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Chapter 1

Introduction

The famous conjecture of Kaplansky ( see [3, Pages 55-76]) says that:

Given two unital Banach algebras A and B such that B semi-simple. Does any surjective
linear application ¢ : A — B which preserves invertibility (i.e ¢(x) is invertible in B for any
invertible element x € A) a Jordan morphism?

Note that this formulation of the problem is due to Aupetit [5]. This conjuncture has been
solved in many cases:

(i) If A and B are finite dimensional, [28].
(i

) If B is a commutative Banach algebra, [5].

(iii) If A= B(X), B=B(Y) where X,Y are two Banach spaces, [31, 26].
)
)

(iv) If A and B are two von Neumann algebras, [6].

(v) If B has a separating family of finite dimensional irreducible representations, [15].

But the problem remains unsolved even for C*-algebras. The interest reader may consult
[5, 11, 26] for more details.

On the other hand, inspired by this conjecture, an important fields of research is the
problem of describing maps on operators and matrices that preserve certain functions, subsets
and relations has been widely studied in the literature, see [7], [9], [10], [11], [14], [15], [16], [17],
(23], [29], [30], [32], [33] and their references therein. One of the classical problems in this area
of research is to characterize maps preserving the spectra of the product of operators. Molnar
in [29] studied maps preserving the spectrum of operator and matrix products. His results
have been extended in several directions [8], [1], [2], [12], [13], [19], [21], [22], [24] and [25].
In [2], the problem of characterizing maps between matrix algebras preserving the spectrum
of polynomial products of matrices is considered. In particular, the results obtained therein
extend and unify several results obtained in [11] and [13].

Let ‘H and K be two complex infinite dimensional Hilbert spaces. Let B(H) (resp. B(K))
denote the algebra of all bounded linear operators on H (resp. on K ). We say that a map
¢ : B(H) — B(K) preserves the skew Lie product of operators if

[o(T), p(S)]. = [T, 5],

where [T, S|, =TS — ST* for any operators S,T € B(H). Latter in [1], the form of all maps
preserving the spectrum and the local spectrum of skew Lie product of matrices are determined.

In this thesis we will examine the form of surjective maps preserving the spectrum of skew
Lie product of operators on an infinite dimensional complex Hilbert space. The plan is as
follows
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(i) Some of the basic definitions and terminology used in this thesis are introduced in Chapter
2.

(ii) In Chapter 3, maps preserving peripheral spectrum of Jordan products of self-adjoint
operators are discussed

(iii) In the last chapter, we deal with the problem of characterizing surjective maps ¢ :
B(H) — B(K) preserves the skew Lie product of operators. Precisely, we shall prove the
following.

Theorem 1.0.1. A surjective map ¢ : B(H) — B(H) satisfies
o (p(T)p(5) = p(S)p(T)) = o(T'S=S5T7), (T, § € B(H)), (1.1)
if and only if there exists a unitary operator U € B(H) such that
o(T)=+UTU" (1.2)

for allT € B(H).



Chapter 2

Preliminaries

Through first chapter, we recall some usual notation and collect some elementary results that
will be used. All of the vector spaces to be over the complex field C.

2.1 Basic definitions and examples
Definition 2.1.1 (Inner product). Let H be a vector space. An inner product is a function
()Y HxH—=C

such that, for all z,y, 2 € H and scalar a € C.

(1) (x+y,2) =(x,2) +(y,2)

(2) (azx,z) = alz, z)

3) (z,y) = (y, v)

(4) (z, ) > 0 with equality if and only if z = 0

We then have
(T,y+2) =(z,9) + (z,2)

and
(x,az) =alx, z)

We say that (H, (-,-)) (or simply H is an inner product space).

Theorem 2.1.2 (Cauchy-Schwarz). In an inner product space (H, (-,-)), we have
[l < Nl llyll, for all z,y € H

where ||z|| = \/(z,x) for every x € H.
Corollary 2.1.3. In an inner product space (H, (-,-)), we have

e+ yll < ll=ll + [lyll,
for every x,y € H.

Remark 2.1.4. (H,]].]]) is a normed vector space.

7
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Definition 2.1.5 (Hilbert space). If (#, (-, -)) is complete with respect to || - || then it is called
a Hilbert space.

Ezxample 2.1.6.

(a) *(N), where (z,y) = leE

Cauchy-Schwarz then says

oo [o.¢] o
|Z$ZE| < Z|$z|2 Z|yz|2
i—1 =1 =1

b R
(5) L(a.b), where (f.g) = [ f(2)g(@) de

Definition 2.1.7 (Orthogonality). Let (#, (-,-)) be an inner product space. We say that two
vectors x,y € H are orthogonal if (z,y) = 0.

Theorem 2.1.8. Let x;,...,x, be pairwise orthogonal vectors in (H, (-,-)). Then

1>l = llall®
i=1 i=1
Theorem 2.1.9 (Parallelogram identity). In (H, (-,-)) we have

Iz +yl1* + llz = l* = 2(ll=]* + lly[1*) ()

forall x,y € H.

2.2 Projections
Definition 2.2.1. Let H be a vector space and M a non empty subset of H.

(i) The subset M is said to be convex if for any =,y € M we have

tr+(1—thye M
for every t € [0,1].
(ii) For any = € ‘H, the distance between x and M is defined by
d(x, M) = n}LIelsz |z —m||.

Theorem 2.2.2. Let (H,(-,-)) be a Hilbert space. Let M C H be closed and conver. Let
x € H. Then there exists a unique point m, € M such that

o= mell = inf [z = mi| = d(z, M).
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Definition 2.2.3 (Projection operator on a closed convex subset). Let H be a Hilbert space.
Let M C H be closed and convex. Define

Py:H—H
by Py(z) = m, from above. This is called the projection of H onto M.
Definition 2.2.4 (Orthogonal complement). If S C H, let
St={reH|{z,y) =0 VyecS}.
We call S+ the orthogonal of S.
We can state the following.
Theorem 2.2.5. Let H be a Hilbert space and M C H be a closed subspace. We have
(i) © — Pyx € M* for all x € H.
(ii) H= M @& M*. That is, each x € H can be written in ezactly one way as x = m + m*
with m € M, m*+ € M*.
Corollary 2.2.6. Let M C H be a closed subspace. Then we have
(a) Pn(H) = M, ker Pyy = M+,
(b) Pi = Py.
(c) Py =1— Pyy.

Definition 2.2.7. Let H be a Hilbert space and M C H be a closed subspace. The orthogonal
projection of H onto M is the function Py, : H — H such that for z € H, Py;(x) is the unique
element in M such that (z — Py(z)) L M.

