a finite group and P a p-subgroup of G. Then all Q ≤ P which is
fully automized and receptive subgroups in FP (G) is fully normalized subgroup in
FP (G).

Proof. Suppose that Q is a fully automized and receptive subgroup in FP (G) and
S ∈ QF . Since that Q is receptive subgroup in FP (G), then from Lemma 3.1.4 it
is fully centralized subgroup |CP (S)| ≤ |CP (Q)|. Since Q is a fully automized sub-
group, then AutP (Q) ∈ Sylp(AutF(Q)). So AutP (S) ≤ AutP (Q). Thus |AutP (S)| ≤
|AutP (Q)|. Since that AutP (Q) ∼= NP (Q)/CP (Q) and AutP (S) ∼= NP (S)/CP (S),
thus

|AutP (S)| = |NP (S)/CP (S)| ≤ |AutP (Q)| = |NP (Q)/CP (Q)|.

Then
|NP (S)| = |AutP (S)|.|CP (S)| ≤ |AutP (Q)|.|CP (Q)| = |NP (Q)|.

Since this holds for all S ∈ QF . HenceQ is a fully normalized subgroup in FP (G).
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The following lemma gives us a relationship between fully normalized subgroup
and receptive subgroup in FP (G) when P is a Sylow p-subgroup of G.

Lemma 3.1.6. Let p be a fixed prime number. Let FP (G) be a fusion system of
G over P where G a finite group and P a Sylow p-subgroup of G. If Q ≤ P and
satisfy NP (Q) ∈ Sylp(NG(Q)) then Q is receptive subgroup in FP (G).

Proof. Suppose that Q ≤ P and satisfy NP (Q) ∈ Sylp(NG(Q)) then from Lemma
3.1.3 we have Q is a fully normalized subgroup in FP (G). Also, suppose that φ ∈
IsoF(S,Q) where S ∈ QF andNφ = {y ∈ NP (S) : ∃z ∈ NP (φ(S)) such that φ(y−1uy)
= z−1φ(u)z,∀u ∈ S}. Thus for conjugation map we have fy−1 ◦φ−1◦fz◦φ centralizes
S and fz ◦φ◦fy−1 ◦φ−1 centralizes φ(S) = Q. Then φ◦fy = φ◦φ where φ is induced
by conjugation with some element g ∈ CG(Q). Hence φ(Nφ) 6 NP (Q)CG(Q). Since
NP (Q) ∈ Sylp(NG(Q)) and Nφ is a p-group then we have morphism ψ ∈ MorFP (G)

induced by q ∈ CG(Q) such ψ(φ(Nφ)) 6 NP (Q). Hence we can extension ψ to θ
where θ = ψ ◦ φ such that θ : Nφ −→ NP (Q). Then Q is receptive subgroup in
FP (G).

3.2 Saturated fusion systems

Definition 3.2.1. Let p be a fixed prime number. Let FP (G) be a fusion system of
G over P where G a finite group and P a p-subgroup of G. A subgroup Q in FP (G)
called saturated if it is fully automized and receptive subgroup in FP (G).

Example 3.2.1.

Consider G = S3 = {(1), (12), (13), (23), (123), (132)} is the symmetric group of
three letters which has order 6. In case p = 3 if we take P = A3 is the alternating
Sylow 3-subgroup of S3 which has order 3. From Example 3.2.3. we have 〈1A3〉 is a
fully centralized, fully normalized and fully automized subgroup in FA3(S3). Since
A3 ∈ Syl3(S3), 〈1A3〉 6 A3 and 〈1A3〉 is a fully normalized, then from Lemma 3.1.6
we have 〈1A3〉 is the receptive subgroup in FA3(S3). Hence 〈1A3〉 is the saturated
subgroup in FA3(S3).

Definition 3.2.2. Let p be a fixed prime number. Let FP (G) be a fusion system
of G over P where G a finite group and P a p-subgroup of G. Then FP (G) is a
saturated fusion system if each subgroup in FP (G) is F -conjugate to a saturated
subgroup in FP (G).

