
Texts in Computer Science

Fundamentals
of Multimedia

Ze-Nian Li
Mark S. Drew
Jiangchuan Liu

Second Edition

Texts in Computer Science

Editors

David Gries
Fred B. Schneider

For further volumes:
http://www.springer.com/series/3191

http://www.springer.com/series/3191

Ze-Nian Li • Mark S. Drew
Jiangchuan Liu

Fundamentals of
Multimedia

Second Edition

123

Ze-Nian Li
Simon Fraser University
Vancouver, BC
Canada

Mark S. Drew
Simon Fraser University
Vancouver, BC
Canada

Jiangchuan Liu
Simon Fraser University
Vancouver, BC
Canada

ISSN 1868-0941 ISSN 1868-095X (electronic)
Texts in Computer Science
ISBN 978-3-319-05289-2 ISBN 978-3-319-05290-8 (eBook)
DOI 10.1007/978-3-319-05290-8
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014933390

1st Edition: ! Prentice-Hall, Inc. 2004

! Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the
work. Duplication of this publication or parts thereof is permitted only under the provisions of
the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Series editors
David Gries
Department of Computer Science
Cornell University
Ithaca, NY
USA

Fred B. Schneider
Department of Computer Science
Cornell University
Ithaca, NY
USA

To my mom, and my wife Yansin
Ze-Nian

To Noah, Ira, Eva and, especially,
to Jenna

Mark

To my wife Jill, and my children
Jiangchuan

Preface

A course in Multimedia is rapidly becoming a necessity in Computer Science and
Engineering curricula, especially now that multimedia touches most aspects of
these fields. Multimedia was originally seen as a vertical application area, i.e., a
niche application with methods that belong only to itself. However, like pervasive
computing, with many people’s day regularly involving the Internet, multimedia is
now essentially a horizontal application area and forms an important component of
the study of algorithms, computer graphics, computer networks, image processing,
computer vision, databases, real-time systems, operating systems, information
retrieval, and so on. Multimedia is a ubiquitous part of the technological envi-
ronment in which we work and think. This book fills the need for a university-level
text that examines a good deal of the core agenda that Computer Science sees as
belonging to this subject area. This edition constitutes a significant revision, and
we include an introduction to such current topics as 3D TV, social networks, high
efficiency video compression and conferencing, wireless and mobile networks, and
their attendant technologies. The textbook has been updated throughout to include
recent developments in the field, including considerable added depth to the net-
working aspect of the book. To this end, Dr. Jiangchuan Liu has been added to the
team of authors. While the first edition was published by Prentice-Hall, for this
update we have chosen Springer, a prestigious publisher that has a superb and
rapidly expanding array of Computer Science textbooks, particularly the excellent,
dedicated, and long-running/established textbook series: Texts in Computer
Science, of which this textbook now forms a part.

Multimedia has become associated with a certain set of issues in Computer
Science and Engineering, and we address those here. The book is not an intro-
duction to simple design considerations and tools—it serves a more advanced
audience than that. On the other hand, the book is not a reference work—it is more
a traditional textbook. While we perforce may discuss multimedia tools, we would
like to give a sense of the underlying issues at play in the tasks those tools carry
out. Students who undertake and succeed in a course based on this text can be said
to really understand fundamental matters in regard to this material, hence the title
of the text.

In conjunction with this text, a full-fledged course should also allow students to
make use of this knowledge to carry out interesting or even wonderful practical

vii

projects in multimedia, interactive projects that engage and sometimes amuse and,
perhaps, even teach these same concepts.

Who Should Read this Book?

This text aims at introducing the basic ideas used in multimedia, for an audience
that is comfortable with technical applications, e.g., Computer Science students
and Engineering students. The book aims to cover an upper-level undergraduate
multimedia course, but could also be used in more advanced courses. Indeed, a
(quite long) list of courses making use of the first edition of this text includes many
undergraduate courses as well as use as a pertinent point of departure for graduate
students who may not have encountered these ideas before in a practical way.
As well, the book would be a good reference for anyone, including those in
industry, who are interested in current multimedia technologies.

The text mainly presents concepts, not applications. A multimedia course, on
the other hand, teaches these concepts, and tests them, but also allows students to
utilize skills they already know, in coding and presentation, to address problems in
multimedia. The accompanying website materials for the text include some code
for multimedia applications along with some projects students have developed in
such a course, plus other useful materials best presented in electronic form.

The ideas in the text drive the results shown in student projects. We assume that
the reader knows how to program, and is also completely comfortable learning yet
another tool. Instead of concentrating on tools, however, the text emphasizes what
students do not already know. Using the methods and ideas collected here, students
are also enabled to learn more themselves, sometimes in a job setting: it is not
unusual for students who take the type of multimedia course this text aims at to go
on to jobs in multimedia-related industry immediately after their senior year, and
sometimes before.

The selection of material in the text addresses real issues that these learners will
be facing as soon as they show up in the workplace. Some topics are simple, but
new to the students; some are somewhat complex, but unavoidable in this
emerging area.

Have the Authors Used this Material in a Real Class?

Since 1996, we have taught a third-year undergraduate course in Multimedia
Systems based on the introductory materials set out in this book. A one-semester
course very likely could not include all the material covered in this text, but we
have usually managed to consider a good many of the topics addressed, with
mention made of a selected number of issues in Parts 3 and 4, within that time
frame.

viii Preface

As well, over the same time period and again as a one-semester course, we have
also taught a graduate-level course using notes covering topics similar to the
ground covered by this text, as an introduction to more advanced materials.
A fourth-year or graduate-level course would do well to discuss material from the
first three Parts of the book and then consider some material from the last Part,
perhaps in conjunction with some of the original research references included here
along with results presented at topical conferences.

We have attempted to fill both needs, concentrating on an undergraduate
audience but including more advanced material as well. Sections that can safely be
omitted on a first reading are marked with an asterisk in the Table of Contents.

What is Covered in this Text?

In Part 1, Introduction and Multimedia Data Representations, we introduce some
of the notions included in the term Multimedia, and look at its present as well as its
history. Practically speaking, we carry out multimedia projects using software
tools, so in addition to an overview of multimedia software tools we get down to
some of the nuts and bolts of multimedia authoring. The representation of data is
critical in the study of multimedia, and we look at the most important data rep-
resentations for use in multimedia applications. Specifically, graphics and image
data, video data, and audio data are examined in detail. Since color is vitally
important in multimedia programs, we see how this important area impacts mul-
timedia issues.

In Part 2, Multimedia Data Compression, we consider how we can make all this
data fly onto the screen and speakers. Multimedia data compression turns out to be
a very important enabling technology that makes modern multimedia systems
possible. Therefore we look at lossless and lossy compression methods, supplying
the fundamental concepts necessary to fully understand these methods. For the
latter category, lossy compression, arguably JPEG still-image compression stan-
dards, including JPEG2000, are the most important, so we consider these in detail.
But since a picture is worth 1,000 words, and so video is worth more than a million
words per minute, we examine the ideas behind the MPEG standards MPEG-1,
MPEG-2, MPEG-4, MPEG-7, and beyond into new video coding standards H.264
and H.265. Audio compression is treated separately and we consider some basic
audio and speech compression techniques and take a look at MPEG Audio,
including MP3 and AAC.

In Part 3, Multimedia Communications and Networking, we consider the great
demands multimedia communication and content sharing places on networks and
systems. We go on to consider wired Internet and wireless mobile network tech-
nologies and protocols that make interactive multimedia possible. We consider
current multimedia content distribution mechanisms, an introduction to the basics
of wireless mobile networks, and problems and solutions for multimedia
communication over such networks.

Preface ix

In Part 4, Multimedia Information Sharing and Retrieval, we examine a number
of Web technologies that form the heart of enabling the new Web 2.0 paradigm,
with user interaction with Webpages including users providing content, rather than
simply consuming content. Cloud computing has changed how services are pro-
vided, with many computation-intensive multimedia processing tasks, including
those on game consoles, offloaded to remote servers. This Part examines new-
generation multimedia sharing and retrieval services in the Web 2.0 era, and
discusses social media sharing and its impact, including cloud-assisted multimedia
computing and content sharing. The huge amount of multimedia content militates
for multimedia aware search mechanisms, and we therefore also consider the
challenges and mechanisms for multimedia content search and retrieval.

Textbook Website

The book website is http://www.cs.sfu.ca/mmbook. There, the reader will find
copies of figures from the book, an errata sheet updated regularly, programs that
help demonstrate concepts in the text, and a dynamic set of links for the ‘‘Further
Exploration’’ section in some of the chapters. Since these links are regularly
updated, and of course URLs change quite often, the links are online rather than
within the printed text.

Instructors’ Resources

The main text website has no ID and password, but access to sample student
projects is at the instructor’s discretion and is password-protected. For instructors,
with a different password, the website also contains course instructor resources for
adopters of the text. These include an extensive collection of online slides, solu-
tions for the exercises in the text, sample assignments and solutions, sample
exams, and extra exam questions.

Acknowledgments

We are most grateful to colleagues who generously gave of their time to review
this text, and we wish to express our thanks to Shu-Ching Chen, Edward Chang,
Qianping Gu, Rachelle S. Heller, Gongzhu Hu, S. N. Jayaram, Tiko Kameda,
Joonwhoan Lee, Xiaobo Li, Jie Liang, Siwei Lu, and Jacques Vaisey.

The writing of this text has been greatly aided by a number of suggestions from
present and former colleagues and students. We would like to thank Mohamed
Athiq, James Au, Chad Ciavarro, Hossein Hajimirsadeghi, Hao Jiang, Mehran

x Preface

http://www.cs.sfu.ca/mmbook

Khodabandeh, Steven Kilthau, Michael King, Tian Lan, Haitao Li, Cheng Lu,
Xiaoqiang Ma, Hamidreza Mirzaei, Peng Peng, Haoyu Ren, Ryan Shea, Wenqi
Song, Yi Sun, Dominic Szopa, Zinovi Tauber, Malte von Ruden, Jian Wang, Jie
Wei, Edward Yan, Osmar Zaïane, Cong Zhang, Wenbiao Zhang, Yuan Zhao,
Ziyang Zhao, and William Zhong, for their assistance. As well, Dr. Ye Lu made
great contributions to Chaps. 8 and 9 and his valiant efforts are particularly
appreciated. We are also most grateful for the students who generously made their
course projects available for instructional use for this book.

Preface xi

http://dx.doi.org/10.1007/978-3-319-05290-8_8
http://dx.doi.org/10.1007/978-3-319-05290-8_9

Contents

Part I Introduction and Multimedia Data Representations

1 Introduction to Multimedia. 3
1.1 What is Multimedia?. 3

1.1.1 Components of Multimedia 4
1.2 Multimedia: Past and Present . 5

1.2.1 Early History of Multimedia. 5
1.2.2 Hypermedia, WWW, and Internet 9
1.2.3 Multimedia in the New Millennium. 13

1.3 Multimedia Software Tools: A Quick Scan 15
1.3.1 Music Sequencing and Notation 16
1.3.2 Digital Audio . 16
1.3.3 Graphics and Image Editing 17
1.3.4 Video Editing . 17
1.3.5 Animation . 18
1.3.6 Multimedia Authoring . 19

1.4 Multimedia in the Future . 20
1.5 Exercises . 22
References . 23

2 A Taste of Multimedia . 25
2.1 Multimedia Tasks and Concerns . 25
2.2 Multimedia Presentation . 26
2.3 Data Compression. 32
2.4 Multimedia Production . 35
2.5 Multimedia Sharing and Distribution. 36
2.6 Some Useful Editing and Authoring Tools. 39

2.6.1 Adobe Premiere . 39
2.6.2 Adobe Director . 42
2.6.3 Adobe Flash . 47

2.7 Exercises . 52
References . 56

xiii

http://dx.doi.org/10.1007/978-3-319-05290-8_1
http://dx.doi.org/10.1007/978-3-319-05290-8_1
http://dx.doi.org/10.1007/978-3-319-05290-8_1#Sec1
http://dx.doi.org/10.1007/978-3-319-05290-8_1#Sec1
http://dx.doi.org/10.1007/978-3-319-05290-8_1#Sec2
http://dx.doi.org/10.1007/978-3-319-05290-8_1#Sec2
http://dx.doi.org/10.1007/978-3-319-05290-8_1#Sec3
http://dx.doi.org/10.1007/978-3-319-05290-8_1#Sec3
http://dx.doi.org/10.1007/978-3-319-05290-8_1#Sec4
http://dx.doi.org/10.1007/978-3-319-05290-8_1#Sec4
http://dx.doi.org/10.1007/978-3-319-05290-8_1#Sec5
http://dx.doi.org/10.1007/978-3-319-05290-8_1#Sec5
http://dx.doi.org/10.1007/978-3-319-05290-8_1#Sec6
http://dx.doi.org/10.1007/978-3-319-05290-8_1#Sec6
http://dx.doi.org/10.1007/978-3-319-05290-8_1#Sec7
http://dx.doi.org/10.1007/978-3-319-05290-8_1#Sec7
http://dx.doi.org/10.1007/978-3-319-05290-8_1#Sec8
http://dx.doi.org/10.1007/978-3-319-05290-8_1#Sec8
http://dx.doi.org/10.1007/978-3-319-05290-8_1#Sec9
http://dx.doi.org/10.1007/978-3-319-05290-8_1#Sec9
http://dx.doi.org/10.1007/978-3-319-05290-8_1#Sec10
http://dx.doi.org/10.1007/978-3-319-05290-8_1#Sec10
http://dx.doi.org/10.1007/978-3-319-05290-8_1#Sec11
http://dx.doi.org/10.1007/978-3-319-05290-8_1#Sec11
http://dx.doi.org/10.1007/978-3-319-05290-8_1#Sec12
http://dx.doi.org/10.1007/978-3-319-05290-8_1#Sec12
http://dx.doi.org/10.1007/978-3-319-05290-8_1#Sec13
http://dx.doi.org/10.1007/978-3-319-05290-8_1#Sec13
http://dx.doi.org/10.1007/978-3-319-05290-8_1#Sec14
http://dx.doi.org/10.1007/978-3-319-05290-8_1#Sec14
http://dx.doi.org/10.1007/978-3-319-05290-8_1#Sec15
http://dx.doi.org/10.1007/978-3-319-05290-8_1#Sec15
http://dx.doi.org/10.1007/978-3-319-05290-8_1#Bib1
http://dx.doi.org/10.1007/978-3-319-05290-8_2
http://dx.doi.org/10.1007/978-3-319-05290-8_2
http://dx.doi.org/10.1007/978-3-319-05290-8_2#Sec1
http://dx.doi.org/10.1007/978-3-319-05290-8_2#Sec1
http://dx.doi.org/10.1007/978-3-319-05290-8_2#Sec2
http://dx.doi.org/10.1007/978-3-319-05290-8_2#Sec2
http://dx.doi.org/10.1007/978-3-319-05290-8_2#Sec3
http://dx.doi.org/10.1007/978-3-319-05290-8_2#Sec3
http://dx.doi.org/10.1007/978-3-319-05290-8_2#Sec4
http://dx.doi.org/10.1007/978-3-319-05290-8_2#Sec4
http://dx.doi.org/10.1007/978-3-319-05290-8_2#Sec5
http://dx.doi.org/10.1007/978-3-319-05290-8_2#Sec5
http://dx.doi.org/10.1007/978-3-319-05290-8_2#Sec6
http://dx.doi.org/10.1007/978-3-319-05290-8_2#Sec6
http://dx.doi.org/10.1007/978-3-319-05290-8_2#Sec7
http://dx.doi.org/10.1007/978-3-319-05290-8_2#Sec7
http://dx.doi.org/10.1007/978-3-319-05290-8_2#Sec8
http://dx.doi.org/10.1007/978-3-319-05290-8_2#Sec8
http://dx.doi.org/10.1007/978-3-319-05290-8_2#Sec9
http://dx.doi.org/10.1007/978-3-319-05290-8_2#Sec9
http://dx.doi.org/10.1007/978-3-319-05290-8_2#Sec10
http://dx.doi.org/10.1007/978-3-319-05290-8_2#Sec10
http://dx.doi.org/10.1007/978-3-319-05290-8_2#Bib1

3 Graphics and Image Data Representations 57
3.1 Graphics/Image Data Types . 57

3.1.1 1-Bit Images. 57
3.1.2 8-Bit Gray-Level Images 58
3.1.3 Image Data Types . 62
3.1.4 24-Bit Color Images . 62
3.1.5 Higher Bit-Depth Images 62
3.1.6 8-Bit Color Images . 63
3.1.7 Color Lookup Tables. 65

3.2 Popular File Formats . 69
3.2.1 GIF . 69
3.2.2 JPEG . 73
3.2.3 PNG . 74
3.2.4 TIFF . 75
3.2.5 Windows BMP . 75
3.2.6 Windows WMF . 75
3.2.7 Netpbm Format. 76
3.2.8 EXIF . 76
3.2.9 PS and PDF . 76
3.2.10 PTM . 77

3.3 Exercises . 78
References . 80

4 Color in Image and Video. 81
4.1 Color Science. 81

4.1.1 Light and Spectra . 81
4.1.2 Human Vision . 83
4.1.3 Spectral Sensitivity of the Eye 83
4.1.4 Image Formation. 84
4.1.5 Camera Systems . 85
4.1.6 Gamma Correction . 86
4.1.7 Color-Matching Functions 88
4.1.8 CIE Chromaticity Diagram. 89
4.1.9 Color Monitor Specifications 93
4.1.10 Out-of-Gamut Colors . 94
4.1.11 White Point Correction . 95
4.1.12 XYZ to RGB Transform 96
4.1.13 Transform with Gamma Correction 96
4.1.14 L*a*b* (CIELAB) Color Model 97
4.1.15 More Color Coordinate Schemes. 99
4.1.16 Munsell Color Naming System 99

xiv Contents

http://dx.doi.org/10.1007/978-3-319-05290-8_3
http://dx.doi.org/10.1007/978-3-319-05290-8_3
http://dx.doi.org/10.1007/978-3-319-05290-8_3#Sec1
http://dx.doi.org/10.1007/978-3-319-05290-8_3#Sec1
http://dx.doi.org/10.1007/978-3-319-05290-8_3#Sec2
http://dx.doi.org/10.1007/978-3-319-05290-8_3#Sec2
http://dx.doi.org/10.1007/978-3-319-05290-8_3#Sec3
http://dx.doi.org/10.1007/978-3-319-05290-8_3#Sec3
http://dx.doi.org/10.1007/978-3-319-05290-8_3#Sec5
http://dx.doi.org/10.1007/978-3-319-05290-8_3#Sec5
http://dx.doi.org/10.1007/978-3-319-05290-8_3#Sec6
http://dx.doi.org/10.1007/978-3-319-05290-8_3#Sec6
http://dx.doi.org/10.1007/978-3-319-05290-8_3#Sec7
http://dx.doi.org/10.1007/978-3-319-05290-8_3#Sec7
http://dx.doi.org/10.1007/978-3-319-05290-8_3#Sec8
http://dx.doi.org/10.1007/978-3-319-05290-8_3#Sec8
http://dx.doi.org/10.1007/978-3-319-05290-8_3#Sec9
http://dx.doi.org/10.1007/978-3-319-05290-8_3#Sec9
http://dx.doi.org/10.1007/978-3-319-05290-8_3#Sec11
http://dx.doi.org/10.1007/978-3-319-05290-8_3#Sec11
http://dx.doi.org/10.1007/978-3-319-05290-8_3#Sec12
http://dx.doi.org/10.1007/978-3-319-05290-8_3#Sec12
http://dx.doi.org/10.1007/978-3-319-05290-8_3#Sec13
http://dx.doi.org/10.1007/978-3-319-05290-8_3#Sec13
http://dx.doi.org/10.1007/978-3-319-05290-8_3#Sec14
http://dx.doi.org/10.1007/978-3-319-05290-8_3#Sec14
http://dx.doi.org/10.1007/978-3-319-05290-8_3#Sec15
http://dx.doi.org/10.1007/978-3-319-05290-8_3#Sec15
http://dx.doi.org/10.1007/978-3-319-05290-8_3#Sec16
http://dx.doi.org/10.1007/978-3-319-05290-8_3#Sec16
http://dx.doi.org/10.1007/978-3-319-05290-8_3#Sec17
http://dx.doi.org/10.1007/978-3-319-05290-8_3#Sec17
http://dx.doi.org/10.1007/978-3-319-05290-8_3#Sec18
http://dx.doi.org/10.1007/978-3-319-05290-8_3#Sec18
http://dx.doi.org/10.1007/978-3-319-05290-8_3#Sec19
http://dx.doi.org/10.1007/978-3-319-05290-8_3#Sec19
http://dx.doi.org/10.1007/978-3-319-05290-8_3#Sec20
http://dx.doi.org/10.1007/978-3-319-05290-8_3#Sec20
http://dx.doi.org/10.1007/978-3-319-05290-8_3#Sec21
http://dx.doi.org/10.1007/978-3-319-05290-8_3#Sec21
http://dx.doi.org/10.1007/978-3-319-05290-8_3#Sec22
http://dx.doi.org/10.1007/978-3-319-05290-8_3#Sec22
http://dx.doi.org/10.1007/978-3-319-05290-8_3#Bib1
http://dx.doi.org/10.1007/978-3-319-05290-8_4
http://dx.doi.org/10.1007/978-3-319-05290-8_4
http://dx.doi.org/10.1007/978-3-319-05290-8_4#Sec2
http://dx.doi.org/10.1007/978-3-319-05290-8_4#Sec2
http://dx.doi.org/10.1007/978-3-319-05290-8_4#Sec3
http://dx.doi.org/10.1007/978-3-319-05290-8_4#Sec3
http://dx.doi.org/10.1007/978-3-319-05290-8_4#Sec4
http://dx.doi.org/10.1007/978-3-319-05290-8_4#Sec4
http://dx.doi.org/10.1007/978-3-319-05290-8_4#Sec5
http://dx.doi.org/10.1007/978-3-319-05290-8_4#Sec5
http://dx.doi.org/10.1007/978-3-319-05290-8_4#Sec6
http://dx.doi.org/10.1007/978-3-319-05290-8_4#Sec6
http://dx.doi.org/10.1007/978-3-319-05290-8_4#Sec7
http://dx.doi.org/10.1007/978-3-319-05290-8_4#Sec7
http://dx.doi.org/10.1007/978-3-319-05290-8_4#Sec8
http://dx.doi.org/10.1007/978-3-319-05290-8_4#Sec8
http://dx.doi.org/10.1007/978-3-319-05290-8_4#Sec9
http://dx.doi.org/10.1007/978-3-319-05290-8_4#Sec9
http://dx.doi.org/10.1007/978-3-319-05290-8_4#Sec10
http://dx.doi.org/10.1007/978-3-319-05290-8_4#Sec10
http://dx.doi.org/10.1007/978-3-319-05290-8_4#Sec11
http://dx.doi.org/10.1007/978-3-319-05290-8_4#Sec11
http://dx.doi.org/10.1007/978-3-319-05290-8_4#Sec12
http://dx.doi.org/10.1007/978-3-319-05290-8_4#Sec12
http://dx.doi.org/10.1007/978-3-319-05290-8_4#Sec13
http://dx.doi.org/10.1007/978-3-319-05290-8_4#Sec13
http://dx.doi.org/10.1007/978-3-319-05290-8_4#Sec14
http://dx.doi.org/10.1007/978-3-319-05290-8_4#Sec14
http://dx.doi.org/10.1007/978-3-319-05290-8_4#Sec15
http://dx.doi.org/10.1007/978-3-319-05290-8_4#Sec15
http://dx.doi.org/10.1007/978-3-319-05290-8_4#Sec16
http://dx.doi.org/10.1007/978-3-319-05290-8_4#Sec16
http://dx.doi.org/10.1007/978-3-319-05290-8_4#Sec17
http://dx.doi.org/10.1007/978-3-319-05290-8_4#Sec17
http://dx.doi.org/10.1007/978-3-319-05290-8_4#Sec18
http://dx.doi.org/10.1007/978-3-319-05290-8_4#Sec18

4.2 Color Models in Images . 99
4.2.1 RGB Color Model for Displays 100
4.2.2 Multisensor Cameras . 100
4.2.3 Camera-Dependent Color 100
4.2.4 Subtractive Color: CMY Color Model 102
4.2.5 Transformation from RGB to CMY. 102
4.2.6 Undercolor Removal: CMYK System 103
4.2.7 Printer Gamuts . 103
4.2.8 Multi-ink Printers . 104

4.3 Color Models in Video . 105
4.3.1 Video Color Transforms 105
4.3.2 YUV Color Model . 106
4.3.3 YIQ Color Model . 107
4.3.4 YCbCr Color Model . 109

4.4 Exercises . 110
References . 113

5 Fundamental Concepts in Video . 115
5.1 Analog Video. 115

5.1.1 NTSC Video. 118
5.1.2 PAL Video. 121
5.1.3 SECAM Video . 121

5.2 Digital Video . 122
5.2.1 Chroma Subsampling. 122
5.2.2 CCIR and ITU-R Standards for Digital Video 122
5.2.3 High-Definition TV . 124
5.2.4 Ultra High Definition TV (UHDTV) 126

5.3 Video Display Interfaces . 126
5.3.1 Analog Display Interfaces 126
5.3.2 Digital Display Interfaces. 128

5.4 3D Video and TV . 130
5.4.1 Cues for 3D Percept . 130
5.4.2 3D Camera Models . 131
5.4.3 3D Movie and TV Based on Stereo Vision 132
5.4.4 The Vergence-Accommodation Conflict. 133
5.4.5 Autostereoscopic (Glasses-Free)

Display Devices . 135
5.4.6 Disparity Manipulation in 3D Content Creation . . . 136

5.5 Exercises . 137
References . 138

Contents xv

http://dx.doi.org/10.1007/978-3-319-05290-8_4#Sec19
http://dx.doi.org/10.1007/978-3-319-05290-8_4#Sec19
http://dx.doi.org/10.1007/978-3-319-05290-8_4#Sec20
http://dx.doi.org/10.1007/978-3-319-05290-8_4#Sec20
http://dx.doi.org/10.1007/978-3-319-05290-8_4#Sec21
http://dx.doi.org/10.1007/978-3-319-05290-8_4#Sec21
http://dx.doi.org/10.1007/978-3-319-05290-8_4#Sec22
http://dx.doi.org/10.1007/978-3-319-05290-8_4#Sec22
http://dx.doi.org/10.1007/978-3-319-05290-8_4#Sec23
http://dx.doi.org/10.1007/978-3-319-05290-8_4#Sec23
http://dx.doi.org/10.1007/978-3-319-05290-8_4#Sec24
http://dx.doi.org/10.1007/978-3-319-05290-8_4#Sec24
http://dx.doi.org/10.1007/978-3-319-05290-8_4#Sec25
http://dx.doi.org/10.1007/978-3-319-05290-8_4#Sec25
http://dx.doi.org/10.1007/978-3-319-05290-8_4#Sec26
http://dx.doi.org/10.1007/978-3-319-05290-8_4#Sec26
http://dx.doi.org/10.1007/978-3-319-05290-8_4#Sec27
http://dx.doi.org/10.1007/978-3-319-05290-8_4#Sec27
http://dx.doi.org/10.1007/978-3-319-05290-8_4#Sec28
http://dx.doi.org/10.1007/978-3-319-05290-8_4#Sec28
http://dx.doi.org/10.1007/978-3-319-05290-8_4#Sec29
http://dx.doi.org/10.1007/978-3-319-05290-8_4#Sec29
http://dx.doi.org/10.1007/978-3-319-05290-8_4#Sec30
http://dx.doi.org/10.1007/978-3-319-05290-8_4#Sec30
http://dx.doi.org/10.1007/978-3-319-05290-8_4#Sec31
http://dx.doi.org/10.1007/978-3-319-05290-8_4#Sec31
http://dx.doi.org/10.1007/978-3-319-05290-8_4#Sec32
http://dx.doi.org/10.1007/978-3-319-05290-8_4#Sec32
http://dx.doi.org/10.1007/978-3-319-05290-8_4#Sec33
http://dx.doi.org/10.1007/978-3-319-05290-8_4#Sec33
http://dx.doi.org/10.1007/978-3-319-05290-8_4#Bib1
http://dx.doi.org/10.1007/978-3-319-05290-8_5
http://dx.doi.org/10.1007/978-3-319-05290-8_5
http://dx.doi.org/10.1007/978-3-319-05290-8_5#Sec1
http://dx.doi.org/10.1007/978-3-319-05290-8_5#Sec1
http://dx.doi.org/10.1007/978-3-319-05290-8_5#Sec2
http://dx.doi.org/10.1007/978-3-319-05290-8_5#Sec2
http://dx.doi.org/10.1007/978-3-319-05290-8_5#Sec3
http://dx.doi.org/10.1007/978-3-319-05290-8_5#Sec3
http://dx.doi.org/10.1007/978-3-319-05290-8_5#Sec4
http://dx.doi.org/10.1007/978-3-319-05290-8_5#Sec4
http://dx.doi.org/10.1007/978-3-319-05290-8_5#Sec5
http://dx.doi.org/10.1007/978-3-319-05290-8_5#Sec5
http://dx.doi.org/10.1007/978-3-319-05290-8_5#Sec6
http://dx.doi.org/10.1007/978-3-319-05290-8_5#Sec6
http://dx.doi.org/10.1007/978-3-319-05290-8_5#Sec7
http://dx.doi.org/10.1007/978-3-319-05290-8_5#Sec7
http://dx.doi.org/10.1007/978-3-319-05290-8_5#Sec8
http://dx.doi.org/10.1007/978-3-319-05290-8_5#Sec8
http://dx.doi.org/10.1007/978-3-319-05290-8_5#Sec9
http://dx.doi.org/10.1007/978-3-319-05290-8_5#Sec9
http://dx.doi.org/10.1007/978-3-319-05290-8_5#Sec10
http://dx.doi.org/10.1007/978-3-319-05290-8_5#Sec10
http://dx.doi.org/10.1007/978-3-319-05290-8_5#Sec11
http://dx.doi.org/10.1007/978-3-319-05290-8_5#Sec11
http://dx.doi.org/10.1007/978-3-319-05290-8_5#Sec16
http://dx.doi.org/10.1007/978-3-319-05290-8_5#Sec16
http://dx.doi.org/10.1007/978-3-319-05290-8_5#Sec20
http://dx.doi.org/10.1007/978-3-319-05290-8_5#Sec20
http://dx.doi.org/10.1007/978-3-319-05290-8_5#Sec21
http://dx.doi.org/10.1007/978-3-319-05290-8_5#Sec21
http://dx.doi.org/10.1007/978-3-319-05290-8_5#Sec24
http://dx.doi.org/10.1007/978-3-319-05290-8_5#Sec24
http://dx.doi.org/10.1007/978-3-319-05290-8_5#Sec27
http://dx.doi.org/10.1007/978-3-319-05290-8_5#Sec27
http://dx.doi.org/10.1007/978-3-319-05290-8_5#Sec31
http://dx.doi.org/10.1007/978-3-319-05290-8_5#Sec31
http://dx.doi.org/10.1007/978-3-319-05290-8_5#Sec32
http://dx.doi.org/10.1007/978-3-319-05290-8_5#Sec32
http://dx.doi.org/10.1007/978-3-319-05290-8_5#Sec32
http://dx.doi.org/10.1007/978-3-319-05290-8_5#Sec33
http://dx.doi.org/10.1007/978-3-319-05290-8_5#Sec33
http://dx.doi.org/10.1007/978-3-319-05290-8_5#Sec34
http://dx.doi.org/10.1007/978-3-319-05290-8_5#Sec34
http://dx.doi.org/10.1007/978-3-319-05290-8_5#Bib1

6 Basics of Digital Audio . 139
6.1 Digitization of Sound . 139

6.1.1 What is Sound? . 139
6.1.2 Digitization . 140
6.1.3 Nyquist Theorem . 142
6.1.4 Signal-to-Noise Ratio (SNR) 144
6.1.5 Signal-to-Quantization-Noise Ratio (SQNR) 145
6.1.6 Linear and Nonlinear Quantization 147
6.1.7 Audio Filtering . 150
6.1.8 Audio Quality Versus Data Rate 151
6.1.9 Synthetic Sounds. 152

6.2 MIDI: Musical Instrument Digital Interface 154
6.2.1 MIDI Overview . 155
6.2.2 Hardware Aspects of MIDI 159
6.2.3 Structure of MIDI Messages. 160
6.2.4 General MIDI . 164
6.2.5 MIDI-to-WAV Conversion 164

6.3 Quantization and Transmission of Audio 164
6.3.1 Coding of Audio . 165
6.3.2 Pulse Code Modulation . 165
6.3.3 Differential Coding of Audio 168
6.3.4 Lossless Predictive Coding. 168
6.3.5 DPCM . 171
6.3.6 DM . 174
6.3.7 ADPCM. 175

6.4 Exercises . 177
References . 180

Part II Multimedia Data Compression

7 Lossless Compression Algorithms . 185
7.1 Introduction . 185
7.2 Basics of Information Theory . 186
7.3 Run-Length Coding. 189
7.4 Variable-Length Coding . 189

7.4.1 Shannon–Fano Algorithm. 189
7.4.2 Huffman Coding . 192
7.4.3 Adaptive Huffman Coding 196

7.5 Dictionary-Based Coding . 200
7.6 Arithmetic Coding . 205

7.6.1 Basic Arithmetic Coding Algorithm 206
7.6.2 Scaling and Incremental Coding 210

xvi Contents

http://dx.doi.org/10.1007/978-3-319-05290-8_6
http://dx.doi.org/10.1007/978-3-319-05290-8_6
http://dx.doi.org/10.1007/978-3-319-05290-8_6#Sec1
http://dx.doi.org/10.1007/978-3-319-05290-8_6#Sec1
http://dx.doi.org/10.1007/978-3-319-05290-8_6#Sec2
http://dx.doi.org/10.1007/978-3-319-05290-8_6#Sec2
http://dx.doi.org/10.1007/978-3-319-05290-8_6#Sec3
http://dx.doi.org/10.1007/978-3-319-05290-8_6#Sec3
http://dx.doi.org/10.1007/978-3-319-05290-8_6#Sec4
http://dx.doi.org/10.1007/978-3-319-05290-8_6#Sec4
http://dx.doi.org/10.1007/978-3-319-05290-8_6#Sec5
http://dx.doi.org/10.1007/978-3-319-05290-8_6#Sec5
http://dx.doi.org/10.1007/978-3-319-05290-8_6#Sec6
http://dx.doi.org/10.1007/978-3-319-05290-8_6#Sec6
http://dx.doi.org/10.1007/978-3-319-05290-8_6#Sec7
http://dx.doi.org/10.1007/978-3-319-05290-8_6#Sec7
http://dx.doi.org/10.1007/978-3-319-05290-8_6#Sec8
http://dx.doi.org/10.1007/978-3-319-05290-8_6#Sec8
http://dx.doi.org/10.1007/978-3-319-05290-8_6#Sec9
http://dx.doi.org/10.1007/978-3-319-05290-8_6#Sec9
http://dx.doi.org/10.1007/978-3-319-05290-8_6#Sec10
http://dx.doi.org/10.1007/978-3-319-05290-8_6#Sec10
http://dx.doi.org/10.1007/978-3-319-05290-8_6#Sec11
http://dx.doi.org/10.1007/978-3-319-05290-8_6#Sec11
http://dx.doi.org/10.1007/978-3-319-05290-8_6#Sec12
http://dx.doi.org/10.1007/978-3-319-05290-8_6#Sec12
http://dx.doi.org/10.1007/978-3-319-05290-8_6#Sec13
http://dx.doi.org/10.1007/978-3-319-05290-8_6#Sec13
http://dx.doi.org/10.1007/978-3-319-05290-8_6#Sec14
http://dx.doi.org/10.1007/978-3-319-05290-8_6#Sec14
http://dx.doi.org/10.1007/978-3-319-05290-8_6#Sec15
http://dx.doi.org/10.1007/978-3-319-05290-8_6#Sec15
http://dx.doi.org/10.1007/978-3-319-05290-8_6#Sec16
http://dx.doi.org/10.1007/978-3-319-05290-8_6#Sec16
http://dx.doi.org/10.1007/978-3-319-05290-8_6#Sec17
http://dx.doi.org/10.1007/978-3-319-05290-8_6#Sec17
http://dx.doi.org/10.1007/978-3-319-05290-8_6#Sec18
http://dx.doi.org/10.1007/978-3-319-05290-8_6#Sec18
http://dx.doi.org/10.1007/978-3-319-05290-8_6#Sec19
http://dx.doi.org/10.1007/978-3-319-05290-8_6#Sec19
http://dx.doi.org/10.1007/978-3-319-05290-8_6#Sec21
http://dx.doi.org/10.1007/978-3-319-05290-8_6#Sec21
http://dx.doi.org/10.1007/978-3-319-05290-8_6#Sec22
http://dx.doi.org/10.1007/978-3-319-05290-8_6#Sec22
http://dx.doi.org/10.1007/978-3-319-05290-8_6#Sec23
http://dx.doi.org/10.1007/978-3-319-05290-8_6#Sec23
http://dx.doi.org/10.1007/978-3-319-05290-8_6#Sec24
http://dx.doi.org/10.1007/978-3-319-05290-8_6#Sec24
http://dx.doi.org/10.1007/978-3-319-05290-8_6#Sec27
http://dx.doi.org/10.1007/978-3-319-05290-8_6#Sec27
http://dx.doi.org/10.1007/978-3-319-05290-8_6#Sec28
http://dx.doi.org/10.1007/978-3-319-05290-8_6#Sec28
http://dx.doi.org/10.1007/978-3-319-05290-8_6#Bib1
http://dx.doi.org/10.1007/978-3-319-05290-8_7
http://dx.doi.org/10.1007/978-3-319-05290-8_7
http://dx.doi.org/10.1007/978-3-319-05290-8_7#Sec1
http://dx.doi.org/10.1007/978-3-319-05290-8_7#Sec1
http://dx.doi.org/10.1007/978-3-319-05290-8_7#Sec2
http://dx.doi.org/10.1007/978-3-319-05290-8_7#Sec2
http://dx.doi.org/10.1007/978-3-319-05290-8_7#Sec3
http://dx.doi.org/10.1007/978-3-319-05290-8_7#Sec3
http://dx.doi.org/10.1007/978-3-319-05290-8_7#Sec4
http://dx.doi.org/10.1007/978-3-319-05290-8_7#Sec4
http://dx.doi.org/10.1007/978-3-319-05290-8_7#Sec5
http://dx.doi.org/10.1007/978-3-319-05290-8_7#Sec5
http://dx.doi.org/10.1007/978-3-319-05290-8_7#Sec6
http://dx.doi.org/10.1007/978-3-319-05290-8_7#Sec6
http://dx.doi.org/10.1007/978-3-319-05290-8_7#Sec7
http://dx.doi.org/10.1007/978-3-319-05290-8_7#Sec7
http://dx.doi.org/10.1007/978-3-319-05290-8_7#Sec8
http://dx.doi.org/10.1007/978-3-319-05290-8_7#Sec8
http://dx.doi.org/10.1007/978-3-319-05290-8_7#Sec10
http://dx.doi.org/10.1007/978-3-319-05290-8_7#Sec10
http://dx.doi.org/10.1007/978-3-319-05290-8_7#Sec11
http://dx.doi.org/10.1007/978-3-319-05290-8_7#Sec11
http://dx.doi.org/10.1007/978-3-319-05290-8_7#Sec12
http://dx.doi.org/10.1007/978-3-319-05290-8_7#Sec12