Definition 2.2.8 (Orthonormal system). As subset S C H is an orthonormal system

(orthonormal) if
(e,e') =0 Ve, e €8,

Definition 2.2.9 (Complete orthonormal system or Hilbert basis). An orthonormal system S
is complete or a Hilbert basis if
span S = H

Remark 2.2.10. Every Hilbert space has a complete orthonormal system.

Lemma 2.2.11. If {e; |k € N} is orthonormal, then Zamek converges in H if and only if
k>1

E lar|* converges in C.
k>1
If either series converges, then

2
=2 _laP

k>1

E apeg

k>1

Lemma 2.2.12. Let {ey,...,e,} be orthonormal. Then

n
D aen) [P < )
k=1

for each x € H.
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2.3 Linear operators on Hilbert spaces

Definition 2.3.1 (Linear operators on Hilbert spaces). Let H, K be Hilbert spaces. A linear
operator is a function T : H — K such that

Tz +y)=T(x)+T(y)
T(az) = aT(z)

forall z,y € X,a € C.
We write L(H,K) ={T : H — K|T is linear}

Definition 2.3.2. T': H — K is continuous at x € H if for all € > 0, there exists § > 0 such
that for any y € H we have

[ =yl <0 = [Tz = Tylx <e

Notations
B(H,K)={T:H — K|T is linear and continuous}

and B(H) = B(H, H).

Definition 2.3.3 (Bounded linear operator). Let 7" : H — K be linear, then 7" is bounded if
T maps bounded sets in ‘H to bounded sets in K. That is: for each M > 0 there exists M’ > 0
such that for any x € ‘H we have

lzllz < M = || Tl < M’
Theorem 2.3.4. Let T € L(H,K). Then the following are all equivalent.
1) T is continuous
2) T is continuous at 0
3) T is bounded

4) There exists a constant ¢ > 0 such that

Tz < cllz|ly, forevery x € H.
Remark 2.3.5. If dim(H) < oo then L(H,K) = B(#H,K). This is not true if H has infinite
dimension.

Definition 2.3.6 (Operator norm). The operator norm of 7' € B(H, K), ||T|| is defined by
any one of the following equivalent expressions.

(a) ([T} = inf{e > O[Tz < cll]}.

T
(b) ||| = sup L2l
el
(© Il = sup |Te].
[lz]| <1

(d) 1T = sup [T,

[lz]|=1
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Corollary 2.3.7. If T € L(H,K), then T continuous <= T bounded <= there is ¢ > 0
such that ||Tz|| < c||z|| for all z € H.

Proposition 2.3.8. The operator norm is a norm on B(H, K).
Definition 2.3.9. The topological dual (just dual) of a Hilbert space H is
H =B(H,C) ={¢: H — C|¢ is linear and continuous}.
Observe that if y € H is fixed, then the map
oy H—C
T (2, y)
is in H'.
Theorem 2.3.10 (Riesz Representation Theorem). Let H be a Hilbert space. The map
¢ H—H
Y= oy
is a conjugate linear bijection, and ||| = ||ly||.
Proposition 2.3.11. Let M C H be a closed subspace. Then we have
(a) Py € B(H).
(b) [[Pull < 1. In fact ||[Py|| =1 if Py # 0.

Combining Definition 2.2.3 and Theorem 2.2.5 we can see that any projection is orthogonal.
We have now the following.

Proposition 2.3.12. Any projection P € B(H) is an orthogonal projection of H onto P(H).

2.4 Adjoint operators

Theorem 2.4.1. Let T € B(H,K), there ezists a unique operator T* € B(K,H) such that
(Tx,y) = (x, T"y) ;Yx € H,y € K.
Definition 2.4.2. The operator T* defined above is called the adjoint of T'.
Theorem 2.4.3. For any operators T, S € B(H) and o € C, the following properties holds
(i) (I7) =T.
(i) (T+S)*=T*+ 5*.
(iii) (aT)* =a T*.
(iv) (TS)* = S*T*.
V) TN = 7.
Proposition 2.4.4. Let T € B(H), then
(i) ker T = T*(H)*.
(ii) T(H) = (ker(T*))*.
Proposition 2.4.5. (Cx-property) If T € B(H), then
17T = |T|I*.
Corollary 2.4.6. If T € B(H), then T*T =0<=TT*=0<=T = 0.
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2.5 Classes of operators

Definition 2.5.1. An operator T' € B(H) is of finite rank if its range 7'() has finite dimension
(and that dimension is called the rank of T'); the set of finite rank operators will be denoted

F(H).

Clearly the sum of two operators of finite rank has finite rank, since the range is contained
in the sum of the ranges. Also, since the range of a constant multiple of 7" is contained in the
range of T" it follows that F () a linear subspace of B(H).

Remark 2.5.2. f T € F(H). Let xq,...,x, be an orthonormal basis for T(H). Then

n

Tx = Z (Tx, ;) x;, for every z € H.

i=1
Theorem 2.5.3. Let T' € B(H) be a bounded operator of rank n. Then there exists vectors
X1,..., %, € H and vectors yi,...,y, € H such that for every x € H, we have

n

Ty = Z (x, ;) y;.

i=1
The vectors yi, ...,y may be chosen to be any orthonormal basis for T(H)

Remark 2.5.4. For nonzero elements x,y € H. Consider the operator x ® y defined by
(z®y)z=(z,y)z, z€H.

Clearly z ® y is a rank one operator. By Theorem 2.5.3, it is clear that for any rank one
operator 1" there is x,y € H such that T'=z ® y.
Moreover if T' is of rank n, there exists vectors zy,...,x, € H and vectors ¥, ...,y, such
that for every x € H, we have
n
i=1

Proposition 2.5.5. F(H) is a x-two-sided ideal of B(H), which is to say a linear subspace
such that
B, By € B(H), T e .F(H) - BlTBQ,T* S F(H)

Remark 2.5.6. For finite rank operators in B(#) one can define a trace functional tr by

3

when

3

Lemma 2.5.7. For any x,y € H, we have

lz @yl = llz[ [lyll

Definition 2.5.8. An operator T' € B(H) is called
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(i) normal if TT* = T*T.

(i) self-adjoint if T = T*.

)
)
(iii) anti self-adjoint if T = —T*.
(iv) positive if (Tx,x) > 0 for all z € H.
(v) wnitary if T*T =TT* =1

)

projection if T = T? = T*.

(vi
Remark 2.5.9.

Note that the definition of projection given in the above theorem is equivalent to the one
(orthogonal projection) introduced in Definition 2.2.7.

T positive = T self-adjoint = T normal.

Any projection is a positive operator.

T' is unitary == 7' is normal.