The following theorem describes the fusion system over a Sylow p-subgroup.

Theorem 3.2.1. (Puig). Let p be a fixed prime number. Let FP (G) be a fusion
system of G over P where G a finite group and P a Sylow p-subgroup of G. Then
FP (G) is a saturated fusion system.
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Proof. Since P is a Sylow p-subgroup of G, then from properties of subgroup of
Sylow p-subgroup we have each subgroup Q of P is G-conjugate to a subgroup
S ≤ P such that NP (S) ∈ Sylp(NG(S)) and AutP (S) ∈ Sylp(AutG(S)). Hence
each subgroup S of P is fully automized subgroup in FP (G). Since each subgroup
S of P is satisfy NP (S) ∈ Sylp(NG(S)) thus from Lemma 3.1.6 each subgroup is
receptive subgroup in FP (G). Hence each subgroup S of P is saturated subgroup.
Then FP (G) is a saturated fusion system.

Example 3.2.2. The fusion system of the symmetric group S3 over A3 is a saturated
fusion system.

Example 3.2.3. The fusion system of the alternating groupA4 over V4 is a saturated
fusion system.

The following lemmas give us the relationship between subgroups of the saturated
fusion system.

Lemma 3.2.1. Let p be a fixed prime number. Let FP (G) be a saturated fusion
system of G over P where G a finite group and P a p-subgroup of G. Then Q ≤ P is
receptive subgroup in FP (G) if and only if it is fully centralized subgroup in FP (G).

Lemma 3.2.2. Let p be a fixed prime number. Let FP (G) be a saturated fusion
system of G over P where G a finite group and P a p-subgroup of G. Then Q ≤ P is
fully automized and receptive subgroup in FP (G) if and only if it is fully normalized
subgroup in FP (G).

Proof. ( ⇒ ) Suppose that Q ≤ P is fully automized and receptive subgroup in
FP (G) then Q is fully normalized in FP (G) from Lemma 3.1.5.
(⇐ ) Suppose that Q ≤ P is fully normalized in FP (G). Since FP (G) is a saturated
fusion system then there exists S ≤ P is fully automized and receptive subgroup in
FP (G). Then from Lemma 3.1.5 we have S is fully normalized in FP (G). Since Q
is also fully normalized in FP (G) then |NP (Q)| = |NP (S)|. .Thus

|NP (Q)| = |AutP (Q)||CP (Q)| = |AutP (S)||CP (S)| = |NP (S)|.

Since S is fully automized and receptive subgroup then |AutP (S)| ≥ |AutP (Q)|
and |CP (S)| ≥ |CP (Q)|. Thus we must have |AutP (S)| = |AutP (Q)| and |CP (S)| =
|CP (Q)|. HenceQ is fully automized and fully centralized. SinceQ is fully centralized
then from Lemma 3.2.1 we have Q is receptive.

We get the following result from the previous lemmas.

Corollary 3.2.1. Let p be a fixed prime number. Let FP (G) be a fusion system
of G over P where G a finite group and P a p-subgroup of G. Then FP (G) is a
saturated fusion system if and only if the following two conditions hold:

(i) Every fully normalized subgroup in FP (G) is fully automized subgroup in FP (G)
and fully centralized subgroup in FP (G) and

(ii) Every fully centralized subgroup in FP (G) is receptive subgroup in FP (G).
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The following definition gives us equivalent conditions to definition of saturated
fusion system.

Definition 3.2.3. Let p be a fixed prime number. Let G a finite group. Let P be a
p-subgroup of G. The fusion system FP (G) of G over P is saturated fusion system
if the following two conditions are satisfied:

(i) P is fully normalized subgroup in FP (G).

(ii) For every subgroup Q of P, if Q is fully normalized subgroup in FP (G), then
Q is receptive subgroup in FP (G).

The following theorem gives us equivalent conditions to definition of saturated
fusion system.

