

المملكة العربية السعودية وزارة التعليم جامعة أم القرى عمادة الدراسات العليا

4/1/4. Course Specification:

COURSE SPECIFICATIONS Form

Course Title: CODING THEORY

Course Code: 4046406-4

Course Specifications

Institution: Umm Al-Qura University Date
College/Department : College of Applied Science / Department of Mathematical
Sciences
A. Course Identification and General Information
1. Course title and code: Coding Theory 4046406-4
2. Credit hours 4
3. Program(s) in which the course is offered.
(If general elective available in many programs indicate this rather than list
programs)
Master in Mathematics
4. Name of faculty member responsible for the course : Prof. Ahmed A Khammash
5. Level/year at which this course is offered (2 nd Year)
6. Pre-requisites for this course (if any)
4046401-4 + 4043404-3 + 4044407-3 + 4046402-4
7. Co-requisites for this course (if any)

8. Location if not on main campus

Alabdiya and alzaher

9. Mode of Instruction (mark all that apply)

). Mode of fish detion (mark an that ap	,piy)		
a. traditional classroom	\checkmark	What percentage?	85
b. blended (traditional and online)		What percentage?	
c. e-learning	\checkmark	What percentage?	15
d. correspondence		What percentage?	
f. other		What percentage?	
Comments:			

B Objectives

1. What is the main purpose for this course?

To introduce the students to coding theory. This includes the concept and different method of describing codes as well as main theorems concerning the main aim of coding theory

2. Briefly describe any plans for developing and improving the course that are being implemented. (e.g. increased use of IT or web based reference material, changes in content as a result of new research in the field)

In certain stage of the course the students will be introduced to certain computer packages which deal with coding theory such as MATLAB, GAP ... etc

C. Course Description (Note: General description in the form used in Bulletin or handbook)

Course Description:

This is a 4 credit hours optional course comprising approximately 60 hours of lectures.

1. Topics to be Covered		
List of Topics	No. of	Contact
	Weeks	hours
Introduction to coding theory : Basic assumption – weight		
and distance - Generating and check matrices - Encoding-	2	8
Error correcting codes ; the main problem of coding theory		
Linear Codes: Codes over finite fields – Equivalent codes -	2	o
Cyclic linear Codes	2	0
BCH Codes: Finite fields – Minimal polynomials – Cyclic		
Hamming codes - Decoding 2 error_correcting BCH code	2	8
<u>Reed-Solomon Codes</u> : Codes over $GF(2^r)$, Reed-Solomon	2	0
codes	2	8
Reed- Muller Codes : Constructing Reed-Muller codes –	2	0
Decoding Reed-Muller codes	Z	0
Codes and Group Rings: The notion of group rings and their		
structure, Linear codes as ideals in group rings, Group rings	3	12
as matrices, unit-type codes, Zero divisors type codes.	÷	
Recent conjectures and open problems in this field.	2	8

 Course components (total contact hours and credits per semester): 21 contact hours (3 credits) 						
	Lecture	Tutorial	Laboratory	Practical	Other:	Total

		or Studio		
Contact Hours	60			60
Credit	4			4

3. Additional private study/learning hours expected for students per week. Three hours weekly for homework and revision

4. Course Learning Outcomes in NQF Domains of Learning and Alignment with Assessment Methods and Teaching Strategy

On the table below are the five NQF Learning Domains, numbered in the left column.

First, insert the suitable and measurable course learning outcomes required in the appropriate learning domains (see suggestions below the table). **Second**, insert supporting teaching strategies that fit and align with the assessment methods and intended learning outcomes. **Third**, insert appropriate assessment methods that accurately measure and evaluate the learning outcome. Each course learning outcomes, assessment method, and teaching strategy ought to reasonably fit and flow together as an integrated learning and teaching process. (Courses are not required to include learning outcomes from each domain.)

Code	NOF Learning Domains	Course Teaching	Course
<i>couc</i> #	And Course Learning Outcomes	Stratogies	Aggeggment
#	And Course Learning Outcomes	Strategies	Assessment
			Methods
1.0	Knowledge		
1.1	Knowing the basic set up of codes (Lectures and tutorials	Quizzes,
	how to describe a linear code)		periodical and
			finalexams
1.2	The student will also aware of	Lectures and tutorials	Quizzes,
	different kinds of codes and their		periodical and
	coding capacities		finalexams
2.0	Cognitive Skills		
2.1	Constructing codes of certain	Lectures and tutorials	Quizzes,
	parameters. Distinguishing		periodical and
	between codes by equivalence.		finalexams
2.2	Judging codes according to their	Lectures and tutorials	Quizzes,
	coding capacities.		periodical and
			finalexams
3.0	Interpersonal Skills & Responsibility		
3.1	Develop the students ability	Working in small	Oral
	towards working in small teams	groups	Presentations
	and discuss matters loudly and		

	critically					
3.2	Develop independent thinking and	Working in small	Oral			
	judging	groups	Presentations			
4.0	Communication, Information Technology, Numerical					
4.1	Knowing and getting used to the	Directions and	Homeworks			
	existing computer packages such as	Homework				
	GAP, MATLAB					
5.0	Psychomotor NOT APPLIED					

5. Schedule of Assessment Tasks for Students During the Semester					
	Assessment task (e.g. essay, test, group project,	Week Due	Proportion		
	examination, speech, oral presentation, etc.)		of Total		
			Assessment		
1	First periodical	6	20		
2	Second periodic exam	10	20		
3	Homework and tutorial activities	Over all	20		
		weeks			
5	Final Exam	End	40		

D. Student Academic Counseling and Support

1. Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice. (include amount of time teaching staff are expected to be available each week)

The instructor is available during office hours for at least six hours per week. He is also available on appointments

E Learning Resources

1. List Required Textbooks

(1) Hoffman et. al., Coding Theory the essentials, DEKKER #150, 1992

(2) Vera Pless, Introduction to the theory of Error-Correcting Codes, WILEY 1990

(3) Steven Roman, Coding and Information Theory, Springer-Verlag 1992.

2. List Essential References Materials (Journals, Reports, etc.) According to the needs along the semester

3. List Recommended Textbooks and Reference Material (Journals, Reports, etc)

4. List Electronic Materials, Web Sites, Facebook, Twitter, etc. GAP (groups, algorithms and programming) Website

5. Other learning material such as computer-based programs/CD, professional standards or regulations and software. The algebra computer package GAP as well as other packages such as MATLAB

F. Facilities Required

Indicate requirements for the course including size of classrooms and laboratories (i.e. number of seats in classrooms and laboratories, extent of computer access etc.)

1. Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)

A class of capacity 15 as well as computer lab of the same capacity

2. Computing resources (AV, data show, Smart Board, software, etc.) The computer lab should be equipped with the following packages

GAP, MATLAB and MATHEMATICA

3. Other resources (specify, e.g. if specific laboratory equipment is required, list requirements or attach list)

G Course Evaluation and Improvement Processes

1 Strategies for Obtaining Student Feedback on Effectiveness of Teaching Regular polls as well as direct discussions

2 Other Strategies for Evaluation of Teaching by the Instructor or by the Department

3 Processes for Improvement of Teaching

Updating knowledge of new trends in teaching beside peer consultations and reviews

4. Processes for Verifying Standards of Student Achievement (e.g. check marking by an independent member teaching staff of a sample of student work, periodic exchange and remarking of tests or a sample of assignments with staff at another institution)

Peer consultations and reviews

5 Describe the planning arrangements for periodically reviewing course effectiveness and planning for improvement.

By regulations, the whole study plan as well as individual courses should be reviewed, revised and updated for improvement and this is done on a regular basis