Proposition 2.5.10. Let T € B(H). Then
(i) T is normal if and only if ||Tx| = ||T*x|| for all x € H.
(i) T is self-adjoint if and only if (Tx,x) is real for all x € H.

(iii) T is unitary if and only if T is an inner product preserving surjection.

2.5.1. Example. (Discrete diagonal) Let H be a Hilbert space with orthonormal basis (e, .
Let g : N — C be a bounded function. Define

Tr = Zg(n) (x,en) e, .

(This is a diagonal operator uniquely given by Te, = g(n)e,. )
Let us observe that
|7 = sup [g(n)] -
neN

As (Te,, e,) = <en,g(n)en> we see that

T r = Zm (z,en) en

for all z € H.
- T is self-adjoint <= g(n) = g(n) for all n € N (g is real).

- T is positive <= (Tx,z) > 0 for all x <=>_ g(n)| (z,e,)|* > 0 for all z € H. But this
is equivalent to g(n) > 0 for all n € N.
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- Tis unitary <= T*T' =TT* = I.

But 7*Tz = Y277, g(n)g(n) (z,en) en = 302, [g(n)* (z,e0)” ey
In other words, 7" is unitary <= |g(n)| = 1 for all n.

2.5.2. Example. Let x,y € H be distinct. Take the rank one operator x ® y defined by
(x®y)z=(zy)x, z€H.

For u,v € H we obtain

(x ®y)u,v) = (u.y) (v,0) = (u, @, 0y) = (u, 0,2) y) = {u, (y @ 2)o) |
implying
(zRy) =y,

In particular
(zRzr) =rx.

Now
(rey(rey) =yl @@e).

By exchanging the roles of x and y, we obtain
(zey)(@ey) =z’ y®y).
Remark 2.5.11. Assume that x and y are unit vectors. Since
(rey)(zey) =(r®)

and
(z2y)(rey) =YY

then (z® 1)’ =2r® 2z and (z ® )* =z ® x. Thus x ® x is an orthogonal projection.

2.6 Spectrum of an operator

Definition 2.6.1. An operator 7' € B(H) is said to be invertible if there exists an operator
S € B(H) such that T'S = ST = I. Here I denotes the identity operator in H.
The operator S when it exists is unique and is called the inverse of T. We denote S = T

Theorem 2.6.2. An operator T' € B(H) is invertible if and only if T* € B(H) is invertibe and
(T) = =(T71)

Theorem 2.6.3. Let T' € B(H) such that ||T'|| < 1. Then I —T is invertible and

(I-T)'=> 1"

n>0
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Definition 2.6.4. Let T € B(H).

(i) The spectrum o(7") of T' is the set of all A € C for which the operator 7" — Al does not
have an inverse in B(#). More precisely

o(T)={X € C: (T — M) has not an inverse in B(H)} .

(ii) The point spectrum of T' € B(H) is defined as
o,(T) ={X € C| (T — AI) is not one-to one }.
In other words, for each A € 0,(7T") there is a nonzero y in #H such that

Ty=M\y.

Basic properties of o(7T)
(i) For any A € o(T) we have |[A| < ||T.

(ii) The spectrum of a bounded operator T is always a closed, bounded and non-empty subset
of the complex plane.

(iii) The spectral radius, 7(T") of T is the radius of the smallest circle in the complex plane
which is centered at the origin and contains the spectrum o(T') inside of it. That is

r(T) =sup{|A|| A € o(T)}.

Note that 7(7T") < oo since the spectrum o(7') is always nonempty and compact subset

of C.

(iv) The spectral radius formula says that for any element T' € B(H), we have

H(T) = lim |7+

Theorem 2.6.5. Let T' € B(H) and o € C, Then
(i) o(T*) ={\: A€ a(T)}.

(i) If T is invertible then o(T™') = {5 : X € o(T)}.

> =

(ili) o(ad +T) = a+o(T).
Proposition 2.6.6. Let T' € B(H) be normal. Then the following statements hold:
(i) If Tx = A for some A € C and x € H, then T = \x.
(i) If Ay # Ao are complex numbers, then
Ker(T — MI) L Ker(T — Xo1).

Definition 2.6.7. An operator 7' € B(H) is said to be bounded bellow if there exists some
constant ¢ > 0 such that ||Tz|| > c||z|| for any x € H.
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Proposition 2.6.8. Let T' € B(#H) be a normal operator. Then

T s invertible in B(H) <= T is bounded bellow. (2.1)

Corollary 2.6.9. If T € B(H) is normal and A € o(T) \ 0,(T),
then (T'— NI )(H) is not closed.

Proof. 1t T—\I is one-to-one and (T'—\I)(H) is closed, then, by the Inverse Mapping Theorem,
there is a continuous linear map

S (T — M)(H) — H such that S(T" — M)z = «x for all z € H. It means that [|z] <
ST — AD)x||. As ||S|| # 0, we see that

1
T — XDzl > —||x]| .
If )z|| ||S|||| I

In view of Proposition 2.6.8, A € o(T'). O

Corollary 2.6.10. (Approximate Spectrum)
If T'e€ B(H) is normal, then X\ € o(T) if and only if there is a sequence (z,,) of unit vectors
such that |[(T' — X )z,|| = 0 as n — oo.

Proof. By Proposition 2.6.8 A € 0(T) <= Hiﬂlfl (T — A)x| = 0. O

Remark 2.6.11. Spectrum of a normal operator is equal to approximate point spectrum. Note
that the approximate spectrum of 7" is the set of A € C such that T'— AI is not bounded bellow.

Theorem 2.6.12. If T € B(H) is a normal operator, then the following statements hold:
(i) T is self-adjoint if and only o(T) C R.
(ii) T is positive if and only o(T) C R*.
(iii) T is unitary if and only o(T) C {z € C| |z| = 1}.
(iv) T is a projection if and only o(T) C {0, 1}.
Proposition 2.6.13. If T' € B(H) is normal, then
H(T) = |7
Proposition 2.6.14. For T' € B(H) the following conditions are equivalent:
(i) T is positive
(il) T = A*A for some A € B(H).

(iii) T = S? for some self-adjoint S € B(H). (S is denoted by T'/? and called the square root
of T).

Remark 2.6.15. If T is self-adjoint, then el is unitary. The converse also holds:

Proposition 2.6.16. For any unitary operator U € B(H) there is a self-adjoint operator
T € B(H) with |T|| < 27 such that U = e

Lemma 2.6.17. For any self-adjoint operator A we have ||A|| or —||Al| belongs to o(A).



Chapter 3

Maps Preserving Spectrum of Jordan
Products of Self-Adjoint Operators

In this chapter, we give a sketch of the proof of the main result of [17] concerning maps
preserving spectrum of Jordan products of self-adjoint operators.