Theorem 3.2.2. Let p be a fixed prime number. Let FP (G) be a fusion system of G
over P where G a finite group and P a p-subgroup of G. Then FP (G) is saturated
fusion system if and only if

(i) P is fully automized in FP (G) and

(ii) Every subgroup in FP (G) is F-conjugate to a fully normalized subgroup is
receptive.

We introduce Brauer indecomposable module in Section 2.3. Now we will in-
troduce in this section the important relationship between Brauer indecomposable
module and saturated fusion system.

Theorem 3.2.3. Let p be a fixed prime number. Let G be a finite group. Let P
be a p-subgroup of G. Let M be an indecomposable p-permutation FG-module with
vertex P. If M is Brauer indecomposable FG-module then FP (G) is a saturated
fusion system of G over P .

The converse of the above theorem hold in special cases of G,M and P . We will
study it in the following theorems.

Theorem 3.2.4. Let p be a fixed prime number. Let G be a finite group. Let P be an
abelian p-subgroup of G. Let Sc(G,P ) be a Scott FG-module with vertex P. If FP (G)
is saturated fusion system of G over P then Sc(G,P ) is Brauer indecomposable FG-
module.

Theorem 3.2.5. Let p be a fixed prime number. Let G be a finite group. Let P be
a p-subgroup of G. Let Sc(G,P ) be a Scott FG-module with vertex P. Let FP (G) be
a saturated fusion system of G over P. Then the following conditions are equivalent:

(i) Sc(G,P ) is Brauer indecomposable FG-module.

(ii) For all fully normalized subgroup Q of P we have

Res
NG(Q)
QCG(Q)Sc(NG(Q), NP (Q))

is indecomposable FQCG(Q)-module.
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Remark 3.2.1.

• If the conditions in above theorem are satisfies then

Sc(G,P )(Q) ∼= Sc(NG(Q), NP (Q))

for all fully normalized subgroup Q of P .

• Res
NG(Q)
QCG(Q)Sc(NG(Q), NP (Q)) in above theorem is indecomposable if the fol-

lowing conditions are satisfying:

(i) NP (Q) ∈ Sylp(H) where H ≤ NG(Q).

(ii) [NG(Q) : H] = pa where a ≥ 0.

Theorem 3.2.6. Let p be a fixed prime number. Let G be a finite p-group. Let P
be a p-subgroup of G. Let Sc(G,P ) be a Scott FG-module with vertex P. If FP (G)
is saturated fusion system of G over P then Sc(G,P ) is Brauer indecomposable
FG-module.

The following corollary, we obtain from above theorem.

Corollary 3.2.2. Let p be a fixed prime number. Let G be a finite group has cyclic
Sylow p-subgroup. Let P be a p-subgroup of G. Then the Scott FG-module Sc(G,P )
with vertex P is Brauer indecomposable FG-module.
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Chapter 4

Tensor Product of Related Objects

In this chapter, we will study the exterior tensor product of three algebra struc-
tures, Brauer indecomposable module where it is FG-module has Brauer quotient is
indecomposable or zero, Scott module where it is a unique indecomposable summand
of induced F which contains F and fusion system where it is a category has object
is the set of all p-subgroups and morphisms is the set of all group homomorphism
induced by conjugation.

4.1 Tensor product of Brauer indecomposable mod-

ules

Throughout this section, G denotes a finite group, p a prime number and F
an algebraically closed field of characteristic p. We followed the references [1], [4]
and [10].

We introduce in Section 1.1 equivalent condition to definition of local F -algebra.
Now we introduce in the following theorem the tensor product of two local F -algebras
is local F -algebra.

Theorem 4.1.1. Let Ai for i = 1, 2 be local F -algebra then A1 ⊗F A2 is also local
F -algebra.

Proof. Since A1 and A2 are local F -algebras then from Lemma 1.1.1 we have

A1

J(A1)
∼= F and

A2

J(A2)
∼= F.

