PROBABILISTIC STRATEGIES IN GROUP THEORY

A Thesis submitted to the Department of Mathematical Sciences for completing the degree of

MASTER OF PURE MATHEMATICS (ALGEBRA)
by

BAYAN KHALED ALLHEBI
under the supervision
Prof. Dr. AHMAD MOHAMMED ALGHAMDI

12/9/1441 H.
$5^{\text {th }}$ May 2020

الستراتيجيات احتمالية في نظرية الزمر

إعداد

$$
\begin{aligned}
& \text { الدرجه } \\
& \text { اللاجستير في تخصص الرياضيات البحتة (جبر) }
\end{aligned}
$$

اللخص

نظرية الزمر ونظرية الاحتمال هما علمان مستقلان، ومع تطور العلوم أصبح من الممكن ربط العلمين في إتجاه جديد يتيح لنا حساب احتمال وجود ميزة معينة في الزمرة. الهـف من هنا العـا البحث هو مسح و دراسة وفهم والمساهمة في مفهوم حساب احتمالية وجود ميزة معينة في أي زمرة متهية G ، بإستخدام التعريف الرياضي للاحتمال للمساعدة في حل بعض المشاكل في نظرية الزمر. يناقش هذا البحث مفهوم حساب الاحتمالية في أي زمرة متهية G للميزات التالية : تبادل عنصرين في الزمرة G ، متتج الوتر غير الأيبيلي

 . أخيرًا، سيتم إنشاء نظرية جديدة مكافئة تحسب احتمال تبادل عنصرين في الزمرة G بإستخدام مههوم ثوابت البنية الجبرية مع تقديم أمثلة على النظرية الجديدة.

نتظم هذا البحث على النحو التالي: الباب (مفاهيم و معلومات أساسية ضرورية لتقديم موضوع البية البحث الباب ץ يتم فيه دراسة مفهوم درجة التبادلية النسبية. الباب الباب \& يتم فيه دراسة مفهوم الدرجة الخارجية النسبية. الباب 0 يتم فيه دراسة مفهوم طرق الاحتمالات نظرية الكتلة ومناقشة النتائج الرئيسية في هذا الموضوع. بينما يحتوي الباب 1 على مساهمتتا و بصمتّا فيا فيا تطوير هذا العلم بإنشاء نظريه جديده هي الأولى من نوعها والتي تستخدم مغهو منا هذا الإتحاه مع ذكر أمثله عده عليها، وبذلك يتكون لدينا الاينا الأساس اللذي يسمح بإستخدام هذا المهوم و البناء عليه مستقبلاً في هذا الإتجاه.

Abstract

The aim of this research is to survey, study, understand and contribute to the concept of calculating the probability of a specific feature being in any finite group G, using the regular mathematical definition of probability. This concept is a new trend that connects group theory and probability theory to help solve some problems in group theory. We will study the concept of calculating the probability in any finite group G for the following features: commute of two elements in group G, the non-abelian tensor product for two elements in G when it is equal to the identity element of G , the non-abelian exterior product for two elements in G when it is equal to the identity element of G , and choosing a particular p-block B with respect to the chosen prime number p. Lastly, a new equivalent theorem will be established that calculates the probability of commute of two elements in group G by using the concept of structure constants. Examples of the new theorem will be provided.

Notations

$\mathbb{Z}, \mathbb{Z}^{+}$	Integers number, Positive integer
\mathbb{C}, \mathbb{N}	Complex number, Natural number
\mathbb{R}	Real number
X	Set
\emptyset	The empty set
G	Finite group
F	Field
S_{n}	Symmetric group of degree n
A_{n}	Alternating group of degree n
$D_{2 n}$	Dihedral group of degree 2n
C_{n}	Cyclic group of degree n
V_{4}	Klein four-group $\left(\left\langle a, b: a^{2}=b^{2}=(a b)^{2}=1\right\rangle\right)$
$A \triangleleft B$	A is a normal subgroup of B
$\|G\|$	Order of G
1_{G}	The identity element of G
$\operatorname{ker}(\alpha)$	Kernel of the function α
$\operatorname{Im}(\alpha)$	Image of the function α
a^{b}	$b^{-1} a b$
$\operatorname{Stab}_{G}(x)$	The stabilizer of x in G
$O(x)$	The orbit of x
$\sigma_{g}(x)$	Action of S_{n} on the set X
$C_{G}(x)$	Centralizer of x in G
$C(x)$	Conjugace class of x
$a \sim b$	a is a conjugate to b
p	Prime number
p-group	Group of order $p^{a}, a \in \mathbb{N}$
$\operatorname{Fix}_{X}(G)$	All elements in a set X which fixed by the group G
$\alpha R \beta$	$\exists g \in G: \beta=g \cdot \alpha, \alpha, \beta \in X$
ن̇	Disjoint union
a / b	b divides a
$G L(n, F)$	General linear group of degree n over a field F
	Group homomorphism function from G to $\mathrm{GL}(\mathrm{n}, \mathrm{F})$ of degree n
χ	Function from G to F, determined by $\chi(g)=\operatorname{trace}(\rho(g))$
$k(G)$	Number of conjugace class of G
$\chi_{1}, \ldots, \chi_{k(G)}$	Irreducible characters of G
$\operatorname{Irr}(G)$	Set of all irreducible characters of G ($\left\{\chi_{1}, \ldots, \chi_{k(G)}\right\}$)
\equiv_{p}	Congruent modulo p

B	p-block
$d(\chi)=d$	The defect number of an irreducible character χ
$\chi(1)_{p}$	The p-part of $\chi(1)$
$\|G\|_{p}$	The p-part of $\|G\|$
$d(B)$	The defect number of a p-block B
$h(\chi)$	The height number of an irreducible character χ
D	The defect group
$\operatorname{Irr}(B)$	The set of all irreducible characters which belong to a p-block B
$k(B)$	The order of $\operatorname{Irr}(B)$
B_{0}	The principal p-block
$a \equiv b(\bmod \mathrm{n})$	$a-b$ is divisible by n
$P(G)$	Probability of G
G^{\prime}	Commutator subgroup of G
[H, K]	
{[h, k]: } h \in H , k \in K \} \rangle	
$\left\langle x_{1}, \ldots, x_{n}\right\rangle$	The subgroup generated by $\left\{x_{1}, \ldots, x_{n}\right\}$
$G_{1} \times \ldots \times G_{n}$	The direct product of G_{1}, \ldots, G_{n}
I_{n}	$n \times n$ identity matrix
K	Class sum
$\mathbb{C}[G]$	Group algebra
ω_{χ}	Function from $Z(\mathbb{C}[G])$ to \mathbb{C}, which dependin on χ
$X^{\text {g }}$	Set of points of X which fixed by the element g of G
X / G	Number of orbits of G acting on X
[x, y]	$x^{-1} y^{-1} x y$
\otimes	Non-abelian tensor product
\wedge	Exterior product
κ	The map from a group of non-abelian tensor product to the commutator group
κ^{\prime}	The map from a group of non-abelian exterior product to the commutator group
J(G,H,K)	Kernel of κ
M(G,H,K)	Kernel of κ^{\prime}
$\mathrm{C}_{G}^{\otimes}(x)$	Tensor centralizer of x with respect to G
$\mathrm{C}_{\hat{G}}(x)$	Exterior centralizer of x with respect to G
Z(G)	Center of G
$\mathrm{Z}^{\otimes}(G)$	Tensor center of G
$\mathrm{Z}^{\wedge}(G)$	Exterior center of G
d(H,K)	Relative commutativity degree of H and K
$\mathrm{d}^{\otimes}(H, K)$	Relative tensor degree of H and K
$\mathrm{d}^{\wedge}(H, K)$	Relative exterior degree of H and K
$P(\chi)$	The probability of ordinary irreducible character χ
$P(B)$	The probability of a p-block of G
$C_{G}(H)$	Centralizer of a subgroup H in G
ξ	The probability of a p-block of defect zero
$[G: H]$	The index of H in G
S^{*}	The set of all p-blocks of the group G relative to a fixed prime number p
$\operatorname{dim}_{F}(A)$	Dimension over F of A
iff	if and only if

List of Tables

1.1 The character of S_{4} 10
1.2 The 3 -blocks of S_{4}. 10
1.3 The defect group of S_{4}, when $p=3$. 11
1.4 The 2-blocks of S_{4}. 11
1.5 The defect group of S_{4}, when $p=2$. 12
1.6 The character of S_{3} 12
1.7 The 2-blocks of S_{3}. 12
1.8 The defect group of S_{3}, when $p=2$. 13
1.9 The 3 -blocks of S_{3}. 13
1.10 The defect group of S_{3}, when $p=3$. 14
1.11 The character of $G L(3,2)$. 14
1.12 The 7-blocks of $G L(3,2)$. 14
1.13 The defect group of $G L(3,2)$, when $p=7$. 15
1.14 The character of D_{8}. 15
1.15 The 2-blocks of D_{8}. 16
1.16 The character of V_{4} 16
1.17 The 2-blocks of V_{4}. 17
2.1 Commute Elements in S_{3}. 23
2.2 Commute Elements in D_{8} 24
2.3 Commute Elements in S_{4}. 25
2.4 Commute Elements in A_{5} 27

Contents

Abstract i
Notations ii
List of Tables iv
Introduction vi
1 Basic Concepts 1
1.1 Group acts on a set 1
1.2 Characters 6
1.3 Blocks 8
2 Relative Commutativity Degree 18
2.1 Probability of commuting elements in group theory 18
2.2 Exampels 23
2.3 Probability of a commutator that is equal to a given element 28
3 Relative Tensor Degree 35
3.1 Compatiplity Action and Non-abelian Tensor Product 35
3.2 Tensor Centralizer and Relative Tensor Degree 41
3.3 Results and Boundary of Relative Tensor Degree 45
4 Relative Exterior Degree 48
4.1 Non-abelian Exterior Product 48
4.2 Exterior Centralizer and Relative Exterior Degree 50
4.3 Results of Relative Exterior Degree 54
5 Probabilistic Methods In Block Theory 57
5.1 Probability of p-blocks 57
5.2 Examples 58
5.3 Relations with some current conjectures 59
6 The Structure Constants and Probabilistic Methods 65
6.1 The Structure Constants of an Algebra 65
6.2 Center of Group algebra $Z(F[G])$ 66
6.3 Application of Probability Methods with examples 67
Bibliography 70

Introduction

Group theory and Probability theory are independent sciences. With the development of science, it became possible to link the two sciences together in a new direction. The new direction allows us to calculate the probability of a specific feature being in a group. The beginning of this trend is a question that was raised by David J. Rusin [24], who posed the question: what is the probability that two elements of a finite group commute?

The relationship between the representation of finite groups and probability theory has grown up rapidly, to investigate and solve some problems in group theory. In 1968, Erdős and Turán [8] studied some problems in statistical group theory. In 1970, Gallagher [10] used character theory to investigate the probability of commuting elements. In 1973, Gustafson [12] initiated the probability that two group elements commute for infinite groups, in which he used differential geometry as well as the abstract harmonic analysis to get parallel results for finite groups. In 1988, Persi Diaconis [7] has made fundamental contributions in the relationship between representation of finite groups and probability theory. In 2006, Guralnick and Robinson [11] investigated several objectives such as giving general properties and giving elementary proofs of numerical properties of the commutativity degree. In 2010, Alghamdi and F. G. Russo attempted to discuss Dade's ordinary conjecture in this framework. Then in 2012, they investigated a generalization of the probability that the commutator of two group elements is equal to a given element. They studied the relative tensor degree of finite groups in articles published in 2014, see [2], [3] and [4] respectively.

On the other hand, block theory is a fascinating subject and a very rich topic in finite group theory. There are many approaches to tackle block theory. Character theory is one approach. Likewise, the theory of probability can be applied to tackle block theory. This is shown by Alghamdi's paper 2016, in which he attempted to get a link between block theory and probability theory.

Let p be a prime number and B a p-block of a finite group G . The thesis is divided to six chapters as follows:

Chapter 1, contains the basic concepts, on which the thesis depends. The first section includes concepts that are presented in a topic of group action on a set, and under these concepts we will study Orbit-Stabilizer Theorem, when the group G acts on itself as a set, and we will get the changes that will be used in the coming chapters along with the Burnside's Lemma in this concept. In the second section, definitions of representation and character theory will be presented with some theories related to them. In the third section, we will review some concepts in block theory on the approach of character theory, and study some examples that will be deduced and built upon in the next sections, especially in Chapter 5.

Chapter 2, in the first section, we will give a solution to Rusin's question [24] by applying the classical definition of probability to measure the property of the commute of two elements in group G. Furthermore, theories will be mentioned which give us an equivalent definition for calculating this possibility and upper bounded.

For instance, for any group G the probability of commute two elements in it must be equal to or less than $5 / 8$, and some examples will be given in the second section. In the third and last section, we will study the definition of a probability that has a randomly chosen commutator which is equal to a given element of group G. Moreover, we will present states theorem, which gives us
an equivalent definition via character theory with some examples applied, and provide some recent investigations in this concept.

Chapter 3, in the first section, we will introduce definitions of a compatiplity action and nonabelian tensor product. Furthermore, we will establish some basic properties that describe the main calculus rules in the non-abelian tensor product, with some theories and relationships under this concept. In the second section, we will study the definitions of tensor centralizer and tensor center which have been based on the definitions which introduced in previous section, and we will study the algebraic structures of these concepts, the definition of the relative tensor degree, and explanation of the relation between the tensor centralizer and the tensor degree. In the third and last section, we will study the relation between the relative commutative degree and relative tensor degree.

Chapter 4, in the first section, we will introduce the definition of a non-abelian exterior product, with some relations under this concept. In the second section, we will study the definitions of exterior centralizer and exterior center which have been based on the definitions which introduced in previous section. Moreover, the algebraic structures of these concepts along with the previous concepts, and the definition of the relative exterior degree are introduced. In the third and last section, we will study the general relation among the relative commutative degree, relative tensor degree, and relative exterior degree.

Chapter 5, in the first and second sections, we will study the notion of the probability of a p-block B with applied examples. In the third and last section, we will study some facts about the probability of irreducible ordinary character and principal p-block B_{0} in group G, by Brauer-Feit Theorem as in [25, Theorem 2.4]. Furthermore, we will show the relation between the probability of the principal p-block B_{0} in group G, and the order of irreducible ordinary character of G and some current conjectures in this concept.

Chapter 6, in this chapter, we will establish a new equivalent theorem that calculates the probability of commute of two elements in group G, by using the concept of structure constants. Therefore, we will begin with the concept of algebra over field F , from which we will deduce the definition of structure constants that will be discussed in the first section. In the second section, we will study the definition of the group algebra G over F, which is denoted by $F[G]$ and mention the basis for it. Moreover, in the same section, we will study the definition of the center of $\mathrm{F}[\mathrm{G}]$ which is denoted by $\mathrm{Z}(\mathrm{F}[\mathrm{G}])$, and the impotent theorem in this section, which explains the basis for $\mathrm{Z}(\mathrm{F}[\mathrm{G}])$. In the third and last section, we will establish a new theorem that calculates the probability of commute of two elements in group G by using the concept of structure constants, and examples of the new theorem will be provided. All groups mentioned in this thesis are supposed to be finite.

Chapter 1

Basic Concepts

In this introductory chapter, we shall review some basic notions, definitions, theories and examples in group theory. Especially those terms related to the terminology employed in this thesis. In the first section, we will mention the concept of group acts on a set and the most important theorem in this concept the Orbit-Stabilizer Theorem, which will be used and rely on it as a basis of understanding and proofs in the next subjects of this work, and then record what changes to the theorem in special cases, like when the group G acts on at self as a set or when the set $X=\{(x, y) \in G \times G\}$, as regarding and serving my purpose. In the second section, we will mention all concepts of representation, ordinary representation, character, and some theories and properties that will be useful for this work. In the third section, we will define an equivalence relation on the characters by fixing a prime number p, which divides them for equivalence classes which are called by p-blocks, and study some examples that will be deduced and built upon in the next sections, especially in Chapter 5. The basic references of this chapter are [5],[9],[14],[15],[16],[20] and [21]. All the groups presented in this work are supposed to be finite.

1.1 Group acts on a set

In this section, we shall review some concepts related to the group acts on a set.

Definition 1.1. Let G be a group. Let X be a finite set. A (left) action of G on X is a map $\alpha: G \times X \rightarrow X$ given by $\alpha((g, x))=g \cdot x$, which satisfies the following conditions:

1) $1_{G} \cdot x=x$.
2) $\left(g_{1} g_{2}\right) \cdot x=g_{1} \cdot\left(g_{2} \cdot x\right)$.

For all $x \in X$ and $g_{1}, g_{2} \in G$.
In the similar way we can define a right action by the map $\alpha: X \times G \rightarrow X$ given by $\alpha((x, g))=x \cdot g$, which satisfies the following conditions:

1) $x \cdot 1_{G}=x$.
2) $x \cdot\left(g_{1} g_{2}\right)=\left(x \cdot g_{1}\right) \cdot g_{2}$.

For all $x \in X$ and $g_{1}, g_{2} \in G$.
Remark. If we have an action of G on X, then we say that G acts on X or that X is a G-set.
In this thesis virtually all actions considered will be left actions.

Theorem 1.1. Let G be a group acts on a set X. Then the relation on X defined by relation α $R \beta$ if $\exists g \in G: \beta=g \cdot \alpha$ is an equivalence relation, where $\alpha, \beta \in X$.
Proof. Since $1_{G} \cdot \alpha=\alpha$ for all $\alpha \in X \Rightarrow \alpha R \alpha$ (Reflexive). Since α R $\beta \Rightarrow \exists g \in G: \beta=g \cdot \alpha \Rightarrow g^{-1}$. $\beta=\left(g^{-1} g\right) \cdot \alpha \Rightarrow g^{-1} \cdot \beta=\alpha \Rightarrow \beta R \alpha$ (Symmetric). $\alpha R \beta$ and $\beta R \delta$, since $\alpha R \beta \Rightarrow \exists g \in G: \beta=g \cdot \alpha$ and since $\beta R \delta \Rightarrow \exists h \in G: \delta=h \cdot \beta$. Then $\delta=h \cdot \beta=h \cdot(g \cdot \alpha)=(h g) \cdot \alpha \Rightarrow \alpha R \delta$ (Transitive). Thus R is equivalent relation on X .

Remark. The equivalence class of the equivalent relation are called the Otbits of G on X.
Definition 1.2. Let G be a group acts on the set X. Let $x \in X$. The orbit of x under G is the set of all elements in X of the form $g \cdot x$ for all $g \in G$, which denoted by $O(x)$. In symbols

$$
O(x)=\{g \cdot x \mid g \in G\} \subseteq X
$$

Remark. If $O(x)=X$ for all $x \in X$. Then the action is called transitive.
Definition 1.3. Let G be a group acts on the set X. Let $x \in X$. The stabilizer of x in G is the set of elements $g \in G$ such that $g \cdot x=x$, which is denoted by $\operatorname{Stab}_{G}(x)$. In symbols

$$
\operatorname{Stab}_{G}(x)=\{g \in G \mid g \cdot x=x\} .
$$

Lemma 1.1. Let G be a group acts on the set X. Let $x \in X$. Then $\operatorname{Stab}_{G}(x)$ is a subgroup of G for all $x \in X$.

Proof. The subgroup conditions are verified as follows: $\operatorname{Stab}_{G}(x)$ is not an empty set since by Definition 1.1 we have $1_{G} \cdot x=x$, hence $1_{G} \in \operatorname{Stab}_{G}(x)$ for all $x \in X$, consider any two elements g_{1} and $g_{2} \in \operatorname{Stab}_{G}(x)$ i.e. $g_{1} \cdot x=x$ and $g_{2} \cdot x=x$. Then

$$
g_{1} \cdot x=x \Rightarrow g_{1} \cdot\left(g_{2}^{-1} \cdot x\right)=x \Rightarrow\left(g_{1} g_{2}^{-1}\right) \cdot x=x
$$

hence $g_{1} g_{2}^{-1} \in \operatorname{Stab}_{G}(x)$. Thus $\operatorname{Stab}_{G}(x)$ is a subgroup of G.

The next theorem is the most important theorem in the theory of group actions, as in [5, Corollary 5].

Theorem 1.2 (Orbit-Stabilizer Theorem). Let G be a group acts on a finite set X. For any $x \in$ X, we have

$$
|O(x)|=\frac{|G|}{\left|\operatorname{Stab}_{G}(x)\right|}
$$

Proof. Let $x^{\prime} \in O(x)$, then there is $\mathrm{g} \in G$ such that $x^{\prime}=g \cdot x$, also there is $g S t a b_{G}(x)$ where $\forall y \in$ $g \operatorname{Stab}_{G}(x)$ there is $g^{\prime} \in \operatorname{Stab}_{G}(x)$ such that $y=g \cdot g^{\prime}$. Then $y \cdot x=\left(g g^{\prime}\right) \cdot x=g \cdot\left(g^{\prime} \cdot x\right)=g \cdot x=x^{\prime}$. This means that there are at most element in $O(x)$, similar to the set of cossets of $\operatorname{Stab}_{G}(x)$ in G. Let g and $y \in G$ such that $g \cdot x=y \cdot x \Rightarrow g^{-1} \cdot(g \cdot x)=g^{-1} \cdot(y \cdot x) \Rightarrow\left(g^{-1} g\right) \cdot x=\left(g^{-1} y\right) \cdot x \Rightarrow$ $1_{G} \cdot x=\left(g^{-1} y\right) \cdot x \Rightarrow x=\left(g^{-1} y\right) \cdot x$. This means that $g^{-1} y \in \operatorname{Stab}_{G}(x) \Rightarrow y \in g \operatorname{Stab}_{G}(x)$. Thus g and y belong to the same set of cosset $\operatorname{Stab}_{G}(x)$. It follows that the $\alpha: \frac{G}{\operatorname{Stab}_{G}(x)} \mapsto O(x)$ which is given by $g^{\prime} \operatorname{Stab}_{G}(x) \mapsto g^{\prime} \cdot x$. The map α is a well-defined bijective of the set cosset of $S t a b_{G}(x)$ in G onto the orbit $O(x)=\left\{g^{\prime} \cdot x: g^{\prime} \in G\right\}$, hence $|\mathrm{O}(\mathrm{x})|=\left[G: \operatorname{Stab}_{G}(x)\right]=|G| /\left|\operatorname{Stab}_{G}(x)\right|$.

Example 1.1. An action of the symmatric group S_{3} on the set $X=\{1,2,3\}$ is given by $g \cdot x=$ $\sigma_{g}(x)$. First we want to prove that it is a group action

$$
\begin{aligned}
1) i)\left(g_{1} g_{2}\right) \cdot x & =\sigma_{g_{1} g_{2}}(x) \\
& =\left(\sigma_{g_{1}} \sigma_{g_{2}}\right)(x) \\
& =\sigma_{g_{1}}\left(\sigma_{g_{2}}(x)\right) \\
& =g_{1} \cdot\left(g_{2} \cdot x\right) . \forall g_{1}, g_{2} \in G, \forall x \in X
\end{aligned}
$$

$$
=\sigma_{g_{1}}\left(\sigma_{g_{2}}(x)\right) \quad \text { (from Definition 1.1) }
$$

ii) $1_{G} \cdot x=\sigma_{1_{G}}(x)=x . \forall x \in X$.

So, this is indeed a group action.

$$
\begin{aligned}
& \text { 2) } \operatorname{Stab}_{S_{3}}(1)=\left\{g \in S_{3}: g \cdot 1=\sigma_{g}(1)=1\right\}=\{(1),(23)\} \text {. } \\
& \text { Stab }_{S_{3}}(2)=\left\{g \in S_{3}: g \cdot 2=\sigma_{g}(2)=2\right\}=\{(1),(13)\} . \\
& \text { Stab }_{S_{3}}(3)=\left\{g \in S_{3}: g \cdot 3=\sigma_{g}(3)=3\right\}=\{(1),(12)\} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
3) O(1) & =\left\{g \cdot 1=\sigma_{g}(1): g \in G\right\}=\{1,2,3\}=X . \\
O(2) & =\left\{g \cdot 2=\sigma_{g}(2): g \in G\right\}=\{1,2,3\}=X . \\
O(3) & =\left\{g \cdot 3=\sigma_{g}(3): g \in G\right\}=\{1,2,3\}=X .
\end{aligned}
$$

We can see by Theorem 1.2

$$
|O(1)|=\frac{|G|}{\left|\operatorname{Stab}_{G}(1)\right|}=\frac{6}{2}=3,
$$

and the same way for all $x \in X$.

Remark. The exponential notation for the conjugation of two elements x and y in a group G, that is the notation $x^{y}=y^{-1} x y$.

Example 1.2. Let G be a group acts on itself as a set(i.e. $X=G$) by conjugation, that is for all $x \in X=G$ and $g \in G$, we define $g \cdot x=g^{-1} x g$. First we want to prove that it is a group action

$$
\text { 1)i) } \begin{aligned}
g_{1} \cdot\left(g_{2} \cdot x\right) & =g_{1} \cdot\left(g_{2}^{-1} x g_{2}\right) \\
& =g_{1}^{-1}\left(g_{2}^{-1} x g_{2}\right) g_{1} \\
& =\left(g_{2} g_{1}\right)^{-1} x\left(g_{2} g_{1}\right) \\
& =\left(g_{2} g_{1}\right) \cdot x . \\
\text { ii) } 1_{G} \cdot x & =1_{G}^{-1} x 1_{G}=x .
\end{aligned}
$$

So, this is indeed a group action.

$$
\begin{aligned}
2) \operatorname{Stab}_{G}(x) & =\{g \in G: g \cdot x=x\} \\
& =\left\{g \in G: g^{-1} x g=x\right\} \\
& =\{g \in G: x g=g x\} \\
& \left.=C_{G}(x) \text { (centralizer of } x \text { in } G\right) . \\
3) O(x) & =\{g \cdot x: g \in G\} \\
& =\left\{g^{-1} x g: g \in G\right\} \\
& =C(x) \text { (conjugace class of } x) .
\end{aligned}
$$

Special case. Let G be a group acts on a finite set X.

1) If $X=G$, and if G acts on X by conjugation. Then from the previous example we found that

$$
O(x)=C(x)(\text { conjugace class of } x) \text { and } \operatorname{Stab}_{G}(x)=C_{G}(x)(\text { centralizer }) .
$$

Thus, we have from the Orbit-Stabilizer Theorem for all $x \in X$

$$
|C(x)|=\frac{|G|}{\left|C_{G}(x)\right|}
$$

2) If $X=\{(x, y) \in G \times G\} \neq \emptyset$, and if G acts on X by $g \cdot a=\left(x^{g}, y^{g}\right) \in G \times G$, for all $g \in G$ and for all $a=(x, y) \in X$. Then

$$
\begin{aligned}
\operatorname{Stab}_{G}(a) & =\{g \in G: g \cdot a=a\} \\
& =\{g \in G: g \cdot(x, y)=(x, y)\} \\
& =\left\{g \in G:\left(x^{g}, y^{g}\right)=(x, y)\right\} \\
& =\left\{g \in G:(x, y)^{g}=(x, y)\right\} \\
& =\left\{g \in G: g^{-1}(x, y) g=(x, y)\right\} \\
& =\{g \in G:(x, y) g=g(x, y)\} \\
& =C_{G}(a),
\end{aligned}
$$

and

$$
\begin{aligned}
O(a) & =\{g \cdot a: g \in G\} \\
& =\{g \cdot(x, y): g \in G\} \\
& =\left\{\left(x^{g}, y^{g}\right): g \in G\right\} \\
& =\left\{(x, y)^{g}: g \in G\right\} \\
& =\left\{g^{-1}(x, y) g: g \in G\right\} \\
& =C(a)
\end{aligned}
$$

Thus, we have from the Orbit-Stabilizer Theorem for all $a \in X$

$$
|C(a)|=\frac{|G|}{\left|C_{G}(a)\right|}
$$

Lemma 1.2. Let p be a prime number. Let G be a p-group acts on a finite set X. Then

$$
|X|=\left|F i x_{X}(G)\right| \bmod p
$$

Proof. Since G is a p-group then $|G|=p^{\alpha}, \alpha \geq 0$, and since

$$
X=O\left(x_{1}\right) \dot{\cup} O\left(x_{2}\right) \dot{\cup} \ldots \dot{\cup} O\left(x_{r}\right)
$$

where $x_{i} \in X, i=1, \ldots, r, r \in \mathbb{N}$. Then

$$
|X|=\left|O\left(x_{1}\right)\right|+\left|O\left(x_{2}\right)\right|+\ldots+\left|O\left(x_{r}\right)\right|
$$

then by the fact that $\left|O\left(x_{i}\right)\right|=1$ iff $x_{i} \in \operatorname{Fix}_{X}(G)$, for all $i=1, \ldots, r$. Hence

$$
|X|=\left|F i x_{X}(G)\right|+\sum_{x_{i} \notin \operatorname{Fix}_{X}(G)}\left|O\left(x_{i}\right)\right|
$$

From Orbit-Stabilizer Theorem we have

$$
|X|=\left|F i x_{X}(G)\right|+\sum_{x_{i} \notin \operatorname{Fix}_{X}(G)} \frac{|G|}{\left|\operatorname{Stab}_{G}\left(x_{i}\right)\right|}
$$

But $\operatorname{Stab}_{G}\left(x_{i}\right) \leq G$ then $\left|\operatorname{Stab}_{G}\left(x_{i}\right)\right|=p^{\beta}$, where $\beta \leq \alpha$ and $p^{\alpha} / \mathrm{p}^{\beta}=\lambda p, \lambda \in \mathbb{N}$. Then

$$
|X|=\left|F i x_{X}(G)\right|+\lambda p
$$

thus

$$
|X|=\left|\operatorname{Fix}_{X}(G)\right| \bmod p
$$

Burnside's lemma was formulated and proven by Burnside in 1897, but historically it was already discovered in 1887 by Frobenius, and even earlier in 1845 by Cauchy. Because of that it is sometimes also named as Cauchy-Frobenius lemma. This allows us to count the number of orbits in sets.