7.6.3 Integer Implementation . 214
7.6.4 Binary Arithmetic Coding 214
7.6.5 Adaptive Arithmetic Coding. 215

7.7 Lossless Image Compression . 218
7.7.1 Differential Coding of Images 218
7.7.2 Lossless JPEG . 219

7.8 Exercises . 221
References . 223

8 Lossy Compression Algorithms . 225
8.1 Introduction . 225
8.2 Distortion Measures . 225
8.3 The Rate-Distortion Theory . 226
8.4 Quantization. 227

8.4.1 Uniform Scalar Quantization 228
8.4.2 Nonuniform Scalar Quantization 230
8.4.3 Vector Quantization. 232

8.5 Transform Coding. 233
8.5.1 Discrete Cosine Transform (DCT). 234
8.5.2 Karhunen–Loève Transform* 249

8.6 Wavelet-Based Coding . 251
8.6.1 Introduction . 251
8.6.2 Continuous Wavelet Transform* 256
8.6.3 Discrete Wavelet Transform* 259

8.7 Wavelet Packets . 270
8.8 Embedded Zerotree of Wavelet Coefficients 270

8.8.1 The Zerotree Data Structure 271
8.8.2 Successive Approximation Quantization. 272
8.8.3 EZW Example . 273

8.9 Set Partitioning in Hierarchical Trees (SPIHT) 277
8.10 Exercises . 277
References . 280

9 Image Compression Standards . 281
9.1 The JPEG Standard . 281

9.1.1 Main Steps in JPEG Image Compression 281
9.1.2 JPEG Modes. 290
9.1.3 A Glance at the JPEG Bitstream 293

9.2 The JPEG2000 Standard . 293
9.2.1 Main Steps of JPEG2000 Image Compression! 295
9.2.2 Adapting EBCOT to JPEG2000 303
9.2.3 Region-of-Interest Coding 303
9.2.4 Comparison of JPEG and JPEG2000

Performance . 304

Contents xvii

http://dx.doi.org/10.1007/978-3-319-05290-8_7#Sec13
http://dx.doi.org/10.1007/978-3-319-05290-8_7#Sec13
http://dx.doi.org/10.1007/978-3-319-05290-8_7#Sec14
http://dx.doi.org/10.1007/978-3-319-05290-8_7#Sec14
http://dx.doi.org/10.1007/978-3-319-05290-8_7#Sec15
http://dx.doi.org/10.1007/978-3-319-05290-8_7#Sec15
http://dx.doi.org/10.1007/978-3-319-05290-8_7#Sec16
http://dx.doi.org/10.1007/978-3-319-05290-8_7#Sec16
http://dx.doi.org/10.1007/978-3-319-05290-8_7#Sec17
http://dx.doi.org/10.1007/978-3-319-05290-8_7#Sec17
http://dx.doi.org/10.1007/978-3-319-05290-8_7#Sec18
http://dx.doi.org/10.1007/978-3-319-05290-8_7#Sec18
http://dx.doi.org/10.1007/978-3-319-05290-8_7#Sec19
http://dx.doi.org/10.1007/978-3-319-05290-8_7#Sec19
http://dx.doi.org/10.1007/978-3-319-05290-8_7#Bib1
http://dx.doi.org/10.1007/978-3-319-05290-8_8
http://dx.doi.org/10.1007/978-3-319-05290-8_8
http://dx.doi.org/10.1007/978-3-319-05290-8_8#Sec1
http://dx.doi.org/10.1007/978-3-319-05290-8_8#Sec1
http://dx.doi.org/10.1007/978-3-319-05290-8_8#Sec2
http://dx.doi.org/10.1007/978-3-319-05290-8_8#Sec2
http://dx.doi.org/10.1007/978-3-319-05290-8_8#Sec3
http://dx.doi.org/10.1007/978-3-319-05290-8_8#Sec3
http://dx.doi.org/10.1007/978-3-319-05290-8_8#Sec4
http://dx.doi.org/10.1007/978-3-319-05290-8_8#Sec4
http://dx.doi.org/10.1007/978-3-319-05290-8_8#Sec5
http://dx.doi.org/10.1007/978-3-319-05290-8_8#Sec5
http://dx.doi.org/10.1007/978-3-319-05290-8_8#Sec6
http://dx.doi.org/10.1007/978-3-319-05290-8_8#Sec6
http://dx.doi.org/10.1007/978-3-319-05290-8_8#Sec7
http://dx.doi.org/10.1007/978-3-319-05290-8_8#Sec7
http://dx.doi.org/10.1007/978-3-319-05290-8_8#Sec8
http://dx.doi.org/10.1007/978-3-319-05290-8_8#Sec8
http://dx.doi.org/10.1007/978-3-319-05290-8_8#Sec9
http://dx.doi.org/10.1007/978-3-319-05290-8_8#Sec9
http://dx.doi.org/10.1007/978-3-319-05290-8_8#Sec10
http://dx.doi.org/10.1007/978-3-319-05290-8_8#Sec10
http://dx.doi.org/10.1007/978-3-319-05290-8_8#Sec11
http://dx.doi.org/10.1007/978-3-319-05290-8_8#Sec11
http://dx.doi.org/10.1007/978-3-319-05290-8_8#Sec12
http://dx.doi.org/10.1007/978-3-319-05290-8_8#Sec12
http://dx.doi.org/10.1007/978-3-319-05290-8_8#Sec13
http://dx.doi.org/10.1007/978-3-319-05290-8_8#Sec13
http://dx.doi.org/10.1007/978-3-319-05290-8_8#Sec14
http://dx.doi.org/10.1007/978-3-319-05290-8_8#Sec14
http://dx.doi.org/10.1007/978-3-319-05290-8_8#Sec15
http://dx.doi.org/10.1007/978-3-319-05290-8_8#Sec15
http://dx.doi.org/10.1007/978-3-319-05290-8_8#Sec16
http://dx.doi.org/10.1007/978-3-319-05290-8_8#Sec16
http://dx.doi.org/10.1007/978-3-319-05290-8_8#Sec17
http://dx.doi.org/10.1007/978-3-319-05290-8_8#Sec17
http://dx.doi.org/10.1007/978-3-319-05290-8_8#Sec18
http://dx.doi.org/10.1007/978-3-319-05290-8_8#Sec18
http://dx.doi.org/10.1007/978-3-319-05290-8_8#Sec19
http://dx.doi.org/10.1007/978-3-319-05290-8_8#Sec19
http://dx.doi.org/10.1007/978-3-319-05290-8_8#Sec20
http://dx.doi.org/10.1007/978-3-319-05290-8_8#Sec20
http://dx.doi.org/10.1007/978-3-319-05290-8_8#Sec21
http://dx.doi.org/10.1007/978-3-319-05290-8_8#Sec21
http://dx.doi.org/10.1007/978-3-319-05290-8_8#Bib1
http://dx.doi.org/10.1007/978-3-319-05290-8_9
http://dx.doi.org/10.1007/978-3-319-05290-8_9
http://dx.doi.org/10.1007/978-3-319-05290-8_9#Sec1
http://dx.doi.org/10.1007/978-3-319-05290-8_9#Sec1
http://dx.doi.org/10.1007/978-3-319-05290-8_9#Sec2
http://dx.doi.org/10.1007/978-3-319-05290-8_9#Sec2
http://dx.doi.org/10.1007/978-3-319-05290-8_9#Sec11
http://dx.doi.org/10.1007/978-3-319-05290-8_9#Sec11
http://dx.doi.org/10.1007/978-3-319-05290-8_9#Sec16
http://dx.doi.org/10.1007/978-3-319-05290-8_9#Sec16
http://dx.doi.org/10.1007/978-3-319-05290-8_9#Sec17
http://dx.doi.org/10.1007/978-3-319-05290-8_9#Sec17
http://dx.doi.org/10.1007/978-3-319-05290-8_9#Sec18
http://dx.doi.org/10.1007/978-3-319-05290-8_9#Sec18
http://dx.doi.org/10.1007/978-3-319-05290-8_9#Sec21
http://dx.doi.org/10.1007/978-3-319-05290-8_9#Sec21
http://dx.doi.org/10.1007/978-3-319-05290-8_9#Sec22
http://dx.doi.org/10.1007/978-3-319-05290-8_9#Sec22
http://dx.doi.org/10.1007/978-3-319-05290-8_9#Sec23
http://dx.doi.org/10.1007/978-3-319-05290-8_9#Sec23
http://dx.doi.org/10.1007/978-3-319-05290-8_9#Sec23

9.3 The JPEG-LS Standard . 305
9.3.1 Prediction. 308
9.3.2 Context Determination . 308
9.3.3 Residual Coding . 309
9.3.4 Near-Lossless Mode . 309

9.4 Bi-level Image Compression Standards 309
9.4.1 The JBIG Standard . 310
9.4.2 The JBIG2 Standard . 310

9.5 Exercises . 313
References . 315

10 Basic Video Compression Techniques . 317
10.1 Introduction to Video Compression 317
10.2 Video Compression Based on Motion Compensation 318
10.3 Search for Motion Vectors . 319

10.3.1 Sequential Search . 320
10.3.2 2D Logarithmic Search . 321
10.3.3 Hierarchical Search . 322

10.4 H.261 . 325
10.4.1 Intra-Frame (I-Frame) Coding. 326
10.4.2 Inter-Frame (P-Frame) Predictive Coding. 327
10.4.3 Quantization in H.261 . 328
10.4.4 H.261 Encoder and Decoder 328
10.4.5 A Glance at the H.261 Video Bitstream Syntax . . . 330

10.5 H.263 . 332
10.5.1 Motion Compensation in H.263 333
10.5.2 Optional H.263 Coding Modes 334
10.5.3 H.263+ and H.263++. 336

10.6 Exercises . 337
References . 339

11 MPEG Video Coding: MPEG-1, 2, 4, and 7. 341
11.1 Overview . 341
11.2 MPEG-1 . 341

11.2.1 Motion Compensation in MPEG-1 342
11.2.2 Other Major Differences from H.261. 344
11.2.3 MPEG-1 Video Bitstream 346

11.3 MPEG-2 . 348
11.3.1 Supporting Interlaced Video 349
11.3.2 MPEG-2 Scalabilities . 353
11.3.3 Other Major Differences from MPEG-1 358

xviii Contents

http://dx.doi.org/10.1007/978-3-319-05290-8_9#Sec24
http://dx.doi.org/10.1007/978-3-319-05290-8_9#Sec24
http://dx.doi.org/10.1007/978-3-319-05290-8_9#Sec25
http://dx.doi.org/10.1007/978-3-319-05290-8_9#Sec25
http://dx.doi.org/10.1007/978-3-319-05290-8_9#Sec26
http://dx.doi.org/10.1007/978-3-319-05290-8_9#Sec26
http://dx.doi.org/10.1007/978-3-319-05290-8_9#Sec27
http://dx.doi.org/10.1007/978-3-319-05290-8_9#Sec27
http://dx.doi.org/10.1007/978-3-319-05290-8_9#Sec28
http://dx.doi.org/10.1007/978-3-319-05290-8_9#Sec28
http://dx.doi.org/10.1007/978-3-319-05290-8_9#Sec29
http://dx.doi.org/10.1007/978-3-319-05290-8_9#Sec29
http://dx.doi.org/10.1007/978-3-319-05290-8_9#Sec30
http://dx.doi.org/10.1007/978-3-319-05290-8_9#Sec30
http://dx.doi.org/10.1007/978-3-319-05290-8_9#Sec31
http://dx.doi.org/10.1007/978-3-319-05290-8_9#Sec31
http://dx.doi.org/10.1007/978-3-319-05290-8_9#Sec36
http://dx.doi.org/10.1007/978-3-319-05290-8_9#Sec36
http://dx.doi.org/10.1007/978-3-319-05290-8_9#Bib1
http://dx.doi.org/10.1007/978-3-319-05290-8_10
http://dx.doi.org/10.1007/978-3-319-05290-8_10
http://dx.doi.org/10.1007/978-3-319-05290-8_10#Sec1
http://dx.doi.org/10.1007/978-3-319-05290-8_10#Sec1
http://dx.doi.org/10.1007/978-3-319-05290-8_10#Sec2
http://dx.doi.org/10.1007/978-3-319-05290-8_10#Sec2
http://dx.doi.org/10.1007/978-3-319-05290-8_10#Sec3
http://dx.doi.org/10.1007/978-3-319-05290-8_10#Sec3
http://dx.doi.org/10.1007/978-3-319-05290-8_10#Sec4
http://dx.doi.org/10.1007/978-3-319-05290-8_10#Sec4
http://dx.doi.org/10.1007/978-3-319-05290-8_10#Sec5
http://dx.doi.org/10.1007/978-3-319-05290-8_10#Sec5
http://dx.doi.org/10.1007/978-3-319-05290-8_10#Sec6
http://dx.doi.org/10.1007/978-3-319-05290-8_10#Sec6
http://dx.doi.org/10.1007/978-3-319-05290-8_10#Sec7
http://dx.doi.org/10.1007/978-3-319-05290-8_10#Sec7
http://dx.doi.org/10.1007/978-3-319-05290-8_10#Sec8
http://dx.doi.org/10.1007/978-3-319-05290-8_10#Sec8
http://dx.doi.org/10.1007/978-3-319-05290-8_10#Sec9
http://dx.doi.org/10.1007/978-3-319-05290-8_10#Sec9
http://dx.doi.org/10.1007/978-3-319-05290-8_10#Sec10
http://dx.doi.org/10.1007/978-3-319-05290-8_10#Sec10
http://dx.doi.org/10.1007/978-3-319-05290-8_10#Sec11
http://dx.doi.org/10.1007/978-3-319-05290-8_10#Sec11
http://dx.doi.org/10.1007/978-3-319-05290-8_10#Sec12
http://dx.doi.org/10.1007/978-3-319-05290-8_10#Sec12
http://dx.doi.org/10.1007/978-3-319-05290-8_10#Sec13
http://dx.doi.org/10.1007/978-3-319-05290-8_10#Sec13
http://dx.doi.org/10.1007/978-3-319-05290-8_10#Sec14
http://dx.doi.org/10.1007/978-3-319-05290-8_10#Sec14
http://dx.doi.org/10.1007/978-3-319-05290-8_10#Sec15
http://dx.doi.org/10.1007/978-3-319-05290-8_10#Sec15
http://dx.doi.org/10.1007/978-3-319-05290-8_10#Sec16
http://dx.doi.org/10.1007/978-3-319-05290-8_10#Sec16
http://dx.doi.org/10.1007/978-3-319-05290-8_10#Sec17
http://dx.doi.org/10.1007/978-3-319-05290-8_10#Sec17
http://dx.doi.org/10.1007/978-3-319-05290-8_10#Bib1
http://dx.doi.org/10.1007/978-3-319-05290-8_11
http://dx.doi.org/10.1007/978-3-319-05290-8_11
http://dx.doi.org/10.1007/978-3-319-05290-8_11#Sec1
http://dx.doi.org/10.1007/978-3-319-05290-8_11#Sec1
http://dx.doi.org/10.1007/978-3-319-05290-8_11#Sec2
http://dx.doi.org/10.1007/978-3-319-05290-8_11#Sec2
http://dx.doi.org/10.1007/978-3-319-05290-8_11#Sec3
http://dx.doi.org/10.1007/978-3-319-05290-8_11#Sec3
http://dx.doi.org/10.1007/978-3-319-05290-8_11#Sec4
http://dx.doi.org/10.1007/978-3-319-05290-8_11#Sec4
http://dx.doi.org/10.1007/978-3-319-05290-8_11#Sec5
http://dx.doi.org/10.1007/978-3-319-05290-8_11#Sec5
http://dx.doi.org/10.1007/978-3-319-05290-8_11#Sec6
http://dx.doi.org/10.1007/978-3-319-05290-8_11#Sec6
http://dx.doi.org/10.1007/978-3-319-05290-8_11#Sec7
http://dx.doi.org/10.1007/978-3-319-05290-8_11#Sec7
http://dx.doi.org/10.1007/978-3-319-05290-8_11#Sec8
http://dx.doi.org/10.1007/978-3-319-05290-8_11#Sec8
http://dx.doi.org/10.1007/978-3-319-05290-8_11#Sec9
http://dx.doi.org/10.1007/978-3-319-05290-8_11#Sec9

11.4 MPEG-4 . 359
11.4.1 Overview of MPEG-4 . 359
11.4.2 Video Object-Based Coding in MPEG-4 362
11.4.3 Synthetic Object Coding in MPEG-4. 375
11.4.4 MPEG-4 Parts, Profiles and Levels 383

11.5 MPEG-7 . 384
11.5.1 Descriptor (D) . 385
11.5.2 Description Scheme (DS) 387
11.5.3 Description Definition Language (DDL) 390

11.6 Exercises . 391
References . 392

12 New Video Coding Standards: H.264 and H.265 395
12.1 H.264 . 395

12.1.1 Motion Compensation . 396
12.1.2 Integer Transform . 399
12.1.3 Quantization and Scaling 402
12.1.4 Examples of H.264 Integer Transform

and Quantization . 404
12.1.5 Intra Coding . 404
12.1.6 In-Loop Deblocking Filtering 407
12.1.7 Entropy Coding . 409
12.1.8 Context-Adaptive Variable Length

Coding (CAVLC) . 411
12.1.9 Context-Adaptive Binary Arithmetic

Coding (CABAC) . 413
12.1.10 H.264 Profiles. 415
12.1.11 H.264 Scalable Video Coding. 417
12.1.12 H.264 Multiview Video Coding 417

12.2 H.265 . 418
12.2.1 Motion Compensation . 419
12.2.2 Integer Transform . 424
12.2.3 Quantization and Scaling 425
12.2.4 Intra Coding . 425
12.2.5 Discrete Sine Transform 425
12.2.6 In-Loop Filtering. 427
12.2.7 Entropy Coding . 428
12.2.8 Special Coding Modes . 429
12.2.9 H.265 Profiles. 429

12.3 Comparisons of Video Coding Efficiency 430
12.3.1 Objective Assessment . 430
12.3.2 Subjective Assessment . 431

12.4 Exercises . 431
References . 433

Contents xix

http://dx.doi.org/10.1007/978-3-319-05290-8_11#Sec10
http://dx.doi.org/10.1007/978-3-319-05290-8_11#Sec10
http://dx.doi.org/10.1007/978-3-319-05290-8_11#Sec11
http://dx.doi.org/10.1007/978-3-319-05290-8_11#Sec11
http://dx.doi.org/10.1007/978-3-319-05290-8_11#Sec12
http://dx.doi.org/10.1007/978-3-319-05290-8_11#Sec12
http://dx.doi.org/10.1007/978-3-319-05290-8_11#Sec13
http://dx.doi.org/10.1007/978-3-319-05290-8_11#Sec13
http://dx.doi.org/10.1007/978-3-319-05290-8_11#Sec14
http://dx.doi.org/10.1007/978-3-319-05290-8_11#Sec14
http://dx.doi.org/10.1007/978-3-319-05290-8_11#Sec15
http://dx.doi.org/10.1007/978-3-319-05290-8_11#Sec15
http://dx.doi.org/10.1007/978-3-319-05290-8_11#Sec16
http://dx.doi.org/10.1007/978-3-319-05290-8_11#Sec16
http://dx.doi.org/10.1007/978-3-319-05290-8_11#Sec17
http://dx.doi.org/10.1007/978-3-319-05290-8_11#Sec17
http://dx.doi.org/10.1007/978-3-319-05290-8_11#Sec18
http://dx.doi.org/10.1007/978-3-319-05290-8_11#Sec18
http://dx.doi.org/10.1007/978-3-319-05290-8_11#Sec19
http://dx.doi.org/10.1007/978-3-319-05290-8_11#Sec19
http://dx.doi.org/10.1007/978-3-319-05290-8_11#Bib1
http://dx.doi.org/10.1007/978-3-319-05290-8_12
http://dx.doi.org/10.1007/978-3-319-05290-8_12
http://dx.doi.org/10.1007/978-3-319-05290-8_12#Sec1
http://dx.doi.org/10.1007/978-3-319-05290-8_12#Sec1
http://dx.doi.org/10.1007/978-3-319-05290-8_12#Sec2
http://dx.doi.org/10.1007/978-3-319-05290-8_12#Sec2
http://dx.doi.org/10.1007/978-3-319-05290-8_12#Sec3
http://dx.doi.org/10.1007/978-3-319-05290-8_12#Sec3
http://dx.doi.org/10.1007/978-3-319-05290-8_12#Sec4
http://dx.doi.org/10.1007/978-3-319-05290-8_12#Sec4
http://dx.doi.org/10.1007/978-3-319-05290-8_12#Sec5
http://dx.doi.org/10.1007/978-3-319-05290-8_12#Sec5
http://dx.doi.org/10.1007/978-3-319-05290-8_12#Sec5
http://dx.doi.org/10.1007/978-3-319-05290-8_12#Sec6
http://dx.doi.org/10.1007/978-3-319-05290-8_12#Sec6
http://dx.doi.org/10.1007/978-3-319-05290-8_12#Sec7
http://dx.doi.org/10.1007/978-3-319-05290-8_12#Sec7
http://dx.doi.org/10.1007/978-3-319-05290-8_12#Sec8
http://dx.doi.org/10.1007/978-3-319-05290-8_12#Sec8
http://dx.doi.org/10.1007/978-3-319-05290-8_12#Sec9
http://dx.doi.org/10.1007/978-3-319-05290-8_12#Sec9
http://dx.doi.org/10.1007/978-3-319-05290-8_12#Sec9
http://dx.doi.org/10.1007/978-3-319-05290-8_12#Sec10
http://dx.doi.org/10.1007/978-3-319-05290-8_12#Sec10
http://dx.doi.org/10.1007/978-3-319-05290-8_12#Sec10
http://dx.doi.org/10.1007/978-3-319-05290-8_12#Sec11
http://dx.doi.org/10.1007/978-3-319-05290-8_12#Sec11
http://dx.doi.org/10.1007/978-3-319-05290-8_12#Sec12
http://dx.doi.org/10.1007/978-3-319-05290-8_12#Sec12
http://dx.doi.org/10.1007/978-3-319-05290-8_12#Sec13
http://dx.doi.org/10.1007/978-3-319-05290-8_12#Sec13
http://dx.doi.org/10.1007/978-3-319-05290-8_12#Sec14
http://dx.doi.org/10.1007/978-3-319-05290-8_12#Sec14
http://dx.doi.org/10.1007/978-3-319-05290-8_12#Sec15
http://dx.doi.org/10.1007/978-3-319-05290-8_12#Sec15
http://dx.doi.org/10.1007/978-3-319-05290-8_12#Sec16
http://dx.doi.org/10.1007/978-3-319-05290-8_12#Sec16
http://dx.doi.org/10.1007/978-3-319-05290-8_12#Sec17
http://dx.doi.org/10.1007/978-3-319-05290-8_12#Sec17
http://dx.doi.org/10.1007/978-3-319-05290-8_12#Sec18
http://dx.doi.org/10.1007/978-3-319-05290-8_12#Sec18
http://dx.doi.org/10.1007/978-3-319-05290-8_12#Sec19
http://dx.doi.org/10.1007/978-3-319-05290-8_12#Sec19
http://dx.doi.org/10.1007/978-3-319-05290-8_12#Sec20
http://dx.doi.org/10.1007/978-3-319-05290-8_12#Sec20
http://dx.doi.org/10.1007/978-3-319-05290-8_12#Sec21
http://dx.doi.org/10.1007/978-3-319-05290-8_12#Sec21
http://dx.doi.org/10.1007/978-3-319-05290-8_12#Sec22
http://dx.doi.org/10.1007/978-3-319-05290-8_12#Sec22
http://dx.doi.org/10.1007/978-3-319-05290-8_12#Sec23
http://dx.doi.org/10.1007/978-3-319-05290-8_12#Sec23
http://dx.doi.org/10.1007/978-3-319-05290-8_12#Sec24
http://dx.doi.org/10.1007/978-3-319-05290-8_12#Sec24
http://dx.doi.org/10.1007/978-3-319-05290-8_12#Sec25
http://dx.doi.org/10.1007/978-3-319-05290-8_12#Sec25
http://dx.doi.org/10.1007/978-3-319-05290-8_12#Sec26
http://dx.doi.org/10.1007/978-3-319-05290-8_12#Sec26
http://dx.doi.org/10.1007/978-3-319-05290-8_12#Sec27
http://dx.doi.org/10.1007/978-3-319-05290-8_12#Sec27
http://dx.doi.org/10.1007/978-3-319-05290-8_12#Bib1

13 Basic Audio Compression Techniques . 435
13.1 ADPCM in Speech Coding . 436

13.1.1 ADPCM. 436
13.2 G.726 ADPCM, G.727-9 . 437
13.3 Vocoders . 439

13.3.1 Phase Insensitivity. 439
13.3.2 Channel Vocoder . 439
13.3.3 Formant Vocoder . 441
13.3.4 Linear Predictive Coding (LPC) 442
13.3.5 Code Excited Linear Prediction (CELP). 444
13.3.6 Hybrid Excitation Vocoders! 450

13.4 Exercises . 453
References . 454

14 MPEG Audio Compression . 457
14.1 Psychoacoustics . 458

14.1.1 Equal-Loudness Relations 458
14.1.2 Frequency Masking . 460
14.1.3 Temporal Masking . 464

14.2 MPEG Audio . 466
14.2.1 MPEG Layers. 466
14.2.2 MPEG Audio Strategy . 467
14.2.3 MPEG Audio Compression Algorithm. 468
14.2.4 MPEG-2 AAC (Advanced Audio Coding) 474
14.2.5 MPEG-4 Audio. 476

14.3 Other Audio Codecs . 477
14.3.1 Ogg Vorbis . 477

14.4 MPEG-7 Audio and Beyond . 479
14.5 Further Exploration . 480
14.6 Exercises . 480
References . 481

Part III Multimedia Communications and Networking

15 Network Services and Protocols for Multimedia
Communications. 485
15.1 Protocol Layers of Computer Communication Networks 485
15.2 Local Area Network and Access Networks 486

15.2.1 LAN Standards . 487
15.2.2 Ethernet Technology . 488
15.2.3 Access Network Technologies 489

xx Contents

http://dx.doi.org/10.1007/978-3-319-05290-8_13
http://dx.doi.org/10.1007/978-3-319-05290-8_13
http://dx.doi.org/10.1007/978-3-319-05290-8_13#Sec1
http://dx.doi.org/10.1007/978-3-319-05290-8_13#Sec1
http://dx.doi.org/10.1007/978-3-319-05290-8_13#Sec2
http://dx.doi.org/10.1007/978-3-319-05290-8_13#Sec2
http://dx.doi.org/10.1007/978-3-319-05290-8_13#Sec3
http://dx.doi.org/10.1007/978-3-319-05290-8_13#Sec3
http://dx.doi.org/10.1007/978-3-319-05290-8_13#Sec4
http://dx.doi.org/10.1007/978-3-319-05290-8_13#Sec4
http://dx.doi.org/10.1007/978-3-319-05290-8_13#Sec5
http://dx.doi.org/10.1007/978-3-319-05290-8_13#Sec5
http://dx.doi.org/10.1007/978-3-319-05290-8_13#Sec6
http://dx.doi.org/10.1007/978-3-319-05290-8_13#Sec6
http://dx.doi.org/10.1007/978-3-319-05290-8_13#Sec7
http://dx.doi.org/10.1007/978-3-319-05290-8_13#Sec7
http://dx.doi.org/10.1007/978-3-319-05290-8_13#Sec8
http://dx.doi.org/10.1007/978-3-319-05290-8_13#Sec8
http://dx.doi.org/10.1007/978-3-319-05290-8_13#Sec9
http://dx.doi.org/10.1007/978-3-319-05290-8_13#Sec9
http://dx.doi.org/10.1007/978-3-319-05290-8_13#Sec10
http://dx.doi.org/10.1007/978-3-319-05290-8_13#Sec10
http://dx.doi.org/10.1007/978-3-319-05290-8_13#Sec11
http://dx.doi.org/10.1007/978-3-319-05290-8_13#Sec11
http://dx.doi.org/10.1007/978-3-319-05290-8_13#Bib1
http://dx.doi.org/10.1007/978-3-319-05290-8_14
http://dx.doi.org/10.1007/978-3-319-05290-8_14
http://dx.doi.org/10.1007/978-3-319-05290-8_14#Sec2
http://dx.doi.org/10.1007/978-3-319-05290-8_14#Sec2
http://dx.doi.org/10.1007/978-3-319-05290-8_14#Sec3
http://dx.doi.org/10.1007/978-3-319-05290-8_14#Sec3
http://dx.doi.org/10.1007/978-3-319-05290-8_14#Sec4
http://dx.doi.org/10.1007/978-3-319-05290-8_14#Sec4
http://dx.doi.org/10.1007/978-3-319-05290-8_14#Sec5
http://dx.doi.org/10.1007/978-3-319-05290-8_14#Sec5
http://dx.doi.org/10.1007/978-3-319-05290-8_14#Sec6
http://dx.doi.org/10.1007/978-3-319-05290-8_14#Sec6
http://dx.doi.org/10.1007/978-3-319-05290-8_14#Sec7
http://dx.doi.org/10.1007/978-3-319-05290-8_14#Sec7
http://dx.doi.org/10.1007/978-3-319-05290-8_14#Sec8
http://dx.doi.org/10.1007/978-3-319-05290-8_14#Sec8
http://dx.doi.org/10.1007/978-3-319-05290-8_14#Sec9
http://dx.doi.org/10.1007/978-3-319-05290-8_14#Sec9
http://dx.doi.org/10.1007/978-3-319-05290-8_14#Sec10
http://dx.doi.org/10.1007/978-3-319-05290-8_14#Sec10
http://dx.doi.org/10.1007/978-3-319-05290-8_14#Sec11
http://dx.doi.org/10.1007/978-3-319-05290-8_14#Sec11
http://dx.doi.org/10.1007/978-3-319-05290-8_14#Sec12
http://dx.doi.org/10.1007/978-3-319-05290-8_14#Sec12
http://dx.doi.org/10.1007/978-3-319-05290-8_14#Sec13
http://dx.doi.org/10.1007/978-3-319-05290-8_14#Sec13
http://dx.doi.org/10.1007/978-3-319-05290-8_14#Sec14
http://dx.doi.org/10.1007/978-3-319-05290-8_14#Sec14
http://dx.doi.org/10.1007/978-3-319-05290-8_14#Sec15
http://dx.doi.org/10.1007/978-3-319-05290-8_14#Sec15
http://dx.doi.org/10.1007/978-3-319-05290-8_14#Sec16
http://dx.doi.org/10.1007/978-3-319-05290-8_14#Sec16
http://dx.doi.org/10.1007/978-3-319-05290-8_14#Bib1
http://dx.doi.org/10.1007/978-3-319-05290-8_15
http://dx.doi.org/10.1007/978-3-319-05290-8_15
http://dx.doi.org/10.1007/978-3-319-05290-8_15
http://dx.doi.org/10.1007/978-3-319-05290-8_15#Sec1
http://dx.doi.org/10.1007/978-3-319-05290-8_15#Sec1
http://dx.doi.org/10.1007/978-3-319-05290-8_15#Sec2
http://dx.doi.org/10.1007/978-3-319-05290-8_15#Sec2
http://dx.doi.org/10.1007/978-3-319-05290-8_15#Sec3
http://dx.doi.org/10.1007/978-3-319-05290-8_15#Sec3
http://dx.doi.org/10.1007/978-3-319-05290-8_15#Sec4
http://dx.doi.org/10.1007/978-3-319-05290-8_15#Sec4
http://dx.doi.org/10.1007/978-3-319-05290-8_15#Sec5
http://dx.doi.org/10.1007/978-3-319-05290-8_15#Sec5

15.3 Internet Technologies and Protocols 494
15.3.1 Network Layer: IP . 495
15.3.2 Transport Layer: TCP and UDP 496
15.3.3 Network Address Translation and Firewall 501

15.4 Multicast Extension. 503
15.4.1 Router-Based Architectures: IP Multicast 503
15.4.2 Non Router-Based Multicast Architectures 505

15.5 Quality-of-Service for Multimedia Communications 506
15.5.1 Quality of Service . 507
15.5.2 Internet QoS. 510
15.5.3 Rate Control and Buffer Management 514

15.6 Protocols for Multimedia Transmission and Interaction 516
15.6.1 HyperText Transfer Protocol 516
15.6.2 Real-Time Transport Protocol. 518
15.6.3 RTP Control Protocol . 519
15.6.4 Real-Time Streaming Protocol 520

15.7 Case Study: Internet Telephony . 522
15.7.1 Signaling Protocols: H.323 and Session

Initiation Protocol . 523
15.8 Further Exploration . 526
15.9 Exercises . 526
References . 528

16 Internet Multimedia Content Distribution 531
16.1 Proxy Caching . 532

16.1.1 Sliding-Interval Caching 533
16.1.2 Prefix Caching and Segment Caching 535
16.1.3 Rate-Split Caching and Work-Ahead Smoothing. . . 536
16.1.4 Summary and Comparison 539

16.2 Content Distribution Networks (CDNs) 539
16.2.1 Representative: Akamai Streaming CDN 542

16.3 Broadcast/Multicast Video-on-Demand 543
16.3.1 Smart TV and Set-Top Box (STB) 544
16.3.2 Scalable Multicast/Broadcast VoD 545

16.4 Broadcast/Multicast for Heterogeneous Users 550
16.4.1 Stream Replication . 550
16.4.2 Layered Multicast . 551

16.5 Application-Layer Multicast . 553
16.5.1 Representative: End-System Multicast (ESM). 555
16.5.2 Multi-tree Structure . 556

16.6 Peer-to-Peer Video Streaming with Mesh Overlays 557
16.6.1 Representative: CoolStreaming 558
16.6.2 Hybrid Tree and Mesh Overlay. 562