If we take a map

ψ : A1 ⊗F A2 −→
A1

J(A1)
⊗F

A2

J(A2)

such that
ψ(a1 ⊗F a2) = (a1 + J(A1))⊗F (a2 + J(A2))
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for all a1 ∈ A1 and a2 ∈ A2. ψ is F -epimorphism and it has a kernel

kerψ = (J(A1)⊗F A2) + (A1 ⊗F J(A2)).

Thus from the first isomorphism theorem we have

(A1⊗FA2)
(J(A1)⊗FA2)+(A1⊗F J(A2))

∼= ( A1

J(A1)
)⊗F ( A2

J(A2)
).

Since

(J(A1)⊗F A2) + (A1 ⊗F J(A2)) ∼= J(A1 ⊗F A2).

Then

(A1⊗FA2)
J(A1⊗FA2)

∼= ( A1

J(A1)
)⊗F ( A2

J(A2)
)

∼= F ⊗F F
∼= F.

Hence A1 ⊗F A2 is local F -algebra.

Now we will show in the following theorem that the endomorphism over an
algebraically closed field of tensor product of two modules is the tensor product of
their endomorphisms.

Theorem 4.1.2. Let Ai for i = 1, 2 be F -algebra. Let Mi be indecomposable Ai-
module, with i = 1, 2. Then

EndA1⊗FA2(M1 ⊗F M2) ∼= EndA1(M1)⊗F EndA2(M2).

Proof. Define a map

ρ : EndA1(M1)⊗F EndA2(M2) −→ EndA1⊗FA2(M1 ⊗F M2)

ρ(Φ⊗F ψ)(m1,m2) = Φ(m1)⊗F ψ(m2)

for all m1 ∈M1, m2 ∈M2, Φ ∈ EndA1(M1) and all ψ ∈ EndA2(M2). ρ is isomorphism
to show it, suppose that Φ1,Φ2 ∈ EndA1(M1), ψ1, ψ2 ∈ EndA2(M2), m1 ∈ M1 and
m2 ∈M2 thus

ρ((Φ1 ⊗F ψ1)(Φ2 ⊗F ψ2))(m1,m2) = ρ(Φ1Φ2 ⊗F ψ1ψ2)(m1,m2)
= (Φ1Φ2)(m1)⊗F (ψ1ψ2)(m2)
= Φ1(m1)Φ2(m1)⊗F ψ1(m2)ψ2(m2)
= (Φ1(m1)⊗F ψ1(m2))(Φ2(m1)⊗F ψ2(m2))
= ρ(Φ1 ⊗F ψ1)(m1,m2)ρ(Φ2 ⊗F ψ2)(m1,m2).

Hence ρ is a homomorphism. Now we will show ρ is one to one. Since

ker(ρ) = {Φ⊗F ψ ∈ EndA1(M1)⊗F EndA2(M2) : ρ((Φ⊗F ψ)(m1,m2)) = 0}
= {Φ⊗F ψ ∈ EndA1(M1)⊗F EndA2(M2) : Φ(m1)⊗F ψ(m2) = 0}
= {Φ⊗F ψ = 0} = {0}.
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Hence ρ is one to one. Also ρ is onto we will show it, suppose that
Θ ∈ EndA1⊗FA2(M1 ⊗F M2) where Θ(m1 ⊗F m2) = n1 ⊗F n2 for all m1, n1 ∈ M1

and m2, n2 ∈ M2. So we define Φ ∈ EndA1(M1) where Φ(m1) = n1. Also we define
ψ ∈ EndA2(M2) where ψ(m2) = n2. Thus ρ(Φ⊗F ψ)(m1,m2) = Φ(m1)⊗F ψ(m2) =
n1 ⊗F n2. Then ρ is onto. Hence ρ is isomorphism. Then EndA1⊗FA2(M1 ⊗F M2) ∼=
EndA1(M1)⊗F EndA2(M2).

Now we will show that the tensor product of two indecomposable modules is
indecomposable module.

Corollary 4.1.1. Let Ai be F -algebra, with i = 1, 2. Let Mi for i = 1, 2 be Ai-
module. If M1 and M2 are indecomposable modules then M1⊗FM2 is indecomposable
A1 ⊗F A2-module.