Lemma 1.3 (Burnside's lemma). Let G be a group acts on a finite set X. Let X^{g} be the set of points of X which are fixed by g, where $g \in G$. Then

$$
\mid \text { Orbits of } G \text { acting on } X \left\lvert\,=\frac{\sum_{g \in G}\left|X^{g}\right|}{|G|}\right. \text {. }
$$

i.e. (The number of orbits is equal to the average number of points fixed by an element of G). The number of orbits will be denoted by X / G.

Proof. Let $X^{g}=\{x \in X: g \cdot x=x\}$. Then

$$
\sum_{g \in G}\left|X^{g}\right|=\{(g, x) \in G \times X: g \cdot x=x\}=\sum_{x \in X}\left|\operatorname{Stab}_{G}(x)\right| .
$$

From Orbit-Stabilizer Theorem we have

$$
\begin{aligned}
\sum_{x \in X}\left|\operatorname{Stab}_{G}(x)\right| & =\sum_{x \in X} \frac{|G|}{|O(x)|} \\
& =|G| \sum_{x \in X} \frac{1}{|O(x)|} \\
& =|G|\left(\sum_{O(x) \in X / G} \sum_{x \in O(x)} \frac{1}{|O(x)|}\right) \\
& =|G| \sum_{O(x) \in X / G} 1 \\
& =|G| \cdot|X / G|
\end{aligned}
$$

hence

$$
\sum_{g \in G}\left|X^{g}\right|=|G| \cdot|X / G|
$$

thus

$$
|X / G|=\frac{\sum_{g \in G}\left|X^{g}\right|}{|G|}
$$

Lemma 1.4. Let G be a group acts on itself as a set by conjugation, $g \cdot x=g^{-1} x g \in X=G$. Let $k(G)$ be the number of conjugacy classes of G. Then

$$
k(G)=\frac{\sum_{x \in G}\left|C_{G}(x)\right|}{|G|},
$$

where $C_{G}(x)$ is the centraliser of x in G.

Proof. Since G acts on itself as a set, then we have

$$
\begin{aligned}
O(x) & =\{g \cdot x: g \in G\} \\
& =\left\{g^{-1} x g: g \in G\right\} \\
& =C(x),
\end{aligned}
$$

for all $\mathrm{x} \in X=G$, by Lemma 1.3 we have

$$
\begin{aligned}
\mid \text { Orbits } \mid & =\frac{\sum_{g \in G}\left|X^{g}\right|}{|G|} \\
\mid \text { Orbits } \mid & =\frac{\sum_{x \in G}\left|X^{x}\right|}{|G|} \\
\mid \text { conjugacy classes } \mid & =\frac{\sum_{x \in G}\left|X^{x}\right|}{|G|} \\
k(G) & =\frac{\left|X^{x_{1}}\right|+\ldots+\mid X^{x_{|G|} \mid}}{|G|} \\
& =\frac{\left|\left\{y \in X: x_{1} \cdot y=y\right\}\right|+\ldots+\left|\left\{y \in X: x_{|G|} \cdot y=y\right\}\right|}{|G|} \\
& =\frac{\left|\left\{y \in X: y^{x_{1}}=y\right\}\right|+\ldots+\left|\left\{y \in X: y^{x_{|G|}}=y\right\}\right|}{|G|} \\
& =\frac{\left|\left\{y \in X: x_{1}^{-1} y x_{1}=y\right\}\right|+\ldots+\left|\left\{y \in X: x_{|G|}^{-1} y x_{|G|}=y\right\}\right|}{|G|} \\
& =\frac{\left|\left\{y \in X: y x_{1}=x_{1} y\right\}\right|+\ldots+\left|\left\{y \in X: y x_{|G|}=x_{|G|} y\right\}\right|}{|G|} \\
& =\frac{\left|\left\{y \in G: y x_{1}=x_{1} y\right\}\right|+\ldots+\left|\left\{y \in G: y x_{|G|}=x_{|G|} y\right\}\right|}{|G|} \\
& =\frac{\left|C_{G}\left(x_{1}\right)\right|+\ldots+\left|C_{G}\left(x_{|G|}\right)\right|}{|G|} \\
& =\frac{\sum_{x \in G}\left|C_{G}(x)\right|}{|G|}
\end{aligned}
$$

thus

$$
k(G)=\frac{\sum_{x \in G}\left|C_{G}(x)\right|}{|G|} .
$$

1.2 Characters

In this section, we shall review some concepts related to the character theory.

Definition 1.4. Let G be a group. The representation of G is a group homomorphism function $\rho: G \rightarrow G L(n, F)$. Where $G L(n, F)$ is the general linear group of degree n over the field F. Which is denoted by F-representation, and the integer number n is called the degree(or dimension) of the representation.

Remark. If the field F has a characteristic zero then we call the representation by ordinary representation.

Definition 1.5. Let G be a group. Let ρ be the representation of G. The character of ρ is a function $\chi: G \rightarrow F$ such that $\chi(g)=$ trace $(\rho(g))$, for all $g \in G$ and $\rho(g) \in G L(n, F)$. It is a class function (i.e. constant on each conjugacy class of G).

Remark.

1)The irreducible representation gives an irreducible character.
2) $\operatorname{Irr}(G)$ is the set of all irreducible character of G.

Proposition 1.1. The character has the following properties:
1)Equivalent representations have the same characters.
2)The conjugate elements have the same character.
3)The number of irreducible characters is equal to the number of conjugacy classes i.e. $|\operatorname{Irr}(G)|=k(G)$.

Theorem 1.3 (Generalized Orthogonality Relation). Let G be a group and $g \in G$. Then

$$
\frac{1}{|G|} \sum_{h \in G} \chi_{i}(h g) \chi_{j}\left(h^{-1}\right)= \begin{cases}\frac{\chi_{i}(g)}{\chi_{i}(1)} & i=j \\ 0 & i \neq j\end{cases}
$$

Proof. The proof can be found in [15, Theorem 2.13].

If $g=1_{G}$, then we will get the next theorem, as in [13, Corollary (2.14)].
Theorem 1.4 (First Orthogonality Relation). Let G be a group. Then

$$
\frac{1}{|G|} \sum_{h \in G} \chi_{i}(h) \chi_{j}\left(h^{-1}\right)= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}
$$

Theorem 1.5 (Second Orthogonality Relation). Let G be a group. Let $g, h \in G$. Then

$$
\sum_{\chi \in \operatorname{Irr}(G)} \chi(g) \chi\left(h^{-1}\right)= \begin{cases}0 & \text { if } g \nsim h, \\ \left|C_{G}(g)\right| & \text { if } g \sim h .\end{cases}
$$

Proof. The proof can be found in [15, Theorem 2.18].

Definition 1.6. [15, Definition 2.20] Let χ be a character of a group G. The kernal of χ is all elements g of G which achieve the relation $\chi(g)=\chi(1)$. In symbol

$$
\operatorname{ker}(\chi)=\{g \in G: \chi(g)=\chi(1)\}
$$

Definition 1.7. [15, Definition 2.26] Let χ be a character of a group G. Then

$$
Z(\chi)=\{g \in G:|\chi(g)|=\chi(1)\}
$$

Lemma 1.5. [15, Corollary 2.23] Let G be a group with commutator subgroup G^{\prime}. Then

$$
G^{\prime}=\cap\{\operatorname{ker} \chi: \chi \in \operatorname{Irr}(G), \chi(1)=1\} .
$$

Example 1.3. Let G be a group.

1) When $G=S_{3}, S_{3}$ has two linear characters χ_{1} and χ_{2}. Then

$$
\begin{aligned}
G^{\prime} & =\operatorname{ker} \chi_{1} \cap \operatorname{ker}_{2} \\
& =\left\{g \in G: \chi_{1}(g)=\chi_{1}(1)\right\} \cap\left\{g \in G: \chi_{2}(g)=\chi_{2}(1)\right\} \\
& =G \cap\{(1),(123),(132)\}=A_{3} .
\end{aligned}
$$

2) When $G=D_{8}, D_{8}$ has four linear characters $\chi_{1}, \chi_{2}, \chi_{3}$ and χ_{4}. Then

$$
\begin{aligned}
G^{\prime} & =\text { ker } \chi_{1} \cap \text { ker } \chi_{2} \cap \text { ker } \chi_{3} \cap \text { ker } \chi_{4} \\
& =\left\{1, a^{2}\right\}=\left\langle a^{2}\right\rangle
\end{aligned}
$$

Definition 1.8. Let ρ be a \mathbb{C}-representation of a group G which affords an irreducible character χ. If $z \in Z(\mathbb{C}[G])$, then $\rho(z)=\varepsilon \cdot I$ for some root of unity $\varepsilon \in \mathbb{C}$. Then we call the function which depends on χ by ω_{χ}, such that:

$$
\begin{gathered}
\omega_{\chi}: Z(\mathbb{C}[G]) \longrightarrow \mathbb{C} \\
\omega_{\chi}(z)=\varepsilon .
\end{gathered}
$$

The root ε does not depend on the choice of particular \mathbb{C}-representation affording χ and we observe that $\rho(z)=\omega(z) \cdot I$.

Lemma 1.6. The function ω_{χ} is an algebra homomorphism.

1.3 Blocks

In this section, we shall review some concepts related to the block theory by using character theory.
$\operatorname{Irr}(G)$ is the set of all irreducible characters. If $X=\operatorname{Irr}(G)=\left\{\chi_{1}, \chi_{2}, \ldots, \chi_{k(G)}\right\}$ where $k(G)$ is the number of conjugacy classes, and if $g \in G$. Then we can define a relation on X. By fixing a prime number p and for $\chi_{i}, \chi_{j} \in \operatorname{Irr}(G)$, where $i, j=1, \ldots, k(G)$ such that

$$
\chi_{i} \sim \chi_{j} \leftrightarrow \frac{|C(g)| \chi_{i}(g)}{\chi_{i}(1)} \equiv_{p} \frac{|C(g)| \chi_{j}(g)}{\chi_{j}(1)}
$$

where \equiv_{p} means congruent modulo p, for all $g \in G$, where $|C(g)|$ is the order of the conjugacy class of g. This relation is an equivalence relation on $\operatorname{Irr}(G)$, since if we take $\chi: G \rightarrow F$,
$\varphi: G \rightarrow F$ and $\psi: G \rightarrow F$. Where χ, φ and $\psi \in \operatorname{Irr}(G)$. Then $\frac{|C(g)| \chi(g)}{\chi(1)} \equiv_{p} \frac{|C(g)| \chi(g)}{\chi(1)}$
$\leftrightarrow \chi \sim \chi$ is a reflexive. If $\frac{|C(g)| \chi(g)}{\chi(1)} \equiv_{p} \frac{|C(g)| \psi(g)}{\psi(1)}$, then $\frac{|C(g)| \psi(g)}{\psi(1)} \equiv_{p} \frac{|C(g)| \chi(g)}{\chi(1)}$ means that if $\chi \sim \psi$ then $\psi \sim \chi$ is symmetric. If $\chi \sim \psi$ and $\psi \sim \varphi$, then $\chi \sim \varphi$. We have $\frac{|C(g)| \chi(g)}{\chi(1)} \equiv_{p}$ $\frac{|C(g)| \psi(g)}{\psi(1)} \equiv_{p} \frac{|C(g)| \varphi(g)}{\varphi(1)}$. Then $\frac{|C(g)| \chi(g)}{\chi(1)} \equiv_{p} \frac{|C(g)| \varphi(g)}{\varphi(1)}$. Thus $\psi \sim \varphi$ is transitive.
The equivalence relation gives equivalence classes (partitions). The corresponding equivalence classes are called the p-blocks of $G . X=\operatorname{Irr}(G)=B_{1} \dot{\cup} B_{2} \dot{\cup} \ldots \dot{\cup} B_{t}$. Where t is natural number. B_{i} is a p-block for all $i=1, . ., t$. Now we can define the p-blocks of the group G by the following definition, and we will mention some definitions related to this topic.

Definition 1.9. Let G be a group. Let χ and ψ be an irreducible character. Let p be a prime number. The p-blocks B_{1}, \ldots, B_{t} where $t \in \mathbb{N}$ of G are the equivalence classes which are given by the equivalence relation on $\operatorname{Irr}(G)$ such that

$$
\chi \sim \psi \leftrightarrow \frac{|C(g)| \chi(g)}{\chi(1)} \equiv_{p} \frac{|C(g)| \psi(g)}{\psi(1)},
$$

for all $g \in G$.
Definition 1.10. Let G be a group. Let p be a prime number. The principal p-block is the p-block which contains the trivial character, and will be denoted it by B_{0}.

Definition 1.11. Let G be a group. Let $\chi \in \operatorname{Irr}(G)$. Let p be a prime number. The defect number of χ which is denoted by $d(\chi)=d$ is a positive integer that achieves the relation

$$
p^{d} \chi(1)_{p}=|G|_{p}
$$

where $\chi(1)_{p}$ is the p-part of $\chi(1)$ and $|G|_{p}$ is the p-part of the order of G.

Definition 1.12. Let G be a group. Let p be a prime number. Let B be a p-block of G. The defect number of B which is denoted by $d(B)$ is a maximal number of $d(\chi)$, for all χ belongs to B. In symbols

$$
d(B)=\max \{d(\chi): \chi \in B\} .
$$

Definition 1.13. Let G be a group. Let p be a prime number. Let B be a p-block of G. If χ belongs to B, then the height number of χ which is denoted by $h(\chi)$ is given by subtraction $d(\chi)$ of $d(B)$. In symbols

$$
h(\chi)=d(B)-d(\chi)
$$

Remark. If we say an irreducible character of height zero that means $d(B)=d=d(\chi)$.

Definition 1.14. Let G be a group. Let p be a prime number. Let B be a p-block of G. Let g be an element of G. A defect group which is denoted by D is a Sylow p-subgroup of the centralizer of g in G and the defect group D of p-block B is the Sylow p-subgroup of the order $p^{d(B)}$.

Remark.

- The p-block of defect zero is the p-block which has the identity subgroup as a defect group.
- The p-block of defect zero has an unique irreducible character with a degree which contains the whole p-part of the order of G.

We will give some examples of the p-blocks of the group G with respect to the chosen prime number p.

Example 1.4. Let $G=S_{4}$ and $p=3$. The character table of S_{4} is given below:

conjugacy classes	(1)	(12)	(123)	(1234)	$(12)(34)$
$\|C(g)\|$	1	6	8	6	3
χ_{1}	1	1	1	1	1
χ_{2}	1	-1	1	-1	1
χ_{3}	2	0	-1	0	2
χ_{4}	3	1	0	-1	-1
χ_{5}	3	-1	0	1	-1

Table 1.1: The character of S_{4}.

By the relation $\frac{|C(g)| \chi_{i}(g)}{\chi_{i}(1)} \bmod p, \forall i=1, \ldots, k(G), \forall g \in G$. We can find the 3-blocks. If
$g=(123)$. Then $\frac{|C(123)| \chi_{1}((123))}{\chi_{1}(1)}=\frac{8 \cdot 1}{1} \bmod 3=\overline{2}, \frac{|C(123)| \chi_{2}((123))}{\chi_{2}(1)}=\frac{8 \cdot 1}{1} \bmod 3=\overline{2}$,
$\frac{|C(123)| \chi_{3}((123))}{\chi_{3}(1)}=\frac{8 \cdot(-1)}{2} \bmod 3=\overline{2}, \frac{|C(123)| \chi_{4}((123))}{\chi_{4}(1)}=\frac{8 \cdot 0}{3} \bmod 3=\overline{0}$, $\frac{|C(123)| \chi_{5}((123))}{\chi_{5}(1)}=\frac{8 \cdot 0}{3} \bmod 3=\overline{0}$, and the same way for all $g \in S_{4}$. Then we have the new table

$\frac{\|C(g)\| \chi(g)}{\chi(1)}$	(1)	(12)	(123)	(1234)	$(12)(34)$
χ_{1}	$\overline{1}$	$\overline{0}$	$\overline{2}$	$\overline{0}$	$\overline{0}$
χ_{2}	$\overline{1}$	$\overline{0}$	$\overline{2}$	$\overline{0}$	$\overline{0}$
χ_{3}	$\overline{1}$	$\overline{0}$	$\overline{2}$	$\overline{0}$	$\overline{0}$
χ_{4}	$\overline{1}$	$\overline{2}$	$\overline{0}$	$\overline{1}$	$\overline{2}$
χ_{5}	$\overline{1}$	$\overline{1}$	$\overline{0}$	$\overline{2}$	$\overline{2}$

Table 1.2: The 3-blocks of S_{4}.

Thus S_{4} has three 3-blocks. $B_{0}=B_{1}=\left\{\chi_{1}, \chi_{2}, \chi_{3}\right\}, B_{2}=\left\{\chi_{4}\right\}$ and $B_{3}=\left\{\chi_{5}\right\}$. Where $B_{1} \dot{\cup} B_{2}$ $\dot{\cup} B_{3}=\operatorname{Irr}\left(S_{4}\right)$, and $B_{i} \cap B_{j}=\emptyset, \forall i \neq j, i, j=1,2,3$. Therefore,

$$
\begin{aligned}
3^{d} \chi_{1}(1)_{3} & =|G|_{3} \\
3^{d}\left(1=3^{0}\right)_{3} & =(24)_{3} \\
3^{d} 3^{0} & =3 \\
3^{d} & =3 .
\end{aligned}
$$

Then $d\left(\chi_{1}\right)=d\left(\chi_{2}\right)=d\left(\chi_{3}\right)=d=1$.

$$
\begin{aligned}
3^{d} \chi_{4}(1)_{3} & =|G|_{3} \\
3^{d}(3)_{3} & =3 .
\end{aligned}
$$

Then $d\left(\chi_{4}\right)=d\left(\chi_{5}\right)=d=0$, hence $d\left(B_{1}\right)=\max \left\{d\left(\chi_{1}\right), d\left(\chi_{2}\right), d\left(\chi_{3}\right)\right\}=1, d\left(B_{2}\right)=\max$ $\left\{d\left(\chi_{4}\right)\right\}=0$ and $d\left(B_{3}\right)=\max \left\{d\left(\chi_{5}\right)\right\}=0 . \chi_{1}, \chi_{2}, \chi_{3}, \chi_{4}$ and χ_{5} of height zero. Moreover, the defect group is

conjugacy class	(1)	(12)	(123)	(1234)	$(12)(34)$
$C_{G}(g)$	S_{4}	$\langle(12),(34)\rangle$	$\langle(123)\rangle$	$\langle(1234)\rangle$	H_{1}
$\left\|C_{G}(g)\right\|$	24	4	3	4	8
Sylow 3-subgroup $($ defect group $)$	$\langle(123)\rangle$	$\langle(1)\rangle$	$\langle(123)\rangle$	$\langle(1)\rangle$	$\langle(1)\rangle$
defect $\left(3^{a}\right)$	1	0	1	0	0

Table 1.3: The defect group of S_{4}, when $p=3$.
where $H_{1}=\{(1),(12),(34),(12)(34),(13)(24),(14)(23),(1324),(1423)\}$. If we take $p=2$. Then we have

$\frac{\|C(g)\| \chi(g)}{\chi(1)}$	(1)	(12)	(123)	(1234)	$(12)(34)$
χ_{1}	$\overline{1}$	0	0	0	$\overline{1}$
χ_{2}	$\overline{1}$	$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{1}$
χ_{3}	$\overline{1}$	$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{1}$
χ_{4}	$\overline{1}$	$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{1}$
χ_{5}	$\overline{1}$	$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{1}$

Table 1.4: The 2-blocks of S_{4}.

Thus S_{4} has one 2-block only $B_{0}=\left\{\chi_{1}, \chi_{2}, \chi_{3}, \chi_{4}, \chi_{5}\right\}$. Therefore,

$$
\begin{aligned}
2^{d} \chi_{1}(1)_{2} & =|G|_{2} \\
2^{d}\left(1=2^{0}\right)_{2} & =(24)_{2} \\
2^{d} 2^{0} & =2^{3} \\
2^{d} & =2^{3} .
\end{aligned}
$$

Then $d\left(\chi_{1}\right)=d\left(\chi_{2}\right)=d\left(\chi_{4}\right)=d\left(\chi_{5}\right)=d=3$

$$
\begin{aligned}
2^{d} \chi_{3}(1)_{2} & =|G|_{2} \\
2^{d}(2)_{2} & =(24)_{2} \\
2^{d} 2 & =2^{3}
\end{aligned}
$$

Then $d\left(\chi_{3}\right)=d=2$, hence $d\left(B_{0}\right)=\max \left\{d\left(\chi_{1}\right), d\left(\chi_{2}\right), d\left(\chi_{3}\right), d\left(\chi_{4}\right), d\left(\chi_{5}\right)\right\}=3$.
$h\left(\chi_{3}\right)=d\left(B_{0}\right)-d\left(\chi_{3}\right)=3-2=1$, $\chi_{1}, \chi_{2}, \chi_{4}$ and χ_{5} of height zero. Moreover, the defect group is

conjugacy class	(1)	(12)	(123)	(1234)	$(12)(34)$
$C_{G}(g)$	S_{4}	$\langle(12),(34)\rangle$	$\langle(123)\rangle$	$\langle(1234)\rangle$	H_{1}
$\left\|C_{G}(g)\right\|$	24	4	3	4	8
Sylow 2-subgroup $($ defect group $)$	H_{1}	$\langle(12),(34)\rangle$	$\langle(1)\rangle$	$\langle(1)\rangle$	H_{1}
defect $\left(2^{a}\right)$	3	2	0	0	3

Table 1.5: The defect group of S_{4}, when $p=2$.

Example 1.5. Let $G=S_{3}$ and $p=2$. The character table of S_{3} is given below:

conjugacy class	(1)	(12)	(123)
$\|C(g)\|$	1	3	2
χ_{1}	1	1	1
χ_{2}	1	-1	1
χ_{3}	2	0	-1

Table 1.6: The character of S_{3}.

By the relation $\frac{|C(g)| \chi_{i}(g)}{\chi_{i}(1)} \bmod p, \forall i=1, \ldots, k(G), \forall g \in G$. We can find the 2-blocks. If $g=$ (12). Then $\frac{|C(12)| \chi_{1}((12))}{\chi_{1}(1)}=\frac{3 \cdot 1}{1} \bmod 2=\overline{1}, \frac{|C(12)| \chi_{2}((12))}{\chi_{2}(1)}=\frac{3 \cdot(-1)}{1} \bmod 2=\overline{1}$, $\frac{|C(12)| \chi_{3}((12))}{\chi_{3}(1)}=\frac{3 \cdot 0}{2} \bmod 2=\overline{0}$, and the same way for all $g \in S_{3}$. Then we have the new table

$\frac{\|C(g)\| \chi(g)}{\chi(1)}$	(1)	(12)	(123)
χ_{1}	$\overline{1}$	$\overline{1}$	$\overline{0}$
χ_{2}	$\overline{1}$	$\overline{1}$	$\overline{0}$
χ_{3}	$\overline{1}$	$\overline{0}$	$\overline{1}$

Table 1.7: The 2-blocks of S_{3}.

Thus S_{3} has two 2-blocks. $B_{0}=B_{1}=\left\{\chi_{1}, \chi_{2}\right\}$ and $B_{2}=\left\{\chi_{3}\right\}$. Therefore,

$$
\begin{aligned}
2^{d} \chi_{1}(1)_{2} & =|G|_{2} \\
2^{d}\left(1=2^{0}\right)_{2} & =(6)_{2} \\
2^{d} 2^{0} & =2 \\
2^{d} & =2 .
\end{aligned}
$$

Then $d\left(\chi_{1}\right)=d=1$.

$$
\begin{aligned}
2^{d} \chi_{2}(1)_{2} & =|G|_{2} \\
2^{d}\left(1=2^{0}\right)_{2} & =(6)_{2} \\
2^{d} 2^{0} & =2 \\
2^{d} & =2 .
\end{aligned}
$$

Then $d\left(\chi_{2}\right)=d=1$.

$$
\begin{aligned}
2^{d} \chi_{3}(1)_{2} & =|G|_{2} \\
2^{d}(2)_{2} & =(6)_{2} \\
2^{d} 2 & =2 \\
2^{d} & =2 .
\end{aligned}
$$

Then $d\left(\chi_{3}\right)=d=0$, hence $d\left(B_{1}\right)=\max \left\{d\left(\chi_{1}\right), d\left(\chi_{2}\right)\right\}=1$ and $d\left(B_{2}\right)=\max \left\{d\left(\chi_{3}\right)\right\}=0$.
$h\left(\chi_{1}\right)=d\left(B_{1}\right)-d\left(\chi_{1}\right)=1-1=0, h\left(\chi_{2}\right)=d\left(B_{1}\right)-d\left(\chi_{2}\right)=1-1=0$ and
$h\left(\chi_{3}\right)=d\left(B_{2}\right)-d\left(\chi_{3}\right)=0-0=0$, thus χ_{1}, χ_{2} and χ_{3} of height zero. Moreover, the defect group is

conjugacy class	(1)	(12)	(123)
$C_{G}(g)$	S_{3}	$\langle(12)\rangle$	$\langle(123)\rangle$
$\left\|C_{G}(g)\right\|$	6	2	3
Sylow 2-subgroup $($ defect group $)$	$\langle(12)\rangle$	$\langle(12)\rangle$	$\langle(1)\rangle$
defect $\left(2^{a}\right)$	1	1	0

Table 1.8: The defect group of S_{3}, when $p=2$.

If we take $p=3$. Then we have

$\frac{\|C(g)\| \chi(g)}{\chi(1)}$	(1)	(12)	(123)
χ_{1}	$\overline{1}$	$\overline{0}$	$\overline{2}$
χ_{2}	$\overline{1}$	$\overline{0}$	$\overline{2}$
χ_{3}	$\overline{1}$	$\overline{0}$	$\overline{2}$

Table 1.9: The 3 -blocks of S_{3}.

Thus S_{3} has one 3-block only. $B_{0}=B_{1}=\left\{\chi_{1}, \chi_{2}, \chi_{3}\right\}$. Therefore,

$$
\begin{aligned}
3^{d} \chi_{1}(1)_{3} & =|G|_{3} \\
3^{d}\left(1=3^{0}\right)_{3} & =(6)_{3} \\
3^{d} 3^{0} & =3 \\
3^{d} & =3 .
\end{aligned}
$$

Then $d\left(\chi_{1}\right)=d\left(\chi_{2}\right)=d\left(\chi_{3}\right)=d=1$. Hence $d\left(B_{0}\right)=\max \left\{d\left(\chi_{1}\right), d\left(\chi_{2}\right), d\left(\chi_{3}\right)\right\}=1$.
$h\left(\chi_{1}\right)=h\left(\chi_{2}\right)=h\left(\chi_{3}\right)=d\left(B_{0}\right)-d\left(\chi_{1}\right)=1-1=0$, thus χ_{1}, χ_{2} and χ_{3} of height zero. Moreover, the defect group is

conjugacy class	(1)	(12)	(123)
$C_{G}(g)$	S_{3}	$\langle(12)\rangle$	$\langle(123)\rangle$
$\left\|C_{G}(g)\right\|$	6	2	3
Sylow 3-subgroup $($ defect group $)$	$\langle(123)\rangle$	$\langle(1)\rangle$	$\langle(123)\rangle$
defect $\left(3^{a}\right)$	1	0	1

Table 1.10: The defect group of S_{3}, when $p=3$.

Example 1.6. Let $G=G L(3,2)$ and $p=7$. The character table of $G L(3,2)$ is given below:

conjugacy class	1	2	3	4	7 A	7 B
$\|C(g)\|$	1	21	56	42	24	24
χ_{1}	1	1	1	1	1	1
χ_{2}	3	-1	0	1	$\frac{-1+\sqrt{-7}}{2}$	$\frac{-1-\sqrt{-7}}{2}$
χ_{3}	3	-1	0	1	$\frac{-1-\sqrt{-7}}{2}$	$\frac{-1+\sqrt{-7}}{2}$
χ_{4}	6	2	0	0	-1	-1
χ_{5}	7	-1	1	-1	0	0
χ_{6}	8	0	-1	0	1	1

Table 1.11: The character of $G L(3,2)$.