Contents xxi

http://dx.doi.org/10.1007/978-3-319-05290-8_15#Sec6
http://dx.doi.org/10.1007/978-3-319-05290-8_15#Sec6
http://dx.doi.org/10.1007/978-3-319-05290-8_15#Sec7
http://dx.doi.org/10.1007/978-3-319-05290-8_15#Sec7
http://dx.doi.org/10.1007/978-3-319-05290-8_15#Sec8
http://dx.doi.org/10.1007/978-3-319-05290-8_15#Sec8
http://dx.doi.org/10.1007/978-3-319-05290-8_15#Sec9
http://dx.doi.org/10.1007/978-3-319-05290-8_15#Sec9
http://dx.doi.org/10.1007/978-3-319-05290-8_15#Sec10
http://dx.doi.org/10.1007/978-3-319-05290-8_15#Sec10
http://dx.doi.org/10.1007/978-3-319-05290-8_15#Sec11
http://dx.doi.org/10.1007/978-3-319-05290-8_15#Sec11
http://dx.doi.org/10.1007/978-3-319-05290-8_15#Sec12
http://dx.doi.org/10.1007/978-3-319-05290-8_15#Sec12
http://dx.doi.org/10.1007/978-3-319-05290-8_15#Sec13
http://dx.doi.org/10.1007/978-3-319-05290-8_15#Sec13
http://dx.doi.org/10.1007/978-3-319-05290-8_15#Sec14
http://dx.doi.org/10.1007/978-3-319-05290-8_15#Sec14
http://dx.doi.org/10.1007/978-3-319-05290-8_15#Sec15
http://dx.doi.org/10.1007/978-3-319-05290-8_15#Sec15
http://dx.doi.org/10.1007/978-3-319-05290-8_15#Sec16
http://dx.doi.org/10.1007/978-3-319-05290-8_15#Sec16
http://dx.doi.org/10.1007/978-3-319-05290-8_15#Sec17
http://dx.doi.org/10.1007/978-3-319-05290-8_15#Sec17
http://dx.doi.org/10.1007/978-3-319-05290-8_15#Sec18
http://dx.doi.org/10.1007/978-3-319-05290-8_15#Sec18
http://dx.doi.org/10.1007/978-3-319-05290-8_15#Sec19
http://dx.doi.org/10.1007/978-3-319-05290-8_15#Sec19
http://dx.doi.org/10.1007/978-3-319-05290-8_15#Sec20
http://dx.doi.org/10.1007/978-3-319-05290-8_15#Sec20
http://dx.doi.org/10.1007/978-3-319-05290-8_15#Sec21
http://dx.doi.org/10.1007/978-3-319-05290-8_15#Sec21
http://dx.doi.org/10.1007/978-3-319-05290-8_15#Sec22
http://dx.doi.org/10.1007/978-3-319-05290-8_15#Sec22
http://dx.doi.org/10.1007/978-3-319-05290-8_15#Sec23
http://dx.doi.org/10.1007/978-3-319-05290-8_15#Sec23
http://dx.doi.org/10.1007/978-3-319-05290-8_15#Sec23
http://dx.doi.org/10.1007/978-3-319-05290-8_15#Sec24
http://dx.doi.org/10.1007/978-3-319-05290-8_15#Sec24
http://dx.doi.org/10.1007/978-3-319-05290-8_15#Sec25
http://dx.doi.org/10.1007/978-3-319-05290-8_15#Sec25
http://dx.doi.org/10.1007/978-3-319-05290-8_15#Bib1
http://dx.doi.org/10.1007/978-3-319-05290-8_16
http://dx.doi.org/10.1007/978-3-319-05290-8_16
http://dx.doi.org/10.1007/978-3-319-05290-8_16#Sec1
http://dx.doi.org/10.1007/978-3-319-05290-8_16#Sec1
http://dx.doi.org/10.1007/978-3-319-05290-8_16#Sec2
http://dx.doi.org/10.1007/978-3-319-05290-8_16#Sec2
http://dx.doi.org/10.1007/978-3-319-05290-8_16#Sec3
http://dx.doi.org/10.1007/978-3-319-05290-8_16#Sec3
http://dx.doi.org/10.1007/978-3-319-05290-8_16#Sec4
http://dx.doi.org/10.1007/978-3-319-05290-8_16#Sec4
http://dx.doi.org/10.1007/978-3-319-05290-8_16#Sec5
http://dx.doi.org/10.1007/978-3-319-05290-8_16#Sec5
http://dx.doi.org/10.1007/978-3-319-05290-8_16#Sec6
http://dx.doi.org/10.1007/978-3-319-05290-8_16#Sec6
http://dx.doi.org/10.1007/978-3-319-05290-8_16#Sec7
http://dx.doi.org/10.1007/978-3-319-05290-8_16#Sec7
http://dx.doi.org/10.1007/978-3-319-05290-8_16#Sec8
http://dx.doi.org/10.1007/978-3-319-05290-8_16#Sec8
http://dx.doi.org/10.1007/978-3-319-05290-8_16#Sec9
http://dx.doi.org/10.1007/978-3-319-05290-8_16#Sec9
http://dx.doi.org/10.1007/978-3-319-05290-8_16#Sec10
http://dx.doi.org/10.1007/978-3-319-05290-8_16#Sec10
http://dx.doi.org/10.1007/978-3-319-05290-8_16#Sec11
http://dx.doi.org/10.1007/978-3-319-05290-8_16#Sec11
http://dx.doi.org/10.1007/978-3-319-05290-8_16#Sec12
http://dx.doi.org/10.1007/978-3-319-05290-8_16#Sec12
http://dx.doi.org/10.1007/978-3-319-05290-8_16#Sec13
http://dx.doi.org/10.1007/978-3-319-05290-8_16#Sec13
http://dx.doi.org/10.1007/978-3-319-05290-8_16#Sec14
http://dx.doi.org/10.1007/978-3-319-05290-8_16#Sec14
http://dx.doi.org/10.1007/978-3-319-05290-8_16#Sec15
http://dx.doi.org/10.1007/978-3-319-05290-8_16#Sec15
http://dx.doi.org/10.1007/978-3-319-05290-8_16#Sec16
http://dx.doi.org/10.1007/978-3-319-05290-8_16#Sec16
http://dx.doi.org/10.1007/978-3-319-05290-8_16#Sec17
http://dx.doi.org/10.1007/978-3-319-05290-8_16#Sec17
http://dx.doi.org/10.1007/978-3-319-05290-8_16#Sec18
http://dx.doi.org/10.1007/978-3-319-05290-8_16#Sec18
http://dx.doi.org/10.1007/978-3-319-05290-8_16#Sec19
http://dx.doi.org/10.1007/978-3-319-05290-8_16#Sec19

16.7 HTTP-Based Media Streaming . 563
16.7.1 HTTP for Streaming . 564
16.7.2 Dynamic Adaptive Streaming Over HTTP

(DASH) . 565
16.8 Exercises . 567
References . 570

17 Multimedia Over Wireless and Mobile Networks 573
17.1 Characteristics of Wireless Channels 573

17.1.1 Path Loss . 573
17.1.2 Multipath Fading. 574

17.2 Wireless Networking Technologies 576
17.2.1 1G Cellular Analog Wireless Networks 577
17.2.2 2G Cellular Networks: GSM and Narrowband

CDMA. 578
17.2.3 3G Cellular Networks: Wideband CDMA 582
17.2.4 4G Cellular Networks and Beyond 584
17.2.5 Wireless Local Area Networks 586
17.2.6 Bluetooth and Short-Range Technologies 589

17.3 Multimedia Over Wireless Channels 589
17.3.1 Error Detection . 590
17.3.2 Error Correction . 593
17.3.3 Error-Resilient Coding . 597
17.3.4 Error Concealment . 603

17.4 Mobility Management . 605
17.4.1 Network Layer Mobile IP 606
17.4.2 Link-Layer Handoff Management 608

17.5 Further Exploration . 610
17.6 Exercises . 610
References . 612

Part IV Multimedia Information Sharing and Retrieval

18 Social Media Sharing . 617
18.1 Representative Social Media Services 618

18.1.1 User-Generated Content Sharing 618
18.1.2 Online Social Networking 618

18.2 User-Generated Media Content Sharing 619
18.2.1 YouTube Video Format and Meta-data 619
18.2.2 Characteristics of YouTube Video. 620
18.2.3 Small-World in YouTube Videos 623
18.2.4 YouTube from a Partner’s View 625
18.2.5 Enhancing UGC Video Sharing 628

xxii Contents

http://dx.doi.org/10.1007/978-3-319-05290-8_16#Sec20
http://dx.doi.org/10.1007/978-3-319-05290-8_16#Sec20
http://dx.doi.org/10.1007/978-3-319-05290-8_16#Sec21
http://dx.doi.org/10.1007/978-3-319-05290-8_16#Sec21
http://dx.doi.org/10.1007/978-3-319-05290-8_16#Sec22
http://dx.doi.org/10.1007/978-3-319-05290-8_16#Sec22
http://dx.doi.org/10.1007/978-3-319-05290-8_16#Sec22
http://dx.doi.org/10.1007/978-3-319-05290-8_16#Sec23
http://dx.doi.org/10.1007/978-3-319-05290-8_16#Sec23
http://dx.doi.org/10.1007/978-3-319-05290-8_16#Bib1
http://dx.doi.org/10.1007/978-3-319-05290-8_17
http://dx.doi.org/10.1007/978-3-319-05290-8_17
http://dx.doi.org/10.1007/978-3-319-05290-8_17#Sec1
http://dx.doi.org/10.1007/978-3-319-05290-8_17#Sec1
http://dx.doi.org/10.1007/978-3-319-05290-8_17#Sec2
http://dx.doi.org/10.1007/978-3-319-05290-8_17#Sec2
http://dx.doi.org/10.1007/978-3-319-05290-8_17#Sec3
http://dx.doi.org/10.1007/978-3-319-05290-8_17#Sec3
http://dx.doi.org/10.1007/978-3-319-05290-8_17#Sec4
http://dx.doi.org/10.1007/978-3-319-05290-8_17#Sec4
http://dx.doi.org/10.1007/978-3-319-05290-8_17#Sec5
http://dx.doi.org/10.1007/978-3-319-05290-8_17#Sec5
http://dx.doi.org/10.1007/978-3-319-05290-8_17#Sec6
http://dx.doi.org/10.1007/978-3-319-05290-8_17#Sec6
http://dx.doi.org/10.1007/978-3-319-05290-8_17#Sec6
http://dx.doi.org/10.1007/978-3-319-05290-8_17#Sec7
http://dx.doi.org/10.1007/978-3-319-05290-8_17#Sec7
http://dx.doi.org/10.1007/978-3-319-05290-8_17#Sec8
http://dx.doi.org/10.1007/978-3-319-05290-8_17#Sec8
http://dx.doi.org/10.1007/978-3-319-05290-8_17#Sec9
http://dx.doi.org/10.1007/978-3-319-05290-8_17#Sec9
http://dx.doi.org/10.1007/978-3-319-05290-8_17#Sec10
http://dx.doi.org/10.1007/978-3-319-05290-8_17#Sec10
http://dx.doi.org/10.1007/978-3-319-05290-8_17#Sec11
http://dx.doi.org/10.1007/978-3-319-05290-8_17#Sec11
http://dx.doi.org/10.1007/978-3-319-05290-8_17#Sec12
http://dx.doi.org/10.1007/978-3-319-05290-8_17#Sec12
http://dx.doi.org/10.1007/978-3-319-05290-8_17#Sec13
http://dx.doi.org/10.1007/978-3-319-05290-8_17#Sec13
http://dx.doi.org/10.1007/978-3-319-05290-8_17#Sec14
http://dx.doi.org/10.1007/978-3-319-05290-8_17#Sec14
http://dx.doi.org/10.1007/978-3-319-05290-8_17#Sec15
http://dx.doi.org/10.1007/978-3-319-05290-8_17#Sec15
http://dx.doi.org/10.1007/978-3-319-05290-8_17#Sec16
http://dx.doi.org/10.1007/978-3-319-05290-8_17#Sec16
http://dx.doi.org/10.1007/978-3-319-05290-8_17#Sec17
http://dx.doi.org/10.1007/978-3-319-05290-8_17#Sec17
http://dx.doi.org/10.1007/978-3-319-05290-8_17#Sec18
http://dx.doi.org/10.1007/978-3-319-05290-8_17#Sec18
http://dx.doi.org/10.1007/978-3-319-05290-8_17#Sec19
http://dx.doi.org/10.1007/978-3-319-05290-8_17#Sec19
http://dx.doi.org/10.1007/978-3-319-05290-8_17#Sec20
http://dx.doi.org/10.1007/978-3-319-05290-8_17#Sec20
http://dx.doi.org/10.1007/978-3-319-05290-8_17#Bib1
http://dx.doi.org/10.1007/978-3-319-05290-8_18
http://dx.doi.org/10.1007/978-3-319-05290-8_18
http://dx.doi.org/10.1007/978-3-319-05290-8_18#Sec1
http://dx.doi.org/10.1007/978-3-319-05290-8_18#Sec1
http://dx.doi.org/10.1007/978-3-319-05290-8_18#Sec2
http://dx.doi.org/10.1007/978-3-319-05290-8_18#Sec2
http://dx.doi.org/10.1007/978-3-319-05290-8_18#Sec3
http://dx.doi.org/10.1007/978-3-319-05290-8_18#Sec3
http://dx.doi.org/10.1007/978-3-319-05290-8_18#Sec4
http://dx.doi.org/10.1007/978-3-319-05290-8_18#Sec4
http://dx.doi.org/10.1007/978-3-319-05290-8_18#Sec5
http://dx.doi.org/10.1007/978-3-319-05290-8_18#Sec5
http://dx.doi.org/10.1007/978-3-319-05290-8_18#Sec6
http://dx.doi.org/10.1007/978-3-319-05290-8_18#Sec6
http://dx.doi.org/10.1007/978-3-319-05290-8_18#Sec7
http://dx.doi.org/10.1007/978-3-319-05290-8_18#Sec7
http://dx.doi.org/10.1007/978-3-319-05290-8_18#Sec8
http://dx.doi.org/10.1007/978-3-319-05290-8_18#Sec8
http://dx.doi.org/10.1007/978-3-319-05290-8_18#Sec9
http://dx.doi.org/10.1007/978-3-319-05290-8_18#Sec9

18.3 Media Propagation in Online Social Networks 632
18.3.1 Sharing Patterns of Individual Users 633
18.3.2 Video Propagation Structure and Model. 634
18.3.3 Video Watching and Sharing Behaviors 637
18.3.4 Coordinating Live Streaming

and Online Storage . 638
18.4 Further Exploration . 640
18.5 Exercises . 640
References . 642

19 Cloud Computing for Multimedia Services 645
19.1 Cloud Computing Overview. 646

19.1.1 Representative Storage Service: Amazon S3. 649
19.1.2 Representative Computation Service:

Amazon EC2 . 650
19.2 Multimedia Cloud Computing . 652
19.3 Cloud-Assisted Media Sharing . 655

19.3.1 Impact of Globalization . 657
19.3.2 Case Study: Netflix . 658

19.4 Computation Offloading for Multimedia Services 660
19.4.1 Requirements for Computation Offloading 661
19.4.2 Service Partitioning for Video Coding 662
19.4.3 Case Study: Cloud-Assisted Motion Estimation . . . 663

19.5 Interactive Cloud Gaming . 665
19.5.1 Issues and Challenges of Cloud Gaming 666
19.5.2 Real-World Implementation 668

19.6 Further Exploration . 671
19.7 Exercises . 671
References . 673

20 Content-Based Retrieval in Digital Libraries 675
20.1 How Should We Retrieve Images? 675
20.2 Synopsis of Early CBIR Systems . 678
20.3 C-BIRD: A Case Study . 680

20.3.1 Color Histogram . 680
20.3.2 Color Density and Color Layout 682
20.3.3 Texture Layout . 683
20.3.4 Texture Analysis Details 684
20.3.5 Search by Illumination Invariance 685
20.3.6 Search by Object Model 686

Contents xxiii

http://dx.doi.org/10.1007/978-3-319-05290-8_18#Sec10
http://dx.doi.org/10.1007/978-3-319-05290-8_18#Sec10
http://dx.doi.org/10.1007/978-3-319-05290-8_18#Sec11
http://dx.doi.org/10.1007/978-3-319-05290-8_18#Sec11
http://dx.doi.org/10.1007/978-3-319-05290-8_18#Sec12
http://dx.doi.org/10.1007/978-3-319-05290-8_18#Sec12
http://dx.doi.org/10.1007/978-3-319-05290-8_18#Sec13
http://dx.doi.org/10.1007/978-3-319-05290-8_18#Sec13
http://dx.doi.org/10.1007/978-3-319-05290-8_18#Sec14
http://dx.doi.org/10.1007/978-3-319-05290-8_18#Sec14
http://dx.doi.org/10.1007/978-3-319-05290-8_18#Sec14
http://dx.doi.org/10.1007/978-3-319-05290-8_18#Sec15
http://dx.doi.org/10.1007/978-3-319-05290-8_18#Sec15
http://dx.doi.org/10.1007/978-3-319-05290-8_18#Sec16
http://dx.doi.org/10.1007/978-3-319-05290-8_18#Sec16
http://dx.doi.org/10.1007/978-3-319-05290-8_18#Bib1
http://dx.doi.org/10.1007/978-3-319-05290-8_19
http://dx.doi.org/10.1007/978-3-319-05290-8_19
http://dx.doi.org/10.1007/978-3-319-05290-8_19#Sec1
http://dx.doi.org/10.1007/978-3-319-05290-8_19#Sec1
http://dx.doi.org/10.1007/978-3-319-05290-8_19#Sec2
http://dx.doi.org/10.1007/978-3-319-05290-8_19#Sec2
http://dx.doi.org/10.1007/978-3-319-05290-8_19#Sec3
http://dx.doi.org/10.1007/978-3-319-05290-8_19#Sec3
http://dx.doi.org/10.1007/978-3-319-05290-8_19#Sec3
http://dx.doi.org/10.1007/978-3-319-05290-8_19#Sec4
http://dx.doi.org/10.1007/978-3-319-05290-8_19#Sec4
http://dx.doi.org/10.1007/978-3-319-05290-8_19#Sec5
http://dx.doi.org/10.1007/978-3-319-05290-8_19#Sec5
http://dx.doi.org/10.1007/978-3-319-05290-8_19#Sec6
http://dx.doi.org/10.1007/978-3-319-05290-8_19#Sec6
http://dx.doi.org/10.1007/978-3-319-05290-8_19#Sec7
http://dx.doi.org/10.1007/978-3-319-05290-8_19#Sec7
http://dx.doi.org/10.1007/978-3-319-05290-8_19#Sec8
http://dx.doi.org/10.1007/978-3-319-05290-8_19#Sec8
http://dx.doi.org/10.1007/978-3-319-05290-8_19#Sec9
http://dx.doi.org/10.1007/978-3-319-05290-8_19#Sec9
http://dx.doi.org/10.1007/978-3-319-05290-8_19#Sec10
http://dx.doi.org/10.1007/978-3-319-05290-8_19#Sec10
http://dx.doi.org/10.1007/978-3-319-05290-8_19#Sec11
http://dx.doi.org/10.1007/978-3-319-05290-8_19#Sec11
http://dx.doi.org/10.1007/978-3-319-05290-8_19#Sec12
http://dx.doi.org/10.1007/978-3-319-05290-8_19#Sec12
http://dx.doi.org/10.1007/978-3-319-05290-8_19#Sec13
http://dx.doi.org/10.1007/978-3-319-05290-8_19#Sec13
http://dx.doi.org/10.1007/978-3-319-05290-8_19#Sec14
http://dx.doi.org/10.1007/978-3-319-05290-8_19#Sec14
http://dx.doi.org/10.1007/978-3-319-05290-8_19#Sec15
http://dx.doi.org/10.1007/978-3-319-05290-8_19#Sec15
http://dx.doi.org/10.1007/978-3-319-05290-8_19#Sec16
http://dx.doi.org/10.1007/978-3-319-05290-8_19#Sec16
http://dx.doi.org/10.1007/978-3-319-05290-8_19#Bib1
http://dx.doi.org/10.1007/978-3-319-05290-8_20
http://dx.doi.org/10.1007/978-3-319-05290-8_20
http://dx.doi.org/10.1007/978-3-319-05290-8_20#Sec1
http://dx.doi.org/10.1007/978-3-319-05290-8_20#Sec1
http://dx.doi.org/10.1007/978-3-319-05290-8_20#Sec2
http://dx.doi.org/10.1007/978-3-319-05290-8_20#Sec2
http://dx.doi.org/10.1007/978-3-319-05290-8_20#Sec3
http://dx.doi.org/10.1007/978-3-319-05290-8_20#Sec3
http://dx.doi.org/10.1007/978-3-319-05290-8_20#Sec4
http://dx.doi.org/10.1007/978-3-319-05290-8_20#Sec4
http://dx.doi.org/10.1007/978-3-319-05290-8_20#Sec5
http://dx.doi.org/10.1007/978-3-319-05290-8_20#Sec5
http://dx.doi.org/10.1007/978-3-319-05290-8_20#Sec6
http://dx.doi.org/10.1007/978-3-319-05290-8_20#Sec6
http://dx.doi.org/10.1007/978-3-319-05290-8_20#Sec7
http://dx.doi.org/10.1007/978-3-319-05290-8_20#Sec7
http://dx.doi.org/10.1007/978-3-319-05290-8_20#Sec8
http://dx.doi.org/10.1007/978-3-319-05290-8_20#Sec8
http://dx.doi.org/10.1007/978-3-319-05290-8_20#Sec9
http://dx.doi.org/10.1007/978-3-319-05290-8_20#Sec9

20.4 Quantifying Search Results . 688
20.5 Key Technologies in Current CBIR Systems 692

20.5.1 Robust Image Features and Their
Representation . 692

20.5.2 Relevance Feedback . 694
20.5.3 Other Post-processing Techniques 695
20.5.4 Visual Concept Search. 696
20.5.5 The Role of Users in Interactive CBIR Systems . . . 697

20.6 Querying on Videos . 697
20.7 Querying on Videos Based on Human Activity 700

20.7.1 Modeling Human Activity Structures. 701
20.7.2 Experimental Results . 703

20.8 Quality-Aware Mobile Visual Search 703
20.8.1 Related Work . 706
20.8.2 Quality-Aware Method . 706
20.8.3 Experimental Results . 707

20.9 Exercises . 710
References . 711

Index . 715

xxiv Contents

http://dx.doi.org/10.1007/978-3-319-05290-8_20#Sec10
http://dx.doi.org/10.1007/978-3-319-05290-8_20#Sec10
http://dx.doi.org/10.1007/978-3-319-05290-8_20#Sec11
http://dx.doi.org/10.1007/978-3-319-05290-8_20#Sec11
http://dx.doi.org/10.1007/978-3-319-05290-8_20#Sec12
http://dx.doi.org/10.1007/978-3-319-05290-8_20#Sec12
http://dx.doi.org/10.1007/978-3-319-05290-8_20#Sec12
http://dx.doi.org/10.1007/978-3-319-05290-8_20#Sec13
http://dx.doi.org/10.1007/978-3-319-05290-8_20#Sec13
http://dx.doi.org/10.1007/978-3-319-05290-8_20#Sec14
http://dx.doi.org/10.1007/978-3-319-05290-8_20#Sec14
http://dx.doi.org/10.1007/978-3-319-05290-8_20#Sec15
http://dx.doi.org/10.1007/978-3-319-05290-8_20#Sec15
http://dx.doi.org/10.1007/978-3-319-05290-8_20#Sec16
http://dx.doi.org/10.1007/978-3-319-05290-8_20#Sec16
http://dx.doi.org/10.1007/978-3-319-05290-8_20#Sec17
http://dx.doi.org/10.1007/978-3-319-05290-8_20#Sec17
http://dx.doi.org/10.1007/978-3-319-05290-8_20#Sec18
http://dx.doi.org/10.1007/978-3-319-05290-8_20#Sec18
http://dx.doi.org/10.1007/978-3-319-05290-8_20#Sec19
http://dx.doi.org/10.1007/978-3-319-05290-8_20#Sec19
http://dx.doi.org/10.1007/978-3-319-05290-8_20#Sec20
http://dx.doi.org/10.1007/978-3-319-05290-8_20#Sec20
http://dx.doi.org/10.1007/978-3-319-05290-8_20#Sec21
http://dx.doi.org/10.1007/978-3-319-05290-8_20#Sec21
http://dx.doi.org/10.1007/978-3-319-05290-8_20#Sec22
http://dx.doi.org/10.1007/978-3-319-05290-8_20#Sec22
http://dx.doi.org/10.1007/978-3-319-05290-8_20#Sec23
http://dx.doi.org/10.1007/978-3-319-05290-8_20#Sec23
http://dx.doi.org/10.1007/978-3-319-05290-8_20#Sec24
http://dx.doi.org/10.1007/978-3-319-05290-8_20#Sec24
http://dx.doi.org/10.1007/978-3-319-05290-8_20#Sec25
http://dx.doi.org/10.1007/978-3-319-05290-8_20#Sec25
http://dx.doi.org/10.1007/978-3-319-05290-8_20#Bib1

Part I
Introduction and Multimedia Data

Representations

As an introduction to multimedia, in Chap. 1 we consider the question of just
what multimedia is. The components of multimedia are first introduced and then
current multimedia research topics and projects are discussed to put the field into a
perspective of what is actually at play at the cutting edge of work in this field.

Since Multimedia is indeed a practical field, Chap. 1 also supplies an overview
of multimedia software tools, such as video editors and digital audio programs.

A Taste of Multimedia
As a ‘‘taste’’ of multimedia, in Chap. 2, we introduce a set of tasks and concerns

that are considered in studying multimedia. Then issues in multimedia production
and presentation are discussed, followed by a further ‘‘taste’’ by considering how
to produce sprite animation and ‘‘build-your-own’’ video transitions.

We then go on to review the current and future state of multimedia sharing and
distribution, outlining later discussions of Social Media, Video Sharing, and new
forms of TV.

Finally, the details of some popular multimedia tools are set out for a quick start
into the field.

Multimedia Data Representations
As in many fields, the issue of how best to represent the data is of crucial

importance in the study of multimedia, and Chaps. 3–6 consider how this is ad-
dressed in this field. These Chapters set out the most important data representa-
tions for use in multimedia applications. Since the main areas of concern are
images, video, and audio, we begin investigating these in Chap. 3, Graphics and
Image Data Representations. Before going on to look at Fundamental Concepts in
Video in Chap. 5. we take a side-trip in Chap. 4 to explore several issues in the use
of color, since color is vitally important in multimedia programs.

Audio data has special properties and Chap. 6, Basics of Digital Audio, intro-
duces methods to compress sound information, beginning with a discussion of
digitization of audio, and linear and nonlinear quantization,including companding.
MIDI is explicated, as an enabling technology to capture, store, and play back

http://dx.doi.org/10.1007/978-3-319-05290-8_1
http://dx.doi.org/10.1007/978-3-319-05290-8_1
http://dx.doi.org/10.1007/978-3-319-05290-8_1
http://dx.doi.org/10.1007/978-3-319-05290-8_1
http://dx.doi.org/10.1007/978-3-319-05290-8_2
http://dx.doi.org/10.1007/978-3-319-05290-8_2
http://dx.doi.org/10.1007/978-3-319-05290-8_3
http://dx.doi.org/10.1007/978-3-319-05290-8_3
http://dx.doi.org/10.1007/978-3-319-05290-8_6
http://dx.doi.org/10.1007/978-3-319-05290-8_3
http://dx.doi.org/10.1007/978-3-319-05290-8_3
http://dx.doi.org/10.1007/978-3-319-05290-8_5
http://dx.doi.org/10.1007/978-3-319-05290-8_5
http://dx.doi.org/10.1007/978-3-319-05290-8_4
http://dx.doi.org/10.1007/978-3-319-05290-8_4
http://dx.doi.org/10.1007/978-3-319-05290-8_6
http://dx.doi.org/10.1007/978-3-319-05290-8_6

musical notes. Quantization and transmission of audio is discussed, including the
notion of subtraction of signals frompredicted values, yielding numbers that are
easier to compress. Differential Pulse Code Modulation (DPCM) and Adaptive
DPCM are introduced, and we take a look at encoder/decoder schema.

2 Part I Introduction and Multimedia Data Representations

1Introduction toMultimedia

1.1 What is Multimedia?

People who use the term “multimedia” may have quite different, even opposing,
viewpoints. A consumer entertainment vendor, say a phone company, may think of
multimedia as interactive TV with hundreds of digital channels, or a cable-TV-like
service delivered over a high-speed Internet connection. A hardware vendor might,
on the other hand, like us to think of multimedia as a laptop that has good sound
capability and perhaps the superiority of multimedia-enabled microprocessors that
understand additional multimedia instructions.

A computer science or engineering student reading this book likely has a more
application-oriented view of what multimedia consists of: applications that use mul-
tiple modalities to their advantage, including text, images, drawings, graphics, ani-
mation, video, sound (including speech), and, most likely, interactivity of some kind.
This contrasts with media that use only rudimentary computer displays such as text-
only or traditional forms of printed or hand-produced material.

The popular notion of “convergence” is one that inhabits the college campus as
it does the culture at large. In this scenario, computers, smartphones, games, digital
TV, multimedia-based search, and so on are converging in technology, presumably to
arrive in the near future at a final and fully functional all-round, multimedia-enabled
product. While hardware may indeed strive for such all-round devices, the present
is already exciting—multimedia is part of some of the most interesting projects
underway in computer science, with the keynote being interactivity. The convergence
going on in this field is in fact a convergence of areas that have in the past been
separated but are now finding much to share in this new application area. Graphics,
visualization, HCI, computer vision, data compression, graph theory, networking,
database systems—all have important contributions to make in multimedia at the
present time.

Z.-N. Li et al., Fundamentals of Multimedia, 3
Texts in Computer Science, DOI: 10.1007/978-3-319-05290-8_1,
© Springer International Publishing Switzerland 2014

4 1 Introduction to Multimedia

1.1.1 Components of Multimedia

The multiple modalities of text, audio, images, drawings, animation, video, and
interactivity in multimedia are put to use in ways as diverse as
• Geographically based, real-time augmented-reality, massively multiplayer online

video games, making use of any portable device such as smartphones, laptops, or
tablets, which function as GPS-aware mobile game consoles. For example, a game
in which players reinforce and link friendly “portals,” and attack enemy ones that
are played on GPS-enabled devices where the players must physically move to the
portals (which are overlaid on real sites such as public art, interesting buildings,
or parks) in order to interact with them.

• Shapeshifting TV, where viewers vote on the plot path by phone text-messages,
which are parsed to direct plot changes in real-time.

• A camera that suggests what would be the best type of next shot so as to adhere
to good technique guidelines for developing storyboards.

• A Web-based video editor that lets anyone create a new video by editing, annotat-
ing, and remixing professional videos on the cloud.

• Cooperative education environments that allow schoolchildren to share a single
educational game using two mice at once that pass control back and forth.

• Searching (very) large video and image databases for target visual objects, using
semantics of objects.

• Compositing of artificial and natural video into hybrid scenes, placing real-
appearing computer graphics and video objects into scenes so as to take the physics
of objects and lights (e.g., shadows) into account.

• Visual cues of video-conference participants, taking into account gaze direction
and attention of participants.

• Making multimedia components editable—allowing the user side to decide what
components, video, graphics, and so on are actually viewed and allowing the client
to move components around or delete them—making components distributed.

• Building “inverse-Hollywood” applications that can recreate the process by which
a video was made, allowing storyboard pruning and concise video summarization.
From a computer science student’s point of view, what makes multimedia inter-

esting is that so much of the material covered in traditional computer science areas
bears on the multimedia enterprise. In today’s digital world, multimedia content is
recorded and played, displayed, or accessed by digital information content process-
ing devices, ranging from smartphones, tablets, laptops, personal computers, smart
TVs, and game consoles, to servers and datacenters, over such distribution media
as tapes, harddrives, and disks, or more popularly nowadays, wired and wireless
networks. This leads to a wide variety of research topics:
• Multimedia processing and coding. This includes audio/image/video processing,

compression algorithms, multimedia content analysis, content-based multimedia
retrieval, multimedia security, and so on.

• Multimedia system support and networking. People look at such topics as
network protocols, Internet and wireless networks, operating systems, servers and
clients, and databases.

1.1 What is Multimedia? 5

• Multimedia tools, end systems, and applications. These include hypermedia sys-
tems, user interfaces, authoring systems, multimodal interaction, and integration:
“ubiquity”—Web-everywhere devices, multimedia education, including computer
supported collaborative learning and design, and applications of virtual environ-
ments.
Multimedia research touches almost every branch of computer science. For

example, data mining is an important current research area, and a large database
of multimedia data objects is a good example of just what big data we may be inter-
ested in mining; telemedicine applications, such as “telemedical patient consultative
encounters,” are multimedia applications that place a heavy burden on network archi-
tectures. Multimedia research is also highly interdisciplinary, involving such other
research fields as electric engineering, physics, and psychology; signal processing
for audio/video signals is an essential topic in electric engineering; color in image
and video has a long-history and solid foundation in physics; more importantly, all
multimedia data are to be perceived by human beings, which is, certainly, related to
medical and psychological research.

1.2 Multimedia: Past and Present

To place multimedia in its proper context, in this section we briefly scan the history of
multimedia, a relatively recent part of which is the connection between multimedia
and hypermedia. We also show the rapid evolution and revolution of multimedia
in the new millennium with the new generation of computing and communication
platforms.

1.2.1 Early History of Multimedia

A brief history of the use of multimedia to communicate ideas might begin with
newspapers, which were perhaps the first mass communication medium, using text,
graphics, and images. Before still-image camera was invented, these graphics and
images were generally hand-drawn.

Joseph Nicéphore Niépce captured the first natural image from his window in
1826 using a sliding wooden box camera [1,2]. It was made using an 8-h exposure
on pewter coated with bitumen. Later, Alphonse Giroux built the first commercial
camera with a double-box design. It had an outer box fitted with a landscape lens,
and an inner box holding a ground glass focusing screen and image plate. Sliding
the inner box makes the objects of different distances be focused. Similar cameras
were used for exposing wet silver-surfaced copper plates, commercially introduced
in 1839. In the 1870s, wet plates were replaced by the more convenient dry plates.
Figure 1.1 (image from author’s own collection) shows an example of a nineteenth
century dry-plate camera, with bellows for focusing. By the end of the nineteenth

6 1 Introduction to Multimedia

Fig. 1.1 A vintage dry-plate camera. E&H T Anthony model Champion, circa 1890

century, film-based cameras were introduced, which soon became dominant until
replaced by digital cameras.

Thomas Alva Edison’s phonograph, invented in 1877, was the first device that was
able to record and reproduce sound. It originally recorded sound onto a tinfoil sheet
phonograph cylinder [3]. Figure 1.2 shows an example of an Edison’s phonograph
(Edison GEM, 1905; image from author’s own collection).

The phonographs were later improved by Alexander Graham Bell. Most notable
improvements include wax-coated cardboard cylinders, and a cutting stylus that
moved from side to side in a “zig zag” pattern across the record. Emile Berliner
further transformed the phonograph cylinders to gramophone records. Each side of
such a flat disk has a spiral groove running from the periphery to near the center,
which can be conveniently played by a turntable with a tonearm and a stylus. These
components were improved over time in the twentieth century, which eventually
enabled quality sound reproducing that is very close the origin. The gramophone
record was one of the dominant audio recording formats throughout much of the
twentieth century. From the mid-1980s, phonograph use declined sharply because of
the rise of audio tapes, and later the Compact Disc (CD) and other digital recording
formats [4]. Figure 1.3 shows the evolution of audio storage media, starting from the
Edison cylinder record, to the flat vinyl record, to magnetic tapes (reel-to-reel and
cassette), and modern digital CD.

Motion pictures were originally conceived of in the 1830s to observe motion too
rapid for perception by the human eye. Edison again commissioned the invention
of a motion picture camera in 1887 [5]. Silent feature films appeared from 1910 to
1927; the silent era effectively ended with the release of The Jazz Singer in 1927.

1.2 Multimedia: Past and Present 7

Fig. 1.2 An Edison phonograph, model GEM. Note the patent plate in the bottom picture, which
suggests that the importance of patents had long been realized and also how serious Edison was in
protecting his inventions. Despite the warnings in the plate, this particular phonograph was modified
by the original owner, a good DIYer 100 years ago, to include a more powerful spring motor from
an Edison Standard model and a large flower horn from the Tea Tray Company

Fig. 1.3 Evolution of audio storage media. Left to right an Edison cylinder record, a flat vinyl
record, a reel-to-reel magnetic tape, a cassette tape, and a CD

8 1 Introduction to Multimedia

In 1895, Guglielmo Marconi conducted the first wireless radio transmission at
Pontecchio, Italy, and a few years later (1901), he detected radio waves beamed
across the Atlantic [6]. Initially invented for telegraph, radio is now a major medium
for audio broadcasting. In 1909, Marconi shared the Nobel Prize for Physics.1

Television, or TV for short, was the new medium for the twentieth century [7]. In
1884, Paul Gottlieb Nipkow, a 23-year-old university student in Germany, patented
the first electromechanical television system which employed a spinning disk with
a series of holes spiraling toward the center. The holes were spaced at equal angular
intervals such that, in a single rotation, the disk would allow light to pass through
each hole and onto a light-sensitive selenium sensor which produced the electrical
pulses. As an image was focused on the rotating disk, each hole captured a horizontal
“slice” of the whole image. Nipkow’s design would not be practical until advances in
amplifier tube technology, in particular, the cathode ray tube (CRT), became available
in 1907. Commercially available since the late 1920s, CRT-based TV established
video as a commonly available medium and has since changed the world of mass
communication.

All these media mentioned above are in the analog format, for which the time-
varying feature (variable) of the signal is a continuous representation of the input,
i.e., analogous to the input audio, image, or video signal. The connection between
computers and digital media, i.e., media data represented using the discrete binary
format, emerged actually only over a short period:
1967 Nicholas Negroponte formed the Architecture Machine Group at MIT.
1969 Nelson and van Dam at Brown University created an early hypertext editor

called FRESS [8]. The present-day Intermedia project by the Institute for
Research in Information and Scholarship (IRIS) at Brown is the descendant
of that early system.

1976 The MIT Architecture Machine Group proposed a project entitled “Multiple
Media.” This resulted in the Aspen Movie Map, the first videodisk, in 1978.

1982 The Compact Disc (CD) was made commercially available by Philips and
Sony, which was soon becoming the standard and popular medium for digital
audio data, replacing the analog magnetic tape.

1985 Negroponte and Wiesner co-founded the MIT Media Lab, a leading research
institution investigating digital video and multimedia.

1990 Kristina Hooper Woolsey headed the Apple Multimedia Lab, with a staff of
100. Education was a chief goal.

1991 MPEG-1 was approved as an international standard for digital video. Its further
development led to newer standards, MPEG-2, MPEG-4, and further MPEGs,
in the 1990s.

1 Reginald A. Fessenden, of Quebec, beat Marconi to human voice transmission by several years,
but not all inventors receive due credit. Nevertheless, Fessenden was paid $2.5 million in 1928 for
his purloined patents.

1.2 Multimedia: Past and Present 9

1991 The introduction of PDAs in 1991 began a new period in the use of computers
in general and multimedia in particular. This development continued in 1996
with the marketing of the first PDA with no keyboard.

1992 JPEG was accepted as the international standard for digital image compression,
which remains widely used today (say, by virtually every digital camera).

1992 The first audio multicast on the multicast backbone (MBone) was made.
1995 The JAVA language was created for platform-independent application devel-

opment, which was widely used for developing multimedia applications.
1996 DVD video was introduced; high-quality, full-length movies were distributed

on a single disk. The DVD format promised to transform the music, gaming,
and computer industries.

1998 Handheld MP3 audio players were introduced to the consumer market, initially
with 32 MB of flash memory.

1.2.2 Hypermedia,WWW,and Internet

The early studies laid a solid foundation for the capturing, representation, compres-
sion, and storage of each type of media. Multimedia however is not simply about
putting different media together; rather, it focuses more on the integration of them
so as to enable rich interaction amongst them, and also between media and human
beings.

In 1945, as part of MIT’s postwar deliberations on what to do with all those
scientists employed on the war effort, Vannevar Bush wrote a landmark article [9]
describing what amounts to a hypermedia system, called “Memex.” Memex was
meant to be a universally useful and personalized memory device that even included
the concept of associative links—it really is the forerunner of the World Wide Web.
After World War II, 6,000 scientists who had been hard at work on the war effort
suddenly found themselves with time to consider other issues, and the Memex idea
was one fruit of that new freedom.

In the 1960s, Ted Nelson started the Xanadu project and coined the term hypertext.
Xanadu was the first attempt at a hypertext system—Nelson called it a “magic place
of literary memory.”