Proof. Suppose that M1 and M2 are indecomposable modules then from Corollary
1.1.1 we have EndA1(M1) and EndA2(M2) are local F -algebras. But from Theorem
4.1.2 we have

EndA1(M1)⊗F EndA2(M2) ∼= EndA1⊗FA2(M1 ⊗F M2).

Then from Theorem 4.1.1 we have EndA1⊗FA2(M1 ⊗F M2) is local F -algebra. So
from Corollary 1.1.1 we have M1 ⊗F M2 is indecomposable A1 ⊗F A2-module.

The Brauer map for the exterior tensor product of two FG-modules can be
expressed as a tensor product of their Brauer map.

Theorem 4.1.3. Let p be a fixed prime number. Let G1 and G2 be finite groups.
Let Pi be p-subgroup of Gi, with i = 1, 2. Let Mi be FGi-module for i = 1, 2. Then

BrM1⊗FM2

P1×P2

∼= BrM1
P1
⊗F BrM2

P2
.

Corollary 4.1.2. Let p be a fixed prime number. Let G1 and G2 be two finite groups.
Let Pi be p-subgroup of Gi, with i = 1, 2. Let Mi be FGi-module for i = 1, 2. Then

(M1 ⊗F M2)(P1 × P2) ∼= M1(P1)⊗F M2(P2.)

Now we will show the main theory in our research.

Theorem 4.1.4. Let p be a fixed prime number. Let F be an algebraically closed
field of characteristic p. Let G1 and G2 be two finite groups. Let Mi be Brauer inde-
composable FGi-module, with i = 1, 2. Then M1 ⊗F M2 is a Brauer indecomposable
FG1 ⊗F FG2-module.

Proof. Case 1, If either M1 = 0 or M2 = 0 then clearly M1 ⊗F M2 = 0. Thus
(M1⊗FM2)(P1×P2) = 0 where P1 and P2 are p-subgroups of G1 and G2 respectively.
Hence M1 ⊗F M2 is a Brauer indecomposable FG1 ⊗F FG2-module.
Case 2, If M1 6= 0 and M2 6= 0 then from Corollary 4.1.1 we have M1 ⊗F M2

is indecomposable FG1 ⊗F FG2-module. From Corollary 4.1.2 we have (M1 ⊗F
M2)(P1 × P2) ∼= M1(P1) ⊗F M2(P2). Since M1 and M2 are Brauer indecomposable
modules then M1(P1) and M2(P2) are zero or indecomposables. If either M1(P1) = 0
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or M2(P2) = 0 then (M1 ⊗F M2)(P1 × P2) ∼= M1(P1) ⊗F M2(P2) = 0. Hence
M1 ⊗F M2 is a Brauer indecomposable FG1 ⊗F FG2-module. If M1(P1) 6= 0 and
M2(P2) 6= 0 then M1(P1) is an indecomposable FP1CG(P1)-module and M2(P2) is an
indecomposable FP2CG(P2)-module. Thus from Corollary 4.1.1 we have M1(P1)⊗F
M2(P2) is indecomposable F (P1×P2)CG(P1×P2)-module. Then (M1⊗FM2)(P1×P2)
is indecomposable F (P1 × P2)CG(P1 × P2)-module. Hence M1 ⊗F M2 is a Brauer
indecomposable FG1 ⊗F FG2-module.

4.2 Tensor product of Scott modules

Throughout this section, G denotes a finite group, p a prime number and F an
algebraically closed field of characteristic p.

Lemma 4.2.1. Let G1 and G2 be two finite groups. Then

FG1 ⊗F FG2
∼= F (G1 ×G2)

as F -algebras.

In the following lemma we will show important property for exterior tensor prod-
uct of induced modules.