By the relation $\frac{|C(g)| \chi_{i}(g)}{\chi_{i}(1)} \bmod p, \forall i=1, \ldots, k(G), \forall g \in G$. We can find the 7 -blocks. If $g \in 2$.
Then $\frac{|C(g)| \chi_{1}(g)}{\chi_{1}(1)}=\frac{21 \cdot 1}{1} \bmod 7=\overline{0}, \frac{|C(g)| \chi_{2}(g)}{\chi_{2}(1)}=\frac{21 \cdot(-1)}{3} \bmod 7=\overline{0}, \frac{|C(g)| \chi_{3}(g)}{\chi_{3}(1)}=$
$\frac{21 \cdot(-1)}{3} \bmod 7=\overline{0}, \frac{|C(g)| \chi_{4}(g)}{\chi_{4}(1)}=\frac{21 \cdot 2}{6} \bmod 7=\overline{0}, \frac{|C(g)| \chi_{5}(g)}{\chi_{5}(1)}=\frac{21 \cdot(-1)}{7} \bmod 7=\overline{4}$,
$\frac{|C(g)| \chi_{6}(g)}{\chi_{6}(1)}=\frac{21 \cdot 0}{8} \bmod 7=\overline{0}$, and the same way for all $g \in G L(3,2)$. Then we have the new table

$\frac{\|C(g)\| \chi(g)}{\chi(1)}$	1	2	3	4	7 A	7 B
χ_{1}	$\overline{1}$	0	0	0	3	3
χ_{2}	$\overline{1}$	$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{3}$	$\overline{3}$
χ_{3}	$\overline{1}$	$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{3}$	$\overline{3}$
χ_{4}	$\overline{1}$	$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{3}$	$\overline{3}$
χ_{5}	$\overline{1}$	$\overline{4}$	$\overline{1}$	$\overline{1}$	$\overline{0}$	$\overline{0}$
χ_{6}	$\overline{1}$	$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{3}$	$\overline{3}$

Table 1.12: The 7 -blocks of $G L(3,2)$.

Thus $G L(3,2)$ has two 7-blocks. $B_{0}=B_{1}=\left\{\chi_{1}, \chi_{2}, \chi_{3}, \chi_{4}, \chi_{6}\right\}$ and $B_{2}=\left\{\chi_{5}\right\}$. Therefore,

$$
\begin{aligned}
7^{d} \chi_{1}(1)_{7} & =|G|_{7} \\
7^{d}\left(1=7^{0}\right)_{7} & =(168)_{7} \\
7^{d} 7^{0} & =7 .
\end{aligned}
$$

Then $d\left(\chi_{1}\right)=d\left(\chi_{2}\right)=d\left(\chi_{3}\right)=d\left(\chi_{4}\right)=d\left(\chi_{6}\right)=d=1$.

$$
\begin{aligned}
7^{d} \chi_{5}(1)_{7} & =|G|_{7} \\
7^{d} 7 & =7
\end{aligned}
$$

Then $d\left(\chi_{5}\right)=d=0$, hence $d\left(B_{0}\right)=d\left(B_{1}\right)=\max \left\{d\left(\chi_{1}\right), d\left(\chi_{2}\right), d\left(\chi_{3}\right), d\left(\chi_{4}\right), d\left(\chi_{6}\right)\right\}=1$ and $d\left(B_{2}\right)=\max \left\{d\left(\chi_{5}\right)\right\}=0$. $\chi_{1}, \chi_{2}, \chi_{3}, \chi_{4}, \chi_{5}$ and χ_{6} of height zero. Moreover, the defect group is

conjugacy class	1	2	3	4	7 A	7 B
$C_{G}(g)$	$G L(3,2)$	Q_{1}	Q_{2}	Q_{3}	Q_{4}	Q_{4}
$\left\|C_{G}(g)\right\|$	168	8	3	4	7	7
Sylow 7-subgroup(defect group)	Q_{4}	$\left\langle I_{3}\right\rangle$	$\left\langle I_{3}\right\rangle$	$\left\langle I_{3}\right\rangle$	Q_{4}	Q_{5}
defect $\left(7^{a}\right)$						

Table 1.13: The defect group of $G L(3,2)$, when $p=7$.
Where $Q_{1} \cong D_{8}, Q_{2} \cong C_{3}, Q_{3} \cong C_{4}$ and $Q_{4} \cong C_{7}$.

Lemma 1.7. Let p be a prime number. Let G be a p-group. Then G has one p-block only the principal one.

Proof. Let G be a p-group, then $|G|=p^{\alpha}, \alpha \in \mathbb{N}$. By Definition 1.9 we have for all $\chi, \psi \in \operatorname{Irr}(\mathrm{G})$ and $g \in G$,

$$
\chi \sim \psi \leftrightarrow \frac{|C(g)| \chi(g)}{\chi(1)} \equiv_{p} \frac{|C(g)| \psi(g)}{\psi(1)}
$$

hence we have only one orbit, which is clearly the principal p-block containing the trivial character.

We give examples for this lemma.

Example 1.7. Let $G=D_{8}$ and $p=2$. The character table of D_{8} is given below:

conjugacy class	1	a^{2}	$\left\{a, a^{3}\right\}$	$\left\{b, a^{2} b\right\}$	$\left\{a b, a^{3} b\right\}$
$\|C(g)\|$	1	1	2	2	2
χ_{1}	1	1	1	1	1
χ_{2}	1	1	1	-1	-1
χ_{3}	1	1	-1	1	-1
χ_{4}	1	1	-1	-1	1
χ_{5}	2	-2	0	0	0

Table 1.14: The character of D_{8}.

By the relation $\frac{|C(g)| \chi_{i}(g)}{\chi_{i}(1)} \bmod p, \forall i, \ldots, k(G), \forall g \in G$. We can find the 2-blocks. If $g=a^{2}$.
Then $\frac{\left.\left|C\left(a^{2}\right)\right| \chi_{1}\left(a^{2}\right)\right)}{\chi_{1}(1)}=\frac{1 \cdot 1}{1} \bmod 2=\overline{1}, \frac{\left|C\left(a^{2}\right)\right| \chi_{2}\left(a^{2}\right)}{\chi_{2}(1)}=\overline{1}, \frac{\left.\left|C\left(a^{2}\right)\right| \chi_{3}\left(a^{2}\right)\right)}{\chi_{3}(1)}=\overline{1}, \frac{\left|C\left(a^{2}\right)\right| \chi_{4}\left(a^{2}\right)}{\chi_{4}(1)}$
$=\overline{1}, \frac{\left|C\left(a^{2}\right)\right| \chi_{5}\left(a^{2}\right)}{\chi_{5}(1)}=\overline{1}$, and the same way for all $g \in D_{8}$. Then we have the new table

$\frac{\|C(g)\| \chi(g)}{\chi(1)}$	1	a^{2}	$\left\{a, a^{3}\right\}$	$\left\{b, a^{2} b\right\}$	$\left\{a b, a^{3} b\right\}$
χ_{1}	$\overline{1}$	$\overline{1}$	$\overline{0}$	$\overline{0}$	$\overline{0}$
χ_{2}	$\overline{1}$	$\overline{1}$	$\overline{0}$	$\overline{0}$	$\overline{0}$
χ_{3}	$\overline{1}$	$\overline{1}$	$\overline{0}$	$\overline{0}$	$\overline{0}$
χ_{4}	$\overline{1}$	$\overline{1}$	$\overline{0}$	$\overline{0}$	$\overline{0}$
χ_{5}	$\overline{1}$	$\overline{1}$	$\overline{0}$	$\overline{0}$	$\overline{0}$

Table 1.15: The 2-blocks of D_{8}.
Thus D_{8} has one 2-block only $B_{0}=\left\{\chi_{1}, \chi_{2}, \chi_{3}, \chi_{4}, \chi_{5}\right\}$. Moreover,

$$
\begin{aligned}
2^{d} \chi_{1}(1)_{2} & =|G|_{2} \\
2^{d}\left(1=2^{0}\right)_{2} & =(8)_{2} \\
2^{d} 2^{0} & =2^{3} .
\end{aligned}
$$

Then $d\left(\chi_{1}\right)=d\left(\chi_{2}\right)=d\left(\chi_{3}\right)=d\left(\chi_{4}\right)=d=3$.

$$
\begin{aligned}
2^{d} \chi_{5}(1)_{2} & =|G|_{2} \\
2^{d}(2)_{2} & =(8)_{2} \\
2^{d} 2 & =2^{3} .
\end{aligned}
$$

Then $d\left(\chi_{5}\right)=d=2$, hence $d\left(B_{0}\right)=\max \left\{d\left(\chi_{1}\right), d\left(\chi_{2}\right), d\left(\chi_{3}\right), d\left(\chi_{4}\right), d\left(\chi_{5}\right)\right\}=3$.
$h\left(\chi_{5}\right)=d\left(B_{0}\right)-d\left(\chi_{5}\right)=3-2=1, \chi_{1}, \chi_{2}, \chi_{3}$ and χ_{4} of height zero.

Example 1.8. Let $G=V_{4} \cong C_{2} \times C_{2}$ and $p=2$. The character table of V_{4} is given below:

conjugacy class	1	a	b	ab
$\|C(g)\|$	1	1	1	1
χ_{1}	1	1	1	1
χ_{2}	1	-1	1	-1
χ_{3}	1	1	-1	-1
χ_{4}	1	-1	-1	1

Table 1.16: The character of V_{4}.

By the relation $\frac{|C(g)| \chi_{i}(g)}{\chi_{i}(1)} \bmod p, \forall i, \ldots, k(G), \forall g \in G$. We can find the 2-blocks. If $g=a$.
Then $\frac{|C(a)| \chi_{1}(a)}{\chi_{1}(1)}=\frac{1 \cdot 1}{1} \bmod 2=\overline{1}, \frac{|C(a)| \chi_{2}(a)}{\chi_{2}(1)}=\overline{1}, \frac{|C(a)| \chi_{3}(a)}{\chi_{3}(1)}=\overline{1}, \frac{|C(a)| \chi_{4}(a)}{\chi_{4}(1)}=\overline{1}$, and the same way for all $g \in V_{4}$. Then we have the new table

$\frac{\|C(g)\| \chi(g)}{\chi(1)}$	1	a	b	ab
χ_{1}	$\overline{1}$	$\overline{1}$	$\overline{1}$	$\overline{1}$
χ_{2}	$\overline{1}$	$\overline{1}$	$\overline{1}$	$\overline{1}$
χ_{3}	$\overline{1}$	$\overline{1}$	$\overline{1}$	$\overline{1}$
χ_{4}	$\overline{1}$	$\overline{1}$	$\overline{1}$	$\overline{1}$

Table 1.17: The 2-blocks of V_{4}.
Thus V_{4} has one 2-block only $B_{0}=\left\{\chi_{1}, \chi_{2}, \chi_{3}, \chi_{4}\right\}$.

Chapter 2

Relative Commutativity Degree

In this chapter, we will present three sections, in the first section; we will study the definition of a probability that two elements of a group commute, and state theories which give us an equivalent definition and upper boundary of this concept. In the second section, we will study some examples of the probability that two elements of a group commute, and in the third and last section, we will study the definition of a probability that a randomly chosen commutator is equal to a given element of a group G, state a theorem which gives us an equivalent definition via character theory with some examples, and mention some recent investigations into this concept. The basic references of this chapter are [2],[3], [5],[10],[11],[12],[13],[15],[17] and [24].

2.1 Probability of commuting elements in group theory

In this section, we will study the probability that two elements of a group commute.
Probabilistic method is the concept used to deal with random experiments whose outcomes can be predicted beforehand which statisticians employ to help them to know the extent of simple random representations. Let $X=\{A, M, \ldots, L\}$ be a set of events, so the event A has a probability $P(A)$, which is calculated by the probability function $P: X \longrightarrow \mathbb{R}$ given by the following equation:

$$
\begin{equation*}
P(A)=\frac{\text { Number of events classifiable as } A}{\text { Total number of possible events }} \tag{2.1}
\end{equation*}
$$

Taking into consideration that the previous equation has to fulfil three conditions. The first condition to be fulfilled is that the value of every probability has to be between zero, which indicates the impossibility of the event, and one, which indicates that the occurrence of the event is confirmed. The second condition is that the sum of all probabilities has to equal one. The third condition is for two disjoint subsets A and M of X, we have $P(A \cup M)=P(A)+P(M)$. With the advancement of science it became possible to apply the concept of probability in several areas, including group theory.
In this section, we will calculate the probability of commuting pairs of two subgroup elements of G, in the sense that, if H and K subgroups of G and from equation (2.1) then we have

$$
\begin{aligned}
P(H, K) & =\frac{\text { Number of ordered pairs }(h, k) \in H \times K \text { such that } h k=k h}{\text { Total number of order pairs }(h, k) \in H \times K} \\
& =\frac{|\{(h, k) \in H \times K: h k=k h\}|}{|H \times K|}
\end{aligned}
$$

since $|H \times K|=|H||K|$ and if $h k=k h$ that is mean $[h, k]=1_{G}$. Therefore,

$$
\begin{equation*}
P(H, K)=\frac{\left|\left\{(h, k) \in H \times K:[h, k]=1_{G}\right\}\right|}{|H||K|} \tag{2.2}
\end{equation*}
$$

we can generalize it as follows: if $n, m \in \mathbb{N}$ then the probability that a randomly chosen commutator of weight $n+m$ of $H \times K$ is equal to the identity element of G

$$
\begin{equation*}
P^{(n, m)}(H, K)=\frac{\left|\left\{\left(h_{1}, \ldots, h_{n}, k_{1}, \ldots, k_{m}\right) \in H^{n} \times K^{m}:\left[h_{1}, \ldots, h_{n}, k_{1}, \ldots, k_{m}\right]=1_{G}\right\}\right|}{|H|^{n}|K|^{m}}, \tag{2.3}
\end{equation*}
$$

where $\left[h_{1}, \ldots, h_{n}, k_{1}, \ldots, k_{m}\right]=h_{1}^{-1} \cdots h_{n}^{-1} k_{1}^{-1} \cdots k_{m}^{-1} h_{1} \cdots h_{n} k_{1} \cdots k_{m}, h_{1}, \cdots, h_{n} \in H, k_{1}, \cdots, k_{m}$ $\in K$. So that equation (2.2) is a special case when $n=m=1\left(P^{(1,1)}(H, K)=P(H, K)\right)$. Now we can define the relative commutativity degree of the group G by the following definition.

Definition 2.1. Let G be a group. Let H and K be subgroups of G. We define $d(H, K)$ as the relative commutativity degree of H and K such that

$$
d(H, K)=P^{(1,1)}(H, K)=\frac{\left|\left\{(h, k) \in H \times K:[h, k]=1_{G}\right\}\right|}{|H||K|}=\frac{\sum_{h \in H}\left|C_{K}(h)\right|}{|H||K|} .
$$

Where $C_{K}(h)$ is the centralizer of $h \in H$ in K.

Remark.

1)If $H=K=G$, then

$$
d(H, K)=d(G, G)=d(G)=P^{(1,1)}(G, G)=P(G)
$$

such that

$$
\begin{equation*}
d(G)=\frac{\left|\left\{(x, y) \in G \times G:[x, y]=1_{G}\right\}\right|}{|G|^{2}} \tag{2.4}
\end{equation*}
$$

2) The generalization of $d(G)$ is

$$
d(H, G)^{(n)}=\frac{\left|\left\{\left(h_{1}, \ldots, h_{n}, x\right) \in H^{n} \times G:\left[h_{1}, \ldots, h_{n}, x\right]=1_{G}\right\}\right|}{|H|^{n}|G|} .
$$

3)Obviously if G abelian, then $d(H, K)=d(G)=1$.

The following theorem gives us the equivalent definition of the probability of G by a number of conjugacy classes of G, as noted in [2],[3],[11],[12],[17, Lemma 1.1] and [24].
Theorem 2.1. Let G be a group which acts on a finite set $\left\{(x, y) \in G \times G:[x, y]=1_{G}\right\}$ by conjugation. Then

$$
d(G)=P(G)=\frac{\left|\left\{(x, y) \in G \times G:[x, y]=1_{G}\right\}\right|}{|G|^{2}}=\frac{k(G)}{|G|}
$$

Proof. Let $C\left(x_{1}\right), \ldots, C\left(x_{k(G)}\right)$ be distinct conjugacy classes of G , where $x_{i} \in G$ for all $i=1, \ldots, k(G)$. From (2.4) we have

$$
\begin{aligned}
d(G) & =\frac{\left|\left\{(x, y) \in G \times G:[x, y]=1_{G}\right\}\right|}{|G|^{2}} \\
& =\frac{|\{(x, y) \in G \times G: x y=y x\}|}{|G|^{2}} \\
& =\frac{\sum_{x \in G}\left|C_{G}(x)\right|}{|G|^{2}} \\
& =\frac{\sum_{i=1}^{k(G)} \sum_{x \in C\left(x_{i}\right)}\left|C_{G}(x)\right|}{|G|^{2}} \\
& =\frac{\sum_{i=1}^{k(G)}\left[G: C_{G}\left(x_{i}\right)\right]\left|C_{G}\left(x_{i}\right)\right|}{|G|^{2}} \\
& =\frac{\sum_{i=1}^{k(G)}|G|}{|G|^{2}} \\
& =\frac{k(G)|G|}{|G|^{2}} \\
& =\frac{k(G)}{|G|}
\end{aligned}
$$

thus

$$
d(G)=\frac{k(G)}{|G|}
$$

In the same way we get the following corollary.
Corollary 2.1. Let G be a group. Let H and K be subgroups of G. Then

$$
d(H, K)=\frac{\left|\left\{(h, k) \in H \times K:[h, k]=1_{G}\right\}\right|}{|H||K|}=\frac{k_{K}(H)}{|H|}
$$

where $k_{K}(H)$ is the number of K-cojugacy classes that constitute H.
The following lemma gives us the relation between the number of conjugacy classes of group G and the number of a conjugacy classes of group G / N such that N is a normal subgroup of G.

Lemma 2.1. Let G be a group. Let N be a normal subgroup of G. Then

$$
k(G) \leq k(N) k(G / N)
$$

Proof. The proof can be found in [11, Lemma 1, (ii)].
The following lemma gives us the relation between the probability of group G and the probability of group G / N such that N is a normal subgroup of G, as noted in [11, Lemma 2, (ii)] and [17, Lemma 1.4].

Lemma 2.2. Let G be a group. Let N be a normal subgroup of G. Then

$$
d(G) \leq d(N) d(G / N)
$$

In particulars we always have $d(G) \leq d(G / N)$.
Proof. By Lemma 2.1 we have

$$
k(G) \leq k(N) k(G / N)
$$

therefore

$$
\frac{k(G)}{|G|} \leq \frac{1}{|G|} \frac{|N|}{|N|} k(N) k(G / N)
$$

hence

$$
\frac{k(G)}{|G|} \leq \frac{k(N)}{|N|} \frac{k(G / N)}{|G| /|N|}
$$

by Theorem 2.1 we have

$$
d(G) \leq d(N) d(G / N)
$$

The following basic theorem will be helpful to prove the next theorem.
Theorem 2.2. Let G be a group. If $G / Z(G)$ is cyclic, then G is an abelian group.
Proof. Let $G / Z(G)$ be a cyclic group, then there is $x \in G$ such that $G / Z(G)=\langle x Z(G)\rangle$. Let $a, b \in G$, then for all $n, m \in \mathbb{Z}$ we have

$$
a Z(G)=x^{m} Z(G) \quad \text { and } \quad b Z(G)=x^{n} Z(G)
$$

hence

$$
a=x^{m} c \quad \text { and } \quad b=x^{n} d,
$$

for some $c, d \in Z(G)$, therefore,

$$
\begin{aligned}
a b & =\left(x^{m} c\right)\left(x^{n} d\right)=x^{m}\left(c x^{n}\right) d=x^{m}\left(x^{n} c\right) d=x^{m+n} c d=x^{n+m} c d \\
& =x^{n}\left(x^{m} d\right) c=x^{n}\left(d x^{m}\right) c=\left(x^{n} d\right)\left(x^{m} c\right)=b a .
\end{aligned}
$$

Since $c, d \in Z(G)$. Thus G is an abelian group.

The following theorem gives us the upper boundary of the probability of a non-abelian group G, as in [2],[11],[13] and [24].

Theorem 2.3. Let G be a non-abelian group. Then $d(G) \leq \frac{5}{8}$.
Proof. Since G is disjoint union of conjugace classes then

$$
|G|=\left|C\left(x_{1}\right)\right|+\ldots+\left|C\left(x_{k(G)}\right)\right|,
$$

for all $x_{i} \in G, i=1, \ldots, k(G)$, if $x \in Z(G)$, then $|C(x)|=\left|\left\{y \in G: g^{-1} x g=y\right\}\right|$ $=|\{y \in G: x=y\}||\{x\}|=1$, therefore,

$$
|G|=|Z(G)|+\left|C\left(x_{1}\right)\right|+\ldots+\left|C\left(x_{n}\right)\right|
$$

where $n=k(G)-|Z(G)|$. Since $C\left(x_{i}\right)$ is non-trivial, hence for all $i=1, \ldots, n$, we have

$$
2 \leq\left|C\left(x_{i}\right)\right|
$$

then

$$
2 n \leq\left|C\left(x_{1}\right)\right|+\ldots+\left|C\left(x_{n}\right)\right|
$$

since $|G|-|Z(G)|=\left|C\left(x_{1}\right)\right|+\ldots+\left|C\left(x_{n}\right)\right|$, hence

$$
\begin{aligned}
2 n & \leq|G|-|Z(G)| \\
n & \leq \frac{|G|-|Z(G)|}{2} \\
n+|Z(G)| & \leq \frac{|G|-|Z(G)|}{2}+|Z(G)|=\frac{|G|+|Z(G)|}{2} \\
k(G) & \leq \frac{|G|+|Z(G)|}{2}
\end{aligned}
$$

by Theorem 2.2 we have: if G is non-abelian, then the factor group $G / Z(G)$ is not a cyclic group, and by the fact that the smallest group is not cyclic it is of order 4 , therefore $|Z(G)| \leq|G| / 4$. Then

$$
\begin{aligned}
k(G) & \leq \frac{|G|+|Z(G)|}{2} \leq \frac{|G|+(|G| / 4)}{2}=\frac{5|G|}{8} \\
k(G) & \leq \frac{5|G|}{8} \\
\frac{k(G)}{|G|} & \leq \frac{5}{8}
\end{aligned}
$$

by Theorem 2.1 we have

$$
d(G) \leq \frac{5}{8}
$$

Remark. $d(G)=\frac{5}{8}$ iff the factor group $G / Z(G)$ is isomorphic to the Klein four-group V.
The following lemma gives us the upper boundary of the probability of a non-abelian p-group G, as in [12] and [18, Lemma 1.3].

Lemma 2.3. Let G be a non-abelian p-group. Then

$$
d(G) \leq \frac{p^{2}+p-1}{p^{3}}
$$

Proof. Since G is p-group, hence there is $n \in \mathbb{N}$ such that $|G|=p^{n}$ and $|Z(G)|=p^{m}$ where $m \leq n, m \in \mathbb{N}$ then $m \leq n-2$. Therefore,

$$
\begin{aligned}
d(G) & =\frac{\sum_{x \in G}\left|C_{G}(x)\right|}{|G|^{2}} \\
|G|^{2} d(G) & =\sum_{x \in G}\left|C_{G}(x)\right| \\
\left(p^{n}\right)^{2} d(G) & =\sum_{x \in Z(G)}\left|C_{G}(x)\right|+\sum_{x \in(G-Z(G))}\left|C_{G}(x)\right|
\end{aligned}
$$

since for all $x \in Z(G)$ we have $x g=g x$ for all $g \in G$, hence $C_{G}(x)=G$ for all $x \in Z(G)$, then $\sum_{x \in Z(G)}\left|C_{G}(x)\right|=\sum_{x \in Z(G)}|G|=|G||Z(G)|=p^{n} p^{m}$. Therefore,

$$
\begin{aligned}
& =p^{n} p^{m}+(|G|-|Z(G)|) \\
& =p^{n} p^{m}+\left(p^{n}-p^{m}\right) \\
& \leq p^{n} p^{m}+p^{n-1}\left(p^{n}-p^{m}\right) \\
& =p^{n+m}+p^{n-1}\left(p^{n}-p^{m}\right) \\
& =p^{n+m}+p^{2 n-1}-p^{m+n-1} \\
& =p^{m+n-1}(p-1)+p^{2 n-1}
\end{aligned}
$$

sincem $\leq n-2$

$$
\begin{aligned}
& \leq p^{n-2+n-1}(p-1)+p^{2 n-1} \\
& =p^{2 n-3}(p-1)+p^{2 n-1} \\
& =p^{2 n-3}(p-1)+p^{2 n-1} p^{-2} p^{2} \\
& =p^{2 n-3}(p-1)+p^{2 n-3} p^{2} \\
& =p^{2 n-3}\left(p^{2}+p-1\right) \\
p^{2 n} d(G) & \leq p^{2 n-3}\left(p^{2}+p-1\right) \\
d(G) & \leq p^{-3}\left(p^{2}+p-1\right)
\end{aligned}
$$

thus

$$
d(G) \leq \frac{\left(p^{2}+p-1\right)}{p^{3}}
$$

The following theorem gives us the probability of the direct product of two groups, and we can apply that to more than two groups, provided that the direct product is limited, as noted in [12].
Theorem 2.4. Let G and H be groups. Let $|G|=n,|H|=m$ and $g . c \cdot d(n, m)=1$ for all $n, m \in \mathbb{Z}^{+}$. Then $d(G \times H)=d(G) \cdot d(H)$.
Proof. Since $|G \times H|=|G| \cdot|H|$, hence $(|G \times H|)^{2}=(|G|)^{2} \cdot(|H|)^{2}$. Then we have for all $(x, y) \in G \times H$,

$$
\begin{aligned}
C_{G \times H}((x, y)) & =\{(g, h) \in G \times H:(x, y)(g, h)=(g, h)(x, y)\} \\
& =\{(g, h) \in G \times H:(x g, y h)=(g x, h y)\} \\
& =\{g \in G: x g=g x\} \times\{h \in H: y h=h y\} \\
& =C_{G}(x) \times C_{H}(y) .
\end{aligned}
$$

Hence $\left|C_{G \times H}((x, y))\right|=\left|C_{G}(x) \times C_{H}(y)\right|=\left|C_{G}(x)\right| \cdot\left|C_{H}(y)\right|$, and by definition of $d(G \times H)$ we have

$$
\begin{aligned}
d(G \times H) & =|\{((x, y),(g, h)) \in(G \times H) \times(G \times H):(x, y)(g, h)=(g, h)(x, y)\}| \\
& =\frac{1}{|G \times H|^{2}} \sum_{(x, y) \in G \times H}\left|C_{G \times H}((x, y))\right| \\
& =\frac{1}{|G|^{2} \cdot|H|^{2}} \sum_{x \in G, y \in H}\left|C_{G}(x)\right| \cdot\left|C_{H}(y)\right| \\
& =\frac{1}{|G|^{2}|H|^{2}} \cdot \sum_{x \in G} \sum_{y \in H}\left|C_{G}(x)\right| \cdot\left|C_{H}(y)\right| \\
& =\frac{1}{|G|^{2} \cdot|H|^{2}} \sum_{x \in G}\left|C_{G}(x)\right| \cdot \sum_{y \in H}\left|C_{H}(y)\right| \\
& =\left(\frac{1}{|G|^{2}} \sum_{x \in G}\left|C_{G}(x)\right|\right) \cdot\left(\frac{1}{|H|^{2}} \sum_{y \in H}\left|C_{H}(y)\right|\right) \\
& =d(G) \cdot d(H) .
\end{aligned}
$$

2.2 Exampels

In this section, we will study some examples of calculating the probability of commuting pairs elements of G.