3.1 Statement of the main result

Throughout this chapter, H denotes a complex Hilbert spaces, and B(#) denotes the C*-
algebra of all bounded linear operators on H. We denotes the set of self-adjoint (resp. anti-
self-adjoint) operators by Bg(H) (resp. B.(#H)). For T' € B(H), o(T) and r(7T') stand for the
spectrum and the spectral radius of T, respectively. Recall that if T' € B(*) is normal, then

[A]l = r(A).
Definition 3.1.1. The peripheral spectrum of an element T' € B(H) is defined by
o(T)={2€0(T):|z|=r(T)}.

Note that o,(7) C o(T).

Definition 3.1.2. Fix a positive integer £ > 2 and a finite sequence (i1, 42, - ,4,,) such that
{i1,i2,...,im} = {1,2,...,k} and there is an i, not equal to i, for all other ¢; that is, i,
appears just one time in the sequence. For operators Ay, --- , Ay, the operator,

AIOAQO---OAk:AilAig"'Aim+Aim"'Ai2Ai1

is called generalized Jordan product of Aq, As,---, Ay while m is called the width of the
product.

In particular when k& = 2, we get the well known Jordan product defined by

for any A and B in B(H).
Set A= B(H) or Bs(H) and let ¢ : A — A.

17
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Definition 3.1.3.

(i) We say that ¢ preserves the peripheral spectrum of the generalized Jordan product of
operators if

or (p(A1) 0o p(Ax) 0+ 0p(Ak)) = or(A10Az0---0Ay). (3.1)
for any operators A;, Ay, -+, A € A.

(ii) In particular, we say that ¢ preserves the peripheral spectrum of the Jordan product of

operators if
or (p(A) 0o p(B)) = o (Ao B) (3.2)

for any operators A and B € A.
(iii) We say that ¢ preserves the spectrum of the Jordan product of operators if
o (¢(A)o ¢(B)) = o(40B) (33)
for any operators A and B € A.

Lemma 3.1.4. If ¢ : B(H) — B(H) is a bijective map preserving the spectrum of the Jordan
product of operators then it preserves also the peripheral spectrum of the Jordan product of
operators.

Proof. Assume that relation (3.3) holds for any A, B € A. Let a € 0,(Ao B) and then
r(AoB)=|al and a € 0 (Ao B). Since

o (p(A)op(B)) = o(AcB),

then o € o (p(A) o p(B)). But from (3.3), we have r (p(A) o ¢(B)) = r (Ao B). Hence |a| =
r(p(A) o p(B)) and therefore « € o, (p(A) 0 9(B)). Thus o, (Ao B) C o, (p(A) o o(B)).
Since ¢ is a bijection, easy computation shows that

o (go_l(A) o 4,0_1(3)) = o0(AoB) (3.4)

for any operators A and B € A. By a similar reasoning one can easily shows that o, (Ao B) C
o (p7H(A) o (B)),VA, B € A. Accordingly o, (Ao B) D o, (p(A) o p(B)). O

In [17, 18, 23, 33, 34, 35], several authors study mappings through their action on Jordan
product. When A = B,(H), the authors in [17] show that ¢ satisfies condition (3.2) for all
A, B € Bs(H) if and only if there exist a scalar A € {—1,1} and a unitary operator U € B(H)
such that

©(A) = \UAU”

for all A € A, or
o(A) = \UATU*

for all A € A, where AT is the transpose of A with respect to an arbitrarily but fixed orthonor-
mal basis of H.
In [34], a similar result have been obtained for the generalized Jordan product of operators.
Note that maps preserving the spectrum of Jordan product of self-adjoint operators has been
established in [23].
The purpose of this chapter is to revisit the proof given in [17], since it will be needed for the
proof of our main result in Chapter 4. We use some arguments from [23] and [34].

We shall prove the following
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Theorem 3.1.5. A surjective map ¢ (no linearity of ¢ is assumed) from Bs(H) onto itself
satisfies

o (p(A)op(B)) = o(AocB) (3.5)

for any operators A and B € Bs(H) if and only if there exist a scalar X € {—1,1} and a unitary
operator U € B(H) such that
p(A) = \UAU”

for all A € Bs(H), or
0(A) = \UATU*

for all A € By(H). Here A" is the transpose of A with respect to an arbitrarily but fived
orthonormal basis of H.

In the sequel, we focus our attention to prove Theorem 3.1.5. We assume always that
¢ : Bs(H) — Bs(H) satisfies the conditions in Theorem 3.1.5.

3.2 Auxiliary results

Let us firstly establish several lemmas. Recall that for two nonzero vectors x and y in H, we
denote by x ® y the operator of rank one defined by

(z®y)(2) = (z,y)z.
Note that (z ® y)* = y ® x and that every rank one operator in B(H) can be written as z ® y.

Lemma 3.2.1. For any v € H and A € B;(H), we have

oc(Alz@z)+ (zr@x)A) = {0,(Az,z) £ ||Az| |||}, (3.6)
{£ (| Az| [lz[/} if (Az,z) =0
o(Alz®@x)+ (r@x)A) = {(Az, x) + || Az|| ||z||} if (Ax,x) >0 (3.7)

{(Az, z) — [[Az|| [lz[|} if (Az,z) <0.
and
[A(z @ z) + (z@2)A|| = [(Az,z)|+ [|Az] [z]|. (3.8)

Proof. For the proof of equalities (3.6) and (3.7), see [17, Lemma 2.2 or [34, Lemma 4]. See
also Corollary 4.2.7 for another proof.
For the last equality, firstly note that

Az @ z) + (z@z)A|| =r(Alz®@ )+ (@ x)A)
as A € Bs(H). The rest follows immediately from (3.7). O
Lemma 3.2.2. For A € B,(H), then
|A(z @ z) + (z @ z) Al =2 (3.9)

for all unit vectors x € H implies that A = A\ with A € {—1,1}.
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Proof. Recall firstly that for any x,y € H we have (see Lemma 2.5.7)
lz @yl = ll=l [lyl-

Assume now that ||A(z ® z) + (z ® z)A|| = 2 for all unit vectors x € H. By the triangle
inequality, we have

b
I

|A(z @ z) + (z @ x) Al
[Az|| (||| + [lz]| [[Az|
2[| Az|]

2| Al Nl = 2[[All

INIAIA

Thus ||A]] > 1 and ||Az| > 1 for any unit vector z € H. Now, since A € By(H), we have
always [|A|| or —||A|| belongs to o(A); (see Lemma 2.6.17). Therefore

2=[Alz®@z)+ (z@2)Al =r(Az @ z) + (z @ ) A).
From Lemma 3.2.1, we have

r(Az @) + (ze)d) = max({(Az,z) + ||[Az| x|, (Az, z) — [[Az] [l])
= [(Az, z)[ + [|Az]]

Thus
[(Az, z)| + [|Az]| [lz]] = 2 (3.10)
On the other hand, for all unit vectors = € H,
2[(Az,z)| = [(Az,z)|+[(Az,2)| < [(Az,2)| + ||Az|| = [[A(z ®2) + (z @ 2)A| = 2.