Theorem 4.2.1. Let p be a fixed prime number. Let F be an algebraically closed
field of characteristic p. Let G1 and G2 be two finite groups. Let Hi be subgroup of
Gi, with i = 1, 2. Let Wi for i = 1, 2 be FHi-module. Then

IndG1
H1

(W1)⊗F IndG2
H2

(W2) ∼= IndG1×G2
H1×H2

(W1 ⊗F W2).

Proof. From Definition 2.1.1 and Lemma 4.2.1 we have

IndG1
H1

(W1)⊗F IndG2
H2

(W2) ∼= (W1 ⊗FH1 FG1)⊗F (W2 ⊗FH2 FG2)
∼= (W1 ⊗F W2)⊗F (H1×H2) (FG1 ⊗F FG2)
∼= (W1 ⊗F W2)⊗F (H1×H2) F (G1 ×G2)
∼= IndG1×G2

H1×H2
(W1 ⊗F W2).

Now we will show the second main theory in our research.

Theorem 4.2.2. Let p be a fixed prime number. Let F be an algebraically closed
field of characteristic p. Let G1 and G2 be two finite groups. Let Hi be subgroup of
Gi, with i = 1, 2. Let Sc(Gi, Hi) for i = 1, 2 be Scott FGi-module. Then

Sc(G1, H1)⊗F Sc(G2, H2)

is a Scott FG1 ⊗F FG2- module.
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Proof. Since Sc(G1, H1) is a Scott FG1-module then from definition of Scott module
we have Sc(G1, H1) is the unique indecomposable summand of IndG1

H1
(F ) and F ⊆

Sc(G1, H1). Since Sc(G2, H2) is a Scott FG2-module then from definition of Scott
module we have Sc(G2, H2) is the unique indecomposable summand of IndG2

H2
(F ) and

F ⊆ Sc(G2, H2). Then

Sc(G1, H1)⊗F Sc(G2, H2) ∼= IndG1
H1

(F )⊗F IndG2
H2

(F ).

From Theorem 4.2.1 we have

IndG1
H1

(F )⊗F IndG2
H2

(F ) ∼= IndG1×G2
H1×H2

(F ⊗F F ) ∼= IndG1×G2
H1×H2

(F ).

Hence
Sc(G1, H1)⊗F Sc(G2, H2) ∼= IndG1×G2

H1×H2
(F ).

Also from Corollary 4.1.1 we have Sc(G1, H1) ⊗F Sc(G2, H2) is indecomposable
FG1⊗F FG2- module. Now we want to prove Sc(G1, H1)⊗F Sc(G2, H2) is the unique
indecomposable summand of IndG1×G2

H1×H2
(F ). Suppose that N is an another indecom-

posable summand FG1⊗F FG2-module of IndG1×G2
H1×H2

(F ). Then N is an indecompos-

able summand of IndG1
H1

(F ) ⊗F IndG2
H2

(F ). So N is an indecomposable summand of

IndG1
H1

(F ) or N is an indecomposable summand of IndG2
H2

(F ) or N is an indecompos-

able summand of IndG1
H1

(F ) and IndG2
H2

(F ). But Sc(G1, H1) is the unique indecompos-

able summand of IndG1
H1

(F ) and Sc(G2, H2) is the unique indecomposable summand

of IndG2
H2

(F ). Hence N = Sc(G1, H1) ⊗F Sc(G2, H2). So Sc(G1, H1) ⊗F Sc(G2, H2)

is the unique indecomposable summand of IndG1×G2
H1×H2

(F ). Also since F is an alge-
braically closed field of characteristic p, F ⊆ Sc(G1, H1) and F ⊆ Sc(G2, H2) then

F ∼= F ⊗F F ⊆ Sc(G1, H1)⊗F Sc(G2, H2).

Hence Sc(G1, H1) ⊗F Sc(G2, H2) = Sc(G1 × G2, H1 ×H2) is a Scott FG1 ⊗F FG2-
module.

4.3 Tensor product of fusion systems

In this section, we shall construct the cartesian product of two fusion systems.
As a consequence, we shall define the notion of tensor product of fusion systems.