We may think of a book as a linear medium, basically meant to be read from
beginning to end. In contrast, a hypertext system is meant to be read nonlinearly,
by following links that point to other parts of the document, or indeed to other
documents. Figure 1.4 illustrates this familiar idea.

Douglas Engelbart, greatly influenced by Vannevar Bush’s “As We May Think,”
demonstrated the On-Line System (NLS), another early hypertext program in 1968.
Engelbart’s group at Stanford Research Institute aimed at “augmentation, not automa-
tion,” to enhance human abilities through computer technology. NLS consisted
of such critical ideas as an outline editor for idea development, hypertext links,
teleconferencing, word processing, and email, and made use of the mouse pointing
device, windowing software, and help systems [10].

10 1 Introduction to Multimedia

Fig. 1.4 Hypertext is
nonlinear

Hypertext

Nonlinear

Normal Text

Linear

Hot spots

Hypermedia, again first introduced by Ted Nelson, went beyond text-only. It
includes a wide array of media, such as graphics, images, and especially the continu-
ous media—sound and video, and links them together. The World Wide Web (WWW
or simply Web) is the best example of a hypermedia application, which is also the
largest.

Amazingly, this most predominant networked multimedia applications has its
roots in nuclear physics! In 1990, Tim Berners-Lee proposed the World Wide Web
to CERN (European Center for Nuclear Research) as a means for organizing and
sharing their work and experimental results. With approval from CERN, he started
developing a hypertext server, browser, and editor on a NeXTStep workstation. His
team invented the Hypertext Markup Language (HTML) and the Hypertext Transfer
Protocol (HTTP) for this purpose, too.

HyperText Markup Language (HTML)

It is recognized that documents need to have formats that are human-readable and that
identify structure and elements. Charles Goldfarb, Edward Mosher, and Raymond
Lorie developed the Generalized Markup Language (GML) for IBM. In 1986, the
ISO released a final version of the Standard Generalized Markup Language (SGML),
mostly based on the earlier GML.

HTML is a language for publishing hypermedia on the Web [11]. It is defined using
SGML and derives elements that describe generic document structure and formatting.
Since it uses ASCII, it is portable to all different (even binary-incompatible) computer
hardware, which allows for global exchange of information. The current version of
HTML is 4.01, and a newer version, HTML5, is still under development.

1.2 Multimedia: Past and Present 11

HTML uses tags to describe document elements. The tags are in the format
<token params> to define the start point of a document element and </token>
to define the end of the element. Some elements have only inline parameters and do
not require ending tags. HTML divides the document into a HEAD and a BODY part
as follows:

<HTML>
<HEAD>
...
</HEAD>
<BODY>
...
</BODY>
</HTML>

The HEAD describes document definitions, which are parsed before any document
rendering is done. These include page title, resource links, and meta-information
the author decides to specify. The BODY part describes the document structure and
content. Common structure elements are paragraphs, tables, forms, links, item lists,
and buttons.

A very simple HTML page is as follows:
<HTML>
<HEAD>
<TITLE>
A sample webpage.
</TITLE>
<META NAME = "Author" CONTENT = "Cranky Professor">

</HEAD> <BODY>
<P>
We can put any text we like here, since this is
a paragraph element.
</P>

</BODY>
</HTML>

Naturally, HTML has more complex structures and can be mixed with other stan-
dards. The standard has evolved to allow integration with script languages, dynamic
manipulation of almost all elements and properties after display on the client side
(dynamic HTML), and modular customization of all rendering parameters using a
markup language called Cascading Style Sheets (CSS). Nonetheless, HTML has
rigid, nondescriptive structure elements, and modularity is hard to achieve.

12 1 Introduction to Multimedia

Extensible Markup Language (XML)

There was also a need for a markup language for the Web that has modularity of
data, structure, and view. That is, we would like a user or an application to be able to
define the tags (structure) allowed in a document and their relationship to each other,
in one place, then define data using these tags in another place (the XML file), and
finally, define in yet another document how to render the tags.

Suppose we wanted to have stock information retrieved from a database according
to a user query. Using XML, we would use a global Document Type Definition (DTD)
we have already defined for stock data. Your server-side script will abide by the DTD
rules to generate an XML document according to the query, using data from your
database. Finally, we will send users your XML Style Sheet (XSL), depending on the
type of device they use to display the information, so that our document looks best
both on a computer with a 27-in. LED display and on a small-screen cellphone.

The original XML version was XML 1.0, approved by the W3C in February
1998, and is currently in its fifth edition as of 2008. The original version is still
recommended. The second version XML 1.1 was introduced in 2004 and is currently
in its second edition as of 2006. XML syntax looks like HTML syntax, although it
is much stricter. All tags are lowercase, and a tag that has only inline data has to
terminate itself, for example, <token params />. XML also uses namespaces,
so that multiple DTDs declaring different elements but with similar tag names can
have their elements distinguished. DTDs can be imported from URIs as well. As an
example of an XML document structure, here is the definition for a small XHTML
document:

<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transition.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
... [html that follows
the above-mentioned
XML rules]

</html>

All XML documents start with <?xml version="ver"?>. <!DOCTYPE
...> is a special tag used for importing DTDs. Since it is a DTD definition,
it does not adhere to XML rules. xmlns defines a unique XML namespace for
the document elements. In this case, the namespace is the XHTML specifications
website.

In addition to XML specifications, the following XML-related specifications are
standardized:
• XML Protocol. Used to exchange XML information between processes. It is

meant to supersede HTTP and extend it as well as to allow interprocess commu-
nications across networks.

• XML Schema. A more structured and powerful language for defining XML data
types (tags). Unlike a DTD, XML Schema uses XML tags for type definitions.

1.2 Multimedia: Past and Present 13

• XSL. This is basically CSS for XML. On the other hand, XSL is much more
complex, having three parts: XSL Transformations (XSLT), XML Path Language
(XPath), and XSL Formatting Objects.

The WWW quickly gained popularity, due to the amount of information available
from web servers, the capacity to post such information, and the ease of navigating
such information with a web browser, particularly after Marc Andreessen’s intro-
duction of Mosaic browser in 1993 (later became Netscape).

Today, the Web technology is maintained and developed by the World Wide Web
Consortium (W3C), together with the Internet Engineering Task Force (IETF) to
standardize the technologies. The W3C has listed the following three goals for the
WWW: universal access of web resources (by everyone everywhere), effectiveness
of navigating available information, and responsible use of posted material.

It is worth mentioning that the Internet serves as the underlying vehicle for the
WWW and the multimedia content shared over it. Starting from the Advanced
Research Projects Agency Network (ARPANET) with only two nodes in 1969, the
Internet gradually became the dominating global network that interconnects numer-
ous computer networks and their billions of users with the standard Internet protocol
suite (TCP/IP). It evolved together with digital multimedia. On one hand, the Inter-
net carries much of the multimedia content. It has largely swept out optical disks
as the storage and distribution media in the movie industry. It is currently reshaping
the TV broadcast industry with an ever-accelerating speed. On the other hand, the
Internet was not initially designed for multimedia data and was not quite friendly
to multimedia traffic. Multimedia data, now occupying almost 90 % of the Internet
bandwidth, is the key driving force toward enhancing the existing Internet and toward
developing the next generation of the Internet, as we will see in Chaps. 15 and 16.

1.2.3 Multimedia in the NewMillennium

Entering the new millennium, we have witnessed the fast evolution toward a new
generation of social, mobile, and cloud computing for multimedia processing and
sharing. Today, the role of the Internet itself has evolved from the original use as
a communication tool to provide easier and faster sharing of an infinite supply of
information, and the multimedia content itself has also been greatly enriched. High-
definition videos and even 3D/multiview videos can be readily captured and browsed
by personal computing devices, and conveniently stored and processed with remote
cloud resources. More importantly, the users are now actively engaged to be part of
a social ecosystem, rather than passively receiving media content. The revolution is
being driven further by the deep penetration of 3G/4G wireless networks and smart
mobile devices. Coming with highly intuitive interfaces and exceptionally richer
multimedia functionalities, they have been seamlessly integrated with online social
networking for instant media content generation and sharing.

Below, we list some important milestones in the development of multimedia in
the new millennium. We believe that most of the readers of this textbook are familiar
with them, as we are all in this Internet age, witnessing its dramatic changes; many

http://dx.doi.org/10.1007/978-3-319-05290-8_15
http://dx.doi.org/10.1007/978-3-319-05290-8_16

14 1 Introduction to Multimedia

readers, particularly the younger generation, would be even more familiar with the
use of such multimedia services as YouTube, Facebook, and Twitter than the authors.
2000 WWW size was estimated at over one billion pages. Sony unveiled the first

Blu-ray Disc prototypes in October 2000, and the first prototype player was
released in April 2003 in Japan.

2001 The first peer-to-peer file sharing (mostly MP3 music) system, Napster, was
shut down by court order, but many new peer-to-peer file sharing systems,
e.g., Gnutella, eMule, and BitTorrent, were launched in the following years.
Coolstreaming was the first large-scale peer-to-peer streaming system that
was deployed in the Internet, attracting over one million in 2004. Later years
saw the booming of many commercial peer-to-peer TV systems, e.g., PPLive,
PPStream, and UUSee, particularly in East Asia. NTT DoCoMo in Japan
launched the first commercial 3G wireless network on October 1. 3G then
started to be deployed worldwide, promising broadband wireless mobile data
transfer for multimedia data.

2003 Skype was released for free peer-to-peer voice over the Internet.
2004 Web 2.0 was recognized as a new way to utilize software developers and

end-users use the Web (and is not a technical specification for a new Web).
The idea is to promote user collaboration and interaction so as to generate
content in a “virtual community,” as opposed to simply passively viewing
content. Examples include social networking, blogs, wikis, etc. Facebook,
the most popular online social network, was founded by Mark Zuckerberg.
Flickr, a popular photo hosting and sharing site, was created by Ludicorp, a
Vancouver-based company founded by Stewart Butterfield and Caterina Fake.

2005 YouTube was created, providing an easy portal for video sharing, which was
purchased by Google in late 2006. Google launched the online map service,
with satellite imaging, real-time traffic, and Streetview being added later.

2006 Twitter was created, and rapidly gained worldwide popularity, with 500 million
registered users in 2012, who posted 340 million tweets per day. In 2012,
Twitter offered the Vine mobile app, which enables its users to create and post
short video clips of up to 6 s. Amazon launched its cloud computing platform,
Amazon’s Web Services (AWS). The most central and well-known of these
services are Amazon EC2 and Amazon S3. Nintendo introduced the Wii home
video game console, whose remote controller can detect movement in three
dimensions.

2007 Apple launched the first generation of iPhone, running the iOS mobile
operating system. Its touch screen enabled very intuitive operations, and the
associated App Store offered numerous mobile applications. Goolge unveiled
Android mobile operating system, along with the founding of the Open
Handset Alliance: a consortium of hardware, software, and telecommunica-
tion companies devoted to advancing open standards for mobile devices. The
first Android-powered phone was sold in October 2008, and Google Play,

1.2 Multimedia: Past and Present 15

Android’s primary app store, was soon launched. In the following years, tablet
computers using iOS, Android, and Windows with larger touch screens joined
the eco-system, too.

2009 The first LTE (Long Term Evolution) network was set up in Oslo, Norway, and
Stockholm, Sweden, making an important step toward 4G wireless networking.
James Cameron’s film, Avatar, created a surge on the interest in 3D video.

2010 Netflix, which used to be a DVD rental service provider, migrated its infrastruc-
ture to the Amazon AWS cloud computing platform, and became a major online
streaming video provider. Master copies of digital films from movie studios
are stored on Amazon S3, and each film is encoded into over 50 different ver-
sions based on video resolution, audio quality using machines on the cloud. In
total, Netflix has over 1 petabyte of data stored on Amazon’s cloud. Microsoft
introduced Kinect, a horizontal bar with full-body 3D motion capture, facial
recognition, and voice recognition capabilities, for its game console Xbox 360.

2012 HTML5 subsumes the previous version, HTML4, which was standardized in
1997. HTML5 is a W3C “Candidate Recommendation.” It is meant to provide
support for the latest multimedia formats while maintaining consistency for
current web browsers and devices, along with the ability to run on low-powered
devices such as smartphones and tablets.

2013 Sony released its PlayStation 4, a video game console that is to be integrated
with Gaikai, a cloud-based gaming service that offers streaming video game
content. 4K resolution TV started to be available in the consumer market.

1.3 Multimedia Software Tools: A Quick Scan

For a concrete appreciation of the current state of multimedia software tools available
for carrying out tasks in multimedia, we now include a quick overview of software
categories and products.

These tools are really only the beginning—a fully functional multimedia project
can also call for stand-alone programming as well as just the use of predefined tools
to fully exercise the capabilities of machines and the Internet.2

In courses we teach using this text, students are encouraged to try these tools,
producing full-blown and creative multimedia productions. Yet this textbook is not
a “how-to” book about using these tools—it is about understanding the fundamental
design principles behind these tools! With a clear understanding of the key multi-
media data structures, algorithms, and protocols, a student can make smarter and

2 See the accompanying website for several interesting uses of software tools. In a typical computer
science course in multimedia, the tools described here might be used to create a small multimedia
production as a first assignment. Some of the tools are powerful enough that they might also form
part of a course project.

16 1 Introduction to Multimedia

advanced use of such tools, so as to fully unleash their potentials, and even improve
the tools themselves or develop new tools.

The categories of software tools we examine here are
• Music sequencing and notation
• Digital audio
• Graphics and image editing
• Video editing
• Animation
• Multimedia authoring.

1.3.1 Music Sequencing and Notation

Cakewalk Pro Audio

Cakewalk Pro Audio is a very straightforward music-notation program for “sequenc-
ing.” The term sequencer comes from older devices that stored sequences of notes
in the MIDI music language (events, in MIDI; see Sect. 6.2).

Finale, Sibelius

Finale and Sibelius are two composer-level notation systems; these programs likely
set the bar for excellence, but their learning curve is fairly steep.

1.3.2 Digital Audio

Digital Audio tools deal with accessing and editing the actual sampled sounds that
make up audio.

Adobe Audition

Adobe Audition (formerly Cool Edit) is a powerful, popular digital audio toolkit
with capabilities (for PC users, at least) that emulate a professional audio studio,
including multitrack productions and sound file editing, along with digital signal
processing effects.

Sound Forge

Like Audition, Sound Forge is a sophisticated PC-based program for editing WAV
files. Sound can be captured through the sound card, and then mixed and edited. It
also permits adding complex special effects.

http://dx.doi.org/10.1007/978-3-319-05290-8_6

1.3 Multimedia Software Tools: A Quick Scan 17

Pro Tools

Pro Tools is a high-end integrated audio production and editing environment that runs
on Macintosh computers as well as Windows. Pro Tools offers easy MIDI creation
and manipulation as well as powerful audio mixing, recording, and editing software.
Full effects depend on purchasing a dongle.

1.3.3 Graphics and Image Editing

Adobe Illustrator

Illustrator is a powerful publishing tool for creating and editing vector graphics,
which can easily be exported to use on the Web.

Adobe Photoshop

Photoshop is the standard in a tool for graphics, image processing, and image manip-
ulation. Layers of images, graphics, and text can be separately manipulated for maxi-
mum flexibility, and its set of filters permits creation of sophisticated lighting effects.

Adobe Fireworks

Fireworks is software for making graphics specifically for the Web. It includes a
bitmap editor, a vector graphics editor, and a JavaScript generator for buttons and
rollovers.

Adobe Freehand

Freehand is a text and web graphics editing tool that supports many bitmap formats,
such as GIF, PNG, and JPEG. These are pixel-based formats, in that each pixel
is specified. It also supports vector-based formats, in which endpoints of lines are
specified instead of the pixels themselves, such as SWF (Adobe Flash). It can also
read Photoshop format.

1.3.4 Video Editing

Adobe Premiere

Premiere is a simple, intuitive video editing tool for nonlinear editing—putting video
clips into any order. Video and audio are arranged in tracks, like a musical score.

18 1 Introduction to Multimedia

It provides a large number of video and audio tracks, superimpositions, and virtual
clips. A large library of built-in transitions, filters, and motions for clips allows easy
creation of effective multimedia productions.

CyberLink PowerDirector

PowerDirector produced by CyberLink Corp. is by far the most popular nonlin-
ear video editing software. It provides a rich selection of audio and video features
and special effects and is easy to use. It supports all modern video formats includ-
ing AVCHD 2.0, 4K Ultra HD, and 3D video. It supports 64-bit video processing,
graphics card acceleration, and multiple CPUs. Its processing and preview are much
faster than Premiere. However, it is not as “programmable” as Premiere.

Adobe After Effects

After Effects is a powerful video editing tool that enables users to add and change
existing movies with effects such as lighting, shadows, and motion blurring. It also
allows layers, as in Photoshop, to permit manipulating objects independently.

Final Cut Pro

Final Cut Pro is a video editing tool offered by Apple for the Macintosh platform. It
allows the input of video and audio from numerous sources, and provides a complete
environment, from editing and color correction to the final output of a video file.

1.3.5 Animation

Multimedia APIs

Java3D is an API used by Java to construct and render 3D graphics, similar to the
way Java Media Framework handles media files. It provides a basic set of object
primitives (cube, splines, etc.) upon which the developer can build scenes. It is an
abstraction layer built on top of OpenGL or DirectX (the user can select which), so
the graphics are accelerated.

DirectX, a Windows API that supports video, images, audio, and 3D animation, is
a common API used to develop multimedia Windows applications such as computer
games.

OpenGL was created in 1992 and is still a popular 3D API today. OpenGL is
highly portable and will run on all popular modern operating systems, such as UNIX,
Linux, Windows, and Macintosh.

1.3 Multimedia Software Tools: A Quick Scan 19

Animation Software

Autodesk 3ds Max (formerly 3D Studio Max) includes a number of high-end pro-
fessional tools for character animation, game development, and visual effects pro-
duction. Models produced using this tool can be seen in several consumer games,
such as for the Sony Playstation.

Autodesk Softimage (previously called Softimage XSI) is a powerful modeling,
animation, and rendering package for animation and special effects in films and
games.

Autodesk Maya, a competing product to Softimage, is a complete modeling
package. It features a wide variety of modeling and animation tools, such as to create
realistic clothes and fur. Autodesk Maya runs on Windows, Mac OS, and Linux.

GIF Animation Packages

For a much simpler approach to animation that also allows quick development of
effective small animations for the Web, many shareware and other programs permit
creating animated GIF images. GIFs can contain several images, and looping through
them creates a simple animation.

Linux also provides some simple animation tools, such as animate.

1.3.6 Multimedia Authoring

Tools that provide the capability for creating a complete multimedia presentation,
including interactive user control, are called authoring programs.

Adobe Flash

Flash allows users to create interactive movies by using the score metaphor—a time-
line arranged in parallel event sequences, much like a musical score consisting of
musical notes. Elements in the movie are called symbols in Flash. Symbols are added
to a central repository, called a library, and can be added to the movie’s timeline.
Once the symbols are present at a specific time, they appear on the Stage, which
represents what the movie looks like at a certain time, and can be manipulated and
moved by the tools built into Flash. Finished Flash movies are commonly used to
show movies or games on the Web.

Adobe Director

Director uses a movie metaphor to create interactive presentations. This powerful
program includes a built-in scripting language, Lingo, that allows creation of complex

20 1 Introduction to Multimedia

interactive movies.3 The “cast” of characters in Director includes bitmapped sprites,
scripts, music, sounds, and palettes. Director can read many bitmapped file formats.
The program itself allows a good deal of interactivity, and Lingo, with its own
debugger, allows more control, including control over external devices.

Dreamweaver

Dreamweaver is a webpage authoring tool that allows users to produce multimedia
presentations without learning any HTML.

1.4 Multimedia in the Future

This textbook emphasizes on the fundamentals of multimedia, focusing on the basic
and mature techniques that collectively form the foundation of today’s multimedia
systems. It is however worth noting that multimedia research remains young and is
vigorously growing. It brings many exciting topics together, and we will certainly
see great innovations that will dramatically change our life in the near future [12].

For example, researchers are interested in camera-based object tracking technol-
ogy. But while face detection is ubiquitous, with camera software doing a reasonable
job of identifying faces in images and video, face detection and object tracking are
by no means solved problems today (although for face tracking, combining multi-
ple poses may be a promising direction [13]). As a matter of fact, interest in these
topics is somewhat flagging, with need for some new breakthrough. Instead, the cur-
rent emphasis is on event detection, e.g. for security applications such as a person
leaving a bag unattended in an airport.

While shot detection—finding where scene changes exist in video—and video
classification have for some time been of interest, new challenges have now arisen
in these old subjects due to the abundance of online video that is not professionally
edited.

Extending the conventional 2D video, today’s 3D capture technology is fast
enough to allow acquiring dynamic characteristics of human facial expression during
speech, to synthesize highly realistic facial animation from speech for low-bandwidth
applications. Beyond this, multiple views from several cameras or from a single
camera under differing lighting can accurately acquire data that gives both the shape
and surface properties of materials, thus automatically generating synthetic graph-
ics models. This allows photo-realistic (video-quality) synthesis of virtual actors.
Multimedia applications aimed at handicapped persons, particularly those with poor

3 Therefore, Director is often a viable choice with students for creating a final project in multimedia
courses—it provides the desired power without the inevitable pain of using a full-blown C++
program. The competing technology is likely Actionscripts in Flash.

1.4 Multimedia in the Future 21

vision and the elderly, are a rich field of endeavor in current research, too. Another
related example is Google Glass, which, equipped with an optical head-mounted
display, enables interactive, smartphone-like information display for its users. Wire-
lessly connected the Internet, it can also communicate using natural language
voice commands. All these make a good step toward wearable computing of great
potentials.

Online social media, such as YouTube, Facebook, and Twitter, appeared only in
the past decade, but are rapidly changing the way for information generation and
sharing and even our daily life. Research on social media is likely one of the most
important areas under scrutiny, with some 100,000 academic articles produced per
year in this area. It leads to a series of interesting new research topics:

Crowdsourcing for multimedia This concept, that the input of a large number of
human contributors is made use of in multimedia projects, has experienced a large
growth in attention. For example, having people provide tags to aid in understanding
the visual content of images and video, such as Amazon’s “Mechanical Turk,” to out-
source such time-consuming tasks as semantic video annotation to a large number of
workers who are willing to work for small reward or just for fun. A straightforward
use of such large populations is to analyze “sentiment,” such as the popularity of a
particular brand-name as evidenced by reading several thousand tweets on the sub-
ject. Another example is “Digital fashion,” which aims to develop smart clothing that
can communicate with other such enhanced clothing using wireless communication,
so as to artificially enhance human interaction in a social setting. The vision here is
to use technology to allow individuals to allow certain thoughts and feelings to be
broadcast automatically, for exchange with others equipped with similar technology.

Executable academic papers In science and engineering, one traditional way to
communicate findings is by publication of papers in academic journals. A new idea
that exploits the completely digital pathway for broadcast of information is called
“Executable papers.” The idea here is that results discussed in a published paper are
often difficult to reproduce. The reason is that datasets being used and programming
code working on that data are typically not supplied as part of the publication. The
executable papers approach allows the “reader” to interact with and interactively
manipulate the data and code, to further understand the findings being presented.
Moreover, the concept includes allowing the reader to rerun the code, change para-
meters, or upload different data.

Animated Lifelike Virtual Agents e.g. virtual educators, in particular as social part-
ners for special needs children; and various other roles that are designed to demon-
strate emotion and personality and with a variety of embodiments. The objective is
flexibility as opposed to a fixed script.

Behavioral science models can be brought into play to model interaction between
people, which can then be extended to enable natural interaction by virtual characters.
Such “augmented interaction” applications can be used to develop interfaces between
real and virtual humans for tasks such as augmented storytelling.

Each of these application areas pushes the development of computer science
generally, stimulates new applications, and fascinates practitioners. The chief lead-
ers of multimedia research have generated several overarching “grand challenge”

22 1 Introduction to Multimedia

problems, which act as a type of state-of-the-art for multimedia interests. At present
some of these consist of the following:
• Social Event Detection for Social Multimedia: discovering social events planned

and attended by people, as indicated by collections of multimedia content that was
captured by people and uploaded to social-media sites.

• Search and Hyperlinking of Television Content: finding relevant video segments
for a particular subject and generating useful hyperlinks for each of these segments.
The underlying idea is that instead of people performing a search and following
hyperlinks, this could all be automated intelligently.

• Geo-coordinate Prediction for Social Multimedia: estimating the GPS coordinates
of images and videos, using all the data available including tags, audio, and users.

• Violent Scenes Detection in Film: automatically detecting portions of movies
depicting violence. Again, all aspects available such as text and audio could be
brought into play.

• Preserving Privacy in Surveillance Videos: methods obscuring private information
(such as faces on Google Earth), so as to render privacy-sensitive elements of video
unrecognizable, while at the same time allowing the video to still be viewable by
people and also allow computer vision tasks such as object tracking.

• Spoken Term Web Search: searching for audio content within audio content by
using an audio query.

• Question Answering for the Spoken Web: a variant on the above, specifically for
matching spoken questions with a collection of spoken answers.

• Soundtrack Selection for Commercials: choosing the most suitable music
soundtrack from a list of candidates. The objective here is to use extra features
(“meta-data”) such as text, descriptive features calculated for audio and for video,
webpages, and social tags to help in the task.

Solutions to these challenges can be difficult, but the impact can be enormous, not
only to the IT industry, but also to everyone, as we all live in a digital multimedia
world. We want this textbook to bring valuable knowledge about multimedia to you,
and hope you enjoy it and perhaps even contribute to this promising field (maybe for
some of the topics listed above, or beyond) in your future career!

1.5 Exercises

1. Using your own words, describe what is “multimedia”? Is multimedia simply a
collection of different types of media?

2. Identify three novel multimedia applications. Discuss why you think these are
novel and their potential impact.

3. Discuss the relation between multimedia and hypermedia.
4. Briefly explain, in your own words, “Memex” and its role regarding hypertext.

Could we carry out the Memex task today? How do you use Memex ideas in your
own work?

1.5 Exercises 23

5. Discover a current media input, storage, or playback device that is analog. Is it
necessary to convert to digital? What are the pros and cons to be analog or digital?

6. Your task is to think about the transmission of smell over the Internet. Suppose
we have a smell sensor at one location and wish to transmit the Aroma Vector
(say) to a receiver to reproduce the same sensation. You are asked to design such
a system. List three key issues to consider and two applications of such a delivery
system. Hint: Think about medical applications.

7. Tracking objects or people can be done by both sight and sound. While vision
systems are precise, they are relatively expensive; on the other hand, a pair of
microphones can detect a person’s bearing inaccurately but cheaply. Sensor fusion
of sound and vision is thus useful. Surf the Web to find out who is developing
tools for video conferencing using this kind of multimedia idea.

8. Non-photorealistic graphics means computer graphics that do well enough with-
out attempting to make images that look like camera images. An example is
conferencing. For example, if we track lip movements, we can generate the right
animation to fit our face. If we do not much like our own face, we can substi-
tute another one—facial-feature modeling can map correct lip movements onto
another model. See if you can find out who is carrying out research on generating
avatars to represent conference participants’ bodies.

9. Watermarking is a means of embedding a hidden message in data. This could
have important legal implications: Is this image copied? Is this image doctored?
Who took it? Where? Think of “messages” that could be sensed while capturing
an image and secretly embedded in the image, so as to answer these questions.
(A similar question derives from the use of cell phones. What could we use to
determine who is putting this phone to use, and where, and when? This could
eliminate the need for passwords or others using the phone you lost.)

References

1. B. Newhall, The History of Photography: From 1839 to the Present, The Museum of Modern
Art (1982)

2. T. Gustavson, G. Eastman House, Camera: A History of Photography from Daguerreotype to
Digital (Sterling Signature, New York, 2012)

3. A. Koenigsberg, The Patent History of the Phonograph, (APM Press, Englewood, 1991),
pp. 1877–1912

4. L.M. David Jr., Sound Recording: The Life Story of a Technology, (Johns Hopkins University
Press, Baltimore, 2006)

5. Q.D. Bowers, K. Fuller-Seeley. One Thousand Nights at the Movies: An Illustrated History of
Motion Pictures, (Whitman Publishing, Atlanta, 2012), pp. 1895–1915

6. T.K. Sarkar, R. Mailloux, A.O. Arthur, M. Salazar-Palma, D.L. Sengupta, History of Wireless,
(Wiley-IEEE Press, Hoboken, 2006)

7. M. Hilmes, J. Jacobs, The Television History Book (Television, Media and Cultural Studies),
(British Film Institute, London, 2008)

8. N. Yankelovitch, N. Meyrowitz, A. van Dam, Reading and writing the electronic book, in
Hypermedia and Literary Studies, ed. by P. Delany, G.P. Landow (MIT Press, Cambridge,
1991)

9. V. Bush, in As We May Think, (The Atlantic Monthly, Boston, 1945)

24 1 Introduction to Multimedia

10. D. Engelbart, H. Lehtman, Working Together, (BYTE Magazine, Penticton, 1988), pp. 245–252
11. J. Duckett, HTML and CSS: Design and Build Websites, (Wiley, Hoboken, 2011)
12. K. Nahrstedt, R. Lienhart, M. Slaney, Special issue on the 20th anniversary of ACM SIGMM.

ACM Trans. Multimedia Comput. Commun. Appl. (TOMCCAP), (2013)
13. A.D. Bagdanov, A.D. Bimbo, F. Dini, G. Lisanti, I. Masi, Posterity logging of face imagery

for video surveillance. IEEE Multimedia 19(4), 48–59 (2012)

2ATaste ofMultimedia

2.1 Multimedia Tasks and Concerns

Multimedia content is ubiquitous in software all around us, including in our phones,
of course. We are interested in this subject from a computer science and engineer-
ing point of view, and we are also interested in making interactive applications (or
“presentations”), using video editors such as Adobe Premiere or Cyberlink Pow-
erDirector and still-image editors such as Adobe Photoshop in the first instance, but
then combining the resulting resources into interactive programs by making use of
“authoring” tools such as Flash and Director that can include sophisticated program-
ming. Multimedia often generates problems and considerations that have a more
general computer science flavor. For example, most cameras now are smart enough
to find faces (with reasonable success)—but just recently such a task was firmly in
the domain of Computer Vision, i.e., a branch of Artificial Intelligence dealing with
trying to understand image content. So such more basic concerns do impact multi-
media as it now appears in products, and will tend to increasingly influence the field.
Continuing in the Computer Vision direction, a camera owner might be encouraged
to think like a computer scientist and ask “What is going on in an image?” A less
high-level question is “Where has this image been taken?” (scene recognition), or
“Does the image contain a particular object?” (object classification). A still quite
difficult question is “Where is an object of interest?” (object detection). And a lower
level question might be “Which object does each pixel belong to?” (image segmen-
tation). Thus it does not take long before we find ourselves fully engaged in a classic
Computer Vision hierarchy of high-level to detailed description of an image, with
scene recognition at the top and image segmentation at the bottom.

In this text, we take a moderate approach to difficulty level, and do not presume
to answer such sophisticated questions as those posed above. Nonetheless, studying
the fundamentals of the multimedia problem is indeed a fruitful concern and our aim
in the book is to give readers the tools they would need to eventually tackle such
difficult questions, for example in a work situation.

Z.-N. Li et al., Fundamentals of Multimedia, 25
Texts in Computer Science, DOI: 10.1007/978-3-319-05290-8_2,
© Springer International Publishing Switzerland 2014

26 2 A Taste of Multimedia

2.2 Multimedia Presentation

In this section, we briefly outline some effects to keep in mind for presenting multi-
media content as well as some useful guidelines for content design [1,2].

Graphics Styles

Careful thought has gone into combinations of color schemes and how lettering is
perceived in a presentation. Many presentations are meant for business projected
displays, rather than appearing on a screen close to the eye. Human visual dynamics
are considered in regard to how such presentations must be constructed. Most of the
observations here are drawn from Vetter et al. [3], as is Fig. 2.1.

Color Principles and Guidelines

Some color schemes and art styles are best combined with a certain theme or style.
Color schemes could be, for example, natural and floral for outdoor scenes and solid
colors for indoor scenes. Examples of art styles are oil paints, watercolors, colored
pencils, and pastels.

A general hint is to not use too many colors, as this can be distracting. It helps
to be consistent with the use of color—then color can be used to signal changes in
theme.

Fonts

For effective visual communication, large fonts (18 to 36 points) are best, with no
more than six to eight lines per screen. As shown in Fig. 2.1, sans serif fonts work
better than serif fonts (serif fonts are those with short lines stemming from and at an
angle to the upper and lower ends of a letter’s strokes). Figure 2.1 shows a comparison
of two screen projections, (Figs. 2 and 3 from Vetter et al. [3]).

Figure 2.1 shows good use of color and fonts. It has a consistent color scheme,
uses large and all sans serif (Arial) fonts. The bottom figure is poor, in that too many
colors are used, and they are inconsistent. The red adjacent to the blue is hard to focus
on, because the human retina cannot focus on these colors simultaneously. The serif
(Times New Roman) font is said to be hard to read in a darkened, projection setting.
Finally, the lower right panel does not have enough contrast—pretty pastel colors
are often usable only if their background is sufficiently different.

A Color Contrast Program

Seeing the results of Vetter et al.’s research, we constructed a small Visual Basic
program 1 to investigate how readability of text colors depends on color and the
color of the background.

1 See http://www.cs.sfu.ca/mmbook. There, both the executable and the program source are given.

http://www.cs.sfu.ca/mmbook

2.2 Multimedia Presentation 27

Fig. 2.1 Colors and fonts. Courtesy of Ron Vetter

The simplest approach to making readable colors on a screen is to use the principal
complementary color as the background for text. For color values in the range 0–1
(or, effectively, 0–255), if the text color is some triple (Red, Green, Blue), or (R, G, B)
for short, a legible color for the background is likely given by that color subtracted
from the maximum:

(R,G, B) ⇒ (1 − R, 1 − G, 1 − B) (2.1)

That is, not only is the color “opposite” in some sense (not the same sense as artists
use), but if the text is bright, the background is dark, and vice versa.

In the Visual Basic program given, sliders can be used to change the background
color. As the background changes, the text changes to equal the principal comple-
mentary color. Clicking on the background brings up a color-picker as an alternative
to the sliders.

28 2 A Taste of Multimedia

Fig. 2.2 Program to investigate colors and readability

Fig. 2.3 Color wheel

If you feel you can choose a better color combination, click on the text. This
brings up a color picker not tied to the background color, so you can experiment.
(The text itself can also be edited.) A little experimentation shows that some color
combinations are more pleasing than others—for example, a pink background and
forest green foreground, or a green background and mauve foreground. Figure 2.2
shows this small program in operation.

Figure 2.3 shows a “color wheel,” with opposite colors equal to (1 − R, 1 − G,
1 − B). An artist’s color wheel will not look the same, as it is based on feel rather
than on an algorithm. In the traditional artist’s wheel, for example, yellow is opposite
magenta, instead of opposite blue as in Fig. 2.3, and blue is instead opposite orange.

2.2 Multimedia Presentation 29

(a) (b) (c)

Fig. 2.4 Sprite creation: a original; b mask image M ; and c sprite S. “Duke” figure courtesy of
Sun Microsystems

Sprite Animation

Sprites are often used in animation. For example, in Adobe Director (this used to be
Macromedia Director), the notion of a sprite is expanded to an instantiation of any
resource. However, the basic idea of sprite animation is simple. Suppose we have
produced an animation figure, as in Fig. 2.4a. Then it is a simple matter to create a
1-bit mask M , as in Fig. 2.4b, black on white, and the accompanying sprite S, as in
Fig. 2.4c.

Now we can overlay the sprite on a colored background B, as in Fig. 2.5a, by first
ANDing B and M , then ORing the result with S, with the final result as in Fig. 2.5e.
Operations are available to carry out these simple compositing manipulations at
frame rate and so produce a simple 2D animation that moves the sprite around the
frame but does not change the way it looks.

VideoTransitions

Video transitions can be an effective way to indicate a change to the next section.
Video transitions are syntactic means to signal “scene changes” and often carry
semantic meaning. Many different types of transitions exist; the main types are cuts,
wipes, dissolves, fade-ins, and fade-outs.

A cut, as the name suggests, carries out an abrupt change of image contents in
two consecutive video frames from their respective clips. It is the simplest and most
frequently used video transition.

A wipe is a replacement of the pixels in a region of the viewport with those from
another video. If the boundary line between the two videos moves slowly across
the screen, the second video gradually replaces the first. Wipes can be left-to-right,
right-to-left, vertical, horizontal, like an iris opening, swept out like the hands of a
clock, and so on.

30 2 A Taste of Multimedia

Fig. 2.5 Sprite animation: a Background B; b Mask M ; c B and M ; d Sprite S; e B and M or S

A dissolve replaces every pixel with a mixture over time of the two videos, grad-
ually changing the first to the second. A fade-out is the replacement of a video by
black (or white), and fade-in is its reverse. Most dissolves can be classified into two
types, corresponding, for example, to cross dissolve and dither dissolve in Adobe
Premiere video editing software.

In type I (cross dissolve), every pixel is affected gradually. It can be defined as

D = (1 − α(t)) · A+ α(t) · B (2.2)

where A and B are the color 3-vectors for video A and video B. Here, α(t) is a
transition function, which is often linear with time t :

α(t) = kt, with ktmax ≡ 1 (2.3)

Type II (dither dissolve) is entirely different. Determined by α(t), increasingly
more and more pixels in video A will abruptly (instead of gradually, as in Type I)
change to video B. The positions of the pixels subjected to the change can be random
or sometimes follow a particular pattern.

Obviously, fade-in and fade-out are special types of a Type I dissolve, in which
video A or B is black (or white). Wipes are special forms of a Type II dissolve, in
which changing pixels follow a particular geometric pattern.

Despite the fact that many digital video editors include a preset number of video
transitions, we may also be interested in building our own. For example, suppose we
wish to build a special type of wipe that slides one video out while another video
slides in to replace it. The usual type of wipe does not do this. Instead, each video
stays in place, and the transition line moves across each “stationary” video, so that
the left part of the viewport shows pixels from the left video, and the right part shows
pixels from the right video (for a wipe moving horizontally from left to right).

