

Course Specifications

Course Title:	Rings and fields theory
Course Code:	4044407-3
Program:	BSc in mathematics
Department:	Department of mathematical science
College:	College of applied science
Institution:	Umm Al-Qura University

Table of Contents

A. Course Identification	
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes	
1. Course Description	3
2. Course Main Objective	3
3. Course Learning Outcomes	4
C. Course Content	
D. Teaching and Assessment5	
1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods	5
2. Assessment Tasks for Students	6
E. Student Academic Counseling and Support7	
F. Learning Resources and Facilities7	
1.Learning Resources	7
2. Facilities Required	8
G. Course Quality Evaluation8	
H. Specification Approval Data9	

A. Course Identification

1.	Credit hours: 3 credit hours		
2.	Course type		
a.	University College Department Others		
b.	Required Elective		
3.	Level/year at which this course is offered: 8 th level		
4. Pre-requisites for this course (if any) : Introduction to Group Theory 4043403-3.			
5.	5. Co-requisites for this course (if any):		

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	13.5	30
2	Blended	13.5	30
3	E-learning	7	15
4	Correspondence	7	15
5	Other	4	10

7. Actual Learning Hours (based on academic semester)

No	Activity	Learning Hours		
Contac	ct Hours			
1	Lecture	30		
2	Laboratory/Studio	0		
3	Tutorial	15		
4	Others (specify)	0		
	Total	45		
Other	Other Learning Hours*			
1	Study	70		
2	Assignments	15		
3	Library	0		
4	Projects/Research Essays/Theses	0		
5	Others (specify)	20		
	Total	105		

* The length of time that a learner takes to complete learning activities that lead to achievement of course learning outcomes, such as study time, homework assignments, projects, preparing presentations, library times

B. Course Objectives and Learning Outcomes

1. Course Description

2. Course Main Objective

The main purpose of this course are learning basic facts of rings and fields theory, integral domains, the field of quotients of an integral domain, rings of polynomials

over a field and their factorizations, the evaluation homeomorphisms for field theory, homeomorphisms and factor rings, Prime and maximal ideals, introduction to extension fields. Namely the topics are:

1-Rings and fields: Definitions and basic examples substructures of rings, ideals 2-Integral domain, the field of fractions of an integral domain.

3-Rings of polynomials and factorization of polynomials over a field 4-Isomorphism theorems of rings

5-Prime and Maximal ideals

6-Introduction to extension fields and some examples of finite fields.

7-Principal ideal domain (PID), Unique factorization domain (UFD), Euclidean domain (ED)

3. Course Learning Outcomes

	CLOs	Aligned PLOs
1	Knowledge:	
1.1	To name Rings and fields	
1.2	To list Integral domain, and describe the field of fractions of an	
	integral domain	
1.3	to reproduce and outline Rings of polynomials and factorization of polynomials over a field	
1.4	to recall Isomorphism theorems of rings	
1.5	To define Prime and Maximal ideals	
1.6	To define extension fields and outline some examples of	
	finite fields.	
1.7	to recall Principal ideal domain (PID), Unique factorization	
	domain (UFD), Euclidean domain (ED)	
2	Skills :	
2.1	To interpret Rings and fields	
2.2	To analyze Integral domain, and evaluate the field of	
	fractions of an integral domain	
2.3	to develop and reconstruct Rings of polynomials and	
	factorization of polynomials over a field	
2.4	to use Isomorphism theorems of rings	
2.5	To calculate Prime and Maximal ideals	
2.6	To reconstruct extension fields and develop some examples	
	of finite fields.	
2.7	to construct Principal ideal domain (PID), Unique	
	factorization domain (UFD), Euclidean domain (ED)	
2.8	Demonstrate communication skills with the teacher and	
	other students in the class.	
2.9	Reading and solving basic facts of algebraic structures.	
3	Competence:	
3.1	Demonstrate communication skills with the teacher and	
	other students in the class. Show ability for mental	
	mathematics.	
3.2	Reading and solving basic facts of algebraic structures such	

CLOs	Aligned PLOs
as rings and fields. Show ability for mental mathematics.	