Example 2.1. Let $G=S_{3}=\{(1),(12),(13),(23),(123),(132)\}$. Then

$$
d\left(S_{3}\right)=P\left(S_{3}\right)=\frac{\left|\left\{(x, y) \in S_{3} \times S_{3}:[x, y]=(1)\right\}\right|}{\left|S_{3}\right|^{2}}
$$

\cdot	(1)	(12)	(13)	(23)	(123)	(132)
(1)	$*$	$*$	$*$	$*$	$*$	$*$
(12)	$*$	$*$				
(13)	$*$		$*$			
(23)	$*$			$*$		
(123)	$*$				$*$	$*$
(132)	$*$				$*$	$*$

Table 2.1: Commute Elements in S_{3}.
$\left\{(x, y) \in S_{3} \times S_{3}:[x, y]=(1)\right\}=\{((1),(1)),((1),(12)),((1),(13)),((1),(23)),((1),(123))$, ((1), (132)) , ((12), (1)), ((12), (12)), ((13), (1)), ((13), (13)) ,((23), (1)), ((23), (23)), ((123), (1)) , ((123), (123)), ((123), (132)), ((132), (1)), ((132), (123)), ((132), (132))\}. Therefore, $\left|\left\{(x, y) \in S_{3} \times S_{3}:[x, y]=(1)\right\}\right|=18$. So, $P\left(S_{3}\right)=\frac{18}{36}=\frac{1}{2}$, and by Theorem 2.1 we have

$$
P\left(S_{3}\right)=\frac{k\left(S_{3}\right)}{\left|S_{3}\right|}=\frac{3}{6}=\frac{1}{2}
$$

Example 2.2. Let $G=D_{8}=\left\{1, a, a^{2}, a^{3}, b, a b, a^{2} b, a^{3} b\right\}$. Then

\cdot	1	a	a^{2}	a^{3}	b	ab	$\mathrm{a}^{2} b$	$\mathrm{a}^{3} b$
1	$*$	$*$	$*$	$*$	$*$	$*$	$*$	$*$
a	$*$	$*$	$*$	$*$				
a^{2}	$*$	$*$	$*$	$*$	$*$	$*$	$*$	$*$
a^{3}	$*$	$*$	$*$	$*$				
b	$*$		$*$		$*$		$*$	
ab	$*$		$*$			$*$		$*$
$\mathrm{a}^{2} b$	$*$		$*$		$*$		$*$	
$\mathrm{a}^{3} b$	$*$		$*$			$*$		$*$

Table 2.2: Commute Elements in D_{8}.

$$
d\left(D_{8}\right)=P\left(D_{8}\right)=\frac{\left|\left\{(x, y) \in D_{8} \times D_{8}:[x, y]=1\right\}\right|}{\left|D_{8}\right|^{2}}
$$

$\left\{(x, y) \in D_{8} \times D_{8}:[x, y]=1\right\}=\left\{(1,1),(1, a),\left(1, a^{2}\right),\left(1, a^{3}\right),(1, b),(1, a b),\left(1, a^{2} b\right),\left(1, a^{3} b\right),(a, 1)\right.$, $\left(a^{2}, 1\right),\left(a^{3}, 1\right),(b, 1),(a b, 1),\left(a^{2} b, 1\right),\left(a^{3} b, 1\right),(b, b),\left(a, a^{2}\right),\left(a, a^{3}\right),(a, a),\left(a^{2}, a\right),\left(a^{2}, a^{2}\right),\left(a^{2}, a^{3}\right)$, $\left(a^{2}, b\right),\left(a^{2}, a b\right),\left(a^{2}, a^{2} b\right),\left(a^{2}, a^{3} b\right),\left(a^{3}, a\right),\left(a^{3}, a^{2}\right),\left(a^{3}, a^{3}\right),\left(b, a^{2}\right),\left(b, a^{2} b\right),\left(a b, a^{2}\right),(a b, a b),\left(a b, a^{3} b\right)$, $\left.\left(a^{2} b, a^{2}\right),\left(a^{2} b, b\right),\left(a^{2} b, a^{2} b\right),\left(a^{3} b, a^{2}\right),\left(a^{3} b, a b\right),\left(a^{3} b, a^{3} b\right)\right\}$. Therefore, $\mid\left\{(x, y) \in D_{8} \times D_{8}:[x, y]=1\right.$ $\} \mid=40$. So, $P\left(D_{8}\right)=\frac{40}{64}=\frac{5}{8}$, and by Theorem 2.1 we have

$$
P\left(D_{8}\right)=\frac{k\left(D_{8}\right)}{\left|D_{8}\right|}=\frac{5}{8} .
$$

Satisfies the Remark $D_{8} /\left\langle a^{2}\right\rangle \cong V$ (mentioned earlier on page 21).
Example 2.3. Let $G=S_{4}$. Then

$$
d\left(S_{4}\right)=P\left(S_{4}\right)=\frac{\left|\left\{(x, y) \in S_{4} \times S_{4}:[x, y]=(1)\right\}\right|}{\left|S_{4}\right|^{2}}
$$

	(1)	(12)	(13)	(14)	(23)	(24)	(34)	(123)	(132)	(124)	(142)	(134)	(143)	(234)	(243)	(12)(34)	(13)(24)	(14)(23)	(1234)	(1243)	(1324)	(1342)	(1423)	(1432)
(1)																								
(12)	*	*					*									*								
(13)	*		*			*																		
(14)	*			${ }_{*}^{*}$	${ }_{*}^{*}$													${ }_{*}^{*}$						
(24)	*		*			*											*							
(34)	*	*					*									*								
(123)	*							*	*															
(132)	*							*																
(124)	*																							
(142)	*									*	*													
(134)	*											*	*											
(143)	*											*	*											
(234)	*																							
(243)	*																							
(12)(34)	*	*					*										*	*			*		*	
(13)(24)	*		*			*										*	*	*	*					
(14)(23)	*			*	*											*	*	*		*		*		
(1234)	*																		*					
(1243)	*																			,				
(1324)	${ }_{*}^{*}$															*		*		*	*			
(1423)	*															*					*		*	
(1432)	*																							

[^0]Therefore, $\left|\left\{(x, y) \in S_{4} \times S_{4}:[x, y]=(1)\right\}\right|=120$. So, $P\left(S_{4}\right)=\frac{120}{576}=\frac{5}{24}$, and by Theorem 2.1 we have

$$
P\left(S_{4}\right)=\frac{k\left(S_{4}\right)}{\left|S_{4}\right|}=\frac{5}{24}
$$

Example 2.4. Let $G=A_{5}$. Then

$$
d\left(A_{5}\right)=P\left(A_{5}\right)=\frac{\left|\left\{(x, y) \in A_{5} \times A_{5}:[x, y]=(1)\right\}\right|}{\left|A_{5}\right|^{2}}
$$

From Table 2.4 we have $\left|\left\{(x, y) \in A_{5} \times A_{5}:[x, y]=(1)\right\}\right|=300$. So, $P\left(A_{5}\right)=\frac{300}{3600}=\frac{5}{60}=\frac{1}{12}$, and by Theorem 2.1 we have

$$
P\left(A_{5}\right)=\frac{k\left(A_{5}\right)}{\left|A_{5}\right|}=\frac{5}{60}=\frac{1}{12}
$$


```
Table 2.4: Commute Elements in \(A_{5}\).
```


2.3 Probability of a commutator that is equal to a given element

In this section, we will study the probability that a randomly chosen commutator is equal to a given element of G.

Given two subgroups H and K of G and two natural numbers n and m, where $h \in H$ and $k \in K$. If the commutator $[h, k]=g$ such that $g \in G$ then the probability that a randomly chosen commutator of weight $n+m$ of $H \times K$ is equal to a given element of G is defined as follows:

$$
\begin{equation*}
P_{g}^{(n, m)}(H, K)=\frac{\left|\left\{\left(h_{1}, \ldots, h_{n}, k_{1}, \ldots, k_{m}\right) \in H^{n} \times K^{m}:\left[h_{1}, \ldots, h_{n}, k_{1}, \ldots, k_{m}\right]=g\right\}\right|}{|H|^{n}|K|^{m}} \tag{2.5}
\end{equation*}
$$

is clearly a generalization of $P^{(n, m)}(H, K)$, when $g=1_{G}$. The case $n=m=1$ is called generalized commutativity degree of \boldsymbol{G} which $d_{g}(H, K)=P_{g}(H, K)$.

The following proposition gives us the relation between the probability of a commutator that is equal to a given element g from G and the probability of a commutator that is equal to the inverse of g, as in [3, Proposition 2.4].

Proposition 2.1. Let G be a group. Let H and K be subgroups of G. Then

$$
P_{g}^{(n, m)}(H, K)=P_{g^{-1}}^{(m, n)}(K, H) .
$$

Proof. From (2.5) we have

$$
\begin{aligned}
P_{g}^{(n, m)}(H, K) & =\frac{\left|\left\{\left(h_{1}, \ldots, h_{n}, k_{1}, \ldots, k_{m}\right) \in H^{n} \times K^{m}:\left[h_{1}, \ldots, h_{n}, k_{1}, \ldots, k_{m}\right]=g\right\}\right|}{|H|^{n}|K|^{m}} \\
& =\frac{\left|\left\{\left(h_{1}, \ldots, h_{n}, k_{1}, \ldots, k_{m}\right) \in H^{n} \times K^{m}:\left[h_{1}, \ldots, h_{n}, k_{1}, \ldots, k_{m}\right]^{-1}=g^{-1}\right\}\right|}{|H|^{n}|K|^{m}}
\end{aligned}
$$

by the commutator rules we get

$$
\begin{aligned}
& =\frac{\left|\left\{\left(k_{m}, \ldots, k_{1}, h_{n}, \ldots, h_{1}\right) \in K^{m} \times H^{n}:\left[k_{m}, \ldots, k_{1}, h_{n}, \ldots, h_{1}\right]=g^{-1}\right\}\right|}{|K|^{m}|H|^{n}} \\
& =P_{g^{-1}}^{(m, n)}(K, H) .
\end{aligned}
$$

The following theorem gives us the significant restriction of the $P_{g}^{(n, m)}(H, K)$, as in [2, Theorem 1.1] and [3, Theorem 3.3].

Theorem 2.5. Let G be a group. Let H and K be subgroups of G. Let p be the smallest prime divisor of $|G|$. Then
(i) $P_{g}^{(n, m)}(H, K) \leq \frac{2 p^{n}+p-2}{p^{m+n}}$;
(ii) $P_{g}^{(n, m)}(H, K) \geq \frac{(1-p)\left|Y_{H^{n}}\right|+p\left|H^{n}\right|}{\left|H^{n}\right|\left|K^{m}\right|}-\frac{(|K|+p)\left|C_{H}(K)\right|^{n}}{\left|H^{n}\right|\left|K^{m}\right|}$;
where $Y_{H^{n}}=\left\{\left[x_{1}, \ldots, x_{n}\right] \in H^{n}: C_{K}\left(\left[x_{1}, \ldots, x_{n}\right]\right)=1\right\}$.
Proof. The proof can be found in [3, Theorem 3.3].

The following corollary comes from achieving equality in Theorem 2.5 (i), as in [2, Corollary 1.2] and [3, Corollary 3.4].

Corollary 2.2. If $P_{g}^{(n, m)}(H, K)=\frac{2 p^{n}+p-2}{p^{m+n}}$ and $p \neq 2$. Then

$$
\left[H: C_{H}(K)\right] \leq \frac{p \cdot p^{1 / n}}{(p-2)^{1 / n}}
$$

Proof. The proof can be found in [3, Corollary 3.4].

The following theorem comes from exercise (3.9) page 45 in [15] which will be helpful to proof the next lemma. We shall study and investigate the coefficients $a_{i j v}$ for $i, j, v=1, \ldots, k(G)$ in more details in Chapter 6.

Theorem 2.6. Let G be a group. Let $C\left(g_{1}\right), \ldots, C\left(g_{k(G)}\right)$ be the distinct conjugacy classes of G where $g_{i} \in G$ for all $i=1, \cdots, k(G)$. Let $g_{i} \in C\left(g_{i}\right)$ be a representatives and let $a_{i j v}$ be the integers defined by

$$
K_{i} K_{j}=\sum_{v=1}^{k(G)} a_{i j v} K_{v}
$$

Then

$$
a_{i j v}=\frac{\left|C\left(g_{i}\right)\right|\left|C\left(g_{j}\right)\right|}{|G|} \sum_{\chi \in \operatorname{Irr}(G)} \frac{\chi\left(g_{i}\right) \chi\left(g_{j}\right) \chi\left(g_{v}^{-1}\right)}{\chi(1)}
$$

Proof. We have

$$
\begin{aligned}
K_{i} K_{j} & =\sum_{t=1}^{k(G)} a_{i j t} K_{t} \\
\omega_{\chi}\left(K_{i} K_{j}\right) & =\sum_{t=1}^{k(G)} \omega_{\chi}\left(a_{i j t} K_{t}\right)
\end{aligned}
$$

since, ω_{χ} is an algebra homomorphism

$$
\omega_{\chi}\left(K_{i}\right) \omega_{\chi}\left(K_{j}\right)=\sum_{t=1}^{k(G)} a_{i j t} \omega_{\chi}\left(K_{t}\right)
$$

since, $\omega_{\chi}\left(K_{l}\right)=\frac{\left|C\left(g_{l}\right)\right| \chi\left(g_{l}\right)}{\chi(1)}$ for all $l=1, \ldots, k(G)$, then for each $\chi \in \operatorname{Irr}(G)$ we have

$$
\begin{aligned}
\frac{\left|C\left(g_{i}\right)\right| \chi\left(g_{i}\right)\left|C\left(g_{j}\right)\right| \chi\left(g_{j}\right)}{\chi(1)^{2}} & =\sum_{t=1}^{k(G)} a_{i j t} \frac{\left|C\left(g_{t}\right)\right| \chi\left(g_{t}\right)}{\chi(1)} \\
\frac{\left|C\left(g_{i}\right)\right| \chi\left(g_{i}\right)\left|C\left(g_{j}\right)\right| \chi\left(g_{j}\right)}{\chi(1)} & =\sum_{t=1}^{k(G)} a_{i j t}\left|C\left(g_{t}\right)\right| \chi\left(g_{t}\right) \\
\frac{\left|C\left(g_{i}\right)\right| \chi\left(g_{i}\right)\left|C\left(g_{j}\right)\right| \chi\left(g_{j}\right) \chi\left(g_{v}^{-1}\right)}{\chi(1)} & =\sum_{t=1}^{k(G)} a_{i j t}\left|C\left(g_{t}\right)\right| \chi\left(g_{t}\right) \chi\left(g_{v}^{-1}\right) .
\end{aligned}
$$

Summing over all $\chi \in \operatorname{Irr}(G)$, we have

$$
\begin{aligned}
\left|C\left(g_{i}\right)\right|\left|C\left(g_{j}\right)\right| \sum_{\chi \in \operatorname{Irr}(G)} \frac{\chi\left(g_{i}\right) \chi\left(g_{j}\right) \chi\left(g_{v}^{-1}\right)}{\chi(1)} & =\sum_{\chi \in \operatorname{Irr}(G)} \sum_{t=1}^{k(G)} a_{i j t}\left|C\left(g_{t}\right)\right| \chi\left(g_{t}\right) \chi\left(g_{v}^{-1}\right) \\
& =\sum_{t=1}^{k(G)} a_{i j t}\left|C\left(g_{t}\right)\right| \sum_{\chi \in \operatorname{Irr}(G)} \chi\left(g_{t}\right) \chi\left(g_{v}^{-1}\right)
\end{aligned}
$$

by the Second Orthogonality Relation Theorem

$$
\begin{aligned}
& =\sum_{t=v=1}^{k(G)} a_{i j v}\left|C\left(g_{v}\right)\right|\left|C_{G}\left(g_{v}\right)\right| \\
& =a_{i j v}|G|
\end{aligned}
$$

thus

$$
a_{i j v}=\frac{\left|C\left(g_{i}\right)\right|\left|C\left(g_{j}\right)\right|}{|G|} \sum_{\chi \in \operatorname{Irr}(G)} \frac{\chi\left(g_{i}\right) \chi\left(g_{j}\right) \chi\left(g_{v}^{-1}\right)}{\chi(1)}
$$

The following lemma comes from exercise (3.10)(a) page 45 in [15] which will be helpful to proof the next lemma.

Lemma 2.4. Let G be a group and $g \in G$. Fix $x \in G$. Then $g \sim[x, y]$ for some $y \in G$ iff

$$
\sum_{\chi \in \operatorname{Irr}(G)} \frac{|\chi(x)|^{2} \chi\left(g^{-1}\right)}{\chi(1)} \neq 0
$$

Proof. Let $g \sim[x, y]$ for some $y \in G$. Then there is $h \in G$ such that $g^{h}=x^{-1} y^{-1} x y$, i.e., $x g^{h} \sim x$. By Theorem 2.6, if $x \in C\left(g_{i}\right)$ and $g \in C\left(g_{j}\right)$, then $a_{i j i} \neq 0$ since $x g^{h}=x^{y} \in C\left(g_{i}\right)$. We have

$$
a_{i j i} \neq 0
$$

From Proposition 1.1(2) we have

$$
\frac{\left|C\left(g_{i}\right)\right|\left|C\left(g_{j}\right)\right|}{|G|} \sum_{\chi \in \operatorname{Irr}(G)} \frac{\chi(x) \chi(g) \chi\left(x^{-1}\right)}{\chi(1)} \neq 0
$$

since $\chi(g)=\chi\left(g^{-1}\right)$ for all $g \in G$, then

$$
\sum_{\chi \in \operatorname{Irr}(G)} \frac{|\chi(x)|^{2} \chi\left(g^{-1}\right)}{\chi(1)} \neq 0
$$

Conversely, let $\sum_{\chi \in \operatorname{Irr}(G)} \frac{|\chi(x)|^{2} \chi\left(g^{-1}\right)}{\chi(1)} \neq 0$, then $a_{i j i} \neq 0$ where $x \in C\left(g_{i}\right)$ and $g \in C\left(g_{j}\right)$. So, for some $h, k, l \in G$ we have

$$
\begin{aligned}
x^{h} g^{k}=h^{-1} x h g^{k} & =x^{l} \\
x h g^{k} & =h x^{l} \\
x h g^{k} h^{-1} & =h x^{l} h^{-1} \\
x g^{k h^{-1}} & =x^{l h^{-1}}
\end{aligned}
$$

if we take $z=k h^{-1}$ and $y=l h^{-1}$, then

$$
\begin{aligned}
x g^{z} & =x^{y} \\
g^{z} & =x^{-1} x^{y}=[x, y]
\end{aligned}
$$

therefore, there is $z \in G$ such that $g^{z}=[x, y]$. Thus $g \sim[x, y]$.

The following lemma comes from exercise (3.10)(b) page 45 in [15] which gives us the sum of $\chi(g) / \chi(1)$ is not equal to zero when the element g belongs to the derived group which will be helpful to proof the next theorem.

Lemma 2.5. Let G be a group and $g \in G$. Then $g=[x, y]$ for some $x, y \in G$ iff

$$
\sum_{\chi \in \operatorname{Irr}(G)} \frac{\chi(g)}{\chi(1)} \neq 0
$$

Proof. Let $g=[x, y]$ for some $x, y \in G$. By Lemma 2.4 we have

$$
\sum_{\chi \in \operatorname{Irr}(G)} \frac{|\chi(x)|^{2} \chi\left(g^{-1}\right)}{\chi(1)} \neq 0
$$

by Theorem First Orthogonal Relation Theorem we have

$$
\frac{1}{|G|} \sum_{z \in G}|\chi(z)|^{2}=1
$$

then

$$
\begin{aligned}
\sum_{\chi \in \operatorname{Irr}(G)} \frac{\chi(g)}{\chi(1)} & =\sum_{\chi \in \operatorname{Irr}(G)}\left(\frac{1}{|G|} \sum_{z \in G}|\chi(z)|^{2}\right) \frac{\chi(g)}{\chi(1)} \\
& =\frac{1}{|G|} \sum_{z \in G} \sum_{\chi \in \operatorname{Irr}(G)} \frac{|\chi(z)|^{2} \chi(g)}{\chi(1)} .
\end{aligned}
$$

For each $z \in G$,

$$
\sum_{\chi \in \operatorname{Irr}(G)} \frac{|\chi(z)|^{2} \chi(g)}{\chi(1)}=\frac{a_{l j l}|G|}{\left|C\left(g_{l}\right)\right|\left|C\left(g_{j}\right)\right|}
$$

where $z \in C\left(g_{l}\right)$ and $g \in C\left(g_{j}\right)$ is non-negative since by that if $K_{i} K_{j}=\sum_{v=1}^{k(G)} a_{i j k} K_{v}$, then the multiplication constants $a_{i j v}$ are non-negative integers. Therefore,

$$
\sum_{\chi \in \operatorname{Irr}(G)} \frac{\chi(g)}{\chi(1)} \neq 0
$$

Conversely, let $\sum_{\chi \in \operatorname{Irr}(G)} \frac{\chi(g)}{\chi(1)} \neq 0$. Then

$$
\frac{1}{|G|} \sum_{\chi \in \operatorname{Irr}(G)} \sum_{z \in G} \frac{|\chi(z)|^{2} \chi(g)}{\chi(1)} \neq 0
$$

So, $\sum_{\chi \in G} \frac{|\chi(w)|^{2} \chi(g)}{\chi(1)} \neq 0$, for some $w \in G$. Then by Lemma 2.4 we have for some $y \in G$

$$
g \sim[w, y]
$$

then there is $h \in G$ such that

$$
\begin{gathered}
g^{h}=[w, y] \\
g=[w, y]^{h^{-1}} \\
g=\left[w^{h^{-1}}, y^{h^{-1}}\right]
\end{gathered}
$$

so that $g=\left[x, y^{h^{-1}}\right]$ where $x=w^{h^{-1}}$.

The following theorem comes from exercise 3 page 183 in [5] which is the most important theorem that will help us convey the concept of probability and its calculation method via the character theory.

Theorem 2.7. Let G be a group, and let's define the function

$$
\psi: G \longrightarrow \mathbb{C}
$$

given by

$$
\psi(g)=|\{(x, y) \in G \times G:[x, y]=g\}|
$$

for all $g \in G$. Then $\psi(g)=\sum_{i=1}^{k(G)} \frac{|G|}{\chi_{i}(1)} \chi_{i}(g)$.
Proof. Since $g \in G^{\prime}$ then by Lemma 2.5 we have $\sum_{i=1}^{k(G)} \frac{\chi_{i}(g)}{\chi_{i}(1)} \neq 0$, and since $|G|=\left|C_{G}(g)\right||C(g)|$, for all $g \in G$, hence we have

$$
\begin{aligned}
& \psi(g)=\sum_{i=1}^{k(G)} \frac{|G|}{\chi_{i}(1)} \chi_{i}(g) \\
& \psi(g)=\sum_{i=1}^{k(G)} \frac{\left|C_{G}(g)\right||C(g)|}{\chi_{i}(1)} \chi_{i}(g) \\
& \psi(g)=\left|C_{G}(g)\right| \sum_{i=1}^{k(G)} \frac{|C(g)|}{\chi_{i}(1)} \chi_{i}(g)
\end{aligned}
$$

since $\frac{|C(g)|}{\chi_{i}(1)} \chi_{i}(g)=\omega_{\chi_{i}}(K)$ for all $i=1, \ldots, k(G)$, where K is class sum $\left(K=\sum_{g \in C(g)} g\right)$. Then

$$
\begin{aligned}
& \psi(g)=\left|C_{G}(g)\right| \sum_{i=1}^{k(G)} \omega_{\chi_{i}}(K) \\
& \psi(g)=\left|C_{G}(g)\right| \sum_{i=1}^{k(G)} Z\left(\chi_{i}\right) .
\end{aligned}
$$

On the other hand, we have

$$
\begin{aligned}
& \psi(g)=|\{(x, y) \in G \times G:[x, y]=g\}| \\
& \psi(g)=\left|\left\{(x, y) \in G \times G: x^{-1} y^{-1} x y=g\right\}\right| \\
& \psi(g)=|\{(x, y) \in G \times G: x y=y x g\}| \\
& \psi(g)=\mid\left\{x \in G \text { and } y \in C_{G}(x): x y=y x g\right\} \mid \\
& \psi(g)=\mid\left\{x \in G \text { and } y \in C_{G}(x): x y=x y g\right\} \mid \\
& \psi(g)=\mid\left\{x y \in F_{i x_{G}}(g) \text { and } y \in C_{G}(x): x y=x y g\right\} \mid \\
& \psi(g)=\left|\left\{F i x_{G}(g) \times C_{G}(x)\right\}\right|=\left|C_{G}(x)\right| \cdot\left|F i x_{G}(g)\right| .
\end{aligned}
$$

Corollary 2.3. Let G be a group. Then the function

$$
\psi: G \longrightarrow \mathbb{C}
$$

given by

$$
\psi(g)=|\{(x, y) \in G \times G:[x, y]=g\}|
$$

is a character.
Proof. Since ψ is a class function and $\psi(g) \in \mathbb{N}$ for all $g \in G$. Thus, ψ is a character.

The following theorem gives us the method for calculating the probability of a commutator that is equal to a given element of G by the character theory, as in [2] and [3].

Theorem 2.8. Let G be a group and $g \in G$. Then

$$
P_{g}(G)=\frac{1}{|G|} \sum_{\chi \in \operatorname{Irr}(G)} \frac{\chi(g)}{\chi(1)}
$$

Proof. By definition of $P_{g}(G)$ we have

$$
P_{g}(G)=\frac{|\{(x, y) \in G \times G:[x, y]=g\}|}{|G|^{2}}
$$

and by Theorem 2.7 we have

$$
P_{g}(G)=\frac{1}{|G|^{2}} \sum_{\chi \in \operatorname{Irr}(G)} \frac{|G|}{\chi(1)} \chi(g),
$$

thus

$$
P_{g}(G)=\frac{1}{|G|} \sum_{\chi \in \operatorname{Irr}(G)} \frac{\chi(g)}{\chi(1)}
$$

The following are some examples in character theory which calculate $P_{g}(G)$ for all $g \in G$. Since the conjugate elements of a group G have the same character, then the conjugate elements have the same probability of a commutator that is equal to a given element from G.

Example 2.5. Let $G=S_{3}$ and by Table 1.6 we have

1) When $g=(1)$, then

$$
P_{(1)}\left(S_{3}\right)=\frac{1}{\left|S_{3}\right|} \sum_{\chi \in \operatorname{Irr}\left(S_{3}\right)} \frac{\chi((1))}{\chi((1))}=\frac{1}{\left|S_{3}\right|} k\left(S_{3}\right)=\frac{3}{6}=\frac{1}{2} .
$$

2) When $g \in C((12))$, then

$$
P_{g}\left(S_{3}\right)=\frac{1}{\left|S_{3}\right|} \sum_{\chi \in \operatorname{Irr}\left(S_{3}\right)} \frac{\chi(g)}{\chi((1))}=\frac{1}{6}(1-1+0)=0 .
$$

3) When $g \in C((123))$, then

$$
P_{g}\left(S_{3}\right)=\frac{1}{\left|S_{3}\right|} \sum_{\chi \in \operatorname{Irr}\left(S_{3}\right)} \frac{\chi(g)}{\chi((1))}=\frac{1}{6}\left(1+1-\frac{1}{2}\right)=\frac{1}{4}
$$

Therefore, $\cup_{g \in S_{3}} P_{g}\left(S_{3}\right)=1$.

Example 2.6. Let $G=D_{8}$ and by Table 1.14 we have

1) When $g=1$, then

$$
P_{1}\left(D_{8}\right)=\frac{1}{\left|D_{8}\right|} \sum_{\chi \in \operatorname{Irr}\left(D_{8}\right)} \frac{\chi(1)}{\chi(1)}=\frac{1}{\left|D_{8}\right|} k\left(D_{8}\right)=\frac{5}{8}
$$

2) When $g \in C\left(a^{2}\right)$, then

$$
P_{g}\left(D_{8}\right)=\frac{1}{\left|D_{8}\right|} \sum_{\chi \in \operatorname{Irr}\left(D_{8}\right)} \frac{\chi(g)}{\chi(1)}=\frac{1}{8}\left(1+1+1+1-\frac{2}{2}\right)=\frac{3}{8} .
$$

3) When $g \in C(b)$, then

$$
P_{g}\left(D_{8}\right)=\frac{1}{\left|D_{8}\right|} \sum_{\chi \in \operatorname{Irr}\left(D_{8}\right)} \frac{\chi(g)}{\chi(1)}=\frac{1}{8}(1-1+1-1+0)=0 .
$$

4) When $g \in C(a)$, then

$$
P_{g}\left(D_{8}\right)=\frac{1}{\left|D_{8}\right|} \sum_{\chi \in \operatorname{Irr}\left(D_{8}\right)} \frac{\chi(g)}{\chi(1)}=\frac{1}{8}(1+1-1-1+0)=0 .
$$

5) When $g \in C(a b)$, then

$$
P_{g}\left(D_{8}\right)=\frac{1}{\left|D_{8}\right|} \sum_{\chi \in \operatorname{Irr}\left(D_{8}\right)} \frac{\chi(g)}{\chi(1)}=\frac{1}{8}(1-1-1+1+0)=0
$$

Therefore, $\cup_{g \in D_{8}} P_{g}\left(D_{8}\right)=1$.
Example 2.7. Let $G=S_{4}$ and by Table 1.1 we have 1) When $g=(1)$, then

$$
P_{(1)}\left(S_{4}\right)=\frac{1}{\left|S_{4}\right|} \sum_{\chi \in \operatorname{Irr}\left(S_{4}\right)} \frac{\chi((1))}{\chi((1))}=\frac{1}{\left|S_{4}\right|} k\left(S_{4}\right)=\frac{5}{24} .
$$

2) When $g \in C((12))$, then

$$
P_{g}\left(S_{4}\right)=\frac{1}{\left|S_{4}\right|} \sum_{\chi \in \operatorname{Irr}\left(S_{4}\right)} \frac{\chi(g)}{\chi((1))}=\frac{1}{24}\left(1-1+0+\frac{1}{3}-\frac{1}{3}\right)=0
$$

3) When $g \in C((123))$, then

$$
P_{g}\left(S_{4}\right)=\frac{1}{\left|S_{4}\right|} \sum_{\chi \in \operatorname{Irr}\left(S_{4}\right)} \frac{\chi(g)}{\chi((1))}=\frac{1}{24}\left(1+1-\frac{1}{2}+0+0\right)=\frac{1}{16}
$$

4) When $g \in C((1234))$, then

$$
P_{g}\left(S_{4}\right)=\frac{1}{\left|S_{4}\right|} \sum_{\chi \in \operatorname{Irr}\left(S_{4}\right)} \frac{\chi(g)}{\chi((1))}=\frac{1}{24}\left(1-1+0-\frac{1}{3}+\frac{1}{3}\right)=0
$$

5) When $g \in C((12)(34))$, then

$$
P_{g}\left(S_{4}\right)=\frac{1}{\left|S_{4}\right|} \sum_{\chi \in \operatorname{Irr}\left(S_{4}\right)} \frac{\chi(g)}{\chi((1))}=\frac{1}{24}\left(1+1+1-\frac{1}{3}-\frac{1}{3}\right)=\frac{7}{72}
$$

Therefore, $\cup_{g \in S_{4}} P_{g}\left(S_{4}\right)=1$.

Chapter 3

Relative Tensor Degree

In this chapter, we will present three sections; in the first section, we will introduce definitions of a compatiplity action and non-abelian tensor product of normal subgroups H and K of G, establish some basic properties that describe the main calculus rules in the non-abelian tensor product, explain the relation between the non-abelian tensor product group $H \otimes K$ and the derived group [H, K], and state the proposition which gives us the isomorphism between $H \otimes K$ and $K \otimes H$. In the second section, we will study the definitions of tensor centralizer and tensor center which have been developed in the previous section, the algebraic structures of these concepts, the definition of the relative tensor degree, and explain the relation between the tensor centralizer and the tensor degree, and in the third and last section, we will study the relation between the relative commutative degree and relative tensor degree. The basic references of this chapter are[4],[6],[19] and [23].