2.2 Multimedia Presentation 31

Fig. 2.6 a VideoL ; b VideoR ; c VideoL into place and pushing out VideoR

Suppose we would like to have each video frame not held in place, but instead
move progressively farther into (out of) the viewport: we wish to slide VideoL in
from the left and push out VideoR . Figure 2.6 shows this process. Each of VideoL
and VideoR has its own values of R, G, and B. Note that R is a function of position
in the frame, (x, y), as well as of time t . Since this is video and not a collection of
images of various sizes, each of the two videos has the same maximum extent, xmax.
(Premiere actually makes all videos the same size—the one chosen in the preset
selection—so there is no cause to worry about different sizes).

As time goes by, the horizontal location xT for the transition boundary moves
across the viewport from xT = 0 at t = 0 to xT = xmax at t = tmax. Therefore, for
a transition that is linear in time, xT = (t/tmax)xmax.

So for any time t , the situation is as shown in Fig. 2.7a. The viewport, in which we
shall be writing pixels, has its own coordinate system, with the x-axis from 0 to xmax.
For each x (and y) we must determine Fig. 2.7a from which video we take RGB,
i.e., (Red, Green, Blue) values, and Fig. 2.7b from what x position in the unmoving
video we take pixel values—that is, from what position x from the left video, say,
in its own coordinate system. It is a video, so of course the image in the left video
frame is changing in time.

Let us assume that dependence on y is implicit. In any event, we use the same y as
in the source video. Then for the red channel (and similarly for the green and blue),
R = R(x, t). Suppose we have determined that pixels should come from VideoL .
Then the x-position xL in the unmoving video should be xL = x + (xmax − xT),
where x is the position we are trying to fill in the viewport, xT is the position in the
viewport that the transition boundary has reached, and xmax is the maximum pixel
position for any frame.

To see this, we note from Fig. 2.7b that we can calculate the position xL in VideoL ’s
coordinate system as the sum of the distance x , in the viewport, and the difference
xmax − xT .

Substituting the fact that the transition moves linearly with time, xT = xmax
(t/tmax), we can set up a pseudocode solution as in Fig. 2.8. In Fig. 2.8, the slight
change in formula if pixels are actually coming from VideoR instead of from VideoL
is easy to derive.

The Exercise section below contains suggestions for further such video transitions.
As a computer scientist or engineer, you should be easily capable of constructing your
own video transitions, rather than relying on simply choosing items from a menu.

32 2 A Taste of Multimedia

xT xmax0

y

x

VideoL

Viewport

VideoR

(a)

xmax

xmax − xT

xT

x

0

y

x

(b)

Fig.2.7 a Geometry of VideoL pushing out VideoR ; b Calculating position in VideoL from where
pixels are copied to the viewport

Fig. 2.8 Pseudocode for slide video transition

A career in multimedia involves addressing interesting and sometimes challenging
tasks that no-one actually solved before!

2.3 Data Compression

One of the most evident and important challenges of using multimedia is the necessity
to compress data. Table 2.1 shows some values for standard-definition and for high-
definition broadcast video. Clearly, we need excellent and fast data compression in

2.3 Data Compression 33

Table 2.1 Uncompressed
video sizes Standard definition video

640×480 full color = 922 kB/frame
@ 30 frames/s = 28 MB/s

= 221 Mb/s
× 3,600 s/h = 100 GB/h
High definition video
1,920×1,080 full color = 6.2 MB/frame
@ 30 frames/s = 187 MB/s

= 1.5 Gb/s
× 3,600 s/h = 672 GB/h

order to avoid such high data rates that cause problems for storage and networks, if
we tried to share such data, and also for disk I/O.

How much compression is required? In effect, this depends on the application, on
the capability of the viewing computer and display, and on the bandwidth (in bits per
second) available to perhaps stream and certainly to view the decompressed result.

In the ubiquitous JPEG image compression standard the amount of compression
is controlled by a value Q in the range 0–100 (and see Sect. 9.1 for details). The
“quality” of the resulting image is best for Q = 100 and worst for Q = 0.

Figure 2.9a shows an original, uncompressed image taken by a digital camera that
allows full-accuracy images to be captured, with no data compression at all. For this
image, there are 364 rows and 485 columns of pixel data (reduced from 2424 by
3232 to better see the effect of Q); so with 8-bit accuracy in each of Red, Green, and
Blue pixel values, the total file size is 364×485×3 = 529, 620 bytes (not including
file-header information, which stores such values as the row and column size).

In Table 2.2 we show results using different Quality Factors in JPEG compression.
Indeed, we can greatly shrink the file size down, but for small values of Q the resulting
image is poor.

We can see in Fig. 2.9 that while Q = 25 is not terrible, if we insist on going
down to a Quality Factor of Q = 5 we do end up with an unusable image. However
this exercise does shows us something interesting: the color part, as opposed to the
black-and-white (i.e., the grayscale) may well be the less noticeable problem for
high compression ratios (i.e., low amounts of data surviving compression). We will
see how color and grayscale are in fact treated differently, in Chap. 9.

Compression indeed saves the day, but at a price too. JPEG compression can effect
a compression ratio of 25:1 with little loss of quality. For video compression the
MPEG video compression standard, set out in Chap. 11, can produce a compression
ratio of 100:1 while retaining reasonable quality (Fig. 2.9).

However, let us look at how expensive image and video processing is in terms of
processing in the CPU. Suppose we have an image whose pixels we wish to darken,
by a factor of 2. The following code fragment is pseudocode for such an operation:

http://dx.doi.org/10.1007/978-3-319-05290-8_9
http://dx.doi.org/10.1007/978-3-319-05290-8_9
http://dx.doi.org/10.1007/978-3-319-05290-8_11

34 2 A Taste of Multimedia

Fig. 2.9 JPEG compression: a original uncompressed image; b JPEG compression with Quality
Factor Q = 75 (the typical default); c, d Factors Q = 25 and Q = 5

Table 2.2 JPEG file sizes (bytes) and percentage size of data for JPEG compression with Quality
Factor Q = 75, 25, and 5

Quality factor Compressed file size Percentage of original (%)

– 529,620 100
75 37,667 7.11
25 16,560 3.13
5 5,960 1.13

for x = 1 to columns
for y 1 to rows

image[x,y].red /= 2;
image[x,y].green /= 2;
image[x,y].blue /= 2;

}
}

On a RISC machine, the loop amounts to one increment, one check, and one branch
instruction. There are also three loads, three shifts, and three stores. This makes a
total of 12 instructions per pixel, i.e., per 3 bytes. So, we have 4 instructions per
image-byte. For standard-definition video we have 28 MB/s, meaning 28 × 4 = 112

2.3 Data Compression 35

mega-instructions per second. For high-definition, at 187 MB/s, we need 748 mega-
instructions per second.

This is certainly possible. However, JPEG compression takes some 300 instruc-
tions per pixel, or in other words 100 instructions per image byte. This yields numbers
of 2.8 billion instructions per second for standard-definition and 19 billion instruc-
tions per second for high-definition, which begins to be a real constraint! Clearly,
clever techniques are required, and we will view these in later chapters.

Other issues arise from trying to interact with multiple streams of data; e.g., what
happens if we tried to show video of a news interview, plus some video of background
information, plus data streams of additional information, etc. Is compositing (putting
together) such information first, and then compressing the best way forward? Or is
compositing at the receiver end? Multimedia tends to open up new questions on
Computer Science itself. Multiple data streams place new burdens on operating
systems, in terms of scheduling and resource management.

In addition, new capabilities can imply new demands: what happens if the rock
band needs to rehearse music together, but they are not in the same place (a Distrib-
uted Music problem). The question becomes one of how much latency (time-lag)
is acceptable when we are doing compression, for various applications. For music
rehearsal, all the band members have to hit the lead note at very close to the same
time!

2.4 Multimedia Production

A multimedia project can involve a host of people with specialized skills. In this book
we emphasize technical aspects, but also multimedia production can easily involve
an art director, graphic designer, production artist, producer, project manager, writer,
user interface designer, sound designer, videographer, and 3D and 2D animators, as
well as programmers.

The production timeline would likely only involve programming when the project
is about 40 % complete, with a reasonable target for an alpha version (an early
version that does not contain all planned features) being perhaps 65–70 % complete.
Typically, the design phase consists of storyboarding, flowcharting, prototyping, and
user testing, as well as a parallel production of media. Programming and debugging
phases would be carried out in consultation with marketing, and the distribution
phase would follow.

A storyboard depicts the initial idea content of a multimedia concept in a series
of sketches. These are like “keyframes” in a video—the story hangs from these
“stopping places.” A flowchart organizes the storyboards by inserting navigation
information—the multimedia concept’s structure and user interaction. The most
reliable approach for planning navigation is to pick a traditional data structure. A
hierarchical system is perhaps one of the simplest organizational strategies.

Multimedia is not really like other presentations, in that careful thought must
be given to organization of movement between the “rooms” in the production. For

36 2 A Taste of Multimedia

example, suppose we are navigating an African safari, but we also need to bring
specimens back to our museum for close examination—just how do we effect the
transition from one locale to the other? A flowchart helps imagine the solution.

The flowchart phase is followed by development of a detailed functional specifi-
cation. This consists of a walk-through of each scenario of the presentation, frame
by frame, including all screen action and user interaction. For example, during a
mouseover for a character, the character reacts, or a user clicking on a character
results in an action.

The final part of the design phase is prototyping and testing. Some multimedia
designers use a specialized multimedia authoring tool at this stage already, even if the
intermediate prototype will not be used in the final product or continued in another
tool. User testing is, of course, extremely important before the final development
phase.

2.5 Multimedia Sharing and Distribution

Multimedia content, once produced, needs to be published and then shared among
users. In recent years, traditional storage and distribution media, such as optical
disks, have been largely replaced by USB flash drives or solid-state drives (SSD), or
more conveniently, the Internet.

Consider YouTube, the most popular video sharing site over the Internet, as an
example. A user can easily create a Google account and channel (as YouTube is now
owned by Google), and then upload a video, which will be shared to everyone or to
selected users. YouTube further enables titles and tags that are used to classify the
videos and link similar videos together (shown as a list of related videos). Figure 2.10
shows the webpage for uploading a video from a local computer to YouTube. The
video, captured by us for a 1905 Edison Fireside phonograph with a cygnet horn
playing a cylinder record, can be searched from YouTube’s homepage with “Edison
Phonograph Multimedia Textbook,” which was the title and tag supplied by us.

Figure 2.11 shows the YouTube page of this video. It also offers a list of related
videos, recommended by YouTube using the title and the tags. Ideally, we expect
that it is linked to other videos about Edison phonographs or multimedia textbooks.
The results shown in Fig. 2.11 are not exactly what we would expect, but they do
relate to a certain degree. Note here only the texts of titles and tags are used for
related videos, not the video content itself. Indeed, multimedia content retrieval
and recommendation remains quite difficult, and we will review some of the basic
techniques in Chap. 20.

The link to this video can be fed into such other social networking sites such as
Facebook or Twitter as well, potentially propagating to many users of interest in a
short time, as we will examine in Chap. 18.

The Internet is reshaping traditional TV broadcasting, as well. In the UK, the
BBC’s iPlayer has been successfully broadcasting high-quality TV programs to
both TV subscribers with set-top boxes and public Internet users with Adobe

http://dx.doi.org/10.1007/978-3-319-05290-8_20
http://dx.doi.org/10.1007/978-3-319-05290-8_18

2.5 Multimedia Sharing and Distribution 37

Fig.2.10 The webpage for uploading a YouTube video. The video, titled “Edison Phonograph Mul-
timedia Textbook” is open to all users (Privacy settings: Public) and can be searched in the YouTube
homepage using the title or tags. Note that the video thumbnails are automatically generated by
YouTube

Flashplayer since 2007; in the US, CNBC, Bloomberg Television, and Showtime
use live-streaming services from the BitGravity’s Content Distribution Network to
stream live television to paid subscribers. China, the largest Internet Protocol TV
(IPTV) market by subscribers (12.6 million) to date, is probably the most vigorous
market, seeing a wide range of technologies competing with each other and with
dedicated IPTV networks.

Users’ viewing habits are also changing. Compelling content is the core foundation
of any IPTV proposition, which remains true today; yet IPTV services are becoming
highly personalized, integrated, portable, and on-demand. Most service providers
are moving beyond basic video offerings toward richer user experiences, particularly
with the support for multi-screen viewing across TVs, PCs, tablets, and smartphones.
Meanwhile, 3D, multi-view, and multi-streaming are being developed, in which
multiple video streams from the same event are delivered to a user, who will be able
to switch between camera views. This is a real recognition by service providers of
what is happening in homes across the planet—that families are voraciously and
simultaneously consuming streamed high-definition video on devices other than the
traditional set-top box/TV pairs.

38 2 A Taste of Multimedia

Fig. 2.11 The YouTube page for the video uploaded. The list of related videos are shown on the
right side, and users can post their comments, too

The scaling challenge for multimedia content distribution however is enormous
[4]. To reach 100 million viewers, delivery of TV quality video encoded in MPEG-
4 (1.5 Mbps) will require an aggregate capacity of 1.5 Tbps. To put things into
perspective, consider two large-scale Internet video broadcasts: the CBS broadcast
of the NCAA tournament in March 2006, which at the peak had 268,000 simultaneous
viewers, and the opening ceremony of the London Summer Olympics in July 2012,
which drew a peak broadcast audience of 27.1 million, of which 9.2 million were
via BBC’s mobile site and 2.3 million on tablets. Even with low bandwidth Internet
video of 400 Kbps, the CBS/NCAA broadcast needs more than 100 Gbps server
and network bandwidth; on the busiest day of the London Olympics, BBC’s website
delivered 2.8 petabytes, with the peak traffic at 700 Gbps. These can hardly be handled

2.5 Multimedia Sharing and Distribution 39

by any single server. Later, in Chaps. 16 and 19, we will see effective solutions using
peer-to-peer, content distribution networks, or the cloud to deal with such challenges.

2.6 Some Useful Editing and Authoring Tools

This text is primarily concerned with principles of multimedia—the fundamentals
to be grasped for a real understanding of this subject. Nonetheless, we need real
vehicles for showing this understanding, and straight programming in C++ or Java is
not always the best way of showing your knowledge. Most introductory multimedia
courses ask you to at least start off with delivering some multimedia product (e.g.,
see Exercise 10).

Therefore, we will consider some popular authoring tools. Since the first step in
creating a multimedia application is probably creation of interesting video clips, we
start off with looking at a video editing tool. This is not really an authoring tool,
but video creation is so important that we include a small introduction to one such
program.

The tools we look at are the following (which all happen to be Adobe products):
• Premiere
• Director
• Flash.
While this is of course by no means an exhaustive list, these tools are often used in
creating multimedia content.

2.6.1 Adobe Premiere

Premiere Basics

Adobe Premiere is a very simple yet powerful video editing program that allows
you to quickly create a simple digital video by assembling and merging multimedia
components. It effectively uses a “score” authoring metaphor, in that components
are placed in “tracks” horizontally, in a Timeline window that in a sense resembles
a musical score.

The File > New Project command opens a window that displays a series
of “presets”—assemblies of values for frame resolution, compression method, and
frame rate. There are many preset options, many of which might conform to a
DV-NTSC or DV-PAL video standard, HDV, MPEG2, etc. depending on your instal-
lation.

Start by importing resources, such as AVI (Audio Video Interleave) video files
and WAV sound files and dragging them from the Project window onto tracks 1 or
2. (In fact, you can use up to 99 video and 99 audio tracks!).

Usually you see only three tracks: Video 1, Video 2, and Video 3. Video transitions,
meaning how we change from one video segment to another, are in the Effects window

http://dx.doi.org/10.1007/978-3-319-05290-8_16
http://dx.doi.org/10.1007/978-3-319-05290-8_19

40 2 A Taste of Multimedia

Fig. 2.12 Adobe Premiere screen

Transitions are dragged into the Transitions track from the Transition window, such
as a gradual replacement of Video 1 by Video 2 (a dissolve), sudden replacement
of random pixels in a checkerboard (a dither dissolve), or a wipe, with one video
sliding over another. There are many other transitions to choose from.

You can import WAV sound files by dragging them to Audio 1 or Audio 2 of the
Timeline window or to any additional sound tracks. You can edit the properties of
any sound track by right-clicking on it.

Figure 2.12 shows what a typical Premiere screen might look like. The yellow
ruler at the top of the Timeline window delineates the working timeline—drag it to
the right amount of time. The 1 s dropdown box at the bottom represents showing
one video keyframe per 1 s.

To “compile” the video, go to Sequence > Render Work Area to have a
look at the product you are making, and save the project as a .prproj file. To save
the movie, select File > Export > Movie. Now it gets interesting, because
you must make some choices here, involving how and in what format the movie is to
be saved. Figure 2.13 shows the project options. The dialogs that tweak each codec
are provided by the codec manufacturer; bring these up by clicking on the parts of the
project being controlled in a panel or via a Configure button. Compression codecs
(compression–decompression protocols) are often in hardware on the video capture
card. If you choose a codec that requires hardware assistance, someone else’s system
may not be able to play your brilliant digital video, and all is in vain!

2.6 Some Useful Editing and Authoring Tools 41

Fig. 2.13 a Adobe Premiere output options in project settings; b Adobe Premiere submenu for
compression options

Images can also be inserted into tracks. We can use transitions to make the images
gradually appear or disappear in the final video window. To do so, set up a “mask”
image, as in Fig. 2.14. Here, we have imported an Adobe Photoshop layered image,
with accompanying alpha channel made in Photoshop.

Then in Premiere, we click on the image, which has been placed in its own video
track, and in the Effect Controls window, click the triangle next to the Opacity prop-
erty to enter a new opacity value, making the image partially transparent. Premiere
controls making the face shown in the image have a transparent background using
the alpha channel. It is also simple to use Motion effect to have the image fly in and
out of the frame.

In Photoshop, we set up an alpha channel as follows:
1. Use an image you like—a .JPG, say.
2. Make the background some solid color—white, say.
3. Make sure you have chosen Image > Mode > RGB Color.

42 2 A Taste of Multimedia

Fig. 2.14 Adobe Premiere preview clip viewer, for an Adobe Photoshop image with an alpha-
channel layer. a: RGB channels: color on white background. b: Alpha channel: black on white
background

4. Select that background area (you want it to remain opaque in Premiere)—use the
magic wand tool.

5. Go to Select > Save Selection....
6. Ensure that Channel = New. Press OK.
7. Go toWindow > Show Channels, double-click the new channel, and rename

it Alpha; make its color (0, 0, 0).
8. Save the file as a PSD.

If the alpha channel you created in Photoshop (the “key” we’re using) has a white
background, you will need to reverse the key in Premiere.

Premiere has its own simple method of creating titles (to give credit where credit
is due) for your digital video.

Another nice feature of Premiere is that it is simple to use in capturing video from
old analog sources. To form a digital video from a videotape or camcorder input,
go to File > Capture. (The menu for video/audio capture options appears by
right-clicking the capture window.)

2.6.2 Adobe Director

DirectorWindows

Director is a complete environment (see Fig. 2.15) for creating interactive “movies.”
The movie metaphor is used throughout Director, and the windows used in the
program reflect this. The main window, on which the action takes place, is the Stage.

The other two main windows are Cast and Score. A Cast consists of resources
a movie may use, such as bitmaps, sounds, vector-graphics shapes, Flash movies,

2.6 Some Useful Editing and Authoring Tools 43

Fig. 2.15 Director: main windows

digital videos, and scripts. Cast members can be created directly or simply imported.
Typically you create several casts, to better organize the parts of a movie. Cast
members are placed on the Stage by dragging them there from the Cast window.
Because several instances may be used for a single cast member, each instance is
called a sprite. Typically, cast members are raw media, whereas sprites are objects
that control where, when, and how cast members appear on the stage and in the
movie.

Sprites can become interactive by attaching “behaviors” to them (for example,
make the sprite follow the mouse) either prewritten or specially created. Behaviors
are in the internal script language of Director, called Lingo. Director is a standard
event-driven program that allows easy positioning of objects and attachment of event
procedures to objects. A very useful part of Lingo is called Imaging Lingo, which
can directly manipulate images from within Director. This means that image manip-
ulation can be carried out in code, making for code-based visual effects.

The set of predefined events is rich and includes mouse events as well as network
events (an example of the latter would be testing whether cast members are down-
loaded yet). The type of control achievable might be to loop part of a presentation
until a video is downloaded, then continue or jump to another frame. Bitmaps are
used for buttons, and the most typical use would be to jump to a frame in the movie
after a button-click event.

The Score window is organized in horizontal lines, each for one of the sprites, and
vertical frames. Thus the Score looks somewhat like a musical score, in that time is
from left to right, but it more resembles the list of events in a MIDI file (see Chap.6.)

Both types of behaviors, prewritten and user-defined, are in Lingo. The Library
palette provides access to all prewritten behavior scripts. You can drop a behavior
onto a sprite or attach behaviors to a whole frame.

If a behavior includes parameters, a dialog box appears. For example, navigation
behaviors must have a specified frame to jump to. You can attach the same behavior to

http://dx.doi.org/10.1007/978-3-319-05290-8_6

44 2 A Taste of Multimedia

many sprites or frames and use different parameters for each instance. Most behaviors
respond to simple events, such as a click on a sprite or the event triggered when the
“playback head” enters a frame. Most basic functions, such as playing a sound, come
prepackaged. Writing your own user-defined Lingo scripts provides more flexibility.
Behaviors are modified using Inspector windows: the Behavior Inspector, or Property
Inspector.

Animation

Traditional animation (cel animation) is created by showing slightly different images
over time. In Director, this approach amounts to using different cast members in
different frames. To control this process more easily, Director permits combining
many cast members into a single sprite.

A less sophisticated-looking but simple animation is available with the tweening
feature of Director. Here, you specify a particular image and move it around the stage
without altering the original image. “Tweening” refers to the job of minor animators,
who used to have to fill in between the keyframes produced by more experienced
animators—a role Director fulfills automatically.

To prepare such an animation, specify the path on the stage for the tweened frames
to take. You can also specify several keyframes and the kind of curve for the animation
to follow between keyframes. You also specify how the image should accelerate and
decelerate at the beginning and end of the movement (“ease-in” and “ease-out”).
Figure 2.16 shows a tweened sprite.

A simple kind of animation called palette animation is also widely used. If images
are 8-bit, cycling through the color lookup table or systematically replacing lookup
table entries produces interesting (or strange) effects. Palette animation is explained
in detail in Sect. 3.1.7

The Score window’s important features are channels, frames, and the playback
head. The latter shows where we are in the score; clicking anywhere in the score
repositions the playback head. Channels are the rows in the Score and can contain
sprite instances of visible media. Therefore, these numbered channels are called
Sprite channels.

At the top of the Score window are Special Effects channels for controlling the
palettes, tempo, transitions, and sounds. Figure 2.17 shows these channels in the
Score window. Frames are numbered horizontally in the Sprite and Special Effects
channels. A frame is a single step in the movie, as in a traditional film. The movie’s
playback speed can be modified by resetting the number of frames per second.

Control

You can place named markers at any frame. Then the simplest type of control event
would be to jump to a marker. In Director parlance, each marker begins a Scene.
Events triggered for frame navigation are Go To Frame, Go To Marker, or Hold on

http://dx.doi.org/10.1007/978-3-319-05290-8_3

2.6 Some Useful Editing and Authoring Tools 45

Fig. 2.16 A tweened sprite

Fig. 2.17 Score window

Current Frame, which stops the movie at that frame. Behaviors for frames appear in
a Script Channel in the score window.

46 2 A Taste of Multimedia

Buttons are simply bitmaps with behaviors attached. You usually make use of two
bitmaps, one depicting the depressed state of the button and one for the undepressed
state. Then the built-in event on mouseUp effects the jump.

Lingo Scripts

Director uses four types of scripts: behaviors, scripts attached to cast members, movie
scripts, and parent scripts. Behaviors, movie scripts, and parent scripts all appear as
cast members in the Cast window.

A “behavior” is a Lingo script attached to a sprite or a frame. You might use a
script to determine whether a sprite moves, based on whether the user has clicked a
button. A useful feature is that a script can control when a multimedia resource is
played, depending on how much of the resource has already streamed from the Web.
To attach a behavior, drag it from a cast to a sprite or frame in the Score or on the
Stage.

Also used are Movie scripts, which are available to the entire movie. Movie scripts
can control event responses when a movie starts, stops, or pauses and can also respond
to events, such as key presses and mouse clicks. Parent scripts can be used to create
multiple instances of an object without adding cast members to the score.

User-written Lingo scripts can be used to create animation or to respond to typical
events, such as user actions with the keyboard and mouse. Scripts can also be used
to stream videos from the Internet, perform navigation, format text, and so on.

Lingo scripts also extend behaviors beyond what the Score alone can do. The
basic data type is a list, which is of course the fundamental data structure. Using
lists, you can manipulate arrays as well. Math operations and string handling are
also available. Lists are of two types: linear and property.

A linear list is simply a list as in LISP, such as [12,32,43]. A property list
is an association list, again as in LISP: each element contains two values separated
by a colon. Each property is preceded by a number sign. For example, statements to
create two different property lists to specify the Stage coordinates of two sprites are
as follows:

sprite1Location = [#left:100, #top:150, #right:300, #bottom:350]
sprite2Location = [#left:400, #top:550, #right:500, #bottom:750]

Lingo has many functions that operate on lists, such as append to add an element
to the end of a list and deleteOne to delete a value from a list.

Lingo Specifics

• The function the frame refers to the current frame.
• Special markers next or previous refer to adjacent markers (not adjacent

frames).

2.6 Some Useful Editing and Authoring Tools 47

• Function marker(-1) returns the identifier for the previous marker. If the frame
is marked and has a marker name, marker(0) returns the name of the current
frame; otherwise, it returns the name of the previous marker.

• movie “Jaws” refers to the start frame of the global movie named “Jaws”.
This would typically be the name of another Director movie. The referenceframe
100 of movie “Jaws” points into that movie. These details are well out-
lined in the Lingo Help portion of the online help.
Lingo is a standard, event-driven programming language. Event handlers are

attached to specific events, such as a mouseDown message. Scripts contain event
handlers. You attach a set of event handlers to an object by attaching the script to the
object.

3D Sprites

A sophisticated feature in Director is the ability to create, import, and manipulate
3D objects on the stage. For e.g., a simple 3D object that can be added in Director is
3D text.

Properties and Parameters

Lingo behaviors can be created with more flexibility by specifying behavior para-
meters. Parameters can change a behavior by supplying input to the behavior when
it is created. If no parameters are specified, a default value will be used.

Director Objects

Director has two main types of objects: those created in Lingo and those on the
Score. Parent scripts are used to create a new object in Lingo. A behavior can be
transformed into a parent script by changing the script type in the Property Inspector.
Parent scripts are different from other behaviors, in that parameters are passed into
the object when it is created in Lingo script.

Parent scripts can be created and changed only in Lingo, while objects in the Score
can only be manipulated. The most common objects used are the sprites in the Score.
Sprites can be used only in the same time period as the Lingo script referencing them.
Reference the sprite at the channel using theSprite keyword followed by the sprite
channel number.

2.6.3 Adobe Flash

Flash is a simple authoring tool that facilitates the creation of interactive movies.
Flash follows the score metaphor in the way the movie is created and the windows

48 2 A Taste of Multimedia

are organized. Here we give a brief introduction to Flash and provide some examples
of its use.

Windows

A movie is composed of one or more scenes, each a distinct part of the movie. The
command Insert > Scene creates a new scene for the current movie.

In Flash, components such as images and sound that make up a movie are called
symbols, which can be included in the movie by placing them on the Stage. The stage
is always visible as a large, white rectangle in the center window of the screen. Three
other important windows in Flash are the Timeline, Library, and Tools.

LibraryWindow

The Library window shows all the current symbols in the scene and can be toggled by
the Window > Library command. A symbol can be edited by double-clicking
its name in the library, which causes it to appear on the stage. Symbols can also be
added to a scene by simply dragging the symbol from the Library onto the stage.

TimelineWindow

The Timeline window manages the layers and timelines of the scene. The left portion
of the Timeline window consists of one or more layers of the Stage, which enables
you to easily organize the Stage’s contents. Symbols from the Library can be dragged
onto the Stage, into a particular layer. For example, a simple movie could have two
layers, the background and foreground. The background graphic from the library can
be dragged onto the stage when the background layer is selected.

Another useful function for layering is the ability to lock or hide a layer. Pressing
the circular buttons next to the layer name can toggle their hidden/locked state.
Hiding a layer can be useful while positioning or editing a symbol on a different
layer. Locking a layer can prevent accidental changes to its symbols once the layer
has been completed.

The right side of the Timeline window consists of a horizontal bar for each layer
in the scene, similar to a musical score. This represents the passage of time in the
movie. The Timeline is composed of a number of keyframes in different layers. An
event such as the start of an animation or the appearance of a new symbol must be
in a keyframe. Clicking on the timeline changes the current time in the movie being
edited.

2.6 Some Useful Editing and Authoring Tools 49

Fig. 2.18 Adobe Flash

ToolsWindow

The Tools window, which allows the creation and manipulation of images, is com-
posed of four main sections: Tools, View, Colors, and Options. Tools consists of
selection tools that can be used to demarcate existing images, along with several
simple drawing tools, such as the pencil and paint bucket. View consists of a zoom
tool and a hand tool, which allow navigation on the Stage. Colors allows foreground
and background colors to be chosen, and symbol colors to be manipulated. Options
allows additional options when a tool is selected. Figure 2.18 shows the basic Flash
screen.

Symbols

Symbols can be either composed from other symbols, drawn, or imported into Flash.
Flash is able to import several audio, image, and video formats into the symbol
library. Symbols can take on one of three behaviors: a button, a graphic, or a movie.
Symbols, such as a button, can be drawn using the Tools window.

50 2 A Taste of Multimedia

Buttons

To create a simple button, create a new symbol with the button behavior. The Timeline
window should have four keyframes: up, down, over, and hit. These keyframes
show different images of the button when the specified action is taken. Only the up
keyframe is required and is the default; all others are optional. A button can be drawn
by selecting the rectangular tool in the Tools window and then dragging a rectangle
onto the Stage.

To add images, so that the button’s appearance will change when an event is
triggered, click on the appropriate keyframe and create the button image. After at
least one keyframe is defined, the basic button is complete, although no action is yet
attached to it. Actions are discussed further in the ActionScripts section below.

Creating a symbol from other symbols is similar to creating a scene: drag the
desired symbols from the Library onto the Stage. This allows the creation of complex
symbols by combining simpler symbols.

Animation in Flash

Animation can be accomplished by creating subtle differences in each keyframe of a
symbol. In the first keyframe, the symbol to be animated can be dragged onto the stage
from the Library. Then another keyframe can be inserted, and the symbol changed.
This can be repeated as often as needed. Although this process is time-consuming,
it offers more flexibility than any other technique for animation. Flash also allows
specific animations to be more easily created in several other ways. Tweening can
produce simple animations, with changes automatically created between keyframes.

Tweening

There are two types of tweening: shape and movement tweening. Shape tweening
allows you to create a shape that continuously changes to a different shape over time.
Movement tweening allows you to place a symbol in different places on the Stage in
different keyframes. Flash automatically fills in the keyframes along a path between
the start and finish. More advanced tweening allows control of the path as well as of
acceleration. Movement and shape tweenings can be combined for additional effect.

Mask animation involves the manipulation of a layer mask—a layer that selec-
tively hides portions of another layer. For example, to create an explosion effect, you
could use a mask to cover all but the center of the explosion. Shape tweening could
then expand the mask, so that eventually the whole explosion is seen to take place.
Figure 2.19 shows a scene before and after a tweening effect is added.

2.6 Some Useful Editing and Authoring Tools 51

Fig. 2.19 Before and after tweening letters

Fig. 2.20 ActionScripts window

ActionScripts

ActionScripts allow you to trigger events such as moving to a different keyframe
or stopping the movie. ActionScripts can be attached to a keyframe or symbols in
a keyframe. Right-clicking on the symbol and pressing Actions in the list can
modify the actions of a symbol. Similarly, by right-clicking on the keyframe and
pressing Actions in the pop-up, you can apply actions to a keyframe. A Frame
Actions window will come up, with a list of available actions as well as the current
actions being applied. ActionScripts are broken into six categories: Basic Actions,
Actions, Operators, Functions, Properties, and Objects. Figure 2.20 shows the Frame
Actions window.

Basic Actions allow you to attach many simple actions to the movie. Some
common actions are
• Goto. Moves the movie to the keyframe specified and can optionally stop. The

stop action is commonly used to stop interactive movies when the user is given an
option.

• Play. Resumes the movie if the movie is stopped.
• Stop. Stops the movie if it is playing.

52 2 A Taste of Multimedia

• Tell Target. Sends messages to different symbols and keyframes in Flash. It
is commonly used to start or stop an action on a different symbol or keyframe.

The Actions category contains many programming constructs, such as Loops and
Goto statements. Other actions are also included, similar to those in typical high-
level, event-driven programming languages, such as Visual Basic. The Operators
category includes many comparison and assignment operators for variables. This
allows you to perform operations on variables in the ActionScript.

The Functions category contains built-in functions included in Flash that are
not specific to a Flash object. The Properties section includes all the global vari-
ables predefined in Flash. For example, to refer to the current frame, the variable
_currentframe is defined. The Objects section lists all objects, such as movie
clips or strings and their associated functions.

Buttons need ActionScripts—event procedures—so that pressing the button will
cause an effect. It is straightforward to attach a simple action, such as replaying the
Flash movie, to a button.

2.7 Exercises

1. What extra information is multimedia good at conveying?
(a) What can spoken text convey that written text cannot?
(b) When might written text be better than spoken text?

2. Find and learn Autodesk 3ds Max (formerly 3D Studio Max) in your local lab
software. Read the online tutorials to see this software’s approach to a 3D mod-
eling technique. Learn texture mapping and animation using this product. Make
a 3D model after carrying out these steps.

3. Design an interactive webpage using Adobe Dreamweaver. HTML 4 provides
layer functionality, as in Adobe Photoshop. Each layer represents an HTML
object, such as text, an image, or a simple HTML page (and the Adobe HTML5
Pack is an extension to Adobe Dreamweaver). In Dreamweaver, each layer has
a marker associated with it. Therefore, highlighting the layer marker selects the
entire layer, to which you can apply any desired effect. As in Flash, you can
add buttons and behaviors for navigation and control. You can create animations
using the Timeline behavior.

4. Suppose we wish to create a simple animation, as in Fig. 2.21. Note that this
image is exactly what the animation looks like at some time, not a figurative
representation of the process of moving the fish; the fish is repeated as it moves.
State what we need to carry out this objective, and give a simple pseudocode
solution for the problem. Assume we already have a list of (x, y) coordinates
for the fish path, that we have available a procedure for centering images on path
positions, and that the movement takes place on top of a video.

5. For the slide transition in Fig. 2.8, explain how we arrive at the formula for x in
the unmoving right video RR .

2.7 Exercises 53

Fig. 2.21 Sprite, progressively taking up more space

6. Suppose we wish to create a video transition such that the second video appears
under the first video through an opening circle (like a camera iris opening), as
in Fig. 2.22. Write a formula to use the correct pixels from the two videos to
achieve this special effect. Just write your answer for the red channel.

7. Now suppose we wish to create a video transition such that the second video
appears under the first video through a moving radius (like a clock hand), as in
Fig. 2.23. Write a formula to use the correct pixels from the two videos to achieve
this special effect for the red channel.

8. Suppose you wish to create a wavy effect, as in Fig. 2.24. This effect comes from
replacing the image x value by an x value offset by a small amount. Suppose the
image size is 160 rows × 120 columns of pixels.

(a) Using float arithmetic, add a sine component to the x value of the pixel such
that the pixel takes on an RGB value equal to that of a different pixel in the
original image. Make the maximum shift in x equal to 16 pixels.

(b) In Premiere and other packages, only integer arithmetic is provided. Functions
such as sin are redefined so as to take an int argument and return an int.
The argument to the sin function must be in 0 . . . 1,024, and the value of sin
is in −512 . . . 512: sin(0) returns 0, sin(256) returns 512, sin(512)
returns 0, sin(768) returns -512 and sin(1,024) returns 0. Rewrite
your expression in part (a) using integer arithmetic.

(c) How could you change your answer to make the waving time-dependent?

9. How would you create the color-wheel image in Fig. 2.3? Write a small program
to make such an image. Hint: Place R, G, and B at the corners of an equilateral
triangle inside the circle. It is best to go over all columns and rows in the output
image rather than simply going around the disk and trying to map results back
to (x, y) pixel positions.

54 2 A Taste of Multimedia

Fig. 2.22 Iris wipe: a iris is opening; b at a later moment

Fig. 2.23 Clock wipe: a clock hand is sweeping out; b at a later moment

10. As a longer exercise for learning existing software for manipulating images,
video, and music, make a 1-minute digital video. By the end of this exercise,
you should be familiar with PC- or Apple-based equipment and know how to use
a video editor (e.g., Adobe Premiere), an image editor (especially Photoshop),
some music notation program for producing MIDI, and perhaps digital-audio
manipulation software such as Adobe Audition, as well as other multimedia
software.

2.7 Exercises 55

Fig. 2.24 Filter applied to video

(a) Acquire (or find) at least three digital video files. You can either use a cam-
corder or download some from the net, or use the video setting on still-image
camera, phone, etc. (or, for interesting legacy video, use video-capture through
Premiere or an equivalent product to make your own, from an old analog Cam-
corder or VCR—this is challenging, and fun).

(b) Try to upload one of the videos to YouTube. Check the time that is taken to
upload the video, and discuss its relation with your video’s quality and size.
Is this time longer or shorter than the total playback time of the video?

(c) Compose (or edit) a small MIDI file with music-manipulation software.
(d) Create (or find) at least one WAV file (ok—could be MP3). You may either

digitize your own or find some on the net, etc. You might like to edit this
digital-audio file using software such as Audition, Audacity, etc.