Therefore |(Az, z)| < 1 for all unit vectors z € H. Since A is self adjoint we infer that ||A] <1
and therefore ||A]| =1 and ||Az|| = 1 for all unit vectors = € H. Equation (3.10) writes

[(Az, z)| + | Az| [lz]] = 2=2[ Az [l].
Accordingly,
[(Az,2)| = |[Az| [lzf| =1

for any unit vector x € H. Thus Ax and x are linearly dependent for any unit vector x € H.
Therefore A = AI for some A € C. Clearly A € {—1, 1} by Equation (3.9) and since A € B,(H).
This complete the proof. O

Lemma 3.2.3. o(I) = A\ with A € {—1,1}.
Proof. Since ¢ satisfies (3.2), then if A = B we get
2r(A)? = 1(24%) = r(2p(A)%) = 2r(p(A))*.

Accordingly

For any A € Bs(H), we have
or (Al + IA) = o (p(A)p(I) + (I)p(A)) -
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It yields that
20(A) = o (p(A)p(I) + ¢(I)p(A)),

for every A € Bs(#H). Since the spectral radius and the norm coincide on B,(H), it yields
2[| Al = lle(A)p (D) + (I e(A]

for every A € Bys(#H). . Pick a unit vector y € H, there exists A € B;(H) such that ¢(A) = y®y.
We have ||A]| = r(A) =r(¢(A)) = r(y ® y) = 1. From which we infer that

lp(A)p(D) +(De(A)] = 2,
for any A € Bs(H). By Lemma 3.2.2, it yields that ¢(I) = A\I with A € {—1,1}. O

Remark 3.2.4. If o(I) = —1I, considering —¢, then —¢ satisfies the conditions in Theorem
3.1.5. So we may as well assume (/) = I in the following, and hence

o (p(4)) =0 (A) (3.11)
for every A € Bs(H).

Lemma 3.2.5. Let H be a Hilbert space of dimension at least three, and let 0 # A € Bs(H).
Then the following statements are equivalent.

(1) A has rank one.
(2) For any X € Bs(H), 0 (AX + X A) contains 0 and at most two nonzero elements.
Proof. See the proof of Lemma 4.2 in [23]. O
The next lemma was proved in [20, Lemma 3.3].

Lemma 3.2.6. Let A, B € Bs(H). If

| (Az, ) | + [[Az]| [lx]| = | (Bx,z) [ + || Bz ||z
holds for all x € H, then A = +£B.
Lemma 3.2.7. For any A, B € Bs(H), the following statements are equivalent.
(1) A= B.
(2) 0(AX + XA) =0(BX + XB) for all X € By(H).
Proof. This implication (1) = (2) is trivial. Conversely, assume that

o(AX +XA) = o(BX+XDB) (3.12)

for all X € By(#H). By Lemma 3.2.1, we get

[A(z @ z) + (z@2)A| = r([(Az,z)| + [[Az]| [|z[)
= [[Blz®z)+ (x@zx)B|
= [(Bz,z)|[ + || Bzl ||z

for any x € H. Then by Lemma 3.2.6, we infer that A = +B. Evidently, when X = I, then
from (3.12) we get 0(A) = o(B). Thus A = B. O
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Corollary 3.2.8. ¢ is bijective.

Proof. ¢ is surjective by assumption. Injectivity follows from previous lemma. O
Lemma 3.2.9. ¢ preserves rank one projections in both directions.

Proof. Let A be a rank one projection. Then there exists x € H such that A = z ® z. Set
B = ¢(A). We will prove that B is a rank one projection. Since B € Bs(H), then from Eq.
(3.11), we have

|B|| =r(B) =r(p(A) =r(4) = 1.

Thus B # 0. Now, by relation (3.2), we have

ox (Bop(X)) = ax(p(A)op(X))
= o0,(AoX)

for any operators X € Bg(H). Since A is of rank one, then by Lemma 3.2.5 we have o, (4 o X)
contains 0 and at most two nonzero elements. Thus o, (Bo¢(X)) = 0, (Ao X) contains 0
and at most two nonzero elements, for every X € B,(#). Since ¢ is onto, again Lemma 3.2.5
implies that B = ¢(A) is also of rank one. Since B € Bs(H) and every rank one self-adjoint
operator has the form o,z ® z. So, B = p(x ® ) = o,y ® y for some a, € {—1,1} and y € H.
Also, by (3.3) we have

{01} = 0(4) = o(p(A)) = o(ayy @ y) = {0, [ly[I*}.
Thus ||z|| = ||y]| = 1 and B is a rank one projection. O

Lemma 3.2.10. Let A,C € Bs(H). If tr(A o B) = tr(C o B) for every rank-one projection
B € Bs(H), then A= C.

Proof. Let B = © ® x, where x is a unit vector. Then B is a rank-one projection and every
rank-one projection takes this form. Also, we have

Ao B=Az@z)+ (r@r)A=Ar@r+ 1@ At =Ar @ x4+ v ® Az,
Therefore

tr(AoB) = tr(Az®@z+2® Ax)
= (Az,z) + (z, Ax)
= (Az,z) + (Az,z) = 2 (Az,z) .

Similarly, tr (C' o B) = 2{(Cx, z).
Now by assumption, we have tr(Ao B) = tr(C'o B). Thus (Az,z) = (Cz, x) holds for every
unit vector z € H, which entails A = C since H is complex. O]

3.3 Proof of Theorem 3.1.5

Let A € Bs(H) and y ® y be a rank one projection. Note that there exists © € H such that
p(lr®z) =y ®y, by Lemma 3.2.9. Then Eq. (3.5) implies that

o(Acx®r) = o(p(A)oplr@r)) =o(p(A)oyxy)
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Or by Lemma 3.2.1 we have
o(Acz@r) = o(Alx®@x)+(z@x)A) = {0, (Az,z) £ ||Az| [lx]|},

and

o(pA)oy®y) = o(eA)(y@y)+ (yy)e(A) =1{0,(e(A)y,y) £ le(A)yl lyll}-

Which entails that

tr(p(A)op(B)) = tr(p(A)oy®y)
= tr(Aox®ux).