3.1 Compatiplity Action and Non-abelian Tensor Product

We will study the compatiplity action and non-abelian tensor product.
The following definition we will state the act compatibly as in [4], [6] and [19, Definition 1.2.1].

Definition 3.1. Let G be a group. Let H and K be normal subgroups of G. We say that H and K act compatibly on each other if:

$$
\left(h_{2}^{k_{1}}\right)^{h_{1}}=\left(\left(h_{2}^{h_{1}^{-1}}\right)^{k_{1}}\right)^{h_{1}} \quad \text { and } \quad\left(k_{2}^{h_{1}}\right)^{k_{1}}=\left(\left(k_{2}^{k_{1}^{-1}}\right)^{h_{1}}\right)^{k_{1}}
$$

for all $h_{1}, h_{2} \in H$ and $k_{1}, k_{2} \in K$. When the action is given by conjugation.

Example 3.1. Let $G=D_{8}$. Let $H=\langle a\rangle$ and $K=\left\langle a^{2}, b\right\rangle$ be normal subgroups of D_{8}. Consider $h_{1}=a, h_{2}=a^{2} \in H$ and $k_{1}=a^{2}, k_{2}=b \in K$. Then

$$
\begin{array}{rlrl}
\left(a^{2^{a^{2}}}\right)^{a} & =\left(\left(a^{2 a^{3}}\right)^{a^{2}}\right)^{a} & & \rightarrow \\
a^{2}=a^{2} \\
\left(b^{a}\right)^{a^{2}} & =\left(\left(b^{a^{2}}\right)^{a}\right)^{a^{2}} & & \rightarrow
\end{array} a^{2} b=a^{2} b
$$

the same way for all $h_{1}, h_{2} \in H$ and $k_{1}, k_{2} \in K$. Thus, H and K act compatibly on each other.

Example 3.2. Let $G=S_{4}$. Let $H=\{(1),(12)(34),(13)(24),(14)(23)\}$ and $K=A_{4}$ be normal subgroups of S_{4}. Consider $h_{1}=(13)(24), h_{2}=(14)(23) \in H$ and $k_{1}=(142), k_{2}=(234) \in K$. Then

$$
\left((234)^{(13)(24)}\right)^{(142)} \neq\left(\left((234)^{(124)}\right)^{(13)(24)}\right)^{(142)} \quad \rightarrow \quad \rightarrow \quad(124) \neq(132)
$$

Thus, H and K do not act compatibly on each other.

We will state the non-abelian tensor product as in [4] page 1, [6] in page 178 and [19, Definition 1.2.4].

Definition 3.2. Let G be a group. Let H and K be normal subgroups of G which act on each other compatibly. Let $h \in H$ and $k \in K$. We define the group $H \otimes K$ as the non-abelian tensor product of H and K generated by the symbols $h \otimes k$ such that

$$
h_{1} h_{2} \otimes k_{1}=\left(h_{2}^{h_{1}} \otimes k_{1}^{h_{1}}\right)\left(h_{1} \otimes k_{1}\right) \quad \text { and } \quad h_{1} \otimes k_{1} k_{2}=\left(h_{1} \otimes k_{1}\right)\left(h_{1}^{k_{1}} \otimes k_{2}^{k_{1}}\right)
$$

for all $h_{1}, h_{2} \in H$ and $k_{1}, k_{2} \in K$.

The following proposition gives us the action of normal subgroups on the non-abelian tensor product in group G, as in [16, Proposition 1] and [6, Proposition 1.2.6].

Proposition 3.1. Let G be a group. Let H and K be normal subgroups of G which act on each other compatibly. Then H and K act on the non-abelian tensor product group $H \otimes K$ by:

$$
\left(h^{\prime} \otimes k\right)^{h}=\left(h^{\prime}\right)^{h} \otimes(k)^{h} \quad \text { and } \quad\left(h \otimes k^{\prime}\right)^{k}=(h)^{k} \otimes\left(k^{\prime}\right)^{k},
$$

for all $h, h^{\prime} \in H$ and $k, k^{\prime} \in K$.

Proof. Let $h, h^{\prime} \in H$ and $k, k^{\prime} \in K$. Then

$$
\left(h^{\prime}\right)^{h} \otimes(k)^{h}=\left(1_{H} \cdot h^{\prime}\right)^{h} \otimes(k)^{h}=1_{H}^{h} \cdot h^{\prime h} \otimes k^{h} .
$$

by Definition 3.2

$$
\begin{aligned}
& =\left(\left(\left(h^{\prime h}\right)^{1_{H}}\right)^{h} \otimes\left(\left(k^{h}\right)^{1_{H}}\right)^{h}\right)\left(1_{H}^{h} \otimes k^{h}\right) \\
& =\left(\left(h^{\prime}\right)^{1_{H} h} \otimes(k)^{1_{H} h}\right)\left(1_{H}^{h} \otimes k^{h}\right) \\
& =\left(\left(h^{\prime}\right)^{1_{H}} \otimes(k)^{1_{H}}\right)^{h}\left(1_{H} \otimes k\right)^{h} \\
& =\left[\left(\left(h^{\prime}\right)^{1_{H}} \otimes(k)^{1_{H}}\right)\left(1_{H} \otimes k\right)\right]^{h}
\end{aligned}
$$

by Definition 3.2

$$
\begin{aligned}
& =\left[\left(1_{H} h^{\prime} \otimes k\right)\right]^{h} \\
& =\left(h^{\prime} \otimes k\right)^{h} .
\end{aligned}
$$

Thus, $\left(h^{\prime} \otimes k\right)^{h}=\left(h^{\prime}\right)^{h} \otimes(k)^{h}$, and the same way to prove $\left(h \otimes k^{\prime}\right)^{k}=(h)^{k} \otimes\left(k^{\prime}\right)^{k}$.

The following lemmas describe the main calculus rules in $H \otimes K$, as in [6, Proposition 3.], [19, Proposition 1.2.8] and [23] page 1.

Lemma 3.1. Let G be a group. Let H and K be normal subgroups of G which act on each other compatibly. If $h \in H$ and $k \in K$. Then

$$
1_{H} \otimes k=h \otimes 1_{K}=1_{H \otimes K}
$$

in the non-abelian tensor product group $H \otimes K$.

Proof. Let $h, h_{1} \in H$ and $k, k_{1} \in K$.

$$
\begin{aligned}
\text { If } k=k_{1}=1_{K}, \text { then }\left(h \otimes k k_{1}\right) & =(h \otimes k)\left(h \otimes k_{1}\right)^{k} \\
\left(h \otimes 1_{K}\right) & =\left(h \otimes 1_{K}\right)\left(h \otimes 1_{K}\right)^{1_{K}} \\
\left(h \otimes 1_{K}\right) & =\left(h \otimes 1_{K}\right)\left(h \otimes 1_{K}\right) \\
\xrightarrow[\left(h \otimes 1_{K}\right)^{-1}]{\longrightarrow} & \\
\text { and if } h=h_{1}=1_{H}, \text { then }\left(h h_{1} \otimes k\right) & =\left(h \otimes 1_{K}\right) \rightarrow\left(h_{1} \otimes k\right)^{h}(h \otimes k) \\
\left(1_{H} \otimes k\right) & =\left(1_{H} \otimes k\right)^{1_{H}}\left(1_{H} \otimes k\right) \\
\left(1_{H} \otimes k\right) & =\left(1_{H} \otimes k\right)\left(1_{H} \otimes k\right) \\
\xrightarrow{\left(1_{H} \otimes k\right)^{-1}} & \\
1_{H \otimes K} & =\left(1_{H} \otimes k\right) \rightarrow(2)
\end{aligned}
$$

by (1) and (2) we have

$$
1_{H} \otimes k=h \otimes 1_{K}=1_{H \otimes K} .
$$

Lemma 3.2. Let G be a group. Let H and K be normal subgroups of G which act on each other compatibly. If $h \in H$ and $k \in K$. Then

$$
(h \otimes k)^{-1}=\left(h^{-1} \otimes k\right)^{h}=\left(h \otimes k^{-1}\right)^{k}
$$

in the non-abelian tensor product group $H \otimes K$.
Proof. Let $h, h_{1} \in H$ and $k, k_{1} \in K$.

$$
\text { If } k_{1}=k^{-1} \text {, then } \begin{aligned}
\left(h \otimes k k_{1}\right) & =(h \otimes k)\left(h \otimes k_{1}\right)^{k} \\
\left(h \otimes 1_{K}\right) & =(h \otimes k)\left(h \otimes k^{-1}\right)^{k} \\
1_{H \otimes K} & =(h \otimes k)\left(h \otimes k^{-1}\right)^{k} \\
\xrightarrow[(h \otimes k)^{-1}]{\longrightarrow} & \\
(h \otimes k)^{-1} & =1_{H \otimes K}\left(h \otimes k^{-1}\right)^{k} \\
(h \otimes k)^{-1} & =\left(h \otimes k^{-1}\right)^{k} \rightarrow(1)
\end{aligned}
$$

$$
\text { and if } h_{1}=h^{-1} \text {, then }\left(h h_{1} \otimes k\right)=\left(h_{1} \otimes k\right)^{h}(h \otimes k)
$$

$$
\begin{aligned}
\left(1_{H} \otimes k\right) & =\left(h^{-1} \otimes k\right)^{h}(h \otimes k) \\
1_{H \otimes K} & =\left(h^{-1} \otimes k\right)^{h}(h \otimes k) \\
\stackrel{(h \otimes k)^{-1}}{\longleftarrow} & \\
(h \otimes k)^{-1} & =\left(h^{-1} \otimes k\right)^{h} \rightarrow(2)
\end{aligned}
$$

by (1) and (2) we have

$$
(h \otimes k)^{-1}=\left(h^{-1} \otimes k\right)^{h}=\left(h \otimes k^{-1}\right)^{k}
$$

Lemma 3.3. Let G be a group. Let H and K be normal subgroups of G which act on each other compatibly. If $h, h_{1} \in H$ and $k, k_{1} \in K$. Then

$$
(h \otimes k)\left(h_{1} \otimes k_{1}\right)^{h k}=\left(h_{1} \otimes k_{1}\right)^{k h}(h \otimes k)
$$

in the non-abelian tensor product group $H \otimes K$.

Proof. by Definition 3.2 of $h h_{1} \otimes k k_{1}$ we have

$$
\begin{aligned}
h h_{1} \otimes k k_{1} & =\left(h_{1} \otimes k k_{1}\right)^{h}\left(h \otimes k k_{1}\right) \\
& =\left(\left(h_{1} \otimes k\right)\left(h_{1} \otimes k_{1}\right)^{k}\right)^{h}\left((h \otimes k)\left(h \otimes k_{1}\right)^{k}\right) \\
& =\left(h_{1} \otimes k\right)^{h}\left(h_{1} \otimes k_{1}\right)^{k h}(h \otimes k)\left(h \otimes k_{1}\right)^{k} \rightarrow(1) \\
\text { and } & \\
h h_{1} \otimes k k_{1} & =\left(h h_{1} \otimes k\right)\left(h h_{1} \otimes k_{1}\right)^{k} \\
& =\left(\left(h_{1} \otimes k\right)^{h}(h \otimes k)\right)\left(\left(h_{1} \otimes k_{1}\right)^{h}\left(h \otimes k_{1}\right)\right)^{k} \\
& =\left(h_{1} \otimes k\right)^{h}(h \otimes k)\left(h_{1} \otimes k_{1}\right)^{h k}\left(h \otimes k_{1}\right)^{k} \rightarrow(2)
\end{aligned}
$$

by (1) and (2) we have

$$
\left(h_{1} \otimes k\right)^{h}\left(h_{1} \otimes k_{1}\right)^{k h}(h \otimes k)\left(h \otimes k_{1}\right)^{k}=\left(h_{1} \otimes k\right)^{h}(h \otimes k)\left(h_{1} \otimes k_{1}\right)^{h k}\left(h \otimes k_{1}\right)^{k}
$$

$\underset{\underset{\left(\left(h \otimes k_{1}\right)^{k}\right)^{-1}}{\left.\stackrel{\left(\left(h_{1} \otimes k\right)^{h}\right.}{ }\right)^{-1}}}{\stackrel{(1)}{\longrightarrow}}$
thus

$$
(h \otimes k)\left(h_{1} \otimes k_{1}\right)^{h k}=\left(h_{1} \otimes k_{1}\right)^{k h}(h \otimes k)
$$

Lemma 3.4. Let G be a group. Let H and K be normal subgroups of G which act on each other compatibly. If $h, h_{2} \in H$ and $k, k_{2} \in K$. Then

$$
\left(h_{2} \otimes k_{2}\right)^{h \otimes k}=\left(h_{2} \otimes k_{2}\right)^{[h, k]}
$$

in the non-abelian tensor product group $H \otimes K$.
Proof. By Lemma 3.3 we have for all $\mathrm{h}, \mathrm{h}_{1} \in \mathrm{H}$ and $\mathrm{k}, \mathrm{k}_{1} \in \mathrm{~K}$

$$
\left(h_{1} \otimes k_{1}\right)^{k h}(h \otimes k)=(h \otimes k)\left(h_{1} \otimes k_{1}\right)^{h k}
$$

$\xrightarrow{(h \otimes k)^{-1}}$

$$
(h \otimes k)^{-1}\left(h_{1} \otimes k_{1}\right)^{k h}(h \otimes k)=\left(h_{1} \otimes k_{1}\right)^{h k}
$$

$\xrightarrow{k h h^{-1} k^{-1}=1}$

$$
\begin{gathered}
(h \otimes k)^{-1}\left(h_{1} \otimes k_{1}\right)^{k h}(h \otimes k)=\left(\left(h_{1} \otimes k_{1}\right)\right)^{k h h^{-1} k^{-1} h k} \\
(h \otimes k)^{-1}\left(h_{1}^{k h} \otimes k_{1}^{k h}\right)(h \otimes k)=\left(\left(h_{1}^{k h} \otimes k_{1}^{k h}\right)\right)^{h^{-1} k^{-1} h k} \\
\left(\left(h_{1}^{k h} \otimes k_{1}^{k h}\right)\right)^{(h \otimes k)}=\left(\left(h_{1}^{k h} \otimes k_{1}^{k h}\right)\right)^{[h, k]}
\end{gathered}
$$

and let $h_{2}=h_{1}^{k h}, k_{2}=k_{1}^{k h}$, thus

$$
\left(\left(h_{2} \otimes k_{2}\right)\right)^{(h \otimes k)}=\left(\left(h_{2} \otimes k_{2}\right)\right)^{[h, k]}
$$

Lemma 3.5. Let G be a group. Let H and K be normal subgroups of G which act on each other compatibly. If $h \in H$ and $k, k_{1} \in K$. Then

$$
\left(h\left(h^{-1}\right)^{k}\right) \otimes k_{1}=(h \otimes k)\left((h \otimes k)^{-1}\right)^{k_{1}}
$$

in the non-abelian tensor product group $H \otimes K$.
Proof.

$$
\begin{aligned}
\left(h\left(h^{-1}\right)^{k}\right) \otimes k_{1} & =\left(\left(h^{-1}\right)^{k} \otimes k_{1}\right)^{h}\left(h \otimes k_{1}\right) \\
& =\left(\left(h^{-1}\right)^{k} \otimes\left(k_{1}\right)^{k^{-1} k}\right)^{h}\left(h \otimes k_{1}\right) \\
& =\left(\left(h^{-1}\right) \otimes\left(k_{1}\right)^{k^{-1}}\right)^{k h}\left(h \otimes k_{1}\right) \\
& =\left(h^{-1} \otimes k^{-1} k_{1} k\right)^{k h}\left(h \otimes k_{1}\right) \\
& =\left[\left(h^{-1} \otimes k^{-1}\right)\left(h^{-1} \otimes k_{1} k\right)^{k^{-1}}\right]^{k h}\left(h \otimes k_{1}\right) \\
& =\left(h^{-1} \otimes k^{-1}\right)^{k h}\left(h^{-1} \otimes k_{1} k\right)^{h}\left(h \otimes k_{1}\right) \\
& =\left(\left(h^{-1} \otimes k^{-1}\right)^{k}\right)^{h}\left(h^{-1} \otimes k_{1} k\right)^{h}\left(h \otimes k_{1}\right)
\end{aligned}
$$

by Lemma 3.2

$$
\begin{aligned}
& =\left((h \otimes k)^{h^{-1}}\right)^{h}\left(h^{-1} \otimes k_{1} k\right)^{h}\left(h \otimes k_{1}\right) \\
& =(h \otimes k)\left[\left(h^{-1} \otimes k_{1}\right)\left(h^{-1} \otimes k\right)^{k_{1}}\right]^{h}\left(h \otimes k_{1}\right) \\
& =(h \otimes k)\left(h^{-1} \otimes k_{1}\right)^{h}\left(h^{-1} \otimes k\right)^{k_{1} h}\left(h \otimes k_{1}\right)
\end{aligned}
$$

by Lemma 3.2

$$
=(h \otimes k)\left(h \otimes k_{1}\right)^{-1}\left(h^{-1} \otimes k\right)^{k_{1} h}\left(h \otimes k_{1}\right)
$$

by Lemma 3.3

$$
\begin{aligned}
& =(h \otimes k)\left(h^{-1} \otimes k\right)^{h k_{1}}\left(h \otimes k_{1}\right)^{-1}\left(h \otimes k_{1}\right) \\
& =(h \otimes k)\left(h^{-1} \otimes k\right)^{h k_{1}} \\
& =(h \otimes k)\left(\left(h^{-1} \otimes k\right)^{h}\right)^{k_{1}}
\end{aligned}
$$

by Lemma 3.2

$$
=\left((h \otimes k)(h \otimes k)^{-1}\right)^{k_{1}} .
$$

Lemma 3.6. Let G be a group. Let H and K be normal subgroups of G which act on each other compatibly. If $h, h_{1} \in H$ and $k, k_{1} \in K$. Then

$$
\left[h \otimes k, h_{1} \otimes k_{1}\right]=\left(h\left(h^{-1}\right)^{k}\right) \otimes\left(k_{1}^{h_{1}} k_{1}^{-1}\right)
$$

in the non-abelian tensor product group $H \otimes K$.
Proof. If we take ($k^{h}=h k h^{-1}$ and $[h, k]=h k h^{-1} k^{-1}$), and since by Lemma 3.5 we have

$$
\begin{aligned}
\left(h\left(h^{-1}\right)^{k}\right) \otimes\left(k_{1}^{h_{1}} k_{1}^{-1}\right) & =(h \otimes k)\left((h \otimes k)^{-1}\right)^{k_{1}^{h_{1}} k_{1}^{-1}} \\
& =(h \otimes k)\left((h \otimes k)^{-1}\right)^{h_{1} k_{1} h_{1}^{-1} k_{1}^{-1}} \\
& =(h \otimes k)\left((h \otimes k)^{-1}\right)^{\left[h_{1}, k_{1}\right]}
\end{aligned}
$$

by Lemma 3.4

$$
\begin{aligned}
& =(h \otimes k)\left((h \otimes k)^{-1}\right)^{\left(h_{1} \otimes k_{1}\right)} \\
& =(h \otimes k)(h \otimes k)^{-\left(h_{1} \otimes k_{1}\right)} \\
& =(h \otimes k)\left((h \otimes k)^{\left(h_{1} \otimes k_{1}\right)}\right)^{-1} \\
& =(h \otimes k)\left(\left(h_{1} \otimes k_{1}\right)(h \otimes k)\left(h_{1} \otimes k_{1}\right)^{-1}\right)^{-1} \\
& =(h \otimes k)\left(h_{1} \otimes k_{1}\right)(h \otimes k)^{-1}\left(h_{1} \otimes k_{1}\right)^{-1} \\
& =\left[h \otimes k, h_{1} \otimes k_{1}\right] .
\end{aligned}
$$

The following theorem gives us the relation between the non-abelian tensor product group $H \otimes$ K and the derived group $[H, K]$.

Theorem 3.1. Let G be a group. Let H and K be normal subgroups of G which act on each other compatibly. Let $h \in H$ and $k \in K$. The map

$$
\kappa_{H, K}: H \otimes K \longrightarrow[H, K]
$$

given by

$$
\kappa_{H, K}(h \otimes k)=[h, k]=h^{-1} k^{-1} h k=h^{-1} h^{k}
$$

Defines a group epimorphism, whose kernal ker $\kappa_{H, K}=J(G, H, K)$ is central in $H \otimes K$.
Proof. The well-definedness of $\kappa_{H, K}$ is clear. To prove that $\kappa_{H, K}$ is a group homomorphism, it suffices to show that

$$
\text { (i) } \begin{aligned}
\kappa_{H, K}\left(h_{2}^{h_{1}} \otimes k_{1}^{h_{1}}\right) \kappa_{H, K}\left(h_{1} \otimes k_{1}\right) & =\left(h_{2}^{h_{1}}\right)^{-1}\left(h_{2}^{h_{1}}\right)^{k_{1} h_{1}}\left(h_{1}^{-1} h_{1}^{k_{1}}\right) \\
& =\left(h_{1}^{-1} h_{2} h_{1}\right)^{-1}\left(h_{2}^{h_{1}}\right)^{k_{1} h_{1}}\left(h_{1}^{-1} h_{1}^{k_{1}}\right) \\
& =\left(h_{1}^{-1} h_{2}^{-1} h_{1}\right)\left(h_{2}^{h_{1}}\right)^{h_{1}^{-1} k_{1} h_{1}}\left(h_{1}^{-1} h_{1}^{k_{1}}\right) \\
& =\left(h_{1}^{-1} h_{2}^{-1} h_{1}\right)\left(h_{2}\right)^{h_{1} h_{1}^{-1} k_{1} h_{1}}\left(h_{1}^{-1} h_{1}^{k_{1}}\right) \\
& =h_{1}^{-1} h_{2}^{-1} h_{1}\left(h_{2}\right)^{k_{1} h_{1}} h_{1}^{-1} h_{1}^{k_{1}} \\
& =h_{1}^{-1} h_{2}^{-1}\left(\left(h_{2}\right)^{k_{1} h_{1}}\right)^{h_{1}^{-1}} h_{1}^{k_{1}} \\
& =h_{1}^{-1} h_{2}^{-1}\left(h_{2}\right)^{k_{1} h_{1} h_{1}^{-1}} h_{1}^{k_{1}} \\
& =h_{1}^{-1} h_{2}^{-1} h_{2}^{k_{1}} h_{1}^{k_{1}} \\
& =\left(h_{2} h_{1}\right)^{-1}\left(h_{2} h_{1}\right)^{k_{1}} \\
& =\kappa_{H, K}\left(h_{2} h_{1} \otimes k_{1}\right) \\
& =\kappa_{H, K}\left(h_{1} h_{2} \otimes k_{1}\right) .
\end{aligned}
$$

(ii) $\kappa_{H, K}\left(h_{1} \otimes k_{1}\right) \kappa_{H, K}\left(h_{1}^{k_{1}} \otimes k_{2}^{k_{1}}\right)=\left(h_{1}^{-1} h_{1}^{k_{1}}\right)\left(h_{1}^{k_{1}}\right)^{-1}\left(h_{1}^{k_{1}}\right)^{k_{2} k_{1}}$

$$
=h_{1}^{-1} h_{1}^{k_{1}}\left(h_{1}^{k_{1}}\right)^{-1}\left(h_{1}^{k_{1}}\right)^{k_{2} k_{1}}
$$

$$
=h_{1}^{-1}\left(h_{1}^{k_{1}}\right)^{k_{2} k_{1}}
$$

$$
=h_{1}^{-1}\left(h_{1}^{k_{1}}\right)^{k_{1}^{-1} k_{2} k_{1}}
$$

$$
=h_{1}^{-1}\left(h_{1}\right)^{k_{1} k_{1}^{-1} k_{2} k_{1}}
$$

$$
=h_{1}^{-1}\left(h_{1}\right)^{k_{2} k_{1}}
$$

$$
=\kappa_{H, K}\left(h_{1} \otimes k_{2} k_{1}\right)
$$

$$
=\kappa_{H, K}\left(h_{1} \otimes k_{1} k_{2}\right)
$$

Thus, $\kappa_{H, K}$ is a group homomorphism. Since for all $h^{-1} h^{k} \in[H, K]$ there is $h \otimes k \in H \otimes K$. Hence, $\kappa_{H, K}$ is a group epimorphism. Furthermore,

$$
\begin{aligned}
\operatorname{ker} \kappa_{H, K} & =\left\{h \otimes k \in H \otimes K: \kappa_{H, K}(h \otimes k)=1_{G}\right\} \\
& =\left\{h \otimes k \in H \otimes K:[h, k]=h^{-1} k^{-1} h k=1_{G}\right\} \\
& =\{h \otimes k \in H \otimes K: h k=k h, \forall h \in H, \forall k \in K\} \\
& =Z(H \otimes K)
\end{aligned}
$$

The following proposition gives us the isomorphism between $H \otimes K$ and $K \otimes H$, as in [19, Proposition 1.2.7].

Proposition 3.2. Let G be a group. Let H and K be normal subgroups of G which act on each other compatibly. Then $H \otimes K \cong K \otimes H$.

Proof. Suppose the map $\alpha: H \otimes K \rightarrow K \otimes H$ given by $\alpha(h \otimes k)=(k \otimes h)^{-1}$. The well-definedness of α is clear. α is a group homomorphism since

$$
\begin{aligned}
\alpha\left(h_{1} h_{2} \otimes k\right) & =\left(k \otimes h_{1} h_{2}\right)^{-1}=\left[\left(k \otimes h_{1}\right)\left(k^{h_{1}} \otimes h_{2}^{h_{1}}\right)\right]^{-1} \\
& =\left(k^{h_{1}} \otimes h_{2}^{h_{1}}\right)^{-1}\left(k \otimes h_{1}\right)^{-1}=\alpha\left(h_{2}^{h_{1}} \otimes k^{h_{1}}\right) \alpha\left(h_{1} \otimes k\right) \\
\text { and } & \begin{aligned}
\alpha\left(h \otimes k_{1} k_{2}\right) & =\left(k_{1} k_{2} \otimes h\right)^{-1}=\left[\left(k_{2}^{k_{1}} \otimes h^{k_{1}}\right)\left(k_{1} \otimes h\right)\right]^{-1} \\
& =\left(k_{1} \otimes h\right)^{-1}\left(k_{2}^{k_{1}} \otimes h^{k_{1}}\right)^{-1}=\alpha\left(h \otimes k_{1}\right) \alpha\left(h^{k_{1}} \otimes k_{2}^{k_{1}}\right)
\end{aligned} .
\end{aligned}
$$

for all $h, h_{1}, h_{2} \in H$ and $k, k_{1}, k_{2} \in K . \alpha$ is an injective since if $\alpha\left(h_{1} \otimes k_{1}\right)$ is equal to $\alpha\left(h_{2} \otimes k_{2}\right)$ in $K \otimes H$, then $\left(k_{1} \otimes h_{1}\right)^{-1}$ is equal to $\left(k_{2} \otimes h_{2}\right)^{-1}$, thus, $h_{1} \otimes k_{1}$ is equal to $h_{2} \otimes k_{2}$ in $H \otimes K$, and α is a surjective since for all $(k \otimes h)^{-1} \in K \otimes H$ there is $(h \otimes k) \in H \otimes K$. Then α is a group isomorphism. Thus, $H \otimes K \cong K \otimes H$.

Special case. If $H=K=G$. We denote by $G \otimes G$ the non-abelian tensor square of G. With considering the map $\kappa_{G, G}: G \otimes G \rightarrow[G, G]=G^{\prime}$, given by $\kappa_{G, G}(x \otimes y)=[x, y]$. for all $x, y \in G$ such that $\kappa_{G, G}$ is a group epimorphism, and ker $\kappa_{G, G}=J(G, G, G)=J(G)$.

3.2 Tensor Centralizer and Relative Tensor Degree

We will study the tensor centralizer and the relative tensor degree, and explain the relation between them.

We will state the tensor centralizer as in [23].

Definition 3.3. Let G be a group. Let H and K be normal subgroups of G which act on each other compatibly. We define the set $C_{K}^{\otimes}(H)$ to be the tensor centralizer of H with respect to K such that

$$
C_{K}^{\otimes}(H)=\left\{k \in K: h \otimes k=1_{H \otimes K}, \forall h \in H\right\}
$$

We see that $C_{K}^{\otimes}(H)=\cap_{h \in H} C_{K}^{\otimes}(h)$.

We will state the tensor center as in [23].

Definition 3.4. Let G be a group which acts on itself compatibly. We define the set $Z^{\otimes}(G)$ to be the tensor center of G such that

$$
Z^{\otimes}(G)=\left\{g \in G: x \otimes g=1_{G \otimes G}, \forall x \in G\right\}
$$

We see that $Z^{\otimes}(G)=C_{G}^{\otimes}(G)=\cap_{x \in G} C_{G}^{\otimes}(x)$.

We will explain below some algebraic structures for some concepts, as in [4] page 2.