(e) Use Photoshop to create a title and an ending. This is not trivial; however, you
cannot say you know about multimedia without having worked with Photo-
shop.
A useful feature to know in Photoshop is how to create an alpha channel:
• Use an image you like: a .JPG, say.
• Make the background some solid color, white, say.
• Make sure that you have chosen Image > Mode > RGB Color.
• Select that background area (you want it to remain opaque in Premiere):

MagicWandTool
• Select > Save Selection > Channel=New; OK

56 2 A Taste of Multimedia

• Window > ShowChannels; Double click the new channel and rename
it Alpha; make its color (0,0,0)

• Save the file as a .PSD
If the alpha channel you created in Photoshop has a white background, you will
need to choose ReverseKey in Premiere when you choose Transparency
> Alpha.

(f) Combine all of the above to produce a movie about 60 s long, including a title,
some credits, some soundtracks, and at least three transitions. The plotline of
your video should be interesting, to you!

(g) Experiment with different compression methods; you are encouraged to use
MPEG for your final product. We are very interested in seeing how the concepts
in the textbook go over into the production of actual video. Adobe Premiere
can use the DivX codec to generate movies, with the output movie actually
playable on (that) machine; but wouldn’t it be interesting to try various codecs?

(h) The above constitutes a minimum statement of the exercise. You may be
tempted to get very creative, and that is fine, but don’t go overboard and take
too much time away from the rest of your life!

References
1. A.C. Luther, Authoring Interactive Multimedia (The IBM Tools Series). AP Professional (1994)
2. D.E. Wolfgram, in Creating Multimedia Presentations (QUE, Indianapolis, 1994)
3. R. Vetter, C. Ward, S. Shapiro, Using color and text in multimedia projections. IEEE Multimed.

2(4), 46–54 (1995)
4. J. Liu, S.G. Rao, B. Li, H. Zhang, Opportunities and challenges of peer-to-peer internet video

broadcast. Proc. IEEE 96(1), 11–24 (2008)

3Graphics and ImageData
Representations

In this chapter we look at images, starting with 1-bit images, then 8-bit gray images
and how to print them, then 24-bit color images and 8-bit versions of color images.
The specifics of file formats for storing such images are also discussed.

We consider the following topics:
• Graphics/image data types
• Popular file formats.

3.1 Graphics/Image Data Types

The number of file formats used in multimedia continues to proliferate [1]. For
example, Table 3.1 shows a list of file formats used in the popular product Adobe
Premiere. In this chapter, we shall study just a few popular file formats, to develop a
sense of how they operate. We concentrate on GIF and JPG image file formats, since
the GIF file format is one of the simplest and contains several fundamental features,
and the JPG file format is arguably the most important overall.

To begin with, we discuss the features of file formats in general.

3.1.1 1-Bit Images

Images consist of pixels—picture elements in digital images. A 1-bit image consists
of on and off bits only and thus is the simplest type of image. Each pixel is stored as
a single bit (0 or 1). Hence, such an image is also referred to as a binary image.

It is also sometimes called a 1-bit monochrome image since it contains no
color. Figure 3.1 shows a 1-bit monochrome image (called “Lena” by multimedia
scientists—this is a standard image used to illustrate many algorithms). A 640×480
monochrome image requires 38.4 kilobytes (kB) of storage (= 640×480/8). Mono-
chrome 1-bit images can be satisfactory for pictures containing only simple graphics
and text. Moreover, fax machines use 1-bit data, so in fact 1-bit images are still

Z.-N. Li et al., Fundamentals of Multimedia, 57
Texts in Computer Science, DOI: 10.1007/978-3-319-05290-8_3,
© Springer International Publishing Switzerland 2014

58 3 Graphics and Image Data Representations

Table 3.1 Adobe Premiere
file formats Image Sound Video

BMP, AIFF, AVI, MOV,
GIF, JPG, AAC, AC3, DV, FLV,
EPS, PNG, MP3, MPG, MPG,
PICT, PSD, M4A, MOV, WMA, WMV,
TIF, TGA WMA SWF,

M4V, MP4,
MXF

Fig. 3.1 Monochrome 1-bit
Lena image

important even though storage capacities have increased enough to permit the use of
imaging that carries more information.

3.1.2 8-Bit Gray-Level Images

Now consider an 8-bit image—that is, one for which each pixel has a gray value
between 0 and 255. Each pixel is represented by a single byte—for example, a dark
pixel might have a value of 10, and a bright one might be 230.

The entire image can be thought of as a two-dimensional array of pixel values.
We refer to such an array as a bitmap—a representation of the graphics/image data
that parallels the manner in which it is stored in video memory.

Image resolution refers to the number of pixels in a digital image (higher resolution
always yields better quality). Fairly high resolution for such an image might be
1,600 × 1,200, whereas lower resolution might be 640 × 480. Notice that here we
are using an aspect ratio of 4:3. We do not have to adopt this ratio, but it has been
found to look natural. For this reason 4:3 was adopted for early TV (see Chap. 5)

http://dx.doi.org/10.1007/978-3-319-05290-8_5

3.1 Graphics/Image Data Types 59

Fig. 3.2 Bitplanes for 8-bit
grayscale image

Plane 0

Plane 7

Bitplane

and most early laptop screens. Later displays typically use an aspect ratio of 16:9,
to match high-definition video and TV.

Such an array must be stored in hardware; we call this hardware a frame buffer.
Special (relatively expensive) hardware called a “video” card (actually a graphics
card) is used for this purpose. The resolution of the video card does not have to
match the desired resolution of the image, but if not enough video card memory is
available, the data have to be shifted around in RAM for display.

We can think of the 8-bit image as a set of 1-bit bitplanes, where each plane
consists of a 1-bit representation of the image: a bit is turned on if the image pixel
has a nonzero value at that bit level.

Figure 3.2 displays the concept of bitplanes graphically. Each bitplane can have
a value of 0 or 1 at each pixel but, together, all the bitplanes make up a single
byte that stores values between 0 and 255 (in this 8-bit situation). For the least
significant bit, the bit value translates to 0 or 1 in the final numeric sum of the binary
number. Positional arithmetic implies that for the next, second bit each 0 or 1 makes
a contribution of 0 or 2 to the final sum. The next bits stand for 0 or 4, 0 or 8, and so
on, up to 0 or 128 for the most significant bit. Video cards can refresh bitplane data
at video rate but, unlike RAM, do not hold the data well. Raster fields are refreshed
at 60 cycles per second in North America and 50 cps in Europe.

Each pixel is usually stored as a byte (a value between 0 and 255), so a 640 × 480
grayscale image requires 300 kB of storage (640×480 = 307,200). Figure 3.3 shows
the Lena image again, this time in grayscale.

If we wish to print such an image, things become more complex. Suppose we have
available a 600 dot-per-inch (dpi) laser printer. Such a device can usually only print
a dot or not print it. However, a 600 × 600 image will be printed in a 1-inch space
and will thus not be very pleasing. Instead, dithering is used. The basic strategy of
dithering is to trade intensity resolution for spatial resolution. (See [2] for a good
discussion of dithering).

60 3 Graphics and Image Data Representations

Fig. 3.3 Grayscale image of
Lena

Dithering

For printing on a 1-bit printer, dithering is used to calculate larger patterns of dots,
such that values from 0 to 255 correspond to pleasing patterns that correctly represent
darker and brighter pixel values. The main strategy is to replace a pixel value by a
larger pattern, say 2×2 or 4×4, such that the number of printed dots approximates the
varying-sized disks of ink used in halftone printing. Half-tone printing is an analog
process that uses smaller or larger filled circles of black ink to represent shading, for
newspaper printing, say.

If instead we use an n × n matrix of on–off 1-bit dots, we can represent n2 + 1
levels of intensity resolution—since, for example, three dots filled in any way counts
as one intensity level. The dot patterns are created heuristically. For example, if we
use a 2 × 2 “dither matrix”: (

0 2
3 1

)

we can first remap image values in 0 .. 255 into the new range 0 .. 4 by (integer)
dividing by 256/5. Then, for example, if the pixel value is 0, we print nothing in a
2 × 2 area of printer output. But if the pixel value is 4, we print all four dots. So the
rule is:

If the intensity is greater than the dither matrix entry, print an on dot at that entry
location: replace each pixel by an n × n matrix of such on or off dots.

However, we notice that the number of levels, so far, is small for this type of
printing. If we increase the number of effective intensity levels by increasing the
dither matrix size, we also increase the size of the output image. This reduces the
amount of detail in any small part of the image, effectively reducing the spatial
resolution.

Note that the image size may be much larger for a dithered image, since replacing
each pixel by a 4 × 4 array of dots, say, makes an image 42 = 16 times as large.

3.1 Graphics/Image Data Types 61

Fig. 3.4 Dithering of grayscale images. a 8-bit gray image lenagray.bmp; b dithered version
of the image; c detail of dithered version

However, a clever trick can get around this problem. Suppose we wish to use a larger,
4 × 4 dither matrix, such as

⎛

⎜⎜⎝

0 8 2 10
12 4 14 6

3 11 1 9
15 7 13 5

⎞

⎟⎟⎠

Then suppose we slide the dither matrix over the image four pixels in the horizontal
and vertical directions at a time (where image values have been reduced to the range
0 . . . 16). An “ordered dither” consists of turning on the printer output bit for a pixel
if the intensity level is greater than the particular matrix element just at that pixel
position. Figure 3.4a shows a grayscale image of Lena. The ordered-dither version
is shown as in Fig. 3.4b, with a detail of Lena’s right eye in Fig. 3.4c. An algorithm
for ordered dither, with n × n dither matrix, is as follows:

Algorithm 3.1 Ordered Dither
begin

for x = 0 to xmax // columns
for y = 0 to ymax // rows

i = x mod n
j = y mod n
// I (x, y) is the input, O(x, y) is the output, D is the dither matrix.
if I (x, y) > D(i, j)

O(x, y) = 1;
else

O(x, y) = 0;
end

Foley et al. [2] provide more details on ordered dithering.

62 3 Graphics and Image Data Representations

3.1.3 Image Data Types

The following sections introduce some of the most common data types for graphics
and image file formats: 24-bit color and 8-bit color. We then discuss file formats.
There are some formats that are restricted to particular hardware/operating system
platforms (e.g., X-windows in Linux), while many others are platform-independent,
or cross-platform, formats. Even if some formats are not cross-platform, conversion
applications can recognize and translate formats from one system to another.

Most image formats incorporate some variation of a compression technique due
to the large storage size of image files. Compression techniques can be classified as
either lossless or lossy. We will study various image, video, and audio compression
techniques in Chaps. 7 through 14.

3.1.4 24-Bit Color Images

In a color 24-bit image, each pixel is represented by three bytes, usually representing
RGB. Since each value is in the range 0–255, this format supports 256 × 256 × 256,
or a total of 16,777,216, possible combined colors. However, such flexibility does
result in a storage penalty: a 640 × 480 24-bit color image would require 921.6 kB
of storage without any compression.

An important point to note is that many 24-bit color images are actually stored
as 32-bit images, with the extra byte of data for each pixel storing an α (alpha)
value representing special-effect information. (See [2] for an introduction to use of
the α-channel for compositing several overlapping objects in a graphics image. The
simplest use is as a transparency flag).

Figure 3.5 shows the image forestfire.bmp, a 24-bit image in Microsoft
Windows BMP format (discussed later in the chapter). Also shown are the grayscale
images for just the red, green, and blue channels, for this image. Taking the byte
values 0 .. 255 in each color channel to represent intensity, we can display a gray
image for each color separately.

3.1.5 Higher Bit-Depth Images

Among image formats that are usually not compressed if possible are ones that
require maximum faithfulness to the viewed scene for various reasons such as medical
liability. For example, an image of a patient’s liver had better represent the colors
red and purple, say, very accurately!

Other image formats recognize that more information about the scene being
imaged can be gained by using special cameras that view more than just three colors,
i.e., RGB. Here the idea might be to use invisible light (e.g., infrared, ultraviolet)
for security cameras, say, or to produce medical images of skin that can utilize the
additional colors to better diagnose skin ailments such as carcinoma. Another reason
for using high bit-depth is in satellite imaging, where extra information can give

http://dx.doi.org/10.1007/978-3-319-05290-8_7
http://dx.doi.org/10.1007/978-3-319-05290-8_14

3.1 Graphics/Image Data Types 63

Fig. 3.5 High-resolution color and separate R, G, B color channel images. a example of 24-bit
color image forestfire.bmp; (b, c, d) R, G, and B color channels for this image

indication of types of crop growth, etc.: here, the cost of simply lifting the camera
into high altitude or into space motivates the idea of obtaining as much information
as possible, perhaps even if we cannot as yet make use of all the data.

Such images are called multispectral (more than three colors) or hyperspectral (a
great many image planes, say 224 colors for satellite imaging).

In this chapter we shall stick to grayscale or RGB color images.

3.1.6 8-Bit Color Images

If space is a concern (and it almost always is—e.g. we don’t want to fill up our
smartphone memory needlessly), reasonably accurate color images can be obtained
by quantizing the color information to collapse it. Many systems can utilize color
information stored with only 8 bits of information (the so-called 256 colors) in
producing a screen image. Even if a system has the electronics to actually use 24-bit
information, backward compatibility demands that we understand 8-bit color image
files, as well as their being smaller in size and quite useful. We shall also see that
there are tricks that can be used only for such imagery.

8-bit color image files use the concept of a lookup table to store color information.
Basically, the image stores not color but just a set of bytes, each of which is an index
into a table with three byte values that specify the 24-bit color for a pixel with that
lookup table index. In a way, it is a bit like a paint-by-number children’s art set, with
number one perhaps standing for orange, number two for green, and so on—there is
no inherent pattern to the set of actual colors.

64 3 Graphics and Image Data Representations

Fig. 3.6 3D scatterplot of
RGB colors in
“forestfire.bmp”

It makes sense to carefully choose just which colors to represent best in the image:
if an image is mostly red sunset, it is reasonable to represent red with precision and
store only a few greens.

Suppose all the colors in a 24-bit image were collected in a 256 × 256 × 256
set of cells, along with the count of how many pixels belong to each of these colors
stored in that cell. For example, if exactly 23 pixels have RGB values (45, 200, 91)
then store the value 23 in a three-dimensional array, at the element indexed by the
index values [45, 200, 91]. This data structure is called a color histogram (see, e.g.,
[3,4]). It is a very useful tool for image transformation and manipulation in Image
Processing.

Figure 3.6 shows a 3D histogram of the RGB values of the pixels in
forestfire.bmp. The histogram has 16 × 16 × 16 bins and shows the count
in each bin in terms of intensity and pseudocolor. We can see a few important clus-
ters of color information, corresponding to the reds, yellows, greens, and so on, of the
forestfire image. Clustering in this way allows us to pick the most important
256 groups of color.

Basically, large populations in 3D histogram bins can be subjected to a split-and-
merge algorithm to determine the “best” 256 colors. Figure 3.7 shows the resulting
8-bit image in GIF format (discussed later in this chapter). Notice that the difference
between Fig. 3.5a, the 24-bit image, and Fig. 3.7, the 8-bit image, is reasonably
small. This is not always the case. Consider the field of medical imaging: would you
be satisfied with only a “reasonably accurate” image of your brain for potential laser
surgery? Likely not—and that is why consideration of 64-bit imaging for medical
applications is not out of the question.

Note the great savings in space for 8-bit images over 24-bit ones: a 640 × 480
8-bit color image requires only 300 kB of storage, compared to 921.6 kB for a color
image (again, without any compression applied).

3.1 Graphics/Image Data Types 65

Fig. 3.7 Example of an 8-bit color image

00011110 10111110 00111100

y B = 60
G = 190
R = 30

Memory value

25

0

25

255

BGR

Pixel value

0
0

N−1

y

0
0

N−1

M−1 Mx −1x

Fig. 3.8 Color LUT for 8-bit color images

3.1.7 Color LookupTables

Again, the idea used in 8-bit color images is to store only the index, or code value,
for each pixel. Then, if a pixel stores, say, the value 25, the meaning is to go to row
25 in a color lookup table (LUT). While images are displayed as two-dimensional
arrays of values, they are usually stored in row-column order as simply a long series
of values. For an 8-bit image, the image file can store in the file header information
just what 8-bit values for R, G, and B correspond to each index. Figure 3.8 displays
this idea. The LUT is often called a palette.

A color picker consists of an array of fairly large blocks of color (or a semicontin-
uous range of colors) such that a mouse click will select the color indicated. In reality,
a color picker displays the palette colors associated with index values from 0 to 255.
Figure 3.9 displays the concept of a color picker: if the user selects the color block
with index value 2, then the color meant is cyan, with RGB values (0, 255, 255).

A simple animation process is possible via simply changing the color table: this
is called color cycling or palette animation. Since updates from the color table are

66 3 Graphics and Image Data Representations

R G B

Cyan

0
1
2
3
4

0 255 255

255

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

2 2 2 2
2 2 2 2
2 2 2 2
2 2 2 2

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

4 4 4 4
4 4 4 4
4 4 4 4
4 4 4 4

5 5 5 5
5 5 5 5
5 5 5 5
5 5 5 5

3 3 3 3
3 3 3 3
3 3 3 3
3 3 3 3

7 7 7 7
7 7 7 7
7 7 7 7
7 7 7 7

8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8

6 6 6 6
6 6 6 6
6 6 6 6
6 6 6 6

. .
 .

Fig. 3.9 Color picker for 8-bit color: each block of the color picker corresponds to one row of the
color LUT

Fig. 3.10 a 24-bit color image lena.bmp; b version with color dithering; c detail of dithered
version

fast, this can result in a simple, pleasing effect, such as a marquee around a textbox
with colored balls that appear to move around the border of the box. Because of the
simplicity of changing the small palette data, tricks like this are possible for 8-bit
color images.

Dithering can also be carried out for color printers, using 1 bit per color channel
and spacing out the color with R, G, and B dots. Alternatively, if the printer or screen
can print only a limited number of colors, say using 8 bits instead of 24, color can
be made to seem printable, even if it is not available in the color LUT. The apparent
color resolution of a display can be increased without reducing spatial resolution by
averaging the intensities of neighboring pixels. Then it is possible to trick the eye
into perceiving colors that are not available, because it carries out a spatial blending
that can be put to good use. Figure 3.10a shows a 24-bit color image of Lena, and
Fig. 3.10b shows the same image reduced to only 5 bits via dithering. Figure 3.10c
shows a detail of the left eye.

3.1 Graphics/Image Data Types 67

How to Devise a Color LookupTable

In Sect. 3.1.6, we briefly discussed the idea of clustering to generate the most impor-
tant 256 colors from a 24-bit color image. However, in general, clustering is an
expensive and slow process. But we need to devise color LUTs somehow—how
shall we accomplish this?

The most straightforward way to make 8-bit lookup color out of 24-bit color would
be to divide the RGB cube into equal slices in each dimension. Then the centers of
each of the resulting cubes would serve as the entries in the color LUT, and simply
scaling the RGB ranges 0 .. 255 into the appropriate ranges would generate the 8-bit
codes.

Since humans are more sensitive to R and G than to B, we could shrink the R
range and G range 0 .. 255 into the 3-bit range 0 .. 7 and shrink the B range down to
the 2-bit range 0 .. 3, making a total of 8 bits. To shrink R and G, we could simply
divide the R or G byte value by (256/8 =) 32 and then truncate. Then each pixel
in the image gets replaced by its 8-bit index, and the color LUT serves to generate
24-bit color.

However, what tends to happen with this simple scheme is that edge artifacts
appear in the image. The reason is that if a slight change in RGB results in shifting
to a new code, an edge appears, and this can be quite annoying perceptually.

A simple alternate solution for this color reduction problem called the median-
cut algorithm does a better job (and several other competing methods do as well or
better). This approach derives from computer graphics [5]; here, we show a much
simplified version. The method is a type of adaptive partitioning scheme that tries to
put the most bits, the most discrimination power, where colors are most clustered.

The idea is to sort the R byte values and find their median. Then values smaller
than the median are labeled with a 0 bit and values larger than the median are labeled
with a 1 bit. The median is the point where half the pixels are smaller and half are
larger.

Suppose we are imaging some apples, and most pixels are reddish. Then the
median R byte value might fall fairly high on the red 0 .. 255 scale. Next, we consider
only pixels with a 0 label from the first step and sort their G values. Again, we label
image pixels with another bit (and this is the second bit assigned), 0 for those less
than the median in the greens and 1 for those greater. Now applying the same scheme
to pixels that received a 1 bit for the red step, we have arrived at 2-bit labeling for
all pixels.

Carrying on to the blue channel, we have a 3-bit scheme. Repeating all steps, R,
G, and B, results in a 6-bit scheme, and cycling through R and G once more results
in 8 bits. These bits form our 8-bit color index value for pixels, and corresponding
24-bit colors can be the centers of the resulting small color cubes.

You can see that in fact this type of scheme will indeed concentrate bits where
they most need to differentiate between high populations of close colors. We can
most easily visualize finding the median by using a histogramshowing counts

68 3 Graphics and Image Data Representations

Fig. 3.11 Histogram of R bytes for the 24-bit color image forestfire.bmp results in a 0 or 1
bit label for every pixel. For the second bit of the color table index being built, we take R values
less than the R median and label just those pixels as 0 or 1 according to whether their G value is
less or greater than the median of the G value. Continuing over R, G, B for 8 bits gives a color LUT
8-bit index

at position 0 .. 255. Figure 3.11 shows a histogram of the R byte values for the
forestfire.bmp image along with the median of these values, depicted as a
vertical line.

The 24-bit color image resulting from replacing every pixel by its corresponding
color LUT 24-bit color is only an approximation to the original 24-bit image, of
course, but the above algorithm does a reasonable job of putting most discriminatory
power where it is most needed—where small color shading differences will be most
noticeable. It should also be mentioned that several methods exist for distributing
the approximation errors from one pixel to the next. This has the effect of smoothing
out problems in the 8-bit approximation.

The more accurate version of the median-cut algorithm proceeds via the following
steps:
1. Find the smallest box that contains all the colors in the image.
2. Sort the enclosed colors along the longest dimension of the box.
3. Split the box into two regions at the median of the sorted list.
4. Repeat the above process in steps (2) and (3) until the original color space has

been divided into, say, 256 regions.
5. For every box, call the mean of R, G, and B in that box the representative (the

center) color for the box.

3.1 Graphics/Image Data Types 69

6. Based on the Euclidean distance between a pixel RGB value and the box cen-
ters, assign every pixel to one of the representative colors. Replace the pixel by
the code in a lookup table that indexes representative colors (in the table, each
representative color is 24-bits—8 bits each for R, G, and B).
This way, we might have a table of 256 rows, each containing three 8-bit values.

The row indices are the codes for the lookup table, and these indices are what are
stored in pixel values of the new, color quantized or palettized image.

3.2 Popular File Formats

Some popular image file formats are described below. One of the simplest is the 8-bit
GIF format, and we study it because it is easily understood, and also because of its
historical connection to the WWW and HTML markup language as the first image
type recognized by net browsers. However, currently the most important common
file format is JPEG, which will be explored in-depth in Chap. 9.

3.2.1 GIF

Graphics Interchange Format (GIF) was devised by UNISYS Corporation and Com-
puserve, initially for transmitting graphical images over phone lines via modems. The
GIF standard uses the Lempel-Ziv-Welch algorithm (a form of compression—see
Chap. 7), modified slightly for image scanline packets to use the line grouping of
pixels effectively.

The GIF standard is limited to 8-bit (256) color images only. While this produces
acceptable color, it is best suited for images with few distinctive colors (e.g., graphics
or drawing).

The GIF image format has a few interesting features, notwithstanding the fact that
it has been largely supplanted. The standard supports interlacing—the successive
display of pixels in widely spaced rows by a four-pass display process.

In fact, GIF comes in two flavors. The original specification is GIF87a. The later
version, GIF89a, supports simple animation via a Graphics Control Extension block
in the data. This provides simple control over delay time, a transparency index, and
so on. Software such as Corel Draw allows access to and editing of GIF images.

It is worthwhile examining the file format for GIF87 in more detail, since many
such formats bear a resemblance to it but have grown a good deal more complex than
this “simple” standard. For the standard specification, the general file format is as in
Fig. 3.12. The Signature is six bytes: GIF87a; the Screen Descriptor is a seven-byte
set of flags. A GIF87 file can contain more than one image definition, usually to fit
on several different parts of the screen. Therefore each image can contain its own
color lookup table, a Local Color Map, for mapping 8 bits into 24-bit RGB values.
However, it need not, and a global color map can instead be defined to take the place
of a local table if the latter is not included.

http://dx.doi.org/10.1007/978-3-319-05290-8_9
http://dx.doi.org/10.1007/978-3-319-05290-8_7

70 3 Graphics and Image Data Representations

GIF signature

Raster area

Repeated
1 to n times

. .
 .

. .
 .

GIF terminator

Local color map

Image descriptor

Global color map

Screen descriptor

Fig. 3.12 GIF file format

m = 1
cr + 1
pixel + 1

Background = color index of screen
background (color is defined from
the global color map or if none
specified, from the default map)

Background 6

7

Screen height Raster height in pixels (LSB first)

Raster width in pixels (LSB first)

Bits

 Screen width

Byte #

1

2

3

4

5

07 6 5 4 3 2 1

00 0 0 0 0 0 0

Global color map follows descriptor
bits of color resolution
bits/pixel in image

m cr 0 pixel

Fig. 3.13 GIF screen descriptor

The Screen Descriptor comprises a set of attributes that belong to every image in
the file. According to the GIF87 standard, it is defined as in Fig. 3.13. Screen Width
is given in the first two bytes. Since some machines invert the order MSB/LSB
(most significant byte/least significant byte—i.e., byte order), this order is specified.
Screen Height is the next two bytes. The ‘m’ in byte five is zero if no global color
map is given. Color resolution, “cr”, is 3 bits in 0 .. 7. Since this is an old standard
meant to operate on a variety of low-end hardware, “cr” is requesting this much color
resolution.

The next bit, shown as ‘0’, is extra and is not used in this standard. “Pixel” is
another 3 bits, indicating the number of bits per pixel in the image, as stored in the

3.2 Popular File Formats 71

Bits

7 0

Red intensity

Green intensity

Blue intensity

Red intensity

Green intensity

Blue intensity

Byte #

1

3

4

5

2

6

Red value for color index 0

Green value for color index 0

Blue value for color index 0

Red value for color index 1

Green value for color index 1

Blue value for color index 1

(continues for remaining colors)

6 5 4 3 2 1

. .
 .

Fig. 3.14 GIF color map

Bits

Image left

Image top

Image width

Image height

Byte #

1

3

4

5

6

7

8

9

10

Image separator character (comma)

Width of the image in pixels (LSB first)

Start of image in pixels from the
top of the screen (LSB first)

Height of the image in pixels (LSB first)

i = 0
i = 1
pixel + 1

m = 0
m = 1

6 57 04 3 2 1

0 00 1 0 1 1 0

Use global color map, ignore ‘pixel’
Local color map follows, use ‘pixel’
Image formatted in Sequential order
Image formatted in Interlaced order
bits per pixel for this image

2 Start of image in pixels from the
left side of the screen (LSB first)

m i 0 0 0 pixel

Fig. 3.15 GIF image descriptor

file. Although “cr” usually equals “pixel,” it need not. Byte six gives the color table
index byte for the background color, and byte seven is filled with zeros. For present
usage, the ability to use a small color resolution is a good feature, since we may be
interested in very low-end devices such as web-enabled wristwatches, say.

A color map is set up in a simple fashion, as in Fig. 3.14. However, the actual
length of the table equals 2pixel+1 as given in the screen descriptor.

72 3 Graphics and Image Data Representations

Image
row

0
1
2
3
4
5
6
7
8
9

10
11

*b2*21

2a

3a

3c

3b

1a

1b

4a

4b

4c

4d

4e

4f

Result

4b

4f

4d

4e

4c

4a

Pass 4

3a

3c

3b

Pass 3

2b

2a

Pass 2

1a

1b

Pass 1

. .
 .

Fig. 3.16 GIF four-pass interlace display row order

Each image in the file has its own Image Descriptor, defined as in Fig. 3.15.
Interestingly, the developers of this standard allowed for future extensions by ignoring
any bytes between the end of one image and the beginning of the next, identified by a
comma character. In this way, future enhancements could have been simply inserted
in a backward-compatible fashion.

If the interlace bit is set in the local Image Descriptor, the rows of the image
are displayed in a four-pass sequence, as in Fig. 3.16. Here, the first pass displays
rows 0 and 8, the second pass displays rows 4 and 12, and so on. This allows for a
quick sketch to appear when a web browser displays the image, followed by more
detailed fill-ins. The JPEG standard (below) has a similar display mode, denoted
progressive mode.

The actual raster data itself is first compressed using the LZW compression
scheme (see Chap. 7) before being stored.

The GIF87 standard also set out, for future use, how Extension Blocks could be
defined. Even in GIF87, simple animations can be achieved, but no delay was defined
between images, and multiple images simply overwrite each other with no screen
clears.

GIF89 introduced a number of Extension Block definitions, especially those to
assist animation: transparency and delay between images. A quite useful feature
introduced in GIF89 is the idea of a sorted color table. The most important colors
appear first, so that if a decoder has fewer colors available, the most important ones
are chosen. That is, only a segment of the color lookup table is used, and nearby
colors are mapped as well as possible into the colors available.

http://dx.doi.org/10.1007/978-3-319-05290-8_7

3.2 Popular File Formats 73

We can investigate how the file header works in practice by having a look at a par-
ticular GIF image. Figure 3.7 is an 8-bit color GIF image. To see how the file header
looks, we can simply use everyone’s favorite command in the Unix/Linux/MacOS
operating system: od (octal dump). In Unix,1 then, we issue the command

od -c forestfire.gif | head -2

and we see the first 32 bytes interpreted as characters:

G I F 8 7 a \208 \2 \188 \1 \247 \0 \0 \6 \3 \5
J \132 \24 |) \7 \198 \195 \ \128 U \27 \196 \166 & T

To decipher the remainder of the file header (after GIF87a), we use hexadecimal:
od -x forestfire.gif | head -2

with the result
4749 4638 3761 d002 bc01 f700 0006 0305
ae84 187c 2907 c6c3 5c80 551b c4a6 2654

The d002 bc01 following the Signature are Screen Width and Height; these are
given in least-significant-byte-first order, so for this file in decimal the Screen Width
is 0+13×16+2×162 = 720, and Screen Height is 11×16+12+1×162 = 444.
Then the f7 (which is 247 in decimal) is the fifth byte in the Screen Descriptor,
followed by the background color index, 00, and the 00 delimiter. The set of flags,
f7, in bits, reads 1, 111, 0, 111, or in other words: global color map is used,
8-bit color resolution, 0 separator, 8-bit pixel data.

3.2.2 JPEG

The most important current standard for image compression is JPEG [6]. This stan-
dard was created by a working group of the International Organization for Standard-
ization (ISO) that was informally called the Joint Photographic Experts Group and
is therefore so named. We shall study JPEG in greater detail in Chap. 9, but a few
salient features of this compression standard can be mentioned here.

The human vision system has some specific limitations, which JPEG takes advan-
tage of to achieve high rates of compression. The eye–brain system cannot see
extremely fine detail. If many changes occur within a few pixels, we refer to that
image segment as having high spatial frequency—that is, a great deal of change
in (x, y) space. This limitation is even more conspicuous for color vision than for
grayscale (black and white). Therefore, color information in JPEG is decimated (par-
tially dropped, or averaged) and then small blocks of an image are represented in the
spatial frequency domain (u, v), rather than in (x, y). That is, the speed of changes
in x and y is evaluated, from low to high, and a new “image” is formed by grouping
the coefficients or weights of these speeds.

1 CentOS version; older versions use slightly different syntax.

http://dx.doi.org/10.1007/978-3-319-05290-8_9

74 3 Graphics and Image Data Representations

Fig. 3.17 JPEG image with low quality specified by user

Weights that correspond to slow changes are then favored, using a simple trick:
values are divided by some large integer and truncated. In this way, small values are
zeroed out. Then a scheme for representing long runs of zeros efficiently is applied,
and voila!—the image is greatly compressed.

Since we effectively throw away a lot of information by the division and truncation
step, this compression scheme is “lossy” (although a lossless mode exists). What is
more, since it is straightforward to allow the user to choose how large a denominator
to use and hence how much information to discard, JPEG allows the user to set a
desired level of quality, or compression ratio (input divided by output).

As an example, Fig. 3.17 shows our forestfire image with a quality factor
Q = 10. (The usual default quality factor is Q = 75).

This image is a mere 1.5 % of the original size. In comparison, a JPEG image
with Q = 75 yields an image size 5.6 % of the original, whereas a GIF version of
this image compresses down to 23.0 % of the uncompressed image size.

3.2.3 PNG

One interesting development stemming from the popularity of the Internet is efforts
toward more system-independent image formats. One such format is Portable Net-
work Graphics (PNG).This standard is meant to supersede the GIF standard and
extends it in important ways. The motivation for a new standard was in part the
patent held by UNISYS and Compuserve on the LZW compression method. (Inter-
estingly, the patent covers only compression, not decompression: this is why the
Unix gunzip utility can decompress LZW-compressed files).

Special features of PNG files include support for up to 16 bits per pixel in each color
channel, i.e., 48-bit color—a large increase. Files may also contain gamma-correction

3.2 Popular File Formats 75

information (see Sect. 4.1.6) for correct display of color images and α-channel
information (up to 16 bits) for such uses as control of transparency. Instead of a
progressive display based on row-interlacing as in GIF images, the display progres-
sively displays pixels in a two-dimensional interlacing over seven passes through
each 8 × 8 block of an image. It supports both lossless and lossy compression with
performance better than GIF. PNG is widely supported by various web browsers and
imaging software.

3.2.4 TIFF

Tagged Image File Format (TIFF) is another popular image file format. Developed by
the Aldus Corporation in the 1980s, it was later supported by Microsoft. Its support
for attachment of additional information (referred to as “tags”) provides a great deal
of flexibility. The most important tag is a format signifier: what type of compression,
etc., is in use in the stored image. For example, TIFF can store many different types of
images: 1-bit, grayscale, 8-bit, 24-bit RGB, and so on. TIFF was originally a lossless
format, but an added tag allows you to opt for JPEG, JBIG, and even JPEG-2000
compressions. Since TIFF is not as user-controllable as JPEG, it does not provide
any major advantages over the latter for lossy compression. It is quite common to use
TIFF files to store uncompressed data. TIFF files are divided into sections, each of
which can store a bitmap image, a vector-based or stroke-based image (see Postscript
below), or other types of data. Each section’s data type is specified in its tag.

3.2.5 Windows BMP

BitMap (BMP) is one major system standard image file format for Microsoft Win-
dows. It uses raster graphics. BMP supports many pixel formats, including indexed
color (up to 8 bits per pixel), and 16, 24, and 32-bit color images. It makes use of
Run-Length Encoding (RLE) compression (see Chap. 7) and can fairly efficiently
compress 24-bit color images due to its 24-bit RLE algorithm. BMP images can
also be stored uncompressed. In particular, the 16-bit and 32-bit color images (with
α-channel information) are always uncompressed.

3.2.6 WindowsWMF

Windows MetaFile (WMF) is the native vector file format for the Microsoft Windows
operating environment. WMF files actually consist of a collection of Graphics Device
Interface (GDI) function calls, also native to the Windows environment. When a
WMF file is “played” (typically using the Windows PlayMetaFile() function)
the described graphic is rendered. WMF files are ostensibly device-independent and
unlimited in size. The later Enhanced Metafile Format Plus Extensions (EMF+)
format is device independent.

http://dx.doi.org/10.1007/978-3-319-05290-8_4
http://dx.doi.org/10.1007/978-3-319-05290-8_7

76 3 Graphics and Image Data Representations

3.2.7 Netpbm Format

PPM (Portable PixMap), PGM (Portable GrayMap), and PBM (Portable BitMap)
belong to a family of open-source Netpbm formats. These formats are mostly com-
mon in the linux/unix environments. They are sometimes also collectively known as
PNM or PAM (Portable AnyMap). These are either ASCII files or raw binary files
with an ASCII header for images. Because they are so simple, they can always be
used for cross-platform applications. They are widely supported by various software,
e.g., xv in X-windows, GIMP in Linux, and MAC OS, and work in Windows as well.

3.2.8 EXIF

Exchangeable Image File (EXIF) is an image format for digital cameras. It enables
the recording of image metadata (exposure, light source/flash, white balance, type of
scene, etc.) for the standardization of image exchange. A variety of tags (many more
than in TIFF) is available to facilitate higher quality printing, since information about
the camera and picture-taking conditions can be stored and used, e.g., by printers for
possible color-correction algorithms. The EXIF format is incorporated in the JPEG
software in most digital cameras. It also includes specification of file format for audio
that accompanies digital images.

3.2.9 PS and PDF

PostScript is an important language for typesetting, and many high-end printers have
a PostScript interpreter built into them. PostScript is a vector-based, rather than pixel-
based, picture language: page elements are essentially defined in terms of vectors.
With fonts defined this way, PostScript includes vector/structured graphics as well as
text; bit-mapped images can also be included in output files. Encapsulated PostScript
files add some information for including PostScript files in another document.

Several popular graphics programs, such as Adobe Illustrator, use PostScript.
Note, however, that the PostScript page description language does not provide com-
pression; in fact, PostScript files are just stored as ASCII. Therefore files are often
large, and in academic settings, it is common for such files to be made available only
after compression by some Unix utility, such as compress or gzip.

Therefore, another text + figures language has largely superseded PostScript in
non-academic settings: Adobe Systems Inc. includes LZW (see Chap. 7) compression
in its Portable Document Format (PDF) file format. As a consequence, PDF files
that do not include images have about the same compression ratio, 2:1 or 3:1, as
do files compressed with other LZW-based compression tools, such as the Unix
compress or gzip, or the PC-based winzip (a variety of pkzip) or WinRAR.
For files containing images, PDF may achieve higher compression ratios by using
separate JPEG compression for the image content (depending on the tools used to
create original and compressed versions). A useful feature of the Adobe Acrobat PDF

http://dx.doi.org/10.1007/978-3-319-05290-8_7

3.2 Popular File Formats 77

reader is that it can be configured to read documents structured as linked elements,
with clickable content and handy summary tree-structured link diagrams provided.