Now, let us check that ¢ is linear. Let A, A" € Bs(H) be arbitrarily given and let B =z ® z €
B(H) be a rank-one projection. By Lemma 3.2.9, we know that ¢(B) is a also rank one
projection. Set p(B) =y ® y. Then we get

tr(p(A+A)op(B) = tr((A+A)oz@ur)

= tr(doz®@x)+tr(Aoz®u)

= tr(p(A) o p(B)) + tr (p(A') o p(B))
= tr((p(4) +¢(4) o p(B)).

By Lemma 3.2.9, ¢(B) runs over all rank-one projections when B runs over all rank-one
projection. Hence Lemma 3.2.10 ensures that

YA+ A") = p(A) + p(4),

i.e., ¢ is additive. Similarly, we can check that p(ax) = ap(z) for any x € H and a € C.
Thus ¢ is linear. Moreover it is a bijection by Corollary 3.2.8. Thus ¢ is a linear and

bijective map such that
[Al = 7(A) = r(e(A)) = lle(A)]

for all A € Bs(H), by 3.11. The conclusion follows now from [27, Theorem 2] and from the
classical result that every automorphism (respectively, anti-automorphism) of B(#) is inner.
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Chapter 4

Maps preserving spectrum of skew Lie
products of operators

This chapter deals with the problem of characterizing surjective maps ¢ : B(H) — B(K)
preserving the spectrum of skew Lie products of operators. The content of this chapter is
a continuation of [1] and an extended version of our paper [4] accepted for publication in
Kragujevac Journal of Mathematics.

4.1 Introduction and statement of the main result.

Throughout this chapter, H denotes an infinite-dimensional complex Hilbert spaces.

Definition 4.1.1. The peripheral spectrum of an element 7" € B(H) is defined by
ox(T) ={z€0(T):[z| =r(T)}.

Given two operators A and B in B(#). The product AB + BA* is called the skew Jordan
product of A and B. Also, the skew Lie product of A and B is defined by

[A, B, == AB — BA*.

Definition 4.1.2. Let ¢ be a map from B(H) into itself. We say that ¢ preserves the skew
Lie product of operators if

o ([¢(A), ¢(B)l.) = o([A Bl.) (4.1)
for any operators A and B € B(H).

The objective of chapter is to describe surjective non linear maps ¢ : B(H) — B(H) preserving
the skew Lie product of operators. Namely we shall prove the following.

Theorem 4.1.3. A surjective map ¢ (no linearity of ¢ is assumed) from B(H) onto itself
satisfies (4.1) if and only if there exists a unitary operator U € B(H) such that

©(A) =UAU*, for all A € B(H)

or

©(A) = —UAU*, for all A € B(H).

25
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As an immediate corollary of the above theorem, we characterize non linear maps preserving
the skew Jordan product.

Corollary 4.1.4. A map ¢ (no linearity of ¢ is assumed) from B(H) onto itself satisfies
o (p(A)p(B) + ¢(B)p(A)") = o(AB+ BA"), (4.2)
for every A, B € B(H) if and only if there exists a unitary matriz U € B(H) such that
©(A) =UAU*, for any A € B(H)

or

o(A) = —UAU*, for any A € B(H).
Proof. Set T +— ¢(A) :=ip(iA). Easy computations entail that ¢ satisfies

o ([p(A), p(B)l.) = o([A, Bl.) (4.3)
for any A, B € B(#H). By Theorem 4.1.3 ¢ has the desired form. O

Remark 4.1.5. . Firstly, note that the only restriction on the map ¢ is surjectivity; no linearity
or additivity or continuity is assumed. Also, we point out that the consideration of maps ¢
from B(H) onto itself is for the sake of simplicity. Our result and its proof remains valid in
the case where ¢ is a surjective map from B(H) onto B(K) where H and K are two different
Hilbert spaces.

The case of finite dimensional Hilbert spaces was considered in [1] where it is shown that
the theorem 4.1.3 remains valid without the surjectivity assumption of the map . The proof
given therein is based on a density argument and is completely different from the one presented
in the current thesis.

4.2 Preliminary results

To prove Theorem 4.1.3 some further tools are needed which are developed in this section.
Given an operator A € B(H) and h € H, note that

[z@y, Al (h) = (z®@y)A-Alz®y)")h
(z@y)A—Aly®@a))h
= (z®y)Ah— Ay ®@x)h
(Ah,y) x — (h,z) Ay
(h, A*y) x — (h,z) Ay, (since (Ah,y) = (h, A*y))
(z® A"y)h — (Ay @ x)h,

Thus
z®y A, =20 (A%Y) — (Ay) @,

which is an operator of rank at most two. Similarly, we have
Az@yl, =Ar®y—r® Ay.

It is well known that every Hilbert space H # {0} has an orthonormal basis (ex)rer. For any
A € B(H), the transpose AT of A with respect to the basis (eg)res is defined as the unique
operator such that

(Aey,e;) = (ATej en)
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for any j, k € I.

For any x = g Trer = E (x,e) ey, we write

kel

We begin with the following.

kel

T = E Ekek.

kel

Lemma 4.2.1. For any x,y € H, we have

(zey) =je1.

Proof. For any h = Z hrer, we have

kel

(z®y)' h

Y {@oy) he)e,

jel

Z Z hk <(f13 X y)Tek, €j> €;
jel kel

Y iz @y)es,en) e
jel kel

DY hl(x @ y) er. ej)e;
jel kel

D) T {(z@y) e e)e
jel kel

> @ y)h,e;)e,

jel

> {y@z)hej)e;

jeI

Z <Fl’7$> <y,€j>€j = <ZE, FL> Z (y,ej>ej = <£U,h> 1.

jel jel
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Or it is easy to see that (z,h) = (h,Z). Thus (z ® y)"h = (h,Z) . Accordingly (z ®y)" =

J® I

The next Lemma is quoted from [1]. We include its proof for the sake of completeness.

Lemma 4.2.2.

For any nonzero vectors x,y € H and A € B(H), we have

(1)

o(lz®y, Al) =

(2)

o([Az@yl) =

{0, (Az,y) — (Ay,z) £ AA(x,y)}

DN —

{O, (Az,y) — (z, Ay) + AA(x,y)}

N | —

]

(4.4a)

(4.5a)
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where ,

Aa(z,y) = ((Az,y) + (Ay, x))" — 42| (A%y,y)
and

AA(:U7Z/) = (<£L‘,Ay> + <Ax>y>)2 —4 <IL’,y> <A:U7Ay> .