Lemma 3.7. Let G be a group. Then $C_{G}^{\otimes}(x)$ is a subgroup of G for all $x \in G$.
Proof. The subgroup conditions are verified as follows: $C_{G}^{\otimes}(x)$ is not an empty set since by Lemma 3.1 we have $x \otimes 1_{G}=1_{G \otimes G}$, hence $1_{G} \in C_{G}^{\otimes}(x)$ for all $x \in G$, and consider any two elements g_{1} and $g_{2} \in C_{G}^{\otimes}(x)$. Then

$$
x \otimes g_{1} g_{2}=\left(x \otimes g_{1}\right)\left(x \otimes g_{2}\right)^{g_{1}}=\left(1_{G \otimes G}\right)\left(1_{G \otimes G}\right)^{g_{1}}=1_{G \otimes G}
$$

hence $g_{1} g_{2} \in C_{G}^{\otimes}(x)$. Thus $C_{G}^{\otimes}(x)$ is a subgroup of G.

Lemma 3.8. Let G be a group. Then $Z^{\otimes}(G)$ is a subgroup of G.
Proof. Since $Z^{\otimes}(G)$ is equal to $\cap_{x \in G} C_{G}^{\otimes}(x)$, and $C_{G}^{\otimes}(x)$ is a subgroup of G, for all $x \in G$. Then by the fact that intersection of subgroups is a subgroup hence, $\cap_{x \in G} C_{G}^{\otimes}(x)$ is a subgroup of G, thus $Z^{\otimes}(G)$ is a subgroup of G.

Lemma 3.9. Let G be a group. Let H and K be normal subgroups of G which act on each other compatibly. Then $C_{K}^{\otimes}(H)$ is a subgroup of K.
Proof. The subgroup conditions are verified as follows: $C_{K}^{\otimes}(h)$ is not an empty set since by Lemma 3.1 we have $h \otimes 1_{K}=1_{H \otimes K}$, hence $1_{K} \in C_{K}^{\otimes}(h)$ for all $h \in H$, and consider any two elements k_{1} and $k_{2} \in C_{K}^{\otimes}(h)$. Then

$$
h \otimes k_{1} k_{2}=\left(h \otimes k_{1}\right)\left(h \otimes k_{2}\right)^{k_{1}}=\left(1_{H \otimes K}\right)\left(1_{H \otimes K}\right)^{k_{1}}=1_{H \otimes K}
$$

hence $k_{1} k_{2} \in C_{K}^{\otimes}(h)$ for all $h \in H$. Thus, $C_{K}^{\otimes}(h)$ is a subgroup of K for all $h \in H$, then $\cap_{h \in H} C_{K}^{\otimes}(h)$ is a subgroup of K. But $\cap_{h \in H} C_{K}^{\otimes}(h)$ is equal to $C_{K}^{\otimes}(H)$, thus $C_{K}^{\otimes}(H)$ is a subgroup of K.

Lemma 3.10. Let G be a group. Let H and K be normal subgroups of G. Then $C_{K}^{\otimes}(h) \triangleleft C_{K}(h)$ for all $h \in H$.

Proof. Let $\psi: C_{K}(h) \longrightarrow J(G, H, K)=\operatorname{ker} \kappa_{H, K}$ given by $\psi(k)=h \otimes k$, where $h \otimes k \in$ $J(G, H, K) . \psi$ is a group homomorphism since for all $k, k^{\prime} \in C_{K}(h)$ we have

$$
\begin{aligned}
\psi\left(k k^{\prime}\right) & =h \otimes k k^{\prime} \\
& =(h \otimes k)\left(h \otimes k^{\prime}\right)^{k} \\
& =(h \otimes k)\left(h \otimes k^{\prime}\right) \\
& =\psi(k) \psi\left(k^{\prime}\right)
\end{aligned}
$$

then

$$
\begin{aligned}
\operatorname{ker}(\psi) & =\left\{k \in C_{K}(h): \psi(k)=h \otimes k=1_{J(G, H, K)}=1_{H \otimes K}\right\} \\
& =\left\{k \in C_{K}(h) \subseteq K: h \otimes k=1_{H \otimes K}\right\} \\
& =\left\{k \in K: h \otimes k=1_{H \otimes K}\right\} \\
& =C_{K}^{\otimes}(h) .
\end{aligned}
$$

Therefore, by the fact that if $\psi: G_{1} \longrightarrow G_{2}$ is a group homomorphism then ker $(\psi) \triangleleft G_{1}$. Thus, $C_{K}^{\otimes}(h) \triangleleft C_{K}(h)$ for all $h \in H$.

We will state the relative tensor degree as in [23] page 3.

Definition 3.5. Let G be a group. Let H and K be normal subgroups of G which act on each other compatibly. We define $d^{\otimes}(H, K)$ as the relative tensor degree of H and K such that

$$
d^{\otimes}(H, K)=\frac{\left|\left\{(h, k) \in H \times K: h \otimes k=1_{H \otimes K}\right\}\right|}{|H||K|}=\frac{\sum_{h \in H}\left|C_{K}^{\otimes}(h)\right|}{|H||K|} .
$$

Remark. If $H=K=G$, then $d^{\otimes}(G, G)=d^{\otimes}(G)$ of G.

The following lemma deals with different aspects and correlates the tensor centralizers with the tensor degree, as in [4, Lemma 2.1.] and [23, Lemma 2.2.].

Lemma 3.11. Let G be a group. Let H and K be normal subgroups of G. Then

$$
d^{\otimes}(H, K)=\frac{1}{|H|} \sum_{i=1}^{k_{K}(H)} \frac{\left|C_{K}^{\otimes}\left(h_{i}\right)\right|}{\left|C_{K}\left(h_{i}\right)\right|} .
$$

If $G=H K$, then $\frac{C_{K}\left(h_{i}\right)}{C_{K}^{\otimes}\left(h_{i}\right)}$ is isomorphic to a subgroup of $J(G, H, K)$ and $\frac{\left|C_{K}\left(h_{i}\right)\right|}{\left|C_{K}^{\otimes}\left(h_{i}\right)\right|} \leq 1$ $J(G, H, K) \mid$ for all $i=1, \ldots, k_{K}(H)$.

Proof. Since H is a normal subgroup of G, we consider the distinct K-conjugacy classes $C\left(h_{1}\right), \ldots, C\left(h_{k_{K}(H)}\right)$ where $h_{i} \in H$ for all $i=1, \ldots, k_{K}(H)$, that constitute H . Therefore,

$$
\begin{aligned}
d^{\otimes}(H, K) & =\frac{\sum_{h \in H}\left|C_{K}^{\otimes}(h)\right|}{|H||K|} \\
& =\frac{\sum_{i=1}^{k_{K}(H)} \sum_{h \in C\left(h_{i}\right)}\left|C_{K}^{\otimes}(h)\right|}{|H||K|} \\
& =\frac{\sum_{i=1}^{k_{K}(H)}\left|K: C_{K}\left(h_{i}\right)\right|\left|C_{K}^{\otimes}\left(h_{i}\right)\right|}{|H||K|} \\
& =\frac{1}{|H|} \sum_{i=1}^{k_{K}(H)} \frac{\left|C_{K}^{\otimes}\left(h_{i}\right)\right|}{\left|C_{K}\left(h_{i}\right)\right|} .
\end{aligned}
$$

Let $G=H K$. Consider the map

$$
\psi: \frac{C_{K}\left(h_{i}\right)}{C_{K}^{\otimes}\left(h_{i}\right)} \longrightarrow J(G, H, K)
$$

given by

$$
\psi\left(k C_{K}^{\otimes}\left(h_{i}\right)\right)=h_{i} \otimes k
$$

Where $h_{i} \otimes k \in J(G, H, K)$, for all $i=1, . ., k_{K}(H) . \psi$ is a group homomorphism since

$$
\begin{aligned}
\psi\left(k_{1} k_{2} C_{K}^{\otimes}\left(h_{i}\right)\right) & =h_{i} \otimes k_{1} k_{2}=\left(h_{i} \otimes k_{1}\right)\left(h_{i} \otimes k_{2}\right)^{k_{1}} \\
& =\left(h_{i} \otimes k_{1}\right)\left(1_{H \otimes K}\right)^{k_{1}}=\left(h_{i} \otimes k_{1}\right)\left(1_{H \otimes K}\right) \\
& =\left(h_{i} \otimes k_{1}\right)\left(h_{i} \otimes k_{2}\right)=\psi\left(k_{1} C_{K}^{\otimes}\left(h_{i}\right)\right) \psi\left(k_{2} C_{K}^{\otimes}\left(h_{i}\right)\right)
\end{aligned}
$$

for all $k_{1}, k_{2} \in C_{K}\left(h_{i}\right) . \psi$ is a group monomorphism since

$$
\begin{aligned}
\text { ker } \psi & =\left\{k C_{K}^{\otimes}\left(h_{i}\right): \psi\left(k C_{K}^{\otimes}\left(h_{i}\right)\right)=1_{H \otimes K}\right\} \\
& =\left\{k C_{K}^{\otimes}\left(h_{i}\right): h_{i} \otimes k=1_{H \otimes K}\right\} \\
& =\left\{1_{K} C_{K}^{\otimes}\left(h_{i}\right)\right\}=C_{K}^{\otimes}\left(h_{i}\right),
\end{aligned}
$$

hence $\frac{C_{K}\left(h_{i}\right)}{C_{K}^{\otimes}\left(h_{i}\right)}$ is isomorphic to a subgroup of $\mathrm{J}(\mathrm{G}, \mathrm{H}, \mathrm{K})$ and $\frac{\left|C_{K}\left(h_{i}\right)\right|}{\left|C_{K}^{\otimes}\left(h_{i}\right)\right|} \leq|J(G, H, K)|$ for all $i=1, \ldots, k_{K}(H)$.

The following lemma gives us the relative tensor degree of group G. It will be 1 when the tensor center of G is G itself, and vice versa as well.

Lemma 3.12. $d^{\otimes}(G)=1$ iff $Z^{\otimes}(G)=G$.

The following theorem gives us the relative tensor degree of the direct product of two groups, and we can apply them to more than two groups, provided that the direct product is limited.

Theorem 3.2. Let G and H be groups. Let $|G|=n,|H|=m$ and $g . c . d(n, m)=1$ for all $n, m \in \mathbb{Z}^{+}$. Then $d^{\otimes}(G \times H)=d^{\otimes}(G) \cdot d^{\otimes}(H)$,

Proof. Since $|G \times H|=|G| \cdot|H|$, hence $(|G \times H|)^{2}=(|G|)^{2} \cdot(|H|)^{2}$. Then we have for all $(x, y) \in G \times H$,

$$
\begin{aligned}
C_{G \times H}^{\otimes}((x, y)) & =\left\{(g, h) \in G \times H:(x, y) \otimes(g, h)=1_{(G \times H) \otimes(G \times H)}\right\} \\
& =\left\{(g, h) \in G \times H:(x \otimes g, y \otimes h)=1_{(G \times H) \otimes(G \times H)}=\left(1_{G \otimes G}, 1_{H \otimes H}\right)\right\} \\
& =\left\{g \in G: x \otimes g=1_{G \otimes G}\right\} \times\left\{h \in H: y \otimes h=1_{H \otimes H}\right\} \\
& =C_{G}^{\otimes}(x) \times C_{H}^{\otimes}(y) .
\end{aligned}
$$

Hence $\left|C_{G \times H}^{\otimes}((x, y))\right|=\left|C_{G}^{\otimes}(x) \times C_{H}^{\otimes}(y)\right|=\left|C_{G}^{\otimes}(x)\right| \cdot\left|C_{H}^{\otimes}(y)\right|$, and by definition of $d^{\otimes}(G \times H)$ we have

$$
\begin{aligned}
d^{\otimes}(G \times H) & =\frac{1}{|G \times H|^{2}} \sum_{(x, y) \in G \times H}\left|C_{G \times H}^{\otimes}((x, y))\right| \\
& =\frac{1}{|G|^{2} \cdot|H|^{2}} \sum_{x \in G, y \in H}\left|C_{G}^{\otimes}(x)\right| \cdot\left|C_{H}^{\otimes}(y)\right| \\
& =\frac{1}{|G|^{2} \cdot|H|^{2}} \sum_{x \in G} \sum_{y \in H}\left|C_{G}^{\otimes}(x)\right| \cdot\left|C_{H}^{\otimes}(y)\right| \\
& =\frac{1}{|G|^{2} \cdot|H|^{2}} \sum_{x \in G}\left|C_{G}^{\otimes}(x)\right| \cdot \sum_{y \in H}\left|C_{H}^{\otimes}(y)\right| \\
& =\left(\frac{1}{|G|^{2}} \sum_{x \in G}\left|C_{G}^{\otimes}(x)\right|\right) \cdot\left(\frac{1}{|H|^{2}} \sum_{y \in H}\left|C_{H}^{\otimes}(y)\right|\right) \\
& =d^{\otimes}(G) \cdot d^{\otimes}(H) .
\end{aligned}
$$

3.3 Results and Boundary of Relative Tensor Degree

In this section, we will study the relation between the relative commutativity degree and the relative tensor degree.

The following theories and definition give us the relation between the notion of relative tensor degree with that of relative commutativity degree.

Theorem 3.3. Let G be a group. Let H and K be normal subgroups of G. Let p be the smallest prime divisor of $|G|$. Then

$$
\frac{d(H, K)}{|J(G, H, K)|}+\frac{\left|C_{K}^{\otimes}(H)\right|}{|H|}\left(1-\frac{1}{|J(G, H, K)|}\right) \leq d^{\otimes}(H, K)
$$

and

$$
d^{\otimes}(H, K) \leq d(H, K)-\left(1-\frac{1}{p}\right)\left(\frac{\left|C_{K}(H)\right|-\left|C_{K}^{\otimes}(H)\right|}{|H|}\right)
$$

Proof. The proof can be found in [4, Theorem 1.1].
The following theorem describes a special case of Theorem 3.3 when $H=K=G$.

Theorem 3.4. Let G be a group. Let p be the smallest prime divisor of $|G|$. Then

$$
\frac{d(G)}{\left|J_{2}(G)\right|}+\frac{\left|Z^{\otimes}(G)\right|}{|G|}\left(1-\frac{1}{\left|J_{2}(G)\right|}\right) \leq d^{\otimes}(G)
$$

and

$$
d^{\otimes}(G) \leq d(G)-\left(1-\frac{1}{p}\right)\left(\frac{|Z(G)|-\left|Z^{\otimes}(G)\right|}{|G|}\right)
$$

Proof. The proof can be found in [23, Theorem 2.3].

The following theorem is a consequence of Theorem 3.3, as in [4, Theorem 1.1.].

Theorem 3.5. Let G be a group. Let H and K be normal subgroups of G such that $G=H K$. Then

$$
\frac{d(H, K)}{|J(G, H, K)|} \leq d^{\otimes}(H, K) \leq d(H, K)
$$

If $J(G, H, K)$ is trivial, then $d^{\otimes}(H, K)=d(H, K)$.
Proof. From Lemma 3.11 we have

$$
d^{\otimes}(H, K)=\frac{1}{|H|} \sum_{i=1}^{k_{K}(H)} \frac{\left|C_{K}^{\otimes}\left(h_{i}\right)\right|}{\left|C_{K}\left(h_{i}\right)\right|}
$$

and for all $i=1, \ldots, \mathrm{k}_{K}(H)$, we have

$$
\frac{\left|C_{K}\left(h_{i}\right)\right|}{\left|C_{K}^{\otimes}\left(h_{i}\right)\right|} \leq|J(G, H, K)|
$$

hence

$$
\frac{\left|C_{K}^{\otimes}\left(h_{i}\right)\right|}{\left|C_{K}\left(h_{i}\right)\right|} \geq \frac{1}{|J(G, H, K)|}
$$

then

$$
\begin{aligned}
d^{\otimes}(H, K) & =\frac{1}{|H|} \sum_{i=1}^{k_{K}(H)} \frac{\left|C_{K}^{\otimes}\left(h_{i}\right)\right|}{\left|C_{K}\left(h_{i}\right)\right|} \\
& \geq \frac{1}{|H|} \sum_{i=1}^{k_{K}(H)} \frac{1}{|J(G, H, K)|} \\
& =\frac{1}{|H|} \cdot \frac{1}{|J(G, H, K)|} \sum_{i=1}^{k_{K}(H)} 1 \\
& =\frac{1}{|H|} \cdot \frac{1}{|J(G, H, K)|} k_{K}(H) \\
& =\frac{k_{K}(H)}{|H|} \cdot \frac{1}{|J(G, H, K)|}
\end{aligned}
$$

from definition of $d(H, K)$ we have

$$
=\frac{d(H, K)}{|J(G, H, K)|}
$$

thus

$$
d^{\otimes}(H, K) \geq \frac{d(H, K)}{|J(G, H, K)|} \cdot \rightarrow(1)
$$

Since the map $\psi: C_{K}\left(h_{i}\right) \rightarrow J(G, H, K)$ is a group homomorphism, which ker $(\psi)=C_{K}^{\otimes}\left(h_{i}\right)$ for all $i=1, \ldots, k_{K}(H)$. But $\operatorname{ker}(\psi) \leq C_{K}\left(h_{i}\right)$, hence $|\operatorname{ker}(\psi)| \leq\left|C_{K}\left(h_{i}\right)\right|$, then $\frac{|\operatorname{ker}(\psi)|}{\left|C_{K}\left(h_{i}\right)\right|} \leq 1$. Again from Lemma 3.11 we have

$$
\begin{aligned}
d^{\otimes}(H, K) & =\frac{1}{|H|} \sum_{i=1}^{k_{K}(H)} \frac{\left|C_{K}^{\otimes}\left(h_{i}\right)\right|}{\left|C_{K}\left(h_{i}\right)\right|} \\
& \leq \frac{1}{|H|} \sum_{i=1}^{k_{K}(H)} 1 \\
& =\frac{k_{K}(H)}{|H|} \\
& =d(H, K)
\end{aligned}
$$

Thus

$$
d^{\otimes}(H, K) \leq d(H, K) . \rightarrow(2)
$$

From (1) and (2) we have

$$
\frac{d(H, K)}{|J(G, H, K)|} \leq d^{\otimes}(H, K) \leq d(H, K)
$$

It is easy to see if $\mathrm{J}(\mathrm{G}, \mathrm{H}, \mathrm{K})$ is trivial (i.e. $\left.J(G, H, K)=1_{H \otimes K}\right)$ then $|J(G, H, K)|=1$. Since

$$
\frac{d(H, K)}{|J(G, H, K)|} \leq d^{\otimes}(H, K) \leq d(H, K)
$$

hance

$$
d(H, K) \leq d^{\otimes}(H, K) \leq d(H, K)
$$

thus

$$
d^{\otimes}(H, K)=d(H, K)
$$

The following corollary gives us the bounded when the group is abelian.

Corollary 3.1. Let G be an abelian group. Then

$$
\frac{1}{|G|}+\frac{|G|-1}{|G||G \otimes G|} \leq d^{\otimes}(G) \leq \frac{1}{p}+\frac{p-1}{p|G|}
$$

where p is the smallest prime divisor of $|G|$.
Proof. Since G is an abelian group, then $Z(G)=\mathrm{G}$ and each conjugacy class is a set containing one element $(k(G)=|G|)$, then $\mathrm{d}(\mathrm{G})=\frac{k(G)}{|G|}=\frac{|G|}{|G|}=1, Z^{\otimes}(G)$ is trivial, and $J_{2}(G)=\operatorname{ker}\left(\kappa_{G \otimes G}\right)=\left\{x \otimes y \in G \otimes G: \kappa_{G \otimes G}(x \otimes y)=1_{G}\right\}=\left\{x \otimes y \in G \otimes G:[x, y]=1_{G}\right\}$, but G is an abelian, hence $J_{2}(G)=\{x \otimes y \in G \otimes G\}=G \otimes G$. From Theorem 3.4 we have

$$
\left.\left.\left.\begin{array}{rl}
\frac{d(G)}{\left|J_{2}(G)\right|}+\frac{\left|Z^{\otimes}(G)\right|}{|G|}\left(1-\frac{1}{\left|J_{2}(G)\right|}\right) & \leq d^{\otimes}(G)
\end{array}\right) \leq d(G)-\left(1-\frac{1}{p}\right)\left(\frac{|Z(G)|-\left|Z^{\otimes}(G)\right|}{|G|}\right)\right] \text { } \begin{array}{rl}
|G \otimes G| & \frac{1}{|G|}\left(1-\frac{1}{|G \otimes G|}\right)
\end{array}\right) d^{\otimes}(G) \leq 1-\left(1-\frac{1}{p}\right)\left(1-\frac{1}{|G|}\right) .
$$

We will state the left unidegree as in [23] page 6 .

Definition 3.6. Let G be a group. If $d^{\otimes}(G)=d(G)$, then we call G a left unidegree.

Chapter 4

Relative Exterior Degree

In this chapter, we will present three sections; in the first section, we will define a non-abelian exterior product of normal subgroups H and K of G , and explain the relation between the nonabelian exterior product group $H \wedge K$ and the derived group [H, K]. In the second section, we will study the definitions of exterior centralizer and exterior center which paved by the constructing of the previous section, algebraic structures of these concepts along with the previous concepts, and the definition of the relative exterior degree. In the third and last section, we will study the general relation among the relative commutative degree, relative tensor degree and relative exterior degree. The basic references of this chapter are [4],[19],[22] and [23].

4.1 Non-abelian Exterior Product

We will study the non-abelian exterior product.
The following definition we will state the non-abelian exterior product as in [4].

Definition 4.1. Let G be a group. Let H and K be normal subgroups of G. We define the group $H \wedge K$ to be the non-abelian exterior product of H and K such that

$$
H \wedge K=\frac{(H \otimes K)}{\nabla(H \cap K)}
$$

where

$$
\nabla(H \cap K)=\langle g \otimes g: g \in H \cap K\rangle
$$

and

$$
H \wedge K=\langle h \wedge k: h, k \in H \cap K\rangle=\langle(h \otimes k) \nabla(H \cap K): h, k \in H \cap K\rangle .
$$

If $G=H=K$, and if all actions by conjugation, then we denote by $G \wedge G$ the non-abelian exterior square of G.

Remark. $\nabla(H \cap K)$ is a central subgroup of $H \otimes K$.

The following theorem gives us the relation between the non-abelian exterior group $H \wedge K$ and the derived group $[H, K]$.

Theorem 4.1. Let G be a group. Let H and K be normal subgroups of G. Let $h \in H$ and $k \in K$. The map

$$
\kappa_{H, K}^{\prime}: H \wedge K \longmapsto[H, K]
$$

given by

$$
\kappa_{H, K}^{\prime}(h \wedge k)=[h, k]=h^{-1} h^{k}
$$

defines a group epimorphism, whose kernal ker $\kappa_{H, K}^{\prime}=M(G, H, K)$, which calls $M(G, H, K)$ the Schur multiplier of the triple (G, H, K). If $G=H=K$, then we call $M(G, G, G)=M(G)$ the Schur multiplier of G, and $M(G)=H_{2}(G, \mathbb{Z})$ is the second integer homology group of G.

Proof. The well-definedness of $\kappa_{H, K}^{\prime}$ is clear. To prove that $\kappa_{H, K}^{\prime}$ is a group homomorphism, it suffices to show that

$$
\text { (i) } \begin{aligned}
\kappa_{H, K}^{\prime}\left(h_{2}^{h_{1}} \wedge k^{h_{1}}\right) \kappa_{H, K}^{\prime}\left(h_{1} \wedge k\right) & =\left(h_{2}^{h_{1}}\right)^{-1}\left(\left(h_{2}^{h_{1}}\right)^{k}\right)^{h_{1}} h_{1}^{-1} h_{1}^{k} \\
& =\left(h_{1}^{-1} h_{2} h_{1}\right)^{-1}\left(\left(h_{2}^{h_{1}}\right)^{h_{1}^{-1} k h_{1}} h_{1}^{-1} h_{1}^{k}\right. \\
& =h_{1}^{-1} h_{2}^{-1} h_{1}\left(h_{2}\right)^{h_{1} h_{1}^{-1} k h_{1}} h_{1}^{-1} h_{1}^{k} \\
& =\left(h_{2} h_{1}\right)^{-1} h_{1}\left(h_{2}\right)^{k h_{1}} h_{1}^{-1} h_{1}^{k} \\
& =\left(h_{2} h_{1}\right)^{-1}\left(\left(h_{2}\right)^{k h_{1}}\right)^{h_{1}^{-1}} h_{1}^{k} \\
& =\left(h_{2} h_{1}\right)^{-1}\left(h_{2}\right)^{k h_{1} h_{1}^{-1}} h_{1}^{k} \\
& =\left(h_{2} h_{1}\right)^{-1}\left(h_{2}\right)^{k} h_{1}^{k} \\
& =\left(h_{2} h_{1}\right)^{-1}\left(h_{2} h_{1}\right)^{k} \\
& =\kappa_{H, K}^{\prime}\left(h_{2} h_{1} \wedge k\right) \\
& =\kappa_{H, K}^{\prime}\left(h_{1} h_{2} \wedge k\right) .
\end{aligned}
$$

(ii) $\kappa_{H, K}^{\prime}\left(h \wedge k_{1}\right) \kappa_{H, K}^{\prime}\left(h^{k_{1}} \wedge k_{2}^{k_{1}}\right)=h^{-1} h^{k_{1}}\left(h^{k_{1}}\right)^{-1}\left(\left(h^{k_{1}}\right)^{k_{2}}\right)^{k_{1}}$

$$
\begin{aligned}
& =h^{-1}\left(\left(h^{k_{1}}\right)^{k_{2}}\right)^{k_{1}} \\
& =h^{-1}\left((h)^{k_{1}}\right)^{k_{1}^{-1} k_{2} k_{1}} \\
& =h^{-1}(h)^{k_{1} k_{1}^{-1} k_{2} k_{1}} \\
& =h^{-1}(h)^{k_{2} k_{1}} \\
& =\kappa_{H, K}^{\prime}\left(h \wedge k_{2} k_{1}\right) \\
& =\kappa_{H, K}^{\prime}\left(h \wedge k_{1} k_{2}\right) .
\end{aligned}
$$

Thus, $\kappa_{H, K}^{\prime}$ is a group homomorphism. Since for all $h^{-1} h^{k} \in[H, K]$ there is $h \wedge k \in H \wedge K$. Hence, $\kappa_{H, K}^{\prime}$ is a group epimorphism.

We have $\kappa_{H, K}\left(\kappa_{H, K}^{\prime}\right)$ as a group epimorphism function, $\alpha_{1}\left(\alpha_{2}\right)$ is inclusion function, which means monmorphism. Furthermore, $\operatorname{Im}\left(\alpha_{1}\right)=\operatorname{ker} \kappa_{H, K}=J_{2}(G, H, K)\left(\operatorname{Im}\left(\alpha_{2}\right)=\operatorname{ker} \kappa_{H, K}^{\prime}=\right.$ $H_{2}(G, H, K)$), then by definition of short exact sequence we have

$$
\begin{aligned}
& 0 \longrightarrow J_{2}(G, H, K) \xrightarrow{\alpha_{1}} H \otimes K \xrightarrow{\kappa_{H, K}}[H, K] \longrightarrow 0 \\
& 0 \longrightarrow H_{2}(G, H, K) \xrightarrow{\alpha_{2}} H \wedge K \xrightarrow{\kappa_{H, K}^{\prime}}[H, K] \longrightarrow 0
\end{aligned}
$$

and since, $\theta:\{0\} \rightarrow\{1\}$ and θ^{-1} as isomorphism, thus

$$
\begin{aligned}
& 1 \longrightarrow J_{2}(G, H, K) \xrightarrow{\alpha_{1}} H \otimes K \xrightarrow{\kappa_{H, K}}[H, K] \longrightarrow 1 \\
& 1 \longrightarrow H_{2}(G, H, K) \xrightarrow{\alpha_{2}} H \wedge K \xrightarrow{\kappa_{H, K}^{\prime}}[H, K] \longrightarrow 1
\end{aligned}
$$

when $(G=H=K)$, then

$$
\begin{aligned}
& 1 \longrightarrow J_{2}(G) \xrightarrow{\alpha_{1}} G \otimes G \xrightarrow{\kappa_{H, K}} G^{\prime} \longrightarrow 1 \\
& 1 \longrightarrow H_{2}(G) \xrightarrow{\alpha_{2}} G \wedge G \xrightarrow{\kappa_{H, K}^{\prime}} G^{\prime} \longrightarrow 1
\end{aligned}
$$

$\mathrm{G} \otimes \mathrm{G}$ is finite if G is finite. We can see that the structure of G is influenced by that of $\mathrm{G} \otimes$ G and viceversa, as in [4] pages 1 and 2, and [23] page 2.

The following lemma gives us the relation $(h \wedge k)=(k \wedge h)^{-1}$, when $h, k \in H \cap K$ in a nonabelian exterior product group $H \wedge K$.

Lemma 4.1. Let G be a group. Let H and K be normal subgroups of G. Let $H \wedge K$ be the nonabelian exterior product group. Let $h \in H$ and $k \in K$. If $h, k \in H \cap K$. Then $(h \wedge k)=(k \wedge h)^{-1}$. Proof. Since $k h \wedge k h=1_{H \wedge K}$, then we have

$$
\begin{aligned}
1_{H \wedge K} & =k h \wedge k h=(h \wedge k h)^{k}(k \wedge k h)=\left((h \wedge k)(h \wedge h)^{k}\right)^{k}\left((k \wedge k)(k \wedge h)^{k}\right) \\
& =\left((h \wedge k)\left(1_{H \wedge K}\right)^{k}\right)^{k}\left(\left(1_{H \wedge K}\right)(k \wedge h)^{k}\right)=(h \wedge k)^{k}(k \wedge h)^{k} .
\end{aligned}
$$

The remaining part of the statement follows easily.