C. Course Content

No	List of Topics	Contact Hours
1	Rings and fields: Definitions and basic examples	6
1	substructures of rings, ideals	0
2	Integral domain, the field of fractions of an integral domain	6
3	Rings of polynomials and factorization of polynomials over a	6
3	field	0
4	Isomorphism theorems of rings	6
5	Prime and Maximal ideals	
6	Introduction to extension fields and some examples of finite	6
0	fields.	0
7	Principal ideal domain (PID), Unique factorization domain	0
/	(UFD), Euclidean domain (ED)	9
	Total	45

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.0	Knowledge		
1.1	To name Rings and fields		
1.2	To list Integral domain, and		
	describe the field of fractions of an		
1.2	Integral domain		
1.5	to reproduce and outline Rings of		
	polynomials over a field		
1.4	to recall Isomorphism theorems of		
	rings		
1.5	To define Prime and Maximal	Lectures, Tutorials	Written Exams
	ideals	and exams	
1.6	To define extension fields and		
	outline some examples of finite		
	fields.		
1.7	to recall Principal ideal domain		
	(PID), Unique factorization		
	domain (UFD), Euclidean		
	domain (ED)		
2.0	Skills		

Co	ode	Course Learning Outcomes		ching Strategies	Assessment Methods	
2	.1	To interpret Rings and fields				
2	2.2 To analyze Integral domain, and					
	an integral domain		Lect	ures and		
2	.3	to develop and reconstruct	Tuto	orials	Written Exams	
Rings of polynomials and						
		factorization of polynomials over				
2	<u></u>	a field				
2		rings				
2	.5	To calculate Prime and				
		Maximal ideals				
2	.6	To reconstruct extension fields				
		and develop some examples of				
		finite fields.		_		
2	.7	to construct Principal ideal	Lect	ures, Tutorials	Mid-term Exams	
		domain (PID), Unique	anu	exams		
factorization domain (UF		Fuclidean domain (UFD),				
2	.8	Demonstrate communication				
2.0		skills with the teacher and other				
		students in the class.				
2.9 Reading and solving basic facts						
2	0	of algebraic structures.				
3.1 Demonstrate communication						
		skills with the teacher and other	Wor	king together		
		students in the class. Show	Method of solving problems in which all members of a			
		ability for mental mathematics.			Group study to do	
3.	.2	Reading and solving basic facts			homework	
		of algebraic structures such as	and	then discuss		
for mental mathematics		then	٦.			
2. Assessment Tasks for Students						
#		Assessment task*		Week Due	Percentage of Total Assessment Score	
1	1 Midterm Test (1)			6 th week	20%	
2	Midterm Test (2)			12 th week	20%	
2	Homework + Reports + Quizzes			During the	10%	
			semester			

*Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

50%

End of

semester

Final Examination

4

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice :

-Each group of students is assigned to a particular faculty where he or she will provide academic advising during specific academic hours. Each staff will provide at least one session/week.

-There will be an academic advisor how will be a responsible for helping the student by doing the general supervision.

- The people in the library will support the students during the time of the course.

F. Learning Resources and Facilities

1.Learning Resources

1.Learning Kesources	
Required Textbooks	 The book: A First Course in Abstract Algebra, 7th Edition 7th Edition, by John B. Fraleigh; Publisher: Pearson; 7 edition (November 16, 2002)! Language: English ISBN-10: 0201763907:ISBN-13: 978- 0201763904! - Abstract Algebra by D. Dummit and R. Foote; • Publisher: Wiley; 3 edition (July 14, 2003) • Language: English ISBN-10: 0471433349 ISBN- 13: 978-0471433347 • -Algebra by Hungerford; Publisher: Springer; 8 edition (February 14, 2003) • Language: English ISBN-10: 0387905189ISBN- 13: 978-0387905181
Essential References Materials	- Modern Algebra: An Introduction 6th Edition, by John R. Durbin; Publisher: Wiley; 6 edition (December 31, 2008)! Language: English ISBN-10: 0470384433 ISBN-13: 978-0470384435 - Notes on Algebraic Structures by: Peter J. Cameron: http://www.maths.qmul.ac.uk/~pjc/notes/algstr.pdf
Electronic Materials	1. ABSTRACT ALGEBRA ONLINE STUDY GUIDE (http://www.math.niu.edu/~beachy/abstract_algebr

		a/study_guide/contents.html)
	2.	https://en.wikipedia.org/wiki/Ring_theory
	3.	https://en.wikipedia.org/wiki/Algebraic_structure
	4.	http://mathworld.wolfram.com/topics/RingTheory. html
	5.	http://mathworld.wolfram.com/topics/FieldTheory. html
Other Learning Materials	Micr	osoft Excel

2. Facilities Required

Item	Resources
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	-The size of the room should be proportional to
	the number of students
	- Provide enough seats for students.
	- The number of student not exceed on 30 in
	the classroom
	- Library
Technology Resources (AV, data show, Smart Board, software, etc.)	-Hall is equipped with a computer.
	- Provide overhead projectors and related
	items
	-Smart board
Other Resources	
equipment is required, list requirements or	none
attach a list)	

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)

H. Specification Approval Data

Council / Committee	
Reference No.	
Date	