Proof. Assume that there is a nonzero scalar « in o ([ ® y, A],) and let h be a nonzero vector
in H such that [z ® y, A].h = ah. It follows that

(Ah,y)x — (h,x)Ay = ah, (4.6)
and consequently,
(Ah,y)||z|* = (b, 2)(Ay, z) = alh, z), (4.7)
and
(Ah,y)(Az,y) — (h,2)(A%y,y) = a(Ah, y). (4.8)

Observe that (h,z) # 0. Indeed, if (h,z) = 0, then from (4.7) it follows that (Ah,y) = 0,
which is impossible since a # 0 and h # 0. Now, let us distinguish two cases.

Case 1. If (A%y,y) # 0. Then, by Eq. (4.8) yields (Ah,y) # 0. Hence, from (4.7) and (4.8),
we see that

—a? + ((Az,y) — (Ay, z)) o + (Ay, 2) (A, y) — [|z]|*(A%y, y) = 0. (4.9)

1
Accordingly, o = 3 ((Ax,y) — (Ay,x) + AA(x,y)>.

Case 2. If (A%y,y) = 0. Then, (z®y)A— Aly®x)) Ay = —(Ay,z)Ay. Moreover, if
(Az,y) + (Ay,z) # 0 we have (zr®y)A—Aly®@x))z = (Az,y)z where we put z = = —
= Ay. Thus

(Az,y)+(Ay,z)
o ((z@y)A—Aly @) = {0, (Az, y), —(Ay, 2)}.

Finally, if (Az,y) + (Ay,z) = 0 then ((zr®y)A — A(y®x)) is of rank at most one and
o((z@y)A—-Aly®)) ={0,(Az,y)}.
For the next statement, observe that

Az @yl = Az @y — 2 ® Ay.

Let a be a nonzero scalar in o ([x ® y, A]l,) and let h be a nonzero vector in H such that
[A, x ® y|].h = ah. Tt follows that

(h,y)Ax — (h, Ay)x = ah, (4.10)
and consequently,
(h,y) (Az,y) — (h, Ay) (z,y) = alh,y), (4.11)
and
Accordingly
(h,y)(h, Ay) ((a — (Az, y))(a + (2, Ay)) + (2, y) (Az, Ay)) = 0. (4.13)

A similar argument as above yields that

1

o= 5 (tAz, ) — (x, Ay) = /Ay + (Ar, ) — 4 {n,) (Ar, Ag) )
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Corollary 4.2.3. For any two operators A and B in B(H) the following statements are equiv-
alent.

(1) A=B.
(2) o([X, Al.) = o([X, B].) for every operator X € B(H).
(3) o([X, Al.) = o([X, B].) for every operator X € Bo(H).
Proof. The implications (1)=(2)== (3) are trivial. Now, assume that
o([X, Al,) = o([X, B].) (4.14)

for every operator X € B,(H). In particular, when X = i(x ® z), we get from (4.14) and
Lemma 4.2.2-(1)

o(li(z®x),Al.) = {0,(Ax,z) £/ (A%z,z)}
= o ([i(zr®x),Bl.) ={0,(Bzx,z) £ \/(B*x,x)}

for any unit vector x € C". We shall con81der two cases.

Case 1. Suppose that (Az,z) + /(A%x,z) # 0 and (Ax,z) — \/(A%x,x) # 0. Then, the
scalars (Bx,x) + +/(B?z, z) are nonzero also. If (Ax,x) +\/(A%z,z) = (Bzx,x) + /(B%x,x)
and (Az,z) — \/(A%zx,z) = (Bz,z) — \/(B%z,x). By adding the two previous equations
yields that (Ax,z) = (Bz,z). Similarly, if (Az,z) + \/(A%z,z) = (Bx,z) — y/(B%z,z) and
(Az,x) — \/(A%x,z) = (Bx,x) + \/(B%x,x), one can get easily that (Az,z) = (Bx,x).

Case 2. Suppose that (Az,z) + /(A%z,x) = 0 or (Az,z) — \/(A%z,z) = 0. It follows that
(Bx,z) + \/(B?x,z) = 0 or (Bx,x) — /(B?z,z) = 0. A similar argument as in the first case

)-

r
entails that (Az,z) = (Bx,z). Accordingly, (Az,x) = (Bx,x), for any unit vector z € C".
Thus A = B as desired. O

Lemma 4.2.4. Let A be in B(H). Then o([A, X].) = {0} holds for any operator X € B(H)
if and only if A= al, for some a € R.

Proof. The "if” part is obvious. To check the ”only if” part, assume that
o([A, X].) = {0}
holds for any operator X € B(H). As A — A* is anti-self-adjoint then
A = A = r(A =A%) = r([A,1].) = 0,

it follows that A = A*. If there exists a nonzero vector x € H such that {x, Az} is a linearly
independent set. Take X = 2 ® x. Then by Lemma 4.2.2-(2) we have

7 ([, X).) = 5 {0, +-/TAz 27 — el AT}

This is a contradiction since (Az,x)? — ||x||? ||Ax||? # 0. Therefore A is a scalar operator. []
Lemma 4.2.5. If A € B(H) is nonzero operator, then
(1) A is a self-adjoint operator if and only if o([X, Al.) C iR, for any operator X € B(H).
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(2) A is anti-self-adjoint if and only if o([X, A].) C R, for any operator X € B(H).
Proof.

(1) If A = A* then o([X, A]l,) C iR, since [X, A]l, = XA — AX* = XA — (XA)*. To prove
the converse, assume that o([X, A].) C iR for any operator X € B(H). In particular by
Lemma 4.2.2-(1) we get

o([r®y,Al) = % {0, (Az,y) — (Ay,z) + AA(x,y)} C iR
for any z,y € H. Which yields that

0 = R{(Az,y) — (Ay, 7)) = (A = A)'z,y) + (y, (A = A%)z) .
Replace x by iz in the above equality, we get

(A= A)z,y) — (y, (A= A")z) = 0.

Accordingly ((A — A)*z,y) =0, for any =,y € H. Thus A = A*.

(2) We have
AeB,(H) < iAe€B,(H)
<~ o([X,i4],) CiR,VX € B(H) (By Lemma 4.2.5-(1))
<~ i0([X,A],) CiR,VX € B(H) (Since o([X,14].) =io([X, A].))
— o([X,A]l,) CR,VX € B(H).
O
Lemma 4.2.6. For any x € H and A € B(H), we have,
o(Ax @)+ (z@w)A) = {001, 0},
where
a) = (Az, z) + / (A%, x) ||z]|?, and s = (Ax,x) — \/(A2%z, ) ||z|?
Proof. Straightforward computation entails that
(i) @z, Al, =ic(A(z®@x) + (@ 2)A) =c(Az@x + 2 @ A'x).
Hence, by Lemma 4.2.2 the result follows. O

Corollary 4.2.7. For any v € H and A € Bs(H), we have
(1)
oAz @)+ (x@x)A) = {0,(Az,z) £ [|Az|| [lz|}-
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(i)

{ ]| Az]| [|[} if (A, x) =0
ox(Alz@z) + (z@r)A) = ¢ {{Av,z) + | Az|| [lz|[} o (Az,z) > 0.
{(Az, ) — [[Az] =[]} i (Az,z) <O.