4.2 Exterior Centralizer and Relative Exterior Degree

In this section, we will study the exterior centralizer and the relative exterior degree.
We will state the exterior centralizer as in [4] page 3.

Definition 4.2. Let G be a group. Let H and K be normal subgroups of G. We define the set $C_{K}^{\wedge}(H)$ as the exterior centralizer of H with respect to K such that

$$
C_{K}^{\wedge}(H)=\left\{k \in K: h \wedge k=1_{H \wedge K}, \forall h \in H\right\}
$$

We see that $C_{K}^{\wedge}(H)=\cap_{h \in H} C_{K}^{\wedge}(h)$.

We will state the exterior center as in [4] page 3.

Definition 4.3. Let G be a group. We define the set $Z^{\wedge}(G)$ as the exterior center of G such that

$$
Z^{\wedge}(G)=\left\{g \in G: x \wedge g=1_{G \wedge G}, \forall x \in G\right\}
$$

We see that $Z^{\wedge}(G)=C_{G}^{\wedge}(G)=\cap_{x \in G} C_{G}^{\wedge}(x)$.

We will explain below some algebraic structures for some concepts, as in [4] page 3 .
Lemma 4.2. Let G be a group. Then $C_{G}^{\wedge}(x)$ is a subgroup of G for all $x \in G$.

Proof. The subgroup conditions are verified as follows: $C_{G}^{\wedge}(x)$ is not an empty set since we have $x \wedge 1_{G}=1_{G \wedge G}$, hence $1_{G} \in C_{G}^{\wedge}(x)$ for all $x \in G$, and consider any two elements g_{1} and $g_{2} \in C_{G}^{\wedge}(x)$. Then

$$
x \wedge g_{1} g_{2}=\left(x \wedge g_{1}\right)\left(x^{g_{1}} \wedge g_{2}^{g_{1}}\right)=\left(x \wedge g_{1}\right)\left(x \wedge g_{2}\right)^{g_{1}}=\left(1_{G \wedge G}\right)\left(1_{G \wedge G}\right)^{g_{1}}=1_{G \wedge G}
$$

hence $g_{1} g_{2} \in C_{G}^{\wedge}(x)$. Thus $C_{G}^{\wedge}(x)$ is a subgroup of G .

Lemma 4.3. Let G be a group. Then $Z^{\wedge}(G)$ is a subgroup of G.
Proof. Since $Z^{\wedge}(G)$ is equal to $\cap_{x \in G} C_{G}^{\wedge}(x)$, and $C_{G}^{\wedge}(x)$ is a subgroup of G, for all $x \in G$. Then by the fact that intersection of subgroups is a subgroup hence, $\cap_{x \in G} C_{G}^{\wedge}(x)$ is a subgroup of G, thus $Z^{\wedge}(G)$ is a subgroup of G.

Lemma 4.4. Let G be a group. Let H and K be normal subgroups of G. Then $C_{K}^{\wedge}(H)$ is a subgroup of K.

Proof. The subgroup conditions are verified as follows: $C_{K}^{\wedge}(h)$ is not an empty set since we have $h \wedge 1_{K}=1_{H \wedge K}$, hence $1_{K} \in C_{K}^{\wedge}(h)$ for all $h \in H$, and consider any two elements k_{1} and $k_{2} \in C_{K}^{\wedge}(h)$. Then

$$
h \wedge k_{1} k_{2}=\left(h \wedge k_{1}\right)\left(h \wedge k_{2}\right)^{k_{1}}=\left(1_{H \wedge K}\right)\left(1_{H \wedge K}\right)^{k_{1}}=1_{H \wedge K}
$$

hence $k_{1} k_{2} \in C_{K}^{\wedge}(h)$ for all $h \in H$. Thus, $C_{K}^{\wedge}(h)$ is a subgroup of K for all $h \in H$, then $\cap_{h \in H} C_{K}^{\wedge}(h)$ is a subgroup of K. But $\cap_{h \in H} C_{K}^{\wedge}(h)$ is equal to $C_{K}^{\wedge}(H)$, thus $C_{K}^{\wedge}(H)$ is a subgroup of K.

Proposition 4.1. Let G be a group. Let H and K be normal subgroups of G which act on each other compatibly. Then

$$
C_{K}^{\otimes}(h) \subseteq C_{K}^{\wedge}(h) \subseteq C_{K}(h)
$$

for all $h \in H$.
Proof. For all $k \in C_{K}^{\otimes}(h)$ we have

$$
h \wedge k=(h \otimes k) \nabla(H \cap K)=1_{H \otimes K} \nabla(H \cap K)=\nabla(H \cap K)=1_{H \wedge K}
$$

Then $k \in C_{K}^{\wedge}(h)$. Therefore, $C_{K}^{\otimes}(h) \subseteq C_{K}^{\wedge}(h)$. Suppose the map

$$
\psi: C_{K}(h) \longrightarrow M(G, H, K)=\operatorname{ker} \kappa_{H, K}^{\prime}
$$

given by

$$
\psi(k)=h \wedge k
$$

where $h \wedge k \in M(G, H, K), \psi$ is a group homomorphism since for all $k, k^{\prime} \in C_{K}(h)$ we have

$$
\begin{aligned}
\psi\left(k k^{\prime}\right) & =h \wedge k k^{\prime} \\
& =\left(h \otimes k k^{\prime}\right) \nabla(H \cap K) \\
& =(h \otimes k)\left(h \otimes k^{\prime}\right)^{k} \nabla(H \cap K) \\
& =(h \otimes k)\left(h \otimes k^{\prime}\right) \nabla(H \cap K) \\
& =(h \wedge k)\left(h \wedge k^{\prime}\right) \\
& =\psi(k) \psi\left(k^{\prime}\right) .
\end{aligned}
$$

$C_{K}^{\wedge}(h)$ is a subset of $C_{K}(h)$ since

$$
\begin{aligned}
\operatorname{ker}(\psi) & =\left\{k \in C_{K}(h): \psi(k)=h \wedge k=1_{M(G, H, K)}=1_{H \wedge K}\right\} \\
& =\left\{k \in C_{K}(h) \subseteq K: h \wedge k=1_{H \wedge K}\right\} \\
& =\left\{k \in K: h \wedge k=1_{H \wedge K}\right\} \\
& =C_{K}^{\wedge}(h) .
\end{aligned}
$$

But $\operatorname{ker}(\psi)$ is a subgroup of $C_{K}(h)$, then $C_{K}^{\wedge}(h)$ is a subgroup of $C_{K}(h)$ hence $C_{K}^{\wedge}(h) \subseteq C_{K}(h)$. Thus for all $h \in H$ we have

$$
C_{K}^{\otimes}(h) \subseteq C_{K}^{\wedge}(h) \subseteq C_{K}(h) .
$$

Remark. If $G=H=K$, then $C_{G}^{\otimes}(x) \subseteq C_{G}^{\wedge}(x) \subseteq C_{G}(x)$ for all $x \in G$.

Proposition 4.2. Let G be a group. Then

$$
Z^{\otimes}(G) \subseteq Z^{\wedge}(G) \subseteq Z(G)
$$

Proof. Since for all $x \in G$ and by Proposition 4.1 when $G=H=K$, hence

$$
C_{G}^{\otimes}(x) \subseteq C_{G}^{\wedge}(x) \subseteq C_{G}(x)
$$

then

$$
\cap_{x \in G} C_{G}^{\otimes}(x) \subseteq \cap_{x \in G} C_{G}^{\wedge}(x) \subseteq \cap_{x \in G} C_{G}(x)
$$

thus

$$
Z^{\otimes}(G) \subseteq Z^{\wedge}(G) \subseteq Z(G)
$$

Lemma 4.5. Let G be a group. Let H and K be normal subgroups of G. Then $C_{K}^{\wedge}(h) \triangleleft C_{K}(h)$ for all $h \in H$.

Proof. Let $\psi: C_{K}(h) \longrightarrow M(G, H, K)=k e r \kappa_{H, K}^{\prime}$ given by $\psi(k)=h \wedge k$, where $h \wedge k \in$ $M(G, H, K) . \psi$ is a group homomorphism since for all $k, k^{\prime} \in C_{K}(h)$ we have

$$
\begin{aligned}
\psi\left(k k^{\prime}\right) & =h \wedge k k^{\prime} \\
& =\left(h \otimes k k^{\prime}\right) \nabla(H \cap K) \\
& =(h \otimes k)\left(h \otimes k^{\prime}\right)^{k} \nabla(H \cap K) \\
& =(h \otimes k)\left(h \otimes k^{\prime}\right) \nabla(H \cap K) \\
& =(h \wedge k)\left(h \wedge k^{\prime}\right) \\
& =\psi(k) \psi\left(k^{\prime}\right) .
\end{aligned}
$$

Then

$$
\begin{aligned}
\operatorname{ker}(\psi) & =\left\{k \in C_{K}(h): \psi(k)=h \wedge k=1_{M(G, H, K)}=1_{H \wedge K}\right\} \\
& =\left\{k \in C_{K}(h) \subseteq K: h \wedge k=1_{H \wedge K}\right\} \\
& =\left\{k \in K: h \wedge k=1_{H \wedge K}\right\} \\
& =C_{K}^{\wedge}(h) .
\end{aligned}
$$

Therefore, by the fact that if $\psi: G_{1} \longrightarrow G_{2}$ is a group homomorphism then ker $(\psi) \triangleleft G_{1}$. Thus, $C_{K}^{\wedge}(h) \triangleleft C_{K}(h)$ for all $h \in H$.

We will state the relative exterior degree as in [4] page 3.

Definition 4.4. Let G be a group. Let H and K be normal subgroups of G. We define $d^{\wedge}(H, K)$ as the relative exterior degree of H and K such that

$$
d^{\wedge}(H, K)=\frac{\left|\left\{(h, k) \in H \times K: h \wedge k=1_{H \wedge K}\right\}\right|}{|H||K|}=\frac{\sum_{h \in H}\left|C_{K}^{\wedge}(h)\right|}{|H||K|}
$$

Remark. If $G=H=K$, then $d^{\wedge}(G, G)=d^{\wedge}(G)$ of G.

The following lemma deals with different aspects and correlates the exterior centralizers with the exterior degree.

Lemma 4.6. Let G be a group. Let H and K be normal subgroups of G. Then

$$
d^{\wedge}(H, K)=\frac{1}{|H|} \sum_{i=1}^{k_{K}(H)} \frac{\left|C_{K}^{\wedge}\left(h_{i}\right)\right|}{\left|C_{K}\left(h_{i}\right)\right|}
$$

If $G=H K$, then $\frac{C_{K}\left(h_{i}\right)}{C_{K}^{\wedge}\left(h_{i}\right)}$ is isomorphic to a subgroup of $M(G, H, K)$ and $\frac{\left|C_{K}\left(h_{i}\right)\right|}{\left|C_{K}^{\wedge}\left(h_{i}\right)\right|} \leq 1$ $M(G, H, K) \mid$ for all $i=1, \ldots, k_{K}(H)$.

Proof. Such as the method to proof of Lemma 3.11, page 43 in this work.
The following lemma gives us the relative exterior degree of the group G. It will be 1 when the exterior center of G is G itself, and vice versa as well, as in [4] and [23] page 2.

Lemma 4.7. $d^{\wedge}(G)=1$ iff $G=Z^{\wedge}(G)$.

The following theorem gives us the relative exterior degree of the direct product of two groups, and we can apply them to more than two groups, provided that the direct product is limited, as in [22, Lemma 2.10].

Theorem 4.2. Let G and H be groups. Let $|G|=n,|H|=m$ and g.c.d $(n, m)=1$ for all $n, m \in \mathbb{Z}^{+}$. Then $d^{\wedge}(G \times H)=d^{\wedge}(G) \cdot d^{\wedge}(H)$,

Proof. Since $|G \times H|=|G| \cdot|H|$, hence $(|G \times H|)^{2}=(|G|)^{2} \cdot(|H|)^{2}$. Then we have for all $(x, y) \in G \times H$.

$$
\begin{aligned}
C_{G \times H}^{\wedge}((x, y)) & =\left\{(g, h) \in G \times H:(x, y) \wedge(g, h)=1_{(G \times H) \wedge(G \times H)}\right\} \\
& =\left\{(g, h) \in G \times H:(x \wedge g, y \wedge h)=1_{(G \times H) \wedge(G \times H)}=\left(1_{G \wedge G}, 1_{H \wedge H}\right)\right\} \\
& =\left\{g \in G: x \wedge g=1_{G \wedge G}\right\} \times\left\{h \in H: y \wedge h=1_{H \wedge H}\right\} \\
& =C_{G}^{\wedge}(x) \times C_{H}^{\wedge}(y) .
\end{aligned}
$$

Hence $\left|C_{G \times H}^{\wedge}((x, y))\right|=\left|C_{G}^{\wedge}(x) \times C_{H}^{\wedge}(y)\right|=\left|C_{G}^{\wedge}(x)\right| \cdot\left|C_{H}^{\wedge}(y)\right|$, and by definition of $d^{\wedge}(G \times H)$ we have

$$
\begin{aligned}
d^{\wedge}(G \times H) & =\frac{1}{|G \times H|^{2}} \sum_{(x, y) \in G \times H}\left|C_{G \times H}^{\wedge}((x, y))\right| \\
& =\frac{1}{|G|^{2} \cdot|H|^{2}} \sum_{x \in G, y \in H}\left|C_{G}^{\wedge}(x)\right| \cdot\left|C_{H}^{\wedge}(y)\right| \\
& =\frac{1}{|G|^{2} \cdot|H|^{2}} \sum_{x \in G} \sum_{y \in H}\left|C_{G}^{\wedge}(x)\right| \cdot\left|C_{H}^{\wedge}(y)\right| \\
& =\frac{1}{|G|^{2} \cdot|H|^{2}} \sum_{x \in G}\left|C_{G}^{\wedge}(x)\right| \cdot \sum_{y \in H}\left|C_{H}^{\wedge}(y)\right| \\
& =\left(\frac{1}{|G|^{2}} \sum_{x \in G}\left|C_{G}^{\wedge}(x)\right|\right) \cdot\left(\frac{1}{|H|^{2}} \sum_{y \in H}\left|C_{H}^{\wedge}(y)\right|\right) \\
& =d^{\wedge}(G) \cdot d^{\wedge}(H) .
\end{aligned}
$$

4.3 Results of Relative Exterior Degree

In this section, we will study the general relation among the relative commutativity degree, the relative tensor degree and relative exterior degree.

The following theorem gives us the fundamental relation between commutativity, tensor and exterior degrees.

Theorem 4.3. Let G be a group. Let H and K be normal subgroups of G. Then

$$
d^{\otimes}(H, K) \leq d^{\wedge}(H, K) \leq d(H, K)
$$

If $J(G, H, K)$ is trivial, then $d^{\otimes}(H, K)=d^{\wedge}(H, K)=d(H, K)$.
Proof. Since we have

$$
\begin{aligned}
\mathrm{d}^{\otimes}(H, K) & =\frac{1}{|H|} \sum_{i=1}^{k_{K}(H)} \frac{\left|C_{K}^{\otimes}\left(h_{i}\right)\right|}{\left|C_{K}\left(h_{i}\right)\right|}, \quad d^{\wedge}(H, K)=\frac{1}{|H|} \sum_{i=1}^{k_{K}(H)} \frac{\left|C_{K}^{\wedge}\left(h_{i}\right)\right|}{\left|C_{K}\left(h_{i}\right)\right|} \\
d(H, K) & =\frac{1}{|H|} \sum_{i=1}^{k_{K}(H)} \frac{\left|C_{K}\left(h_{i}\right)\right|}{\left|C_{K}\left(h_{i}\right)\right|}
\end{aligned}
$$

By Proposition 4.1, for all $h_{i} \in H, i=1, \ldots, k_{K}(H)$ we have

$$
C_{K}^{\otimes}\left(h_{i}\right) \subseteq C_{K}^{\wedge}\left(h_{i}\right) \subseteq C_{K}\left(h_{i}\right)
$$

hence

$$
\left|C_{K}^{\otimes}\left(h_{i}\right)\right| \leq\left|C_{K}^{\wedge}\left(h_{i}\right)\right| \leq\left|C_{K}\left(h_{i}\right)\right| .
$$

Thus

$$
\begin{aligned}
\frac{1}{|H|} \sum_{i=1}^{k_{K}(H)} \frac{\left|C_{K}^{\otimes}\left(h_{i}\right)\right|}{\left|C_{K}\left(h_{i}\right)\right|} & \leq \frac{1}{|H|} \sum_{i=1}^{k_{K}(H)} \frac{\left|C_{K}^{\wedge}\left(h_{i}\right)\right|}{\left|C_{K}\left(h_{i}\right)\right|} \leq \frac{1}{|H|} \sum_{i=1}^{k_{K}(H)} \frac{\left|C_{K}\left(h_{i}\right)\right|}{\left|C_{K}\left(h_{i}\right)\right|} \\
d^{\otimes}(H, K) & \leq d^{\wedge}(H, K) \leq d(H, K) .
\end{aligned}
$$

If $J(G, H, K)$ is trivial, then by Theorem 3.5 we have

$$
d(H, K) \leq d^{\otimes}(H, K) \leq d(H, K)
$$

then

$$
d(H, K)=d^{\otimes}(H, K)
$$

thus

$$
d^{\otimes}(H, K)=d^{\wedge}(H, K)=d(H, K)
$$

Example 4.1. Let $G=D_{8}$. Then

$$
\begin{gathered}
d^{\otimes}\left(D_{8}\right) \leq d^{\wedge}\left(D_{8}\right) \leq d\left(D_{8}\right) . \\
\frac{5}{16} \leq \frac{5}{8} \leq \frac{5}{8}
\end{gathered}
$$

Theorem 4.4. Let G be a group. Then

$$
\frac{d(G)}{|M(G)|}+\frac{\left|Z^{\wedge}(G)\right|}{|G|}\left(1-\frac{1}{|M(G)|}\right) \leq d^{\wedge}(G) \leq d(G)-\left(\frac{p-1}{p}\right)\left(\frac{|Z(G)|-\left|Z^{\wedge}(G)\right|}{|G|}\right)
$$

Proof. The proof can be found in [22, Theorem 2.3.].

We will state the unicentral and right unidegree as in [23] page 6.

Definition 4.5. Let G be a group. If $Z^{\wedge}(G)=Z(G)$, then we call G an unicentral.

Definition 4.6. Let G be a group. If $d^{\wedge}(G)=d(G)$, then we call G a right unidegree.

Corollary 4.1. Let G be a group. If G is right unidegree, then G is unicentral $\left(Z^{\wedge}(G)=Z(G)\right)$. Proof. Let G be a right unidegree. Since $Z^{\otimes}(G) \subseteq Z^{\wedge}(G) \subseteq Z(G)$, and by Theorem 4.4 we have

$$
d^{\wedge}(G) \leq d(G)-\left(\frac{p-1}{p}\right)\left(\frac{|Z(G)|-\left|Z^{\wedge}(G)\right|}{|G|}\right)
$$

since $d^{\wedge}(G)=d(G)$, then

$$
\begin{aligned}
d(G) & \leq d(G)-\left(\frac{p-1}{p}\right)\left(\frac{|Z(G)|-\left|Z^{\wedge}(G)\right|}{|G|}\right) \\
0 & \leq-\left(\frac{p-1}{p}\right)\left(\frac{|Z(G)|-\left|Z^{\wedge}(G)\right|}{|G|}\right)
\end{aligned}
$$

$\xrightarrow{(-1)}$

$$
0 \geq\left(\frac{p-1}{p}\right)\left(\frac{|Z(G)|-\left|Z^{\wedge}(G)\right|}{|G|}\right)
$$

$\xrightarrow{\left(\frac{p}{p-1}\right)|G|}$

$$
\begin{gathered}
0 \geq|Z(G)|-\left|Z^{\wedge}(G)\right| \\
\left|Z^{\wedge}(G)\right| \geq|Z(G)|
\end{gathered}
$$

But $Z^{\wedge}(G) \subseteq Z(G)$. Thus, $Z^{\wedge}(G)=Z(G)$.

Corollary 4.2. Let G be a group. If G is left unidegree, then $Z^{\otimes}(G)=Z(G)$.

Proof. Let G be a left unidegree, then $d^{\otimes}(G)=d(G)$. From Theorem 3.4 we have

$$
d^{\otimes}(G) \leq d(G)-\left(\frac{p-1}{p}\right)\left(\frac{|Z(G)|-\left|Z^{\otimes}(G)\right|}{|G|}\right)
$$

since $d^{\otimes}(G)=d(G)$, then

$$
\begin{aligned}
d(G) & \leq d(G)-\left(\frac{p-1}{p}\right)\left(\frac{|Z(G)|-\left|Z^{\otimes}(G)\right|}{|G|}\right) \\
0 & \leq-\left(\frac{p-1}{p}\right)\left(\frac{|Z(G)|-\left|Z^{\otimes}(G)\right|}{|G|}\right)
\end{aligned}
$$

$\xrightarrow{(-1)}$

$$
\begin{aligned}
& 0 \geq\left(\frac{p-1}{p}\right)\left(\frac{|Z(G)|-\left|Z^{\otimes}(G)\right|}{|G|}\right) \\
& 0 \geq \frac{(p-1)\left(|Z(G)|-\left|Z^{\otimes}(G)\right|\right)}{p|G|}
\end{aligned}
$$

$\xrightarrow{(p|G|)}$

$$
0 \geq(p-1)\left(|Z(G)|-\left|Z^{\otimes}(G)\right|\right)
$$

$\xrightarrow{\frac{1}{p-1}}$

$$
\begin{gathered}
0 \geq|Z(G)|-\left|Z^{\otimes}(G)\right| \\
\left|Z^{\otimes}(G)\right| \geq|Z(G)|
\end{gathered}
$$

But $Z^{\otimes}(G) \subseteq Z(G)$. Thus, $Z^{\otimes}(G)=Z(G)$.

Remark. If G is left and right unidegree, then $Z^{\wedge}(G)=Z^{\otimes}(G)=Z(G)$.

Chapter 5

Probabilistic Methods In Block Theory

In this chapter, we will present three sections; in the first and second section, we will study the notion of a probability of p-block and give examples, and in the third and last section, we will study few facts about the probability of irreducible ordinary character χ and of B_{0}, by Brauer-Feit theorem as in [25, Theorem 2.4]. we will show the relation between the probability of the principal p-block in group G and the order of $\operatorname{Irr}(\mathrm{G})$, and some current conjectures in this concept. The basic references of this chapter are [1] and [25].

5.1 Probability of p-blocks

In this section, we will study the definition of a probability of the p-block.

Let G be a group and p be a prime number, then from the definition of p-block one will have an equivalent relation. By dividing the irreducible ordinary characters to t of equivalent classes in which $B_{i} \cap B_{j}=\emptyset$ and $\operatorname{Irr}(G)=B_{1} \cup \ldots \cup B_{t}$ for $i, j=1, \ldots, t$. Using the equation (2.1), one can calculate the probability of selecting the irreducible ordinary characters χ from $\operatorname{Irr}(G)$. Moreover, based on the definition of p-block, χ belongs to a specific p-block based on the choice of p, which is given the symbol B , so that $\chi \in B$. Therefore, one can calculate the probability of the irreducible ordinary character χ using the equation (2.1) along with p-block's definition; considering $\operatorname{Irr}(G)$ as the sample space and presuming that the event containing B is the $\operatorname{Irr}(B)$, as follows:

$$
P(\chi)= \begin{cases}\frac{k(B)}{k(G)} & \text { if } \chi \in B \\ 0 & \text { if } \chi \notin B .\end{cases}
$$

Since it is assumed that $\chi \notin B$, then the occurrence probability of χ in p-block B is impossible, so its probability value equals zero. Therefore, we have a probability value equal to one which is certain to occur, and this is achieved in one case only, when the group G has an unique p-block, which is called the principle p-block B_{0}, so that $k\left(B_{0}\right)=k(G)$. Therefore, for all $\chi \in \operatorname{Irr}(G)$ we have

$$
P(\chi)=\frac{k\left(B_{0}\right)}{k(G)}=\frac{k(G)}{k(G)}=1
$$

Similarly, we can define the probability of the p-block B of the group G of the mathematical definition of probability and we will get $P(B)=\frac{k(B)}{k(G)}$.

Since B is an equivalent class, then $B_{i} \cap B_{j}=\emptyset$, for all $i \neq j$ and from the characteristics of probability we find that $P\left(B_{i} \cup B_{j}\right)=P\left(B_{i}\right)+P\left(B_{j}\right)$ and based on that we can say that

$$
\begin{aligned}
P(\operatorname{Irr}(G)) & =P\left(B_{1} \cup \ldots \cup B_{t}\right) \\
& =P\left(B_{1}\right)+\ldots+P\left(B_{t}\right) \\
& =\frac{k\left(B_{1}\right)}{k(G)}+\ldots+\frac{k\left(B_{t}\right)}{k(G)} \\
& =\frac{k\left(B_{1}\right)+\ldots+k\left(B_{t}\right)}{k(G)} \\
& =1,
\end{aligned}
$$

and

$$
P\left(B_{i} \cap B_{j}\right)=\left\{\begin{array}{lr}
P\left(B_{i}\right) & \text { if } i=j \\
P(\emptyset)=0 & \text { if } i \neq j
\end{array}\right.
$$

If $\chi \in B$, then $P(\chi)=P(B)$ and if $\chi \notin B$, that means $P(\chi)=0$. Then we can write

$$
\sum_{\chi \in \operatorname{Irr}(G)} P(\chi)=\sum_{i=1}^{t} \sum_{\chi \in \operatorname{Irr}\left(B_{i}\right)} P\left(B_{i}\right)=1
$$

Now we can define the probability of the p-block B of the group G by the following definition, as in [1, Definition 3.1.].

Definition 5.1. Let G be a group. Let p be a prime number. Let S^{*} be a set of all p-blocks of G of order $t, t \in \mathbb{N}$. Let B be a p-block of G with defect group D. The probability of the p-block B of the group G is the real number

$$
P(B)=\frac{k(B)}{k(G)}
$$

where $0 \leq P(B) \leq 1$, for all $B \in S^{*}$ and $\sum_{i=1}^{t} P\left(B_{i}\right)=1$.

5.2 Examples

In this section, we will give examples for calculating a probability of the p-blocks.
We will give some examples of the probability of the p-block B of the group G with respect to the prime number p.

Example 5.1. Let $G=S_{3}$.
(1) When $p=2$. Then S_{3} has two 2-blocks $B_{0}=B_{1}=\left\{\chi_{1}, \chi_{2}\right\}$ and $B_{2}=\left\{\chi_{3}\right\}$. Therefore,

$$
P\left(B_{1}\right)=\frac{k\left(B_{1}\right)}{k(G)}=\frac{2}{3} \text { and } P\left(B_{2}\right)=\frac{k\left(B_{2}\right)}{k(G)}=\frac{1}{3}
$$

(2) When $p=3$. Then S_{3} has an unique 3-block $B_{0}=\left\{\chi_{1}, \chi_{2}, \chi_{3}\right\}$. Therefore,

$$
P\left(B_{0}\right)=\frac{k\left(B_{0}\right)}{k(G)}=\frac{3}{3}=1
$$

Example 5.2. Let $G=D_{8}$ and $p=2$. Then D_{8} has an unique 2-block $B_{0}=\left\{\chi_{1}, \chi_{2}, \chi_{3}, \chi_{4}, \chi_{5}\right\}$. Therefore,

$$
P\left(B_{0}\right)=\frac{k\left(B_{0}\right)}{k(G)}=\frac{5}{5}=1
$$

Example 5.3. Let $G=V \cong C_{2} \times C_{2}$ and $p=2$. Then V has an unique 2 -block $B_{0}=\left\{\chi_{1}, \chi_{2}, \chi_{3}, \chi_{4}\right\}$. Therefore,

$$
P\left(B_{0}\right)=\frac{k\left(B_{0}\right)}{k(G)}=\frac{4}{4}=1
$$

Example 5.4. Let $G=S_{4}$.
(1) When $p=2$. Then S_{4} has an unique 2-block $B_{0}=\left\{\chi_{1}, \chi_{2}, \chi_{3}, \chi_{4}, \chi_{5}\right\}$. Therefore,

$$
P\left(B_{0}\right)=\frac{k\left(B_{0}\right)}{k(G)}=\frac{5}{5}=1
$$

(2) When $p=3$. Then S_{4} has three 3-blocks $B_{0}=B_{1}=\left\{\chi_{1}, \chi_{2}, \chi_{3}\right\}, B_{2}=\left\{\chi_{4}\right\}$ and $B_{3}=\left\{\chi_{5}\right\}$. Therefore,

$$
P\left(B_{1}\right)=\frac{k\left(B_{1}\right)}{k(G)}=\frac{3}{5}, P\left(B_{2}\right)=\frac{k\left(B_{2}\right)}{k(G)}=\frac{1}{5} \text { and } P\left(B_{3}\right)=\frac{k\left(B_{3}\right)}{k(G)}=\frac{1}{5}
$$

Example 5.5. Let $G=G L(3,2)$ and $p=7$. Then $G L(3,2)$ has two 7-blocks $B_{0}=B_{1}=$ $\left\{\chi_{1}, \chi_{2}, \chi_{3}, \chi_{4}, \chi_{6}\right\}$ and $B_{2}=\left\{\chi_{5}\right\}$. Therefore,

$$
P\left(B_{1}\right)=\frac{k\left(B_{1}\right)}{k(G)}=\frac{5}{6} \text { and } P\left(B_{2}\right)=\frac{k\left(B_{2}\right)}{k(G)}=\frac{1}{6}
$$

5.3 Relations with some current conjectures

In this section, we will study facts and some current conjectures in this concept.
Write S^{*} to mean the set of all p-blocks of the group G relative to a fixed prime number p. Then the correspondence for all $i, j=1, \ldots, t$.

$$
\begin{array}{rrr}
B_{i} & \longleftrightarrow\left(B_{i}\right) \\
\in S^{*} & & \in[0,1]
\end{array}
$$

which $0 \leq P\left(B_{i}\right) \leq 1$ and $\sum_{i=1}^{t} P\left(B_{i}\right)=1$, in this direction which gives us the opportunity to construct finite probability space which is associated to the sample space consisting of all irreducible ordinary characters of the group G. The following theorem is an observation in this direction, which gives us the probability of the irreducible ordinary character χ which will be 1 when G has an unique p-block, and vice versa as well.