It is interesting for computer science and engineering students to know that the
name Postscript arose because its language is based on the stack data structure, with
postfix notation, where an operator follows its operands. The stroke-based graphics
feature in Postscript means that diagrams should appear with crisp lines on any output
device and, more importantly, at any zoom level (this said, low-resolution printers
will still produce low-resolution output). The idea is that the Postscript engine in the
output device (say, a screen) renders the stroke command as neatly as possible. For
example, if we execute a command 100 200 moveto, the Postscript interpreter
pushes an x and y position onto the stack; if we follow with 250 75 lineto and
stroke we get a line to the next point.

3.2.10 PTM

PTM (Polynomial Texture Mapping) is a technique for storing a representation of a
camera scene that contains information about a set of images taken under a set of
lights that each have the same spectrum, but with each placed at a different direction
from the scene [7].

Suppose we have acquired n images of a scene, taken with a fixed-position camera
but with lighting from i = 1 .. n different lighting directions ei = (ui , vi , wi)T .
For example, a hemispherical lighting frame could be used with, say, 40 or 50 lights,
one at each vertex of a geodesic dome. The objective of PTM is in part to find out
the surface properties of the object being imaged—this has been used for imaging
museum artifacts and paintings, for instance. But the main task for PTM is being
able to interpolate the lighting directions, so as to generate new images not seen
before. The file size for PTM image collections is kept small by packing multiple
interpolation coefficients into integer data.

Figure 3.18a shows what a typical set of input images look like, here for a set of
50 input images.2 Figure 3.18b shows an interpolated image, for a light direction not
in the input set [8]: here the light is coming from θ = 42.6◦, φ = −175.4◦, where θ

is the polar angle from the camera to the object and φ is the angle on the x, y plane
perpendicular to that axis.

How PTM proceeds is to assume a polynomial model for generating Luminance
L = R + G + B (or R,G, B separately) and forming regression coefficients from
the set of light-directions ei to the i = 1 . . . n values Li [7]. An additional level
using Radial Basis Function (RBF) interpolation is used to interpolate non-smooth
phenomena such as shadows and specularities [8].

2 Dataset courtesy of Tom Malzbender, Hewlett-Packard.

78 3 Graphics and Image Data Representations

Fig. 3.18 a 50 input images for PTM: lights individually from 50 different directions ei , i =
1 . . . 50; b interpolated image under new light e

3.3 Exercises

1. Briefly explain why we need to be able to have less than 24-bit color and why this
makes for a problem. Generally, what do we need to do to adaptively transform
24-bit color values to 8-bit ones?

2. Suppose we decide to quantize an 8-bit grayscale image down to just 2 bits of
accuracy. What is the simplest way to do so? What ranges of byte values in the
original image are mapped to what quantized values?

3. Suppose we have a 5-bit grayscale image. What size of ordered dither matrix do
we need to display the image on a 1-bit printer?

4. Suppose we have available 24 bits per pixel for a color image. However, we
notice that humans are more sensitive to R and G than to B—in fact, 1.5 times
more sensitive to R or G than to B. How could we best make use of the bits
available?

5. At your job, you have decided to impress the boss by using up more disk space
for the company’s grayscale images. Instead of using 8 bits per pixel, you would
like to use 48 bits per pixel in RGB. How could you store the original grayscale
images so that in the new format they would appear the same as they used to,
visually?

6. Suppose an 8-bit greyscale image appears as in Fig. 3.19a; i.e., linear shading
goes from 0 to 255 from left to right, illustrated in Fig. 3.19b.
The image is 100 rows by 100 columns.
For the most significant bitplane, please draw an image showing the 1 and 0’s.
How many 1’s are there?
For the next-most significant bitplane, please draw an image showing the
1 and 0’s.
How many 1’s are there?

3.3 Exercises 79

Fig. 3.19 a Grayscale image
in 0 .. 255; b visualized as a
ramp

0

50

100

150

200

250

columnsrows

in
te

ns
ity

(a)

(b)

7. For the color LUT problem, try out the median-cut algorithm on a sample image.
Explain briefly why it is that this algorithm, carried out on an image of red apples,
puts more color gradation in the resulting 24-bit color image where it is needed,
among the reds.

8. In regard to nonordered dithering, a standard graphics text [2] states, “Even
larger patterns can be used, but the spatial versus intensity resolution trade-off
is limited by our visual acuity (about one minute of arc in normal lighting).”
(a) What does this sentence mean?
(b) If we hold a piece of paper out at a distance of 1 foot, what is the approximate

linear distance between dots? (Information: One minute of arc is 1/60 of one
degree of angle. Arc length on a circle equals angle (in radians) times radius.)
Could we see the gap between dots on a 300 dpi printer?

9. Write down an algorithm (pseudocode) for calculating a color histogram for
RGB data.

10. Describe in detail how to use a single image and several color lookup tables to
realize a simple animation—a rotating color wheel, in which a sequence of four
snapshots will appear repetitively. The wheel rotates 90◦ clockwise each time.

80 3 Graphics and Image Data Representations

References

1. J. Miano Compressed Image File Formats: JPEG, PNG, GIF, XBM, BMP (Addison Wesley
Professional, Boston, 1999)

2. J.F. Hughes, A. van Dam, M. McGuire, D.F. Sklar, J.D. Foley, S.K. Feiner, K. Akeley, Computer
Graphics: Principles and Practice, 3nd Edn. (Addison-Wesley, Boston, 2013)

3. M. Sonka, V. Hlavac, R. Boyle, Image processing, Analysis, and Machine Vision, 4th Edn. (PWS
Publishing, Boston, 2014)

4. L.G. Shapiro, G.C. Stockman, Computer Vision, (Prentice-Hall, New Jersey, 2001)
5. P. Heckbert, Color image quantization for frame buffer display in Computer Graphics. ACM

Trans. on Graphics (1982), pp 297–307
6. W.B. Pennebaker, J.L. Mitchell, The JPEG Still Image Data Compression Standard (Van Nos-

trand Reinhold, New York, 1992)
7. T. Malzbender, D. Gelb, H. Wolters, Polynomial Texture Maps. ACM Trans. on Graphics (2001),

pp 519–528
8. M.S. Drew, Y. Hel-Or, T. Malzbender, N. Hajari, Robust estimation of surface properties and

interpolation of shadow/specularity components. Image Vis. Comput. 30(4–5), 317–331 (2012)

4Color in Image andVideo

Color images and videos are ubiquitous on the Web and in multimedia productions.
Increasingly, we are becoming more aware of the discrepancies between color as
seen by people and sometimes very different color displayed on our screens. The
latest version of the HTML standard attempts to address this issue by specifying
color in terms of a standard, “sRGB,” arrived at by color scientists.

To become aware of the simple, yet strangely involved world of color, in this
chapter we shall consider the following topics:

• Color Science
• Color Models in Images
• Color Models in Video.

4.1 Color Science

4.1.1 Light and Spectra

Recall from high school that light is an electromagnetic wave, and that its color
is characterized by the wavelength of the wave. Laser light consists of a single
wavelength: e.g., a ruby laser produces a bright, scarlet red beam. So if we were to
make a plot of the light intensity versus wavelength, we would see a spike at the
appropriate red wavelength, and no other contribution to the light.

In contrast, most light sources produce contributions over many wavelengths.
However, humans cannot detect all light, but just contributions that fall in the “visible
wavelengths.” Short wavelengths produce a blue sensation, and long wavelengths
produce a red one.

We measure visible light using a device called a spectrophotometer, by reflecting
light from a diffraction grating (a ruled surface) that spreads out the different wave-
lengths much as a prism does. Figure 4.1 shows the phenomenon that white light
contains all the colors of a rainbow. If you have ever looked through a toy prism,
you will have noticed that a rainbow effect is generated—the effect due to a natural

Z.-N. Li et al., Fundamentals of Multimedia, 81
Texts in Computer Science, DOI: 10.1007/978-3-319-05290-8_4,
© Springer International Publishing Switzerland 2014

82 4 Color in Image and Video

Fig.4.1 Sir Isaac Newton’s experiments. (By permission of the Warden and Fellows, New College,
Oxford)

Wavelength (nm)
400 450 500 550 600 650 700

Sp
ec

tr
al

 p
ow

er
 d

is
tr

ib
ut

io
n

Fig. 4.2 Spectral power distribution of daylight

phenomenon called dispersion. You see a similar effect on the surface of a soap
bubble.

Visible light is an electromagnetic wave in the range 400–700 nm (where nm stands
for nanometer, or 10−9 m). Figure 4.2 shows the relative power in each wavelength
interval for typical outdoor light on a sunny day. This type of curve is called a
Spectral Power Distribution (SPD) or a spectrum. It shows the relative amount of
light energy (electromagnetic signal) at each wavelength. The symbol for wavelength
is λ (lambda), so this type of curve might be called E(λ). In practice, measurements
are used that effectively sum up voltage in a small wavelength range, say 5 or 10 nm,
so such plots usually consist of segments joining function values every 10 nm. That
means, also, such profiles are actually stored as vectors; however, below we show
equations that treat E(λ) as a continuous function—in reality integrals are calculated
using sums over elements of vectors.

4.1 Color Science 83

4.1.2 HumanVision

The eye works like a camera, with the lens focusing an image onto the retina (upside-
down and left-right reversed). The retina consists of an array of rods and three kinds
of cones. These receptors are called such because they are shaped like cones and
rods, respectively. The rods come into play when light levels are low and produce
a image in shades of gray (“all cats are gray at night!”). For higher light levels, the
cones each produce a signal. Because of their differing pigments, the three kinds of
cones are most sensitive to red (R), green (G), and blue (B) light.

Higher light levels result in more neurons firing; the issue of just what happens
in the brain further down the pipeline is the subject of much debate. However, it
seems likely that the brain makes use of differences R–G, G–B, and B–R, as well as
combining all of R, G, and B into a high- and light-level achromatic channel (and
thus we can say that the brain is good at algebra).

4.1.3 Spectral Sensitivity of the Eye

The eye is most sensitive to light in the middle of the visible spectrum. Like the SPD
profile of a light source, as in Fig. 4.2, for receptors we show the relative sensitivity
as a function of wavelength. The Blue receptor sensitivity is not shown to scale
because in fact it is much smaller than the curves for Red or Green—Blue is a late
addition, in evolution (and, statistically, is the favorite color of humans, regardless
of nationality—perhaps for this reason, Blue is a bit surprising!). Figure 4.3 shows
the overall sensitivity as a dashed line. This dashed curve in Fig. 4.3 is important and
is called the luminous-efficiency function. It is usually denoted V (λ) and is formed
as the sum of the response curves to Red, Green, and Blue [1,2].

The rods are sensitive to a broad range of wavelengths, but produce a signal that
generates the perception of the black–white scale only. The rod sensitivity curve
looks like the luminous-efficiency function V (λ) but is shifted somewhat to the red
end of the spectrum [1].

The eye has about 6 million cones, but the proportions of R, G, and B cones
are different. They likely are present in the ratios 40:20:1 (see [3] for a complete
explanation). So the achromatic channel produced by the cones is thus something
like 2R + G + B/20.

These spectral sensitivity functions are usually denoted by some other letters than
“R,G, B,” so here let us denote them by the vector function q(λ), with components

q(λ) =
(
qR(λ), qG(λ), qB(λ)

)T
. (4.1)

That is, there are three sensors (a vector index k = 1..3 therefore applies), and each
is a function of wavelength.

The response in each color channel in the eye is proportional to the number of
neurons firing. For the red channel, any light falling anywhere in the nonzero part of
the red cone function in Fig. 4.3 will generate some response. So the total response
of the red channel is the sum over all the light falling on the retina that the red cone is

84 4 Color in Image and Video

Wavelength (nm)

R
el

at
iv

e
re

sp
on

se

400 450 500 550 600 650 700

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

R
G

V

B

Fig. 4.3 R,G, and B cones, and luminous-efficiency curve V(λ)

sensitive to, weighted by the sensitivity at that wavelength. Again thinking of these
sensitivities as continuous functions, we can succinctly write down this idea in the
form of an integral:

R =
∫

E(λ) qR(λ) dλ
G =

∫
E(λ) qG(λ) dλ

B =
∫

E(λ) qB(λ) dλ
(4.2)

Since the signal transmitted consists of three numbers, colors form a
three-dimensional vector space.

4.1.4 Image Formation

Equation (4.2) above actually only applies when we view a self-luminous object
(i.e., a light). In most situations, we actually image light that is reflected from a
surface. Surfaces reflect different amounts of light at different wavelengths, and dark
surfaces reflect less energy than light surfaces. Figure 4.4 shows the surface spectral
reflectance from (1) orange sneakers and (2) faded bluejeans [4]. The reflectance
function is denoted S(λ).

The image formation situation is thus as follows: light from the illuminant with
SPD E(λ) impinges on a surface, with surface spectral reflectance function S(λ), is
reflected, and then is filtered by the eye’s cone functions q(λ). The basic arrangement
is as shown in Fig. 4.5. The function C(λ) is called the color signal and consists of
the product of the illuminant E(λ) times the reflectance S(λ): C(λ) = E(λ) S(λ).

The equations similar to Eq. (4.2), then, that take into account the image formation
model are:

R =
∫

E(λ) S(λ) qR(λ) dλ
G =

∫
E(λ) S(λ) qG(λ) dλ

B =
∫

E(λ) S(λ) qB(λ) dλ.
(4.3)

4.1 Color Science 85

Wavelength (nm)

Su
rf

ac
e

sp
ec

tr
al

 re
fl

ec
ta

nc
e

400 450 500 550 600 650 700

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Jeans

Sneakers

Fig. 4.4 Surface spectral reflectance functions S(λ) for objects

S()

E()

C()

Sensors qR, G, B ()

R G B

λ

λ

λ

λ

Fig. 4.5 Image formation model

4.1.5 Camera Systems

Now, we humans develop camera systems in a similar fashion, and a good camera has
three signals produced at each pixel location (corresponding to a retinal position).
Analog signals are converted to digital, truncated to integers, and stored. If the
precision used is 8-bit, then the maximum value for any of R,G, B is 255, and the
minimum is 0.

86 4 Color in Image and Video

However, the light entering the eye of the computer user is that which is emitted
by the screen—the screen is essentially a self-luminous source. Therefore, we need
to know the light E(λ) entering the eye.

4.1.6 Gamma Correction

Modern displays attempt to mimic older Cathode Ray Tube (CRT) displays, since
standards were originally built on these displays. Thus knowing about the character-
istics of CRTs is still important. The RGB numbers in an image file are converted
back to analog, and drive the electron guns in the cathode ray tube (CRT). Electrons
are emitted proportional to the driving voltage, and we would like to have the CRT
system produce light that is linearly related to the voltage. Unfortunately, it turns
out that this is not the case. The light emitted is actually roughly proportional to the
voltage raised to a power; this power is called “gamma,” with symbol γ.

Thus, if the file value in the red channel is R, the screen emits light proportional to
Rγ , with SPD equal to that of the red-phosphor paint on the screen that is the target
of the red channel electron gun. The value of gamma is around 2.2.

Since the mechanics of a television receiver are the same as those for the old
standard computer CRT displays, TV systems, regardless of the actual display used,
precorrect for this situation by actually applying the inverse transformation before
generating TV voltage signals. It is customary to append a prime to signals that are
“gamma-corrected” by raising to the power (1/γ) before transmission. Thus we have:

R → R′ = R1/γ ⇒ (R′)γ → R, (4.4)

and we arrive at “linear signals.” Again, cameras store gamma-corrected values R′,
so that when the exponentiation by γ occurs in the display, images will look right.

Voltage is often normalized to maximum 1, and it is interesting to see what effect
these gamma transformations have on signals. Figure 4.6a shows the light output
with no gamma correction applied. We see that darker values are displayed too dark.
This is also shown in Fig. 4.7a, which displays a linear ramp from left to right.

Figure 4.6b shows the effect of precorrecting signals by applying the power law
R1/γ , where it is customary to normalize voltage to the range 0–1. We see that
applying first the correction in Fig. 4.6b, followed by the effect of the display (an
ostensible CRT) system, in Fig. 4.6a, would result in linear signals. The combined
effect is shown in Fig. 4.7b. Here, a ramp is shown in 16 steps from gray-level 0 to
gray-level 255.

A more careful definition of gamma recognizes that a simple power law would
result in an infinite derivative at zero voltage—and this made constructing a circuit
to accomplish gamma correction difficult to devise in analog. In practice a more
general transform, such as R → R′ = a × R1/γ + b is used, along with special care
at the origin:

Vout =
{

4.5 × Vin Vin < 0.018
1.099 × (V 0.45

in − 0.099) , Vin ≥ 0.018 (4.5)

4.1 Color Science 87

No gamma correction

Voltage

L
ig

ht

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Gamma correction

Voltage

L
ig

ht

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) (b)

Fig.4.6 a Effect of putative standard CRT (mimiced by an actual modern display) on light emitted
from screen (voltage is normalized to range 0..1). b Gamma correction of signal

Fig. 4.7 a Display of ramp from 0 to 255, with no gamma correction. b Image with gamma
correction applied

This is called a camera transfer function, and the above law is recommended
by the Society of Motion Picture and Television Engineers (SMPTE) as standard
SMPTE–170M.

Why a gamma of 2.2? In fact, this value does not produce a final power law of 1.0;
The history of this number is buried in decisions of the National Television System
Committee of the U.S.A. (NTSC) when TV was invented. The actual power law for
color receivers may in actuality be closer to 2.8. However, if we only compensate
for about 2.2 of this power law, we arrive at an overall value of about 1.25 instead
of 1.0. The idea was that in viewing conditions with a dim surround, such an overall
gamma produces more pleasing images albeit with color errors—darker colors are
made even darker, and also the eye–brain system changes the relative contrast of
light and dark colors [5].

88 4 Color in Image and Video

With the advent of computer systems, ostensibly built (at least in the standards)
on CRTs, the situation has become even more interesting: the camera may or may
not have inserted gamma correction; software may write the image file using some
gamma; software may decode expecting some (other) gamma; the image is stored in
a frame buffer, and it is common to provide a lookup table for gamma in the frame
buffer. After all, if we have generated images using computer graphics, no gamma
has been applied; but a gamma is still necessary to precompensate for the display.

It makes sense, then, to define an overall “system” gamma that takes into account
all such transformations. Unfortunately, one must often simply guess what the actual
overall gamma may be. Adobe Photoshop allows one to try different gamma values.
For WWW publishing, it is important to know that a Macintosh does gamma cor-
rection in its graphics card with a gamma of 1.8, SGI machines expect a gamma of
1.4, and most PCs do no extra gamma correction and likely have a display gamma
of about 2.5. Therefore, for the most common machines it might make sense to
gamma-correct images at the average of Macintosh and PC values, or about 2.1.

However, most practitioners might use a value of 2.4, adopted by the sRGB
group—a standard modeling of typical light levels and monitor conditions is included
in the definition of a new “standard” RGB for WWW applications to be included
in all future HTML standards called sRGB: a (more or less) “Device Independent
Color Space for the Internet.”

An issue related to gamma correction is the decision of just what intensity levels
will be represented by what bit patterns in the pixel values in a file. The eye is most
sensitive to ratios of intensity levels, rather than absolute intensities: this means
that the brighter the light, the greater must be change in light level in order for the
change to be perceived. If we had precise control over what bits represented what
intensities, then it would make sense to code intensities logarithmically for maximum
usage of the bits available, and then include that coding in an inverse of the (1/γ)
power law transform, as in Eq. (4.4), or perhaps a lookup table implementation of
such an inverse function (see [6, p. 564]). However, it is most likely that images
or videos we encounter have no nonlinear encoding of bit levels, but have indeed
been produced by a camcorder or are for broadcast TV. These images will have been
gamma-corrected according to Eq. (4.4). The CIE-sponsored CIELAB perceptually
based color difference metric (see p. 97) provides a careful algorithm for including
the nonlinear aspect of human brightness perception.

4.1.7 Color-Matching Functions

Practically speaking, many color applications involve specifying and recreating a
particular desired color, e.g., suppose one wishes to duplicate a particular shade on
the screen, or a particular shade of dyed cloth. Over many years, even before the
eye-sensitivity curves of Fig. 4.3 were known, a technique evolved in psychology for
matching a combination of basic R, G, and B lights to a given shade. A particular
set of three basic lights was available: these are called the set of color primaries.
Then to match a given shade, a set of observers were asked to separately adjust the

4.1 Color Science 89

Red

Green

Blue

White
screen

Black
partition

Light to be matched

Room illumination

Eye

Fig. 4.8 Colorimeter experiment

brightness of the three primaries using a set of controls until the resulting spot of
light most closely matched the desired color. The basic situation is shown in Fig. 4.8.
A device for carrying out such an experiment is called a colorimeter.

The international standards body for color, the CIE (Commission Internationale
de L’Eclairage) pooled all such data in 1931, in a set of curves called the color-
matching functions. They used color primaries with peaks at 440 nm, 545 nm, and
580 nm. Suppose instead of a swatch of cloth one were interested in matching a
given wavelength of laser light (i.e., monochromatic light). Then the color-matching
experiments are summarized by a statement of what proportion of the color primaries
are needed for each individual narrow-band wavelength light. General lights are then
matched by a linear combination of single wavelength results.

Figure 4.9 shows the CIE color-matching curves, which are denoted r̄(λ), ḡ(λ),
b̄(λ). In fact, such curves are a linear matrix multiplication away from the eye
sensitivities in Fig. 4.3.

Why are some parts of the curves negative? This indicates that some colors cannot
be reproduced by a linear combination of the primaries. For such colors, one or more
of the primary lights have to be shifted from one side of the black partition in Fig. 4.8
to the other—then they illuminate the sample to be matched instead of the white
screen. Thus, in a sense, such colors are being matched by negative lights.

4.1.8 CIE Chromaticity Diagram

In times long past, engineers found it upsetting that one CIE color-matching curve in
Fig. 4.9 has a negative lobe. Therefore, a set of fictitious primaries were devised that

90 4 Color in Image and Video

lead to color-matching functions with only positives values. The resulting curves are
shown in Fig. 4.10; these are usually referred to as the color-matching functions.
They result from a linear (3 × 3 matrix) transform from the r̄ , ḡ, b̄ curves, and are
denoted x̄(λ), ȳ(λ), z̄(λ). The matrix is chosen such that the middle standard color-
matching function ȳ(λ) exactly equals the luminous-efficiency curve V (λ) shown
in Fig. 4.3.

For a general SPD, E(λ), the essential “colorimetric” information required to
characterize a color is the set of tristimulus values X , Y , Z defined in analogy to
Eq. (4.1) as

X =
∫

E(λ) x̄(λ) dλ
Y =

∫
E(λ) ȳ(λ) dλ

Z =
∫

E(λ) z̄(λ) dλ
(4.6)

The middle value, Y is called the luminance. All color information and transforms
are tied to these special values. They incorporate substantial information about the
human visual system. However, 3D data is difficult to visualize, and consequently
the CIE devised a 2D diagram based on the values of (X, Y, Z) triples implied by the
curves in Fig. 4.10: for each wavelength in the visible, the values of X, Y, Z given
by the three curve values form the limits of what humans can see. However, from
Eq. (4.6) we observe that increasing the brightness of illumination (turning up the
light bulb) increases the tristimulus values by a scalar multiple. Therefore, it makes
sense to devise a 2D diagram by somehow factoring out the magnitude of vectors
(X, Y, Z). In the CIE system, this is accomplished by dividing by the sum X+Y +Z :

x = X/(X + Y + Z)
y = Y/(X + Y + Z)
z = Z/(X + Y + Z)

(4.7)

This effectively means that one value out of the set (x, y, z) is redundant, since we
have

x + y + z = X + Y + Z
X + Y + Z

≡ 1 (4.8)

so that

z = 1 − x − y. (4.9)

Values x, y are called chromaticities.
Effectively, we are projecting each tristimulus vector (X, Y, Z) onto the plane

connecting points (1, 0, 0), (0, 1, 0), and (0, 0, 1). Usually, this plane is viewed and
projected onto the z = 0 plane, as a set of points inside the triangle with vertices
having (x, y) values (0, 0), (1, 0), and (0, 1).

Figure 4.11 shows the locus of points for monochromatic light, drawn on this
CIE “chromaticity diagram.” The straight line along the bottom of the “horseshoe”
joins points at the extremities of the visible spectrum, 400 and 700 nm (from blue
through green to red). That straight line is called the “line of purples.” The horseshoe

4.1 Color Science 91

400 450 500 550 600 650 700
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Wavelength (nm)

R
el

at
iv

e
Se

ns
iti

vi
ty

Fig. 4.9 CIE color-matching functions r̄(λ), ḡ(λ), b̄(λ)

400 450 500 550 600 650 700
0

0.2

0.4

0.6

0.8

1

Wavelength (nm)

R
el

at
iv

e
Se

ns
iti

vi
ty

Fig. 4.10 CIE standard color-matching functions x̄(λ), ȳ(λ), z̄(λ)

itself is called the “spectrum locus” and shows the (x, y) chromaticity values of
monochromatic light at each of the visible wavelengths.

The color-matching curves are devised so as to add up to the same value
(the area under each curve is the same for each of x̄(λ), ȳ(λ), z̄(λ)). Therefore, for a
white illuminant with all SPD values equal to 1—an “equi-energy white light”—the
chromaticity values are (1/3, 1/3). Figure 4.11 displays this white point in the mid-
dle of the diagram. Finally, since we must have x, y ≤ 1 and x + y ≤ 1, all possible
chromaticity values must necessarily lie below the dashed diagonal line in Fig. 4.11.

Note that one may choose different “white” spectra as the standard illuminant.
The CIE defines several of these, such as illuminant A, illuminant C, and standard

92 4 Color in Image and Video

x

y

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

400

700

Fig. 4.11 CIE chromaticity diagram

Wavelength (nm)
400 450 500 550 600 650 700

A

D65
C

F2

D100

Sp
ec

tr
al

 p
ow

er
 d

is
tr

ib
ut

io
n

Fig. 4.12 Standard illuminant SPDs

daylights D65 and D100. Each of these will display as a somewhat different white
spot on the CIE diagram: D65 has a chromaticity equal to (0.312713, 0.329016) and
illuminant C has chromaticity (0.310063, 0.316158). Figure 4.12 displays the SPD
curves for each of these standard lights. Illuminant A is characteristic of incandescent
lighting, with an SPD typical of a tungsten bulb, and is quite red. Illuminant C is
an early attempt to characterize daylight, while D65 and D100 are, respectively, a
mid-range and a bluish commonly used daylight. Figure 4.12 also shows the much
more spiky SPD for a standard fluorescent illumination, called F2 [2].

Colors with chromaticities on the spectrum locus represent “pure” colors. These
are the most “saturated,” think of paper becoming more and more saturated with ink.
In contrast, colors close to the white point are more unsaturated.

4.1 Color Science 93

The chromaticity diagram has the nice property that, for a mixture of two lights,
the resulting chromaticity lies on the straight line joining the chromaticities of the two
lights. Here, we are being slightly cagey in not saying that this is the case for colors
in general, but just for “lights.” The reason is that so far we have been adhering to
an additive model of color mixing. This model holds good for lights, or, as a special
case, for monitor colors. However, as we shall see below, it does not hold for printer
colors (see p. 103).

For any chromaticity on the CIE diagram, the “dominant wavelength” is the posi-
tion on the spectrum locus intersected by a line joining the white point to the given
color, and extended through it. (For colors that give an intersection on the line of
purples, a complement dominant wavelength is defined by extending the line back-
wards through the white point.) Another useful definition is the set of complementary
colors for some given color, which is given by all the colors on the line through the
white spot. Finally, the “excitation purity” is the ratio of distances from the white
spot to the given color and to the dominant wavelength, expressed as a percentage.

4.1.9 Color Monitor Specifications

Color monitors are specified in part by the white point chromaticity that is desired if
the RG B electron guns in the ostensible CRT display are all activated at their highest
power. Actually, we are likely using gamma-corrected values R′, G ′, B ′, as supplied
by the camera. If we normalize voltage to the range 0–1, then we wish to specify
a monitor such that it displays the desired white point when R′ = G ′ = B ′ = 1
(abbreviating the transform from file value to voltage by simply stating the pixel
color values, normalized to maximum 1).

However, the phosphorescent paints used on the inside of a CRT monitor screen
in fact have their own chromaticities, so that at first glance it would appear that one
could not independently control the monitor white point. However, this is remedied
by setting the gain control for each electron gun such that at maximum voltages the
desired white appears.

There are several monitor specifications in current use. Monitor specifications in
the standards, we are still using, consist of the fixed chromaticities for the monitor
phosphors as they were specified by the manufacturers, along with the standard white
point needed. Table 4.1 shows these values for three common specification state-
ments. NTSC is the standard North American and Japanese specification; SMPTE
is a more modern version of this, wherein the standard illuminant is changed from
illuminant C to illuminant D65 and the phosphor chromaticities are more in line
with later machines. Digital video specifications use a similar specification in North
America. The EBU system derives from the European Broadcasting Union and is
used in PAL and SECAM video systems.

94 4 Color in Image and Video

Table 4.1 Chromaticities and White Points for Monitor Specifications

System Red Green Blue White point
xr yr xg yg xb yb xW yW

NTSC 0.67 0.33 0.21 0.71 0.14 0.08 0.3101 0.3162
SMPTE 0.630 0.340 0.310 0.595 0.155 0.070 0.3127 0.3290
EBU 0.64 0.33 0.29 0.60 0.15 0.06 0.3127 0.3290

4.1.10 Out-of-Gamut Colors

For the moment, let us not worry about gamma correction. Then the really basic
problem for displaying color is how to generate device-independent color, by agree-
ment taken to be specified by (x, y) chromaticity values, using device-dependent
color values RG B.

For any (x, y) pair, we wish to find that RG B triple giving the specified (x, y, z):
therefore we form the z values for the phosphors, via z = 1−x−y and solve for RG B
from the manufacturer-specified chromaticities. Since, if we had no green or blue
value (i.e., file values of zero) we would simply see the red-phosphor chromaticities,
and similarly for G and B, we combine nonzero values of R, G, and B via

⎡

⎣
xr xg xb
yr yg yb
zr zg zb

⎤

⎦

⎡

⎣
R
G
B

⎤

⎦ =

⎡

⎣
x
y
z

⎤

⎦ (4.10)

If (x, y) is specified instead of derived from the above, then we have to invert the
matrix of phosphor (x, y, z) values to obtain the correct RG B values to use in order
to obtain the desired chromaticity.

But what do we do if any of the RG B numbers is negative? The problem in this
case is that, while humans are able to perceive the color, it is not representable on
the device being used. We say in that case the color is “out of gamut,” since the set
of all possible displayable colors constitutes the gamut of the device.

One method that is used to deal with this situation is to simply use the closest
in-gamut color available. Another common approach is to select the closest comple-
mentary color.

For a CRT monitor, every displayable color is within a triangle; this follows from
so-called “Grassman’s Law,” describing human vision—Grassman’s Law states that
“color matching is linear,” and this means that linear combinations of lights made
up of three primaries are just the linear set of weights used to make the combination
times those primaries. That is, if we compose colors from a linear combination of
the three “lights” available from the three phosphors, then we can only create colors
from the convex set derived from the lights—in this case, a triangle. (We will see
below that for printers this convexity no longer holds.)

Figure 4.13 shows the triangular gamut for the NTSC system, drawn on the CIE
diagram. Now suppose the small triangle represents a given, desired color. Then the

4.1 Color Science 95

Fig. 4.13 Approximating an
out-of-gamut color by an
in-gamut one. The
out-of-gamut color shown by
a triangle is approximated by
the intersection of a the line
from that color to the white
point with b the boundary of
the device color gamut

x
y

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Red

Green

Blue

(a)

(b)

in-gamut point on the boundary of the NTSC monitor gamut is taken to be the
intersection of (a) the line connecting the desired color to the white point with
(b) the nearest line forming the boundary of the gamut triangle.

4.1.11 White Point Correction

One deficiency in what we have done so far is that in reality we need to be able to
map tristimulus values XY Z to device RG Bs, and not just deal with chromaticity
xyz. The difference is that XY Z values include the magnitude of the color. As well,
we need to be able to alter matters such that when each of R,G, B are at maximum
value we obtain the white point.

But so far, Table 4.1 would produce incorrect values, e.g., consider the SMPTE
specifications. Setting R = G = B = 1 results in a value of X that equals the sum
of the x values, or 0.630 + 0.310 + 0.155, which is 1.095. Similarly, the Y and Z
values come out to 1.005 and 0.9. Now, dividing by (X + Y + Z) this results in a
chromaticity of (0.365, 0.335), rather than the desired values of (0.3127, 0.3290).

The method used to correct both deficiencies is to first take the white point
magnitude of Y as unity:

Y (white point) = 1. (4.11)

Now, we need to find a set of three correction factors such that if the gains of the
three electron guns are multiplied by these values, we get exactly the white point
XY Z value at R = G = B = 1. Suppose the matrix of phosphor chromaticities
xr , xg, . . . etc. in Eq. (4.10) is called M. We can express the correction as a diagonal
matrix D = diag(d1, d2, d3) such that

XY Zwhite ≡ M D (1, 1, 1)T (4.12)

where ()T means transpose.

96 4 Color in Image and Video

For the SMPTE specification, we have (x, y, z) = (0.3127, 0.3290, 0.3582) or,
dividing by the middle value, XY Zwhite = (0.95045, 1, 1.08892). We note that
multiplying D by (1, 1, 1)T just gives (d1, d2, d3)

T and we end up with an equation
specifying (d1, d2, d3)

T :
⎡

⎣
X
Y
Z

⎤

⎦

white

=

⎡

⎣
0.630 0.310 0.155
0.340 0.595 0.070
0.03 0.095 0.775

⎤

⎦

⎡

⎣
d1
d2
d3

⎤

⎦ . (4.13)

Inverting, with the new values XY Zwhite specified as above, we arrive at

(d1, d2, d3) = (0.6247, 1.1783, 1.2364). (4.14)

4.1.12 XYZ to RGBTransform

Now the 3 × 3 transform matrix from XYZ to RGB is taken to be

T = M D (4.15)

even for points other than the white point:
⎡

⎣
X
Y
Z

⎤

⎦ = T

⎡

⎣
R
G
B

⎤

⎦. (4.16)

For the SMPTE specification, we arrive at

T =

⎡

⎣
0.3935 0.3653 0.1916
0.2124 0.7011 0.0866
0.0187 0.1119 0.9582

⎤

⎦. (4.17)

Written out, this reads

X = 0.3935 · R + 0.3653 · G + 0.1916 · B

Y = 0.2124 · R + 0.7011 · G + 0.0866 · B

Z = 0.0187 · R + 0.1119 · G + 0.9582 · B. (4.18)

4.1.13 Transformwith Gamma Correction

The above calculations assume that we are dealing with linear signals. However, it
is most likely that instead of linear R,G, B we actually have nonlinear, gamma-
corrected R′, G ′, B ′ camera values.

The best way of carrying out an XY Z to RG B transform is to calculate the linear
RG B required, by inverting Eq. (4.16) above, and then create nonlinear signals via
gamma correction.

Nevertheless this is not usually done as stated. Instead, the equation for the Y
value is used as is, but applied to nonlinear signals. This does not imply much error,
in fact, for colors near the white point. The only concession to accuracy is to give

4.1 Color Science 97

the new name Y ′ to this new Y value created from R′, G ′, B ′. The significance of Y ′

is that it codes a descriptor of brightness for the pixel in question.1 The most used
set of transform equations are those for the original NTSC system, based upon an
Illuminant C white point, even though these are outdated. Following the procedure
outlined above, but with the values in the top row of Table 4.1, we arrive at the
following transform:

X = 0.607 · R + 0.174 · G + 0.200 · B

Y = 0.299 · R + 0.587 · G + 0.114 · B

Z = 0.000 · R + 0.066 · G + 1.116 · B (4.19)

Thus, coding for nonlinear signals begins with encoding the nonlinear-signal corre-
late of luminance:

Y ′ = 0.299 · R′ + 0.587 · G ′ + 0.114 · B ′. (4.20)

(See Sect. 4.3 below for more discussion on encoding of nonlinear signals.)

4.1.14 L*a*b* (CIELAB) Color Model

The discussion above of how best to make use of the bits available to us (see p. 88)
touched on the issue of how well human vision sees changes in light levels. This
subject is actually an example of Weber’s Law, from psychology: the more there is
of a quantity, the more change there must be to perceive a difference. For example, it
is relatively easy to tell the difference in weight between picking up your 4-year-old
sister and your 5-year-old brother (aside from their other attributes). However, it is
more difficult to tell the difference in weight between two heavy objects. Another
example is that to see a change in a bright light the difference must be much larger
than to see a change in a dim light. A rule of thumb for this phenomenon states that
equally perceived changes must be relative—changes are about equally perceived
if the ratio of the change is the same, whether for dark or bright lights, etc. Some
thought using this idea leads one to a logarithmic approximation to perceptually
equally spaced units.

For human vision, however, the CIE arrived at a somewhat more involved version
of this kind of rule, called the CIELAB space. What is being quantified in this space
is, again, differences perceived in color and brightness. This makes sense, in fact,
since, practically speaking, color differences are most useful for the comparison
of source and target colors, as it were: one would be interested, e.g., in whether a
particular batch of dyed cloth has the same color as an original swatch. Figure 4.14
shows a cutaway into a 3D solid of the coordinate space associated with this color
difference metric.