Proof. By Lemma 4.2.6, we have

(A e 2)+(@o2)d) = {0, (Ar,) £ /[Xz.2) [+
— {o, (Az,z) + \/(Az, A*z) HxHQ}
= {0 (Az,2) = /(Az As) [P
— {0, (Az, ) £ /[ Az]? ||1U||2}
{0,{Az, z) & [ Az]| |||}
Therefore
{=l Ax]] [l } if {Az, z) =0
or(Alz®z)+ (z@2)A) = § {(Az,z) +||Az| [|=]|} if (Az,z) > 0.

{{Az,z) — ||Az|| ||z||} if (Az,z) <O.

4.3 Proof of Theorem 4.1.3

The ”if” part is obvious. We will complete the proof of the "only if” part after proving several
claims.

Claim 1. ¢ is injective.

Proof. For A, B € B(H), assume that ¢(A) = ¢(B). Then, for every X € B(H), we have
o([X,A) = o(lp(X), e(A)]) = o ([p(X), p(B)]. = o([X, Bl.) .

It then follows from Corollary 4.2.3 that A = B, and ¢ is injective. O

Claim 2. ¢ preserves self-adjoint and anti-self adjoint operators in both directions. In partic-
ular, we have ¢(0) = 0.

Proof. Pick up an operator A € B(H). If A € Bs(H), then
o ([p(X),o(A)].) = o([X,A]) CiR.

As ¢ is surjective then Lemma 4.2.5-(1) entails that ¢(A) € By(H). Similarly if A € B,(H),
we have o([p(X), ¢(A)].) C R. By Lemma 4.2.5-(2), we get ¢(A) € B,(H).

For the converse, note that ¢ is bijective and ¢! satisfies Eq. (4.1) A similar discussion
entails that if o1 (A) € Bs(H) (resp. ¢ '(A) € B,(H) then so is A. O

Claim 3. ¢ is homogenous, i.e p(aA) = aA, for any o € C and A € B(H).
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Proof. For any a € C and A, X € B(H), we have

o([p(X), p(@A)].) = o([X, Al
= ao([X,A])
= ao([p(X),p(A))

= o([p(X), ap(A4)]).

Hence
o(lp(X), plad)l,) = o([p(X), ap(A)].)
for any X € B(H). Since ¢ is bijective, we infer from Lemma 4.2.4 that p(aAd) = ap(A4). O
Claim 4. There exists a unitary operator U € B(#) and a scalar ¢ € {—1,1} such that either
e o(A) = cUAU"* for every A € By(H), or
o p(A) = cUATU" for every A € B,(H).
Proof. Let A, B € B(H). From Claim 3 and (4.1), we have

o (p(A)p(B) +p(B)p(A)") = —o(p(id)p(iB) — p(iB)p(iA)")
— —o(—AB — BA")
= o (AB+ BAY).
Thus
o (p(A)p(B) + p(B)p(A)") = 0 (AB + BA"), (4.15)

for any A, B € B(H). Now Claim 2 implies that p(A) € Bs(H) whenever A € By(#H). This
together with Claim 1. entail that the restriction @p ) : Bs(H) — Bs(H) is well defined
and bijective. Moreover Eq. (4.15) implies that

o (p(A)p(B) +¢(B)p(A)) = o(AB+ BA),

for any A, B € Bs(H). Therefore by [17, Theorem 3.1] (see also [34, Theorem 2] there exist a
unitary operator U € B(H) and a scalar ¢ € {—1, 1} such that either

e o(A) = cUAU* for every A € By(H), or
o p(A) = cUATU* for every A € By(H).

In particular Claim 4 implies that () = ¢ = £1. In the sequel we may and shall assume
that ¢(I) = I. Define a map v : B(H) — B(H) by

V(A) = U p(A)U
for every A € B(#H). Then 1 is a bijective maps a satisfying

o (P(A)Y(B) + ¢(B)Y(A)") = o(AB+ BAY), (4.16)
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for every A, B € B(H). Moreover, we have either

W(A) = U (AU = U*(UAU*)U = A, (4.17)
for any A € Bs(H), or
Y(A) = U p(A)U =U(UATUU = AT, (4.18)
for any A € B,(H).
Claim 5. The form (4.18) cannot occur.

Proof. Assume for the sake of contradiction that ¢)(A) = AT for any A € By(H). Let {e;,j € I}
be the orthonormal basis with respect to which A" is computed, for every A € By(H). To get
a contradiction we shall prove that (Az, x) = ((A)zx, x) for any x € H and A € Bs(H). To do
so it suffices to prove that

(Aeg, 1) = (Y(A)ex, 1) (4.19)
for any k and [ in I and A € B(H).
Let A € B(H) and pick up two vectors e and ¢; in {e;,j € I}. For any o, € R, set
a = aey, + Be;. Note that
Ya®a)=(a®a) =a®a.

Now, by (4.16) we have

c((a®@a)A+Ala®a)) = o((a®a)A+ Ala®a)*)
= o (Y(a®a)y(A) +Y(A)Pla®a))
= o((a®@a)p(A) +¢(A)(a®a)’)
= o((a@a)p(A) +y(A)(a®a)).
Accordingly
o((a®@a)p(A) +¢(A)(a®a)) = o((a®a)A+ Ala®a)). (4.20)

Corollary 4.2.6 together with (4.20) entail that

{0, (0(A)a.a) + [lall To(AP @)} = {0, (A, o) + v/ (A%, a] Jall}-
Accordingly (¢(A)a,a) = (Aa,a). Since o and 8 are arbitrary, we infer that

(Aex, er) = (Y(A)ex, ex)

and
(Aler +e0), (er + 1)) = (V(A)(er + 1), (er +€1))
for every k,l € I. Since A and ¥(A) are in By(#H), we infer that

(Aeg, e;) = (V(A)eg, ) (4.21)
This in particular implies that )(A) = A for every for any A € Bs(#H). This is impossible
since ¢(A) = AT for any A € By(H). O

Claim 6. ¢(A) = A for any A € B(H).

Proof. We have ¥(A) = A for any A € Bs(H). For any A € B(#), using a similar reasoning as
above, one can show that (Az, z) = (Y(A)z, z) for any © € H. Hence, (A) = A as desired. [
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