Theorem 5.1. Let G be a group. Let p be a prime number. Then G has an unique p-block iff $P(\chi)=1$ for all $\chi \in \operatorname{Irr}(G)$.

Proof. Assume that G has an unique p-block B, then B has all irreducible ordinary characters of G, hence $k(B)=k(G)$. By Definition 5.1 we have

$$
P(B)=\frac{k(B)}{k(G)}=\frac{k(G)}{k(G)}=1
$$

By the definition of the probability of irreducible ordinary character we have

$$
P(\chi)=P(B)=1
$$

for all $\chi \in B$, since B has all irreducible ordinary characters of G, hence

$$
P(\chi)=1,
$$

for all $\chi \in \operatorname{Irr}(G)$. On the other hand, assume $P(\chi)=1$, for all $\chi \in \operatorname{Irr}(G)$ and since $P(\chi)=P(B)$, for all $\chi \in \operatorname{Irr}(B)$ we have

$$
P\left(B_{i}\right)=1
$$

for all $B_{i} \in S^{*}$ and $i=1, \ldots, t$. By Definition 5.1 we have

$$
P\left(B_{i}\right)=\frac{k\left(B_{i}\right)}{k(G)}=1
$$

That means $k\left(B_{i}\right)=k(G)$ hence B_{i} has all irreducible ordinary character of G for all $i=1, \ldots, t$. But $B_{i} \cap B_{j}=\{\emptyset\}$ for all $i \neq j$ (such that $i, j=1, \ldots, t$.) then $B_{1}=\ldots=B_{t}$. Thus G has an unique p-block the principle one.

The following corollary gives us the probability of the irreducible ordinary character in group G which will be 1 when group G has a p-subgroup Q in which the centralizer of Q is Q itself.

Corollary 5.1. Let G be a group. Let p be a prime number. Let Q be a p-subgroup of G. If $C_{G}(Q)=Q$, then $P(\chi)=1$ for all $\chi \in \operatorname{Irr}(G)$.

Proof. The proof can be found in [1, Corollary 3.5.].

Example 5.6. Let $G=S_{3}$ and $p=3 . A_{3}$ is the 3-subgroup of S_{3} such that $C_{S_{3}}\left(A_{3}\right)=A_{3}$. Since S_{3} has an unique 3-block the principle one, hence for all $\chi \in \operatorname{Irr}(G)$ we have

$$
P(\chi)=\frac{k\left(B_{0}\right)}{k(G)}=\frac{k(G)}{k(G)}=1
$$

Example 5.7. Let $G=S_{4}$ and $p=2 . H_{1}=\{(1),(12),(34),(12)(34),(13)(24),(14)(23),(1324),(1423)\}$ is the 2-subgroup of S_{4} such that $C_{S_{4}}\left(H_{1}\right)=H_{1}$. Since S_{4} has an unique 2-block the principle one, hence for all $\chi \in \operatorname{Irr}(G)$ we have

$$
P(\chi)=\frac{k\left(B_{0}\right)}{k(G)}=\frac{k(G)}{k(G)}=1
$$

Remark. The p-block B of defect zero has an unique irreducible character, then the probability of this p-block B will be given by $\frac{1}{k(G)}$, and will be denoted by ξ (i.e. $\xi=\frac{1}{k(G)}$).

The following theorem will be helpful to prove most of the theories in this subject.

Theorem 5.2 (Brauer-Feit). Let G be a group. Let p be a prime number. Let B be a p-block of G. Let $d(B)$ be a defect number of B. Then we have $k(B) \leq 1+\frac{1}{4} p^{2 d(B)}$. If B contains an irreducible character of positive height, then even $k(B) \leq 1 / 2 p^{2 d(B)-2}$.

Proof. The proof can be found in [25, Theorem 2.4].

The following proposition and corollaries give us the relation between the probability of the p-block in group G and the order of $\operatorname{Irr}(\mathrm{G})$.

Proposition 5.1. Let G be a group. Let p be a prime number. Let B be a p-block of G with defect group $D,|D|=p^{d}(B)$. Then $k(G)<\frac{p^{2 d(B)}}{P(B)-\xi}$.
Proof. By Theorem 5.2 we have

$$
\begin{aligned}
k(B) & \leq 1+\frac{1}{4} p^{2 d(B)} \\
\frac{k(B)}{k(G)} & \leq \frac{1+\frac{1}{4} p^{2 d(B)}}{k(G)}
\end{aligned}
$$

by Definition 5.1 we have

$$
P(B) \leq \frac{1}{k(G)}+\frac{p^{2 d(B)}}{4 k(G)}
$$

since $\xi=\frac{1}{k(G)}$

$$
\begin{aligned}
P(B) & \leq \xi+\frac{p^{2 d(B)}}{4 k(G)}<\xi+\frac{p^{2 d(B)}}{k(G)} \\
P(B)-\xi & <\frac{p^{2 d(B)}}{k(G)} \\
\frac{P(B)-\xi}{p^{2 d(B)}} & <\frac{1}{k(G)} \\
k(G) & <\frac{p^{2 d(B)}}{P(B)-\xi} .
\end{aligned}
$$

Corollary 5.2. [1, Corollary 3.7.] Let G be a group. Let p be a prime number. Let B be a p-block of G. Then the probability of any B of G with defect group $D,|D|=p^{d}(B)$ satisfies $P(B)<\xi\left(1+p^{2 d(B)}\right)$.

Proof. By Theorem 5.2 we have

$$
\begin{aligned}
k(B) & \leq 1+\frac{1}{4} p^{2 d(B)} \\
\frac{k(B)}{k(G)} & \leq \frac{1+\frac{1}{4} p^{2 d(B)}}{k(G)}
\end{aligned}
$$

by Definition 5.1 we have

$$
P(B) \leq \frac{1}{k(G)}+\frac{p^{2 d(B)}}{4 k(G)}<\frac{1}{k(G)}+\frac{p^{2 d(B)}}{k(G)}
$$

since $\xi=\frac{1}{k(G)}$, then

$$
\begin{aligned}
& P(B)<\xi+\xi\left(p^{2 d(B)}\right)=\xi\left(1+p^{2 d(B)}\right) \\
& P(B)<\xi\left(1+p^{2 d(B)}\right)
\end{aligned}
$$

Corollary 5.3. [1, Corollary 3.8.] Let G be a group. Let p be a prime number. Let B be a p-block of G with defect group $D,|D|=p^{d}(B)$. If B contains an irreducible character of positive height then $k(G)<\frac{p^{2 d(B)-2}}{P(B)}$.

Proof. By Definition 5.1 we have

$$
P(B)=\frac{k(B)}{k(G)}
$$

by Theorem 5.2 we have

$$
\begin{aligned}
& P(B)=\frac{k(B)}{k(G)} \leq \frac{p^{2 d(B)-2}}{2 k(G)} \\
& P(B) \leq \frac{p^{2 d(B)-2}}{2 k(G)}<\frac{p^{2 d(B)-2}}{k(G)} \\
& P(B)<\frac{p^{2 d(B)-2}}{k(G)}
\end{aligned}
$$

thus

$$
k(G)<\frac{p^{2 d(B)-2}}{P(B)}
$$

The following conjecture is Brauer $k(B)$-conjecture.

Conjecture 5.1. [1, Conjecture 3.9.] Let G be a group. Let p be a prime number. Let B be a p-block of G with defect group D. Then $P(G) \cdot[G: D] \cdot P(B) \leq 1$.

Example 5.8. Let $G=S_{3}$ and $p=2$. Then

$$
\begin{aligned}
P\left(S_{3}\right) \cdot\left[S_{3}:\langle(12)\rangle\right] \cdot P\left(B_{1}\right) & =\frac{1}{2} \cdot \frac{6}{2} \cdot \frac{2}{3}=1 \leq 1 . \\
P\left(S_{3}\right) \cdot\left[S_{3}:\langle(1)\rangle\right] \cdot P\left(B_{2}\right) & =\frac{1}{2} \cdot \frac{6}{1} \cdot \frac{1}{3}=1 \leq 1 .
\end{aligned}
$$

Example 5.9. Let $G=S_{3}$ and $p=3$. Then

$$
P\left(S_{3}\right) \cdot\left[S_{3}: A_{3}\right] \cdot P\left(B_{0}\right)=\frac{1}{2} \cdot \frac{6}{3} \cdot \frac{3}{3}=1 \leq 1
$$

Example 5.10. Let $G=G L(3,2)$ and $p=7$. Then

$$
\begin{aligned}
& P(G L(3,2)) \cdot\left[G L(3,2): Q_{4}\right] \cdot P\left(B_{1}\right)=\frac{6}{168} \cdot \frac{168}{7} \cdot \frac{5}{6}=\frac{5}{7} \leq 1 \\
& P(G L(3,2)) \cdot\left[G L(3,2): I_{3}\right] \cdot P\left(B_{2}\right)=\frac{6}{168} \cdot \frac{168}{1} \cdot \frac{1}{6}=1 \leq 1
\end{aligned}
$$

Example 5.11. Let $G=S_{4}$ and $p=2$. Then

$$
P\left(S_{4}\right) \cdot\left[S_{4}: H_{1}\right] \cdot P\left(B_{0}\right)=\frac{5}{24} \cdot \frac{24}{8} \cdot \frac{5}{5}=\frac{5}{8} \leq 1
$$

Example 5.12. Let $G=S_{4}$ and $p=3$. Then

$$
\begin{aligned}
P\left(S_{4}\right) \cdot\left[S_{4}:\langle(123)\rangle\right] \cdot P\left(B_{1}\right) & =\frac{5}{24} \cdot \frac{24}{3} \cdot \frac{3}{5}=1 \leq 1 . \\
P\left(S_{4}\right) \cdot\left[S_{4}:\langle(1)\rangle\right] \cdot P\left(B_{2}\right) & =\frac{5}{24} \cdot \frac{24}{1} \cdot \frac{1}{5}=1 \leq 1 . \\
P\left(S_{4}\right) \cdot\left[S_{4}:\langle(1)\rangle\right] \cdot P\left(B_{3}\right) & =\frac{5}{24} \cdot \frac{24}{1} \cdot \frac{1}{5}=1 \leq 1 .
\end{aligned}
$$

Example 5.13. Let $G=D_{8}$ and $p=2$. Then

$$
P\left(D_{8}\right) \cdot\left[D_{8}: D_{8}\right] \cdot P\left(B_{0}\right)=\frac{5}{8} \cdot \frac{8}{8} \cdot \frac{5}{5}=\frac{5}{8} \leq 1
$$

Example 5.14. Let $G=V$ and $p=2$. Then

$$
P(V) \cdot[V: V] \cdot P\left(B_{0}\right)=\frac{4}{4} \cdot \frac{4}{4} \cdot \frac{4}{4}=1 \leq 1 .
$$

The following corollary gives us the probability of the principal p-block in group G which will be 1 when the group G is a p-group or G has a p-subgroup Q in which the centralizer of Q is Q itself.

Corollary 5.4. [1, Corollary 3.10.] Let G be a group. Let p be a prime number. If G is a p-group or G has a p-subgroup Q such that $C_{G}(Q)=Q$. Then $P\left(B_{0}\right)=1$.

Proof. Let G be a p-group, then from Lemma 1.7 G has one p-block only the principal one. Therefore, $P\left(B_{0}\right)=1$. If G has a p-subgroup Q such that $C_{G}(Q)=Q$, then from Corollary 5.1 we have $P(\chi)=1$ for all $\chi \in \operatorname{Irr}(\mathrm{G})$. Therefore, from Theorem 5.1 G has an unique p-block B_{0}, thus $P\left(B_{0}\right)=1$.

Example 5.15. See Examples 5.6 and 5.7, on page 60.

Example 5.16. Let $G=D_{8}$. Let $p=2$. Then D_{8} has an unique 2-block the principle one, hence

$$
P\left(B_{0}\right)=\frac{k\left(B_{0}\right)}{k(G)}=\frac{k(G)}{k(G)}=1
$$

Chapter 6

The Structure Constants and Probabilistic Methods

In this chapter, we will present three sections; in the first section, we will study the definition of algebra over a field F and from it we derive the definition of structure constants of this concept. In the second section, we will study the definition of the group algebra G over F which is denoted by $F[G]$ with mention the basis for it, the definition of the center of $F[G]$ which is denoted by $Z(F[G])$, and the important theorem in this section which explains the basis for $Z(F[G])$, and in the third and last section, we will present theories and examples that demonstrate the theorem of the probability that two elements of a finite group commute by the concept of structure constants. The basic references of this chapter are [5], [15] and [20].

6.1 The Structure Constants of an Algebra

We will state the algebra over a field F , as in [5] page 114, [20] page 155 and [15, Definition 1.1].

Definition 6.1. Let $(A,+, \times)$ be an algebra over a field F, denoted by F-algebra. This means that A is
(1) $(A,+, \times)$ is a ring.
(2) $(A,+)$ is a vector space over F.
(3) $(\lambda a) b=\lambda(a b)=a(\lambda b)$ for any $\lambda \in F$ and $a, b \in A$.

Let us assume that A is finite dimensional over the field F. Consider a basis of A such that $\beta=\left\{x_{1}, \ldots, x_{n}\right\}$ when $n=\operatorname{dim}_{F}(A) \in \mathbb{N}$. This means that β spans A and β is linearly independent over F.

Since the product $x_{i} x_{j}$ is a well-defined element in the algebra A, we have the motivation of the following definition.

Definition 6.2. The structure constants of A with respect to the basis $\beta=\left\{x_{1}, \ldots, x_{n}\right\}$ are the scalers $a_{i j v} \in F$ with $i, j, v \in\{1, \ldots, n\}$ which are defined by the product:

$$
x_{i} x_{j}=\sum_{v=1}^{v=n} a_{i j v} x_{v}
$$

Remark.

(1) The number of $a_{i j v}$ is n^{3} scalers.
(2) All $a_{i j v}(i, j, v=1, \cdots, k(G))$ belonging to the field F.
(3) The structure constant of A are with respect to the basis β.
(4) The knowledge of the structure constants of the algebra A with respect to the basis β completely determines the multiplication in the algebra A with coefficients from the field F.

6.2 Center of Group algebra $Z(F[G])$

In the following definition, we will state the group algebra, as in [15] page 2 and [20] page 261.

Definition 6.3. The group algebra of a group G over a field F, denoted by $F[G]$, is the F-algebra whose elements are all possible finite sums of the type $\sum_{g \in G} r_{g} g, g \in G, r_{g} \in F$, the operations being defined by the formulas:

$$
\begin{gathered}
r+r^{\prime}=\sum_{g \in G} r_{g} g+\sum_{g \in G} r_{g}^{\prime} g=\sum_{g \in G}\left(r_{g}+r_{g}^{\prime}\right) g, \\
r r^{\prime}=\left(\sum_{g \in G} r_{g} g\right)\left(\sum_{g^{\prime} \in G} r_{g^{\prime}}^{\prime} g^{\prime}\right)=\sum_{g \in G} \sum_{g^{\prime} \in G}\left(r_{g} r_{g^{\prime}}^{\prime}\right) g g^{\prime}=\sum_{q \in G}\left(\sum_{k \in G}\left(r_{k} r_{q k-1}\right)\right) q,
\end{gathered}
$$

for all $r, r^{\prime} \in F[G]$.
The following lemma gives us the basis of $F[G]$, as in [15] page 2 .

Lemma 6.1. Let G be a group. Let F be a field. The group algebra $F[G]$ is an algebra over F with basis G.

We will define the center of a group algebra $F[G]$.

Definition 6.4. Let G be a group. Let F be a field. Let $F[G]$ be the group algebra of G over F. The center of the group algebra $F[G]$ is the set of elements that commutes with every element of $F[G]$, which is denoted by $Z(F[G])$. In symbols

$$
Z(F[G])=\{z \in F[G]: q z=z q \text { for all } q \in F[G]\}
$$

The following theorem gives us the basis of $Z(F[G])$, as in [15, Theorem 2.4].

Theorem 6.1. Let G be a group with distinct conjugacy classes $C\left(g_{1}\right), \cdots, C\left(g_{k(G)}\right)$ where $g_{i} \in G$ for all $i=1, \cdots, k(G)$. Let F be a field. Let $K_{i}=\sum_{g \in C\left(g_{i}\right)} g \in F[G]$, for all $i=1, \cdots, k(G)$. Then $K_{1}, \cdots, K_{k(G)}$ forms basis for $Z(F[G])$.
Proof. It is clear that the $K_{1}, \cdots, K_{k(G)}$ lies in $Z(F[G]) . K_{1}, \cdots, K_{k(G)}$ are linearly independent over F since $C\left(g_{i}\right) \cap C\left(g_{j}\right)=\emptyset$ for all $i \neq j$, such that $i, j=1, \cdots, k(G)$. If $z=\sum_{g \in G} a_{g} g \in$ $Z(F[G])$ and $h \in G$, we have

$$
\begin{gathered}
\mathrm{h} \mathrm{z}=\mathrm{z} \mathrm{~h} \\
\mathrm{z}=\mathrm{h}^{-1} z h \\
\sum_{g \in G} a_{g} g=\sum_{g \in G} a_{g} g^{h}
\end{gathered}
$$

by comparing the coefficients of g^{h} on both sides, we obtain

$$
a_{g^{h}}=a_{g}
$$

that means the coefficients a_{g} have the constant value a_{i} for all $g \in C_{i}$, then

$$
z=\sum_{i=1}^{k(G)} a_{i} K_{i}
$$

thus

$$
K_{1}, \cdots, K_{k(G)} \text { span } Z(F[G]) .
$$

Remark.

(1) The elements $K_{i}(1 \leq i \leq k(G))$ are called class sums.
(2) We shall use the multiplication $K_{i} \cdot K_{j}$ to define $a_{i j v}$.
(3) We shall use the matrix $\left[a_{i j v}\right]$ which represents the multiplication table of the basis $\left\{a_{i j v}\right\}_{i=1}^{i=k(G)}$.

6.3 Application of Probability Methods with examples

In this section, we present a new application of this direction by using the structure constant. We use matrices and the sum over the required constants. We give theories and examples of our discovery.

Example 6.1. When $G=S_{3}$, we have

$$
d\left(S_{3}\right)=P\left(S_{3}\right)=\frac{\sum_{i=1}^{k\left(S_{3}\right)} \sum_{j=1}^{k\left(S_{3}\right)} \sum_{v=1}^{k\left(S_{3}\right)} a_{i j v}}{\left|S_{3}\right|^{2}}=\frac{1}{2}
$$

With matrix:

$$
\begin{aligned}
{\left[a_{i j v}\right] } & =\left(\begin{array}{ccccccccc}
a & a & a & a & a & a & a & a & a \\
111 & 112 & 113 & 121 & 122 & 123 & 131 & 132 & 133 \\
a & a & a & a & a & a & a & a & a \\
211 & 212 & 213 & 221 & 222 & 223 & 231 & 23 & 23 \\
a & a & a & a & a & a & a & a & a \\
311 & 312 & 313 & 321 & 322 & 323 & 331 & 332 & 333
\end{array}\right) \\
& =\left(\begin{array}{lllllllll}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 3 & 0 & 3 & 0 & 2 & 0 \\
0 & 0 & 1 & 0 & 2 & 0 & 2 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Example 6.2. When $G=D_{8}$, we have

$$
d\left(D_{8}\right)=P\left(D_{8}\right)=\frac{\sum_{i=1}^{k\left(D_{8}\right)} \sum_{j=1}^{k\left(D_{8}\right)} \sum_{v=1}^{k\left(D_{8}\right)} a_{i j v}}{\left|D_{8}\right|^{2}}=\frac{5}{8}
$$

With matrix:

$$
\begin{aligned}
& {\left[a_{i j v}\right]=\left(\begin{array}{cccc}
a & a & \cdots & a \\
111 & 112 & \cdots & 155 \\
& & & \\
a & a & \cdots & a \\
211 & 212 & & 255 \\
\vdots & \vdots & \ddots & \vdots \\
& & & \\
a & a & \cdots & a \\
511 & 512 & & 555
\end{array}\right)} \\
& =\left(\begin{array}{lllllllllllllllllllllllll}
1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 2 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 2 & 2 & 2 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 2 & 0 & 0 & 2 & 2 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Example 6.3. When $G=S_{4}$, we have

$$
d\left(S_{4}\right)=P\left(S_{4}\right)=\frac{\sum_{i=1}^{k\left(S_{4}\right)} \sum_{j=1}^{k\left(S_{4}\right)} \sum_{v=1}^{k\left(S_{4}\right)} a_{i j v}}{\left|S_{4}\right|^{2}}=\frac{5}{24} .
$$

With matrix:

$$
\begin{aligned}
& {\left[a_{i j v}\right]=\left(\begin{array}{cccc}
a & a & \cdots & a \\
111 & 112 & & 155 \\
a & a & \cdots & a \\
211 & 212 & \cdots & 255 \\
\vdots & \vdots & \ddots & \vdots \\
& & & \\
a & a & \cdots & a \\
511 & 512 & & 555
\end{array}\right)} \\
& =\left(\begin{array}{lllllllllllllllllllllllll}
1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 6 & 0 & 2 & 3 & 0 & 0 & 1 & 0 & 0 & 2 & 0 & 4 & 0 & 0 & 4 & 0 & 0 & 4 & 3 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 2 & 3 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 3 & 0 & 0 & 2 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 4 & 0 & 0 & 4 & 0 & 0 & 0 & 3 & 0 & 8 & 0 & 8 & 4 & 0 & 0 & 4 & 0 & 0 & 4 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 4 & 3 & 0 & 0 & 2 & 0 & 0 & 1 & 0 & 4 & 0 & 0 & 4 & 6 & 0 & 2 & 3 & 0
\end{array}\right)
\end{aligned}
$$

Recall that, for the group algebra $F[G]$, the definition of the structure constants $a_{i j v}$ comes from the multiplication $K_{i} \cdot K_{j}=\sum_{v=1}^{k(G)} a_{i j v} K_{v}$.

The following theorem is the main discovery and contribution of the thesis.
Theorem 6.2. Let G be a finite group. Let $k(G)$ be the number of conjugacy classes of G. Then

$$
\sum_{i=1}^{k(G)} \sum_{j=1}^{k(G)} \sum_{v=1}^{k(G)} a_{i j v}=k(G)|G|
$$

Proof. Let $C\left(x_{1}\right), \ldots, C\left(x_{k(G)}\right)$ be the distinct conjugacy classes of G where $x_{i} \in G$ for all $i=$ $1, \cdots, k(G)$. Then by using the definition $a_{i j v}$, we have

$$
\begin{aligned}
\sum_{i=1}^{k(G)} \sum_{j=1}^{k(G)} \sum_{v=1}^{k(G)} a_{i j v} & =\left|\left\{(x, y) \in G \times G:[x, y]=1_{G}\right\}\right| \\
& =|\{(x, y) \in G \times G: x y=y x\}| \\
& =\sum_{x \in G}\left|C_{G}(x)\right|=\sum_{i=1}^{k(G)} \sum_{x \in C\left(x_{i}\right)}\left|C_{G}(x)\right| \\
& =\sum_{i=1}^{k(G)}\left[G: C_{G}\left(x_{i}\right)\right]\left|C_{G}\left(x_{i}\right)\right| \\
& =\sum_{i=1}^{k(G)}|G|=k(G)|G|
\end{aligned}
$$

thus

$$
\sum_{i=1}^{k(G)} \sum_{j=1}^{k(G)} \sum_{v=1}^{k(G)} a_{i j v}=k(G)|G|
$$

Our next main theorem is the following:

Theorem 6.3. Let G be a finite group. Then

$$
d(G)=P(G)=\frac{\sum_{i=1}^{k(G)} \sum_{j=1}^{k(G)} \sum_{v=1}^{k(G)} a_{i j v}}{|G|^{2}} .
$$

Proof. By Theorem 2.1 and Theorem 6.2 we have

$$
d(G)=P(G)=\frac{k(G)}{|G|}=\frac{k(G)|G|}{|G|^{2}}=\frac{\sum_{i=1}^{k(G)} \sum_{j=1}^{k(G)} \sum_{v=1}^{k(G)} a_{i j v}}{|G|^{2}},
$$

thus

$$
d(G)=P(G)=\frac{\sum_{i=1}^{k(G)} \sum_{j=1}^{k(G)} \sum_{v=1}^{k(G)} a_{i j v}}{|G|^{2}} .
$$

Bibliography

[1] Ahmad Mohammed Ahmad Alghamdi, Probabilistic methods in block theory, International Journal of Algebra and Statistics, Volume 5: 1 (2016), 1-6.
[2] Ahmad Mohammed Ahmad Alghamdi, D. E. Otera and F.G. Russo, A survey on some recent investigations of probability in group theory, Boll. Mat. Pura. Appl. 3 (2010).
[3] A.M.A. Alghamdi and F.G. Russo, A generalization of the probability that the commutator of two group elements is equal to a given element, Bull. Iranian Math. Soc., 38:973-986, 2012.
[4] Ahmad Mohammed Ahmad Alghamdi, and Francesco G. Russo, Remarks on the Relative Tensor Degree of Finite Groups, Filomat 28:9 (2014), 1929-1933.
[5] J. Alperin and B. Bell, Groups and Representations, Springer, New York, 1995.
[6] R. Brown, D. L. Johnson and E. F. Robertson, Some computations of non-abelian tensor products of groups, J. Algebra 111 (1987), 177-202.
[7] P. Diaconis, Group representations in probability and statistics, Lecture Notes-Monograph Series, Volume 11, Hayward, CA: Institute of Mathematical Statistics, 1988.
[8] P. Erdős and P. Turán, On some problems of statistical group theory, Acta Math.Acad. Sci. Hung. 19 (1968) 413-435.
[9] W. Feit, The representation theory of finite groups, volume 25 of North- Holand Mathematical Library. North-Holand Publishing Co., Amestrdam, 1982.
[10] P.X. Gallagher, The number of conjugacy classes in a finite group, Math.Z. 118 (1970) 175-179.
[11] R.M. Guralnick and G.R. Robinson, On the commuting probability in finite groups, J. Algebra 300 (2006), 509-528.
[12] W.H. Gustafson, What is the probability that two groups elements commute? Amer. Math. Monthly 80 (1973), 1031-1304.
[13] P. Hegarty, Limit points in the range of the commuting probability function on finite groups, J. Group Theory. DOI: 10.1515/jgt-2012-0040.
[14] B. Huppert, Character theory of finite groups, volume 25 of Gruyter Expositions in Mathematics. Walter de Gruyter and Co., , Berlin, 1998.
[15] I.M. Isaacs, Character theory of finite groups, Dover, 1994, New York.
[16] B. Külshammer, Modular representations of finite groups: conjectures and examples. In: Darstellungstheorietage Jena 1996, volume 7 of Sitzungsber. Math.- Naturwiss. Kl., 7 (1996), 93-125.
[17] P. Lescot, Isoclinism classes and commutativity degrees of finite groups, J. Algebra 177 (1995), 847-869.
[18] P. Lescot, Central extensions and commutativity degree, Comm. Algebra 29 (2001), 4451-4460.
[19] A. McDermott, The nonabelian tensor product of groups: Computations and structural results, Department of Mathematics facuality of arts national university of ireland galway (1998).
[20] H. Nagao and Y. Tsushima, Representations of finite groups, Academic Press, San Diego, (1989).
[21] G. Navarro, Characters and blocks of finite groups, voulme 250 of London MAthematical Society Leture Notes Series. Cambridge University Press, Cambridge, 1998.
[22] P. Niroomand and R. Rezaei, On the exterior degree of finite groups, Comm. Algebra 39 (2011), 335-343.
[23] P. Niroomand and F.G. Russo, On the tensor degree of finite groups, Ars Comb., to appear, available as preprint at: http://arxiv.org/abs/1303.1364.
[24] D. J. Rusin, What is the probability that two elements of a finite group commute?, Pacific J. Math. 82 (1979), 237-247.
[25] P. Schmid, The Solution of the $k(G V)$ Problem, voulme 4 of ICP Advanced Texts in Mathematics. Imperial College Press, 2007.
[26] S. Strunkov, On the theory of equations in finite groups, Izv. Math 59 (1995), 1273-1282.
[27] T. Tambour, The number of solutions of some equations in finite groups and a new proof of Ito's Theorem, Comm. Algebra 28 (2000), 5353-5361.

[^0]: Table 2.3: Commute Elements in S_{4}.