Now let p be a fixed prime number. Let G1 and G2 be two finite groups. Let
Pi be p-subgroup of Gi, with i = 1, 2. Let Fi be the fusion of Gi over Pi. Then we
have the following definition:

Definition 4.3.1. With the notation above, we define the cartesian fusion system
to of G1 ×G2 over the p-group P1 × P2 to be the F1 ×F2.

Now let F be an algebraically closed field of characteristic the prime number p.
We construct the vector space FF which consists of all linear combinations of the
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objects of the fusion system F . Let us record this observation as in the following
lemma:

Lemma 4.3.1. With the notation above, FF is a finite dimensional vector space
over F .

Proof. Since FF 6= ∅ and (FF ,+) is an abelian group. Also for all α, β ∈ F and
M,N ∈ FF satisfies:

(i) α(M +N) = αM + αN.

(ii) (α + β)M = αM + βM.

(iii) (αβ)M = α(βM) = β(αM).

(iv) 1FM = M.

Hence FF is a finite dimensional vector space over F which has a basis is object
of F .

We remark that, the motivation to do such construction of this linear vector
space is to carry some results in fusion systems to the linear vector space structure.
The other thing is for build a tensor product of fusion system as in the following
proposition:

proposition 4.3.1. Let p be a fixed prime number. Let F be an algebraically closed
field of characteristic p. Let G1 and G2 be two finite groups. Let Pi be p-subgroup
of Gi, with i = 1, 2. Let Fi be the fusion of Gi over Pi. Let FFi for i = 1, 2 be the
vector spaces which are associated with the fusion systems FPi

(Gi). Then

F [F1 ×F2] ∼= FF1 ⊗F FF2

as a vector space isomorphism.

Proof. Since cartesian product of two categories is a category. Then the cartesian
product of two fusion systems F1 and F2 is again fusion system F1×F2. Now suppose
that (P1, P2) ∈ F (F1 × F2) thus ∃(Q1, Q2) ∈ F1 × F2 such that (P1, P2)(Q1, Q2) =
(1G1 , 1G2). Then P1Q1 = 1G1 and P2Q2 = 1G2 . Hence P1 ∈ FF1 and P2 ∈ FF2. So
(P1, P2) ∈ FF1⊗F FF2. Hence the required isomorphism is identity map as a vector
space.

Note that the proposition above says that the tensor product we define of two
fusion systems is again fusion system over the cartesian product. However, we just
construct the vector space. Then we shall use the direct product of p-subgroups of
G1 and G2 to generate an algebra product. This yields the following theorem.
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Theorem 4.3.1. The vector space FF has the structure of finite dimensional algebra
over F .

Proof. Since FF is a finite dimensional vector space over F which has a basis is
object of F and it is a ring satisfy α(MN) = (αM)N = M(αN) for all α ∈ F and
M,N ∈ FF . Hence FF is a finite dimensional algebra over F.

Now we arrive to the main construction that we aim to do.

proposition 4.3.2. Let p be a fixed prime number. Let F be an algebraically closed
field of characteristic p. Let G1 and G2 be two finite groups. Let Pi be p-subgroup of
Gi, with i = 1, 2. Let Fi be the fusion system of Gi over Pi. Let FFi for i = 1, 2
be the finite dimensional algebra over F which is associated with the fusion system
FPi

(Gi). Then
F [F1 ×F2] ∼= FF1 ⊗F FF2

as an algebra isomorphism.

The following theorem gives us the first result we are seeking to in this construc-
tion:

Theorem 4.3.2. Let p be a fixed prime number. Let F be an algebraically closed
field of characteristic p. If Fi is saturated fusion system for i = 1, 2 then the fusion
system FF1 ⊗F FF2 is a saturated fusion system.

Proof. Since cartesian product of two categories is a category. Then the cartesian
product of two saturated fusion systems F1 and F2 is again saturated fusion system
F1×F2. From Proposition 4.3.2 we have F [F1×F2] ∼= FF1⊗F FF2. Hence FF1⊗F
FF2 is a saturated fusion system.
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