CIELAB (also known as L∗a∗b∗) uses a power law of 1/3 instead of a logarithm.
It uses three values that correspond roughly to (a) luminance; plus (b) a pair that

1 In the Color FAQ file [7], this new value Y ′ is called “luma.”

98 4 Color in Image and Video

Fig. 4.14 CIELAB model

combine to make colorfulness and hue. The color difference, for two colors in this
color space, is simply defined as a Euclidean distance:

!E =
√
(L∗

1 − L∗
2)

2 + (a∗
1 − a∗

2)
2 + (b∗

1 − b∗
2)

2 (4.21)

where

L∗ = 116
(

Y
Yn

)(1/3)

− 16

a∗ = 500

[(
X
Xn

)(1/3)

−
(

Y
Yn

)(1/3)
]

b∗ = 200

[(
Y
Yn

)(1/3)

−
(

Z
Zn

)(1/3)
]

(4.22)

with Xn, Yn, Zn being the XY Z values of the white point. Auxiliary definitions are:

chroma = c∗ =
√
(a∗)2 + (b∗)2

hue angle = h∗ = arctan
b∗

a∗ (4.23)

Roughly, the maximum and minimum of value a∗ correspond to red and green,
while b∗ ranges from yellow to blue. The chroma is a scale of colorfulness, with
more colorful (more saturated) colors occupying the outside of the CIELAB solid
at each L∗ brightness level, and more washed-out (desaturated) colors nearer the

4.1 Color Science 99

central achromatic axis. The hue angle expresses more or less what most people
mean by “the color,” i.e., would one describe the color as red, or orange, etc.

The development of such color differences models is a very active field of research,
and there are a plethora of other human perception-based formulas (the other com-
petitor of the same vintage as CIELAB is called CIELUV—both were devised in
1976). The interest is generated partly because such color metrics impact how one
models differences in lighting and viewing across device and/or network boundaries
[8]. The CIELAB model is used by several high-end products, including Adobe
Photoshop.

4.1.15 More Color Coordinate Schemes

There are several other coordinate schemes in use to describe color as humans
perceive it, with some confusion in the field as to whether gamma correction should
or should not be applied. Here we are describing device-independent color—based
on XY Z and correlated to what humans see. However, generally users make free use
of RG B or R′, G ′, B ′.

Other schemes include: CMY (described below on p. 102); HSL—Hue,
Saturation and Lightness; HSV—Hue, Saturation and Value; HSI—and Intensity;
HCI—C=Chroma; HVC—V=Value; HSD—D=Darkness: the beat goes on!

4.1.16 Munsell Color Naming System

Accurate naming of colors is also an important consideration. One time-tested
standard system was devised by Munsell in the early 1900s and revised many times
(the last one is called the Munsell renotation) [9]. The idea is to set up (yet another)
approximately perceptually uniform system of three axes to discuss and specify color.
The axes are Value (black-white), Hue, and Chroma. Value is divided into 9 steps,
Hue is in 40 steps around a circle, and Chroma (saturation) has a maximum of 16
levels, but the circle radius varies with Value.

The main idea is a fairly invariant specification of color for any user, including
artists; and the Munsell corporation therefore sells books of all these patches of paint,
made up with proprietary paint formulas (the book is quite expensive!). It has been
asserted that this is the most often used uniform scale.

4.2 Color Models in Images

We now have seen an introduction to color science and an introduction to some of the
problems that crop up with respect to color for image displays. But how are colors
model and coordinate systems really used for stored, displayed, and printed images?

100 4 Color in Image and Video

4.2.1 RGB Color Model for Displays

According to Chap. 3, we usually store color information directly in RG B form.
However, we note from Sect. 4.1 above that such a coordinate system is in fact
device-dependent.

We expect to be able to use 8 bits per color channel for color that is accurate enough.
However, in fact we have to use about 12 bits per channel to avoid an aliasing effect
in dark image areas—contour bands that result from gamma correction since gamma
correction results in many fewer available integer levels (see Exercise 9).

For images produced from computer graphics, we store integers proportional to
intensity in the frame buffer; then we should have a gamma correction LUT between
the frame buffer and the display. If gamma correction is applied to floats before
quantizing to integers, before storage in the frame buffer, then in fact we can use
only 8 bits per channel and still avoid contouring artifacts.

4.2.2 Multisensor Cameras

More accurate color can be achieved by using cameras with more than three sensors,
i.e., more than three color filters. One way of doing this is by using a rotating filter,
which places a different color filter in the light path over a quick series of shots.
In work on capture of artwork at the Museum of Modern Art in New York City, a
six-channel camera [10] has been used to accurately capture images of important
artworks, such that images are closer to full-spectrum; this work uses an altered
color filter checkerboard array, or set of these, built into the camera (“Art Spectral
Imaging”). Part of work in this direction also has included removing the near-infrared
filter typically placed in a camera, so as to extend the camera’s sensitivity into the
infrared [11].

4.2.3 Camera-Dependent Color

The values of R,G,B at a pixel depend on what camera sensors are used to image
a scene. Here we look at other two other camera-dependent color spaces that are
commonly used: HSV and sRGB.

First, recall that in Sect. 4.1.14 on CIELAB we defined color coordinates that
are meant to be camera-independent, i.e., human perception oriented. There, the
proposed set of axes L∗, a∗ (redness–greenness), b∗ (yellowness–blueness) are
associated with human visual system percepts of Lightness L∗; hue h∗, meaning
a magnitude-independent notion of color; and chroma c∗, meaning the purity (vivid-
ness) of a color.

http://dx.doi.org/10.1007/978-3-319-05290-8_3

4.2 Color Models in Images 101

HSV

Along this same direction, in order to tie such perceptual concepts into camera-
dependent color, the HSV color system tries to generate similar quantities. While
there are many commonly used variants, HSV is by far the most common. H stands for
hue; S stands for ‘saturation’ of a color, defined by chroma divided by its luminance—
the more desaturated the color is the closer it is to gray; and V stands for “value”,
meaning a correlate of brightness as perceived by humans. The HSV color model is
commonly used in image processing and editing software.

RGB data is converted into the HSV color space as follows: assuming R,G,B are
in 0..255,

M = max{R,G, B} (4.24)

m = min{R,G, B}
V = M

S =
{

0 if V = 0(
V − m

)
/V if V > 0

H =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if S = 0
60(G − B)/(M − m) if (M = R and G ≥ B)
60(G − B)/(M − m)+ 360 if (M = R and G < B)
60(B − R)/(M − m)+ 120 if M = G
60(R − G)/(M − m)+ 240 if M = B

where M and m denote the maximum and minimum of the (R,G, B) triplet.

sRGB

As a balance between human color perception and device-dependent color, the sRGB
color space was devised as tied to the color space of a particular reference display
device. sRGB has very generally been adopted as a reference color space on the
web, in the sense that unless otherwise stated the color space for encoded/transmitted
values is assumed to be sRGB.

Originally, sRGB was proposed by Hewlett-Packard and Microsoft, and was later
standardized by the International Electrotechnical Commission (IEC) [12]. sRGB
presupposes certain standard viewing conditions, typical of use for computer mon-
itors (details may be found in [13,14]). As well, it specifies a transform for going
from a standard gamma-corrected image to one which is linear with light intensity,
as follows: (with each color channel I in (R,G, B) now normalized into the range
[0, 1])): For I = R,G, B, we apply a function

⎧
⎨

⎩

I = I ′/12.92, if I ′ < 0.04045;

I = ((I ′ + 0.055)/1.055)2.4 otherwise.
(4.25)

102 4 Color in Image and Video

Taking into account the whole curve shape, this is approximately a γ value of 2.2.
As well, the sRGB standard specifies a colorimetric transform to go from such

linear sRGB values to human-centered CIEXYZ tristimulus color space values:
⎛

⎝
X
Y
Z

⎞

⎠ =

⎛

⎝
0.4124 0.3576 0.1805
0.2126 0.7152 0.0722
0.0193 0.1192 0.9505

⎞

⎠

⎛

⎝
R
G
B

⎞

⎠ (4.26)

With this definition, when white is (R,G, B) = (1, 1, 1) the XYZ triple becomes
that of standard light D65 (divided by 100): (X, Y, Z) = (0.9505, 1.0000, 1.0890).

4.2.4 Subtractive Color: CMY Color Model

So far, we have effectively been dealing only with additive color. Namely, when two
light beams impinge on a target, say from two color projectors sending light to a
white screen, their colors add. For theoretical CRTs, still the displays upon which
standards are built, when two phosphors on a CRT screen are turned on, their colors
add. So for example, red phosphor + green phosphor makes yellow light.

But for ink deposited on paper, in essence the opposite situation holds: yellow ink
subtracts blue from white illumination, but reflects red and green; and that is why it
appears yellow!

So, instead of red, green, and blue primaries, we need primaries that amount to
-red, -green, and -blue; we need to subtract R, or G, or B. These subtractive color
primaries are Cyan (C), Magenta (M) and Yellow (Y) inks. Figure 4.15 shows how
the two systems, RGB and CMY, are connected. In the additive (RGB) system, Black
is “no light,” RG B = (0, 0, 0). But in the subtractive CMY system, Black arises
from subtracting all the light by laying down inks with C = M = Y = 1.

4.2.5 Transformation from RGB to CMY

Given our identification of the role of inks in subtractive systems, the simplest model
we can invent to specify what ink density to lay down on paper, to make a certain
desired RGB color, is as follows:

⎡

⎣
C
M
Y

⎤

⎦ =

⎡

⎣
1
1
1

⎤

⎦ −

⎡

⎣
R
G
B

⎤

⎦ (4.27)

Then the inverse transform is
⎡

⎣
R
G
B

⎤

⎦ =

⎡

⎣
1
1
1

⎤

⎦ −

⎡

⎣
C
M
Y

⎤

⎦ (4.28)

4.2 Color Models in Images 103

The CMY Cube

Blue

Green

Red

Magenta

Cyan

Cyan

Magenta

Yellow

Yellow

Green

Blue

Red

Black (0, 0, 0) Black (1, 1, 1)White (0, 0, 0)White (1, 1, 1)

The RGB Cube

Fig. 4.15 RGB and CMY color cubes

4.2.6 Undercolor Removal: CMYK System

C, M, and Y are supposed to mix to black. However, more often they mix to a muddy
brown (we all know this, from kindergarten!). Truly “black” black ink is in fact
cheaper than mixing colored inks to make black, so a simple approach to producing
sharper printer colors is to calculate that part of the three-color mix that would be
black, remove it from the color proportions, and add it back as real black. This is
called “undercolor removal.”

With K representing the amount of black, the new specification of inks is thus

K ≡ min{C, M, Y }
⎡

⎣
C
M
Y

⎤

⎦ ⇒

⎡

⎣
C − K
M − K
Y − K

⎤

⎦ (4.29)

Figure 4.16 depicts the color combinations that result from combining primary
colors available in the two situations, additive color, in which one usually specifies
color using RGB, and subtractive color, in which one usually specifies color using
CMY or CMYK.

4.2.7 Printer Gamuts

In a common model of the printing process, printers lay down transparent layers
of ink onto a (generally white) substrate. If we wish to have a Cyan printing ink
truly equal to minus-Red, then our objective is to produce a cyan ink that completely
blocks red light but also completely passes all green and blue light. Unfortunately

104 4 Color in Image and Video

Fig. 4.16 Additive and subtractive color. a RGB is used to specify additive color. b CMY is used
to specify subtractive color

such “block dyes” are only approximated in industry and in reality transmission
curves overlap for the C, M, Y inks. This leads to “crosstalk” between the color
channels and difficulties in predicting colors achievable in printing.

Figure 4.17a shows typical transmission curves for real block dyes, and
Fig. 4.17b shows the resulting color gamut for a color printer that uses such inks.
We see that the gamut is smaller than that of an NTSC monitor, and can overlap it.

Such a gamut arises from the model used for printer inks. Transmittances are
related to optical density D via a logarithm: D = − log T , where T is one of the
curves in Fig. 4.17a. An actual color is formed by a linear combination D of inks,
with D a combination of the three densities weighted by weights wi , i = 1..3, and
wi can be in the range from zero to the maximum allowable without smearing. So the
overall transmittance T is formed as a product of exponentials of the three weighted
densities—light is extinguished exponentially as it travels through a “sandwich” of
transparent dyes. The light reflected from paper (or through a piece of slide film) is
T E = e−D E , where E is the illuminating light. Forming colors XYZ with Eq. (4.6)
leads to the printer gamut in Fig. 4.17b.

The center of the printer gamut is the white–black axis, and the six boundary
vertices correspond to C, M, Y, and the three combinations CM, CY, and MY laid
down at full density. Lesser ink densities lie more in the middle of the diagram.
Full density for all inks correspond to the black/white point, which lies in the center
of the diagram at the point marked “o.” For these particular inks, that point has
chromaticity (x, y) = (0.276, 0.308).

4.2.8 Multi-ink Printers

Increasingly, printers are being manufactured with more than four (CMYK) inks, i.e.,
printing systems with many more colorants. An example is a CMYKRGB printer.
The objective is to greatly increase the size of the printer gamut [15].

4.3 Color Models in Video 105

Block dyes

Wavelength

T
ra

ns
m

itt
an

ce

400 450 500 550 600 650 700

C

M

Y

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Block dyes gamut + NTSC gamut

(a)

(b)

Fig. 4.17 a Transmission curves for block dyes. b Spectrum locus, triangular NTSC gamut, and
6-vertex printer gamut

4.3 Color Models inVideo

4.3.1 Video Color Transforms

Methods of dealing with color in digital video largely derive from older analog
methods of coding color for TV. Typically, some version of the luminance is combined
with color information in a single signal. For example, a matrix transform method
similar to Eq. (4.19) called YIQ is used to transmit TV signals in North America and
Japan.

In Europe, video tape uses the PAL or SECAM codings, which are based on TV
that uses a matrix transform called YUV.

106 4 Color in Image and Video

Finally, digital video mostly uses a matrix transform called YCbCr that is closely
related to YUV.2

4.3.2 YUV Color Model

Initially, YUV coding was used for PAL analog video. A version of YUV is now
also used in the CCIR 601 standard for digital video.

First, it codes a luminance signal (for gamma-corrected signals) equal to Y ′ in
Eq. (4.20). (Recall that Y ′ is often called the “luma”). The luma Y ′ is similar, but not
exactly the same as, the CIE luminance value Y, gamma-corrected. In multimedia,
practitioners often blur the difference and simply refer to both as the luminance.

As well as magnitude or brightness we need a colorfulness scale, and to this end
chrominance refers to the difference between a color and a reference white at the
same luminance. It can be represented by the color differences U , V :

U = B ′ − Y ′

V = R′ − Y ′ (4.30)

From Eqs. (4.20), (4.30) reads
⎡

⎣
Y ′

U
V

⎤

⎦ =

⎡

⎣
0.299 0.587 0.114

−0.299 −0.587 0.886
0.701 −0.587 −0.114

⎤

⎦

⎡

⎣
R′

G ′

B ′

⎤

⎦ (4.31)

One goes backwards, from (Y ′,U, V) to (R′,G ′, B ′), by inverting the matrix in
Eq. (4.31).

Note that for a gray pixel, with R′ = G ′ = B ′, the luminance Y ′ is equal to
that same gray value, R′, say, since the sum of the coefficients in Eq. (4.20) is
0.299 + 0.587 + 0.114 = 1.0. Also, for such a gray (“black and white”) image, the
chrominance (U, V) is zero since the sum of coefficients in each of the lower two
equations in (4.31) is zero. Hence color TV could be displayed on a precursor black
and white television by just using the Y ′ signal.3 And for backwards compatibility
color TV uses old black and white signals with no color information by identifying
the signal with Y ′.

Finally, in the actual implementation U and V are rescaled for purposes of having
a more convenient maximum and minimum. For analog video, the scales were chosen
such that each of U or V is limited to the range between ±0.5 times the maximum of
Y ′ [16]. (Note that actual voltages are in another, non-normalized range—for analog
Y ′ is often in the range 0 to 700 mV and so rescaled U and V , called PB and PR in
that context, range over ±350 mV.)

2 The luminance-chrominance color models (YIQ, YUV, YCbCr) are proven effective. Hence they
are also adopted in image compression standards such as JPEG and JPEG2000.
3 It should be noted that many authors and users simply use these letters with no primes, and
(perhaps) mean them as if they were with primes!

4.3 Color Models in Video 107

Such a scaling reflects how to deal with component video—three separate signals.
However, for dealing with composite video, in which we want to compose a single
chrominance signal out of both U and V at once, it turns out to be convenient to
contain U , V within the range −1/3 to +4/3. This is so that the composite signal
magnitude Y ′ ±

√
U 2 + V 2 will remain within the amplitude limits of the recording

equipment. For this purpose, U and V are rescaled as follows:

U = 0.492111(B ′ − Y ′)
V = 0.877283(R′ − Y ′) (4.32)

(with multipliers sometimes rounded to 3 significant digits). Altogether, this make
the transform from R′,G ′, B ′ to Y ′,U, V as follows:

⎡

⎣
Y ′

U
V

⎤

⎦ =

⎡

⎣
0.299 0.587 0.114

−0.14713 −0.28886 0.436
0.615 −0.51499 −0.10001

⎤

⎦

⎡

⎣
R′

G ′

B ′

⎤

⎦ (4.33)

One goes backwards, from (Y ′,U, V) to (R′,G ′, B ′), by inverting the matrix in
Eq. (4.33), as follows:

⎡

⎣
R′

G ′

B ′

⎤

⎦ =

⎡

⎣
1.0000 0.0000 1.13983
1.0000 −0.39465 −0.58059
1.0000 2.03211 0.0000

⎤

⎦

⎡

⎣
Y ′

U
V

⎤

⎦ (4.34)

Then the chrominance signal is composed from U and V as the composite signal

C = U · cos(ωt)+ V · sin(ωt) (4.35)

where ω represents the NTSC color frequency.
From Eq. (4.33) we note that zero is not the minimum value for U , V . In terms

of real, positive colors, U is approximately from blue (U > 0) to yellow (U < 0) in
the RGB cube; V is approximately from red (V > 0) to cyan (V < 0).

Figure 4.18 shows the decomposition of a typical color image into its Y ′, U , V
components. Since both U and V go negative, for display in fact the images are
shifted, rescaled versions of the actual signals.

Since the eye is most sensitive to black and white variations, in terms of spatial
frequency (e.g., the eye can see a grid of fine gray lines more clearly than fine colored
lines), in the analog PAL signal a bandwidth of only 1.3 MHz was allocated to each
of U and V , while 5.5 MHz was reserved for the Y ′ signal. In fact, color information
that is transmitted for color TV is actually very blocky but we don’t perceive this
low level of color information.

4.3.3 YIQ Color Model

YIQ (actually, Y ′ I Q) is used in NTSC color TV broadcasting. Again, gray pixels
generate zero (I, Q) chrominance signal. The original meanings of these names
came from combinations of analog signals, I for “in-phase chrominance” and Q for
“quadrature chrominance” signal—these names can now be safely ignored.

108 4 Color in Image and Video

Fig. 4.18 Y ′U V decomposition of color image. Top image (a) is original color image; (b) is Y ′;
(c,d) are (U, V)

It is thought that, although U and V are more simply defined, they do not capture
the most-to-least hierarchy of human vision sensitivity. Although U and V nicely
define the color differences, they do not best correspond to actual human perceptual
color sensitivities. In NTSC, I and Q are used instead.

YIQ is just a version of YUV, with the same Y ′, but with U and V rotated by 33◦:

I = 0.492111(R′ − Y ′) cos 33◦ − 0.877283(B ′ − Y ′) sin 33◦ (4.36)

Q = 0.492111(R′ − Y ′) sin 33◦ + 0.877283(B ′ − Y ′) cos 33◦

This leads to the following matrix transform:
⎡

⎣
Y ′

I
Q

⎤

⎦ =

⎡

⎣
0.299 0.587 0.114
0.595879 −0.274133 −0.321746
0.211205 −0.523083 0.311878

⎤

⎦

⎡

⎣
R′

G ′

B ′

⎤

⎦ (4.37)

I is roughly the orange–blue direction and Q roughly corresponds to the purple–
green direction.

To go back from (Y ′, I, Q) to (R′,G ′, B ′) one inverts Eq. (4.37):
⎡

⎣
R′

G ′

B ′

⎤

⎦ =

⎡

⎣
1.0000 0.95630 0.62103
1.0000 −0.27256 −0.64671
1.0000 −1.10474 1.70116

⎤

⎦

⎡

⎣
Y ′

I
Q

⎤

⎦ (4.38)

Figure 4.19 shows the decomposition of the same color image as above into YIQ
components. Only the I and Q components are shown since the original image and
the Y ′ component are the same as in Fig. 4.18.

4.3 Color Models in Video 109

Fig. 4.19 I and Q components of color image

For this particular image, most of the energy is captured in the Y ′ component;
this is typical. However, in this case the YIQ decomposition does a better of job
of forming a hierarchical sequence of images: for the 8-bit Y ′ component, the
root-mean-square value is 146 (with 255 the maximum possible). The U , V compo-
nents have RMS values 19 and 21.

For the YIQ decomposition, the I and Q components on the other hand have RMS
values 20 and 5, and so better prioritize color values.

4.3.4 YCbCr Color Model

The international standard for component (3-signal, studio quality) digital video is
officially “Recommendation ITU-R BT.601-4” (known as Rec. 601). This standard
uses another color space, Y CbCr , often simply written YCbCr. The YCbCr transform
is closely related to the YUV transform. YUV is changed by scaling such that Cb is
U , but with a coefficient of 0.5 multiplying B ′. In some software systems, Cb and
Cr are also shifted such that values are between 0 and 1. This makes the equations
as follows:

Cb =
(
(B ′ − Y ′)/1.772

)
+ 0.5 (4.39)

Cr =
(
(R′ − Y ′)/1.402

)
+ 0.5

Written out, we then have
⎡

⎣
Y ′

Cb
Cr

⎤

⎦ =

⎡

⎣
0.299 0.587 0.114

−0.168736 −0.331264 0.5
0.5 −0.418688 −0.081312

⎤

⎦

⎡

⎣
R′

G ′

B ′

⎤

⎦ +

⎡

⎣
0
0.5
0.5

⎤

⎦

(4.40)

In practice, however, Recommendation 601 specifies 8-bit coding, with a maxi-
mum Y ′ value of only 219, and a minimum of +16. Values below 16 and above 235
are reserved for other processing (these are denoted ‘headroom’ and ‘footroom’).
Cb and Cr have a range of ±112 and offset of +128 (in other words, a maximum of

110 4 Color in Image and Video

240 and a minimum of 16). If R′, G ′, B ′ are floats in [0 . . .+ 1], then we obtain Y ′,
Cb, Cr in [0 . . . 255] via the transform [16].

⎡

⎣
Y ′

Cb
Cr

⎤

⎦ =

⎡

⎣
65.481 128.553 24.966

−37.797 −74.203 112
112 −93.786 −18.214

⎤

⎦

⎡

⎣
R′

G ′

B ′

⎤

⎦ +

⎡

⎣
16
128
128

⎤

⎦ (4.41)

In fact, the output range is also clamped to [1 . . . 254] since the Rec. 601 synchro-
nization signals are given by codes 0 and 255.

The inverse transform to Eq. (4.41) is as follows [16]:
⎡

⎣
R′

G ′

B ′

⎤

⎦ =

⎡

⎣
0.00456621 0.0000 0.00625893
0.00456621 −0.00153632 −0.00318811
0.00456621 0.00791071 0.0000

⎤

⎦

⎡

⎣
Y ′ − 16
Cb − 128
Cr − 128

⎤

⎦

(4.42)

The YCbCr transform is used in JPEG image compression and MPEG video
compression.

4.4 Exercises

1. Consider the following set of color-related terms:
(a) wavelength
(b) color level
(c) brightness
(d) whiteness
How would you match each of the following (more vaguely stated) characteris-
tics to each of the above terms?
(a) luminance
(b) hue
(c) saturation
(d) chrominance

2. What color is outdoor light? I.e., around what wavelength would you guess the
peak power is for a red sunset? For blue sky light?

3. “The LAB gamut covers all colors in the visible spectrum.”
What does that statement mean? Briefly, how does LAB relate to color?—just
be descriptive.
What are (roughly) the relative sizes of the LAB gamut, the CMYK gamut, and
a monitor gamut?

4. Prove that straight lines in (X, Y, Z) space project to straight lines in (x, y)
chromaticity space. I.e., let C1 = (X1, Y1, Z1) and C2 = (X2, Y 2, Z2) be two
different colors, and let C3 = (X3, Y3, Z3) fall on a line connecting C1 and C2:
C3 = αC1 + (1 −α)C2. Then show that (x3, y3) = β(x1, y1)+ (1 −β)(x2, y2)

for some β.

4.4 Exercises 111

0
0.2

0.4
0.6

0.8
1

1.2

0
0.2

0.4
0.6

0.8
1
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

1.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

00.20.40.60.81

0
0.2

0.4
0.6

0.8

(a) (b)

Fig. 4.20 a Color-matching functions; b Transformed color-matching functions

5. Where does the chromaticity “horseshoe” shape in Fig. 4.11 come from? Can
we calculate it?
Write a small pseudocode solution for the problem of finding this so-called
“spectrum locus.”
Hint: Fig. 4.20a shows the color-matching functions in Fig. 4.10 drawn as a set
of points in 3D-space. And Fig. 4.20b shows these points mapped into another
3D set of points.
Hint: Try a programming solution for this problem, to help you answer it more
explicitly.

6. Suppose we use a new set of color–matching functions x̄new(λ), ȳnew(λ),
z̄new(λ) with values

λ (nm) x̄new(λ) ȳnew(λ) z̄new(λ)

450 0.2 0.1 0.5
500 0.1 0.4 0.3
600 0.1 0.4 0.2
700 0.6 0.1 0.0

In this system, what are the chromaticity values (x, y) of equi-energy white light
E(λ) where E(λ) ≡ 1 for all wavelengths λ? Explain.

7. Repeat the steps leading up to Eq. (4.18), but this time using the NTSC standard—
if you use the number of significant digits as in Eq. 4.18 you will end up with
the transform in Eq. (4.19).

8. (a) Suppose images are not gamma-corrected by a camcorder. Generally, how
would they appear on a screen?

112 4 Color in Image and Video

Fig. 4.21 SMPTE Monitor Gamut

(b) What happens if we artificially increase the output gamma for stored image
pixels? (One can do this in Photoshop.) What is the effect on the image?

9. Suppose image file values are in 0 . . . 255 in each color channel. If we define
R = R/255 for the Red channel, we wish to carry out gamma correction by
passing a new value R

′
to the display device, with R

′ ≃ R
1/2.0

.
It is common to carry out this operation using integer math. Suppose we approx-
imate the calculation as creating new integer values in 0 . . . 255 via

(int) (255 · (R
1/2.0

))

(a) Comment (very roughly) on the effect of this operation on the number of
actually available levels for display.
Hint: coding this up in any language will help you understand the mechanism
at work better–and as well, then you can simply count the outout levels.

(b) Which end of the levels 0 . . . 255 is affected most by gamma correction, the
low end near 0 or the high end near 255? Why? How much at each end?

10. In many Computer Graphics applications, γ-correction is performed only in the
color LUT (lookup table). Show the first five entries of the color LUT if it meant
for use in γ-correction.
Hint: coding this up saves you the trouble of using a calculator for this question.

11. Devise a program to produce Fig. 4.21, showing the color gamut of a monitor
that adheres to SMPTE specifications.

12. The “hue” is the color, independent of brightness and how much pure white has
been added to it. We can make a simple definition of hue as the set of ratios
R:G:B.

4.4 Exercises 113

(a) Suppose a color (i.e., an RGB) is divided by 2.0, so that the RGB triple now
has values 0.5 times its former values.
Explain using numerical values:

i. If gamma correction is applied after the division by 2.0 and before the
color is stored, does the darker RGB have the same hue as the original
in the sense of having the same ratios R:G:B of light emanating from
the display device? (we are not discussing any psychophysical effects
that change our perception—here we are just worried about the machine
itself).

ii. If gamma correction is not applied, does the second RGB above, =
RGB/2, have the same hue as the first RGB, when displayed? And are
these the same hues as for the original color as stored, not the light as
displayed?

(b) Assuming no gamma correction is applied, For what color triples is the hue
as displayed the same as for the original color as stored?

13. We wish to produce a graphic that is pleasing and easily readable. Suppose we
make the background color pink. What color text font should we use to make
the text most readable? Justify your answer.

14. To makes matters simpler for eventual printing, we buy a camera equipped with
CMY sensors, as opposed to RGB sensors (CMY cameras are in fact available).
(a) Draw spectral curves roughly depicting what such a camera’s sensitivity to

wavelength might look like.
(b) Could the output of a CMY camera be used to produce ordinary RGB pic-

tures? How?
15. Color inkjet printers use the CMYK model. When the color ink cyan is sprayed

onto a sheet of white paper,

(i) why does it look cyan under daylight?
(ii) what color would it appear to be under a blue light. Why?

References

1. D.H. Pritchard, U.S. color television fundamentals—a review. IEEE Trans. Consum. Electron.
23(4), 467–478 (1977)

2. G. Wyszecki, W.S. Stiles, Color Science: Concepts and Methods, Quantitative Data and For-
mulas, 2nd edn. (Wiley, New York, 2000)

3. R.W.G. Hunt, in 2nd Color Imaging Conference Transforms and Transportability of Color.
Color reproduction and color vision modeling. Society for Imaging Science and Technology
(IS&T)/Society for Information Display (SID) Joint Conference (1993), pp. 1–5

4. M.J. Vrhel, R. Gershon, L.S. Iwan, Measurement and analysis of object reflectance spectra.
Color Res. Appl. 19, 4–9 (1994)

5. R.W.G. Hunt, The Reproduction of Color, 6th edn. (Fountain Press, England, 2004)

114 4 Color in Image and Video

6. J.F. Hughes, A. van Dam, M. McGuire, D.F. Sklar, J.D. Foley, S.K. Feiner, K. Akeley, Computer
Graphics: Principles and Practice, 3rd edn. (Addison-Wesley, Boston, 2013)

7. C. Poynton, Color FAQ—frequently asked questions color (2006), http://www.poynton.com/
notes/colour_and_gamma/ColorFAQ.html

8. M.D. Fairchild, Color Appearance Models, 3rd edn. (Addison-Wesley, Reading, 2013)
9. D. Travis, Effective Color Displays (Academic Press, London, 1991)

10. R.S. Berns, L.A. Taplin, Practical spectral imaging using a color-filter array digital camera,
http://www.art-si.org/PDFs/Acquisition/TR_Practical_Spectral_Imaging.pdf

11. C. Fredembach, S. Susstrunk, in 16th Color Imaging Conference. Colouring the near infrared
(2008), pp. 176–182

12. International Electrotechnical Commission, IEC 61966-2-1: Multimedia Systems and
Equipment—Colour Measurement and Management (Part 2–1: Colour management—Default
RGB colour space—sRGB). (IEC, Geneva, 2007)

13. M. Stokes, M. Anderson, S. Chandrasekar, R. Motta, A standard default color space for the
internet: sRGB. (1996), http://www.color.org/sRGB.html

14. Microsoft Corporation, Colorspace interchange using srgb. (2001), http://www.microsoft.com/
whdc/device/display/color/sRGB.mspx

15. P. Urban, in 11th Congress of the International Colour Association, Ink limitation for spectral
or color constant printing (2009)

16. C.A. Poynton, C.A. Poynton, A Technical Introduction to Digital Video (Wiley, New York,
1996)

http://www.poynton.com/notes/colour_and_gamma/ColorFAQ.html
http://www.poynton.com/notes/colour_and_gamma/ColorFAQ.html
http://www.art-si.org/PDFs/Acquisition/TR_Practical_Spectral_Imaging.pdf
http://www.color.org/sRGB.html
http://www.microsoft.com/whdc/device/display/color/sRGB.mspx
http://www.microsoft.com/whdc/device/display/color/sRGB.mspx

5Fundamental Concepts inVideo

In this chapter, we introduce the principal notions needed to understand video. Digital
video compression is explored separately, in Chaps. 10–12.

Here we consider the following aspects of video and how they impact multimedia
applications:
• Analog video
• Digital video
• Video display interfaces
• 3D video.
Since video is created from a variety of sources, we begin with the signals themselves.
Analog video is represented as a continuous (time-varying) signal, and the first part of
this chapter discusses how it is created and measured. Digital video is represented as a
sequence of digital images. Nowadays, it is omnipresent in many types of multimedia
applications. Therefore, the second part of the chapter focuses on issues in digital
video including HDTV, UHDTV, and 3D TV.

5.1 AnalogVideo

Up until last decade, most TV programs were sent and received as an analog signal.
Once the electrical signal is received, we may assume that brightness is at least a
monotonic function of voltage, if not necessarily linear, because of gamma correction
(see Sect. 4.1.6).

An analog signal f (t) samples a time-varying image. So-called progressive scan-
ning traces through a complete picture (a frame) row-wise for each time interval. A
high-resolution computer monitor typically uses a time interval of 1/72 s.

In TV and in some monitors and multimedia standards, another system, inter-
laced scanning, is used. Here, the odd-numbered lines are traced first, then the
even-numbered lines. This results in “odd” and “even” fields—two fields make up
one frame.

Z.-N. Li et al., Fundamentals of Multimedia, 115
Texts in Computer Science, DOI: 10.1007/978-3-319-05290-8_5,
© Springer International Publishing Switzerland 2014

http://dx.doi.org/10.1007/978-3-319-05290-8_10
http://dx.doi.org/10.1007/978-3-319-05290-8_12
http://dx.doi.org/10.1007/978-3-319-05290-8_4

116 5 Fundamental Concepts in Video

Fig. 5.1 Interlaced raster
scan

Q

P

T

U

V

R
S

In fact, the odd lines (starting from 1) end up at the middle of a line at the end
of the odd field, and the even scan starts at a half-way point. Figure 5.1 shows the
scheme used. First the solid (odd) lines are traced—P to Q, then R to S, and so on,
ending at T —then the even field starts at U and ends at V . The scan lines are not
horizontal because a small voltage is applied, moving the electron beam down over
time.

Interlacing was invented because, when standards were being defined, it was
difficult to transmit the amount of information in a full frame quickly enough to
avoid flicker. The double number of fields presented to the eye reduces perceived
flicker.

Because of interlacing, the odd and even lines are displaced in time from each
other. This is generally not noticeable except when fast action is taking place
onscreen, when blurring may occur. For example, in the video in Fig. 5.2, the moving
helicopter is blurred more than the still background.

Since it is sometimes necessary to change the frame rate, resize, or even produce
stills from an interlaced source video, various schemes are used to deinterlace it. The
simplest deinterlacing method consists of discarding one field and duplicating the
scan lines of the other field, which results in the information in one field being lost
completely. Other, more complicated methods retain information from both fields.

CRT (Cathode Ray Tube) displays are built like fluorescent lights and must flash
50–70 times per second to appear smooth. In Europe, this fact is conveniently tied to
their 50 Hz electrical system, and they use video digitized at 25 frames per second
(fps); in North America, the 60 Hz electric system dictates 30 fps.

The jump from Q to R and so on in Fig. 5.1 is called the horizontal retrace, during
which the electronic beam in the CRT is blanked. The jump from T to U or V to P
is called the vertical retrace.

Since voltage is one-dimensional—it is simply a signal that varies with time—
how do we know when a new video line begins? That is, what part of an electrical
signal tells us that we have to restart at the left side of the screen?

5.1 Analog Video 117

Fig. 5.2 Interlaced scan produces two fields for each frame: a the video frame; b Field 1; c Field
2; d difference of fields

Fig. 5.3 Electronic signal for
one NTSC scan line

White (0.714 V)

Horizontal retrace Active line signal

Black (0.055 V)
Blank (0 V)

Sync (− 0.286 V)

t

10.9 µs 52.7µs

The solution used in analog video is a small voltage offset from zero to indicate
black and another value, such as zero, to indicate the start of a line. Namely, we could
use a “blacker-than-black” zero signal to indicate the beginning of a line.

Figure 5.3 shows a typical electronic signal for one scan line of NTSC composite
video. ‘White’ has a peak value of 0.714 V; ‘Black’ is slightly above zero at 0.055 V;
whereas Blank is at zero volts. As shown, the time duration for blanking pulses
in the signal is used for synchronization as well, with the tip of the Sync signal
at approximately −0.286 V. In fact, the problem of reliable synchronization is so
important that special signals to control sync take up about 30 % of the signal!

118 5 Fundamental Concepts in Video

Fig. 5.4 Video raster,
including retrace and sync
data

Vertical retrace and sync

H
or

iz
on

ta
l r

et
ra

ce
 a

nd
 s

yn
c

Image Data

The vertical retrace and sync ideas are similar to the horizontal one, except that
they happen only once per field. Tekalp [1] presents a good discussion of the details of
analog (and digital) video. The handbook [2] considers many fundamental problems
in video processing in great depth.

5.1.1 NTSCVideo

The NTSC TV standard is mostly used in North America and Japan. It uses a familiar
4:3 aspect ratio (i.e., the ratio of picture width to height) and 525 scan lines per frame
at 30 fps.

More exactly, for historical reasons NTSC uses 29.97 fps—or, in other words,
33.37 ms per frame. NTSC follows the interlaced scanning system, and each frame is
divided into two fields, with 262.5 lines/field. Thus the horizontal sweep frequency is
525×29.97 ≈ 15, 734 lines/s, so that each line is swept out in 1/15,734 s ≈ 63.6µs.
Since the horizontal retrace takes 10.9µs, this leaves 52.7µs for the active line signal,
during which image data is displayed (see Fig. 5.3).

Figure 5.4 shows the effect of “vertical retrace and sync” and “horizontal retrace
and sync” on the NTSC video raster. Blanking information is placed into 20 lines
reserved for control information at the beginning of each field. Hence, the number of
active video lines per frame is only 485. Similarly, almost 1/6 of the raster at the left
side is blanked for horizontal retrace and sync. The nonblanking pixels are called
active pixels.

Pixels often fall between scanlines. Therefore, even with noninterlaced scan,
NTSC TV is capable of showing only about 340 (visually distinct) lines,—about
70 % of the 485 specified active lines. With interlaced scan, it could be as low as
50 %.

Image data is not encoded in the blanking regions, but other information can be
placed there, such as V-chip information, stereo audio channel data, and subtitles in
many languages.

NTSC video is an analog signal with no fixed horizontal resolution. Therefore,
we must decide how many times to sample the signal for display. Each sample

5.1 Analog Video 119

Table 5.1 Samples per line
for various analog video
formats

Format Samples per line

VHS 240
S-VHS 400–425
Beta-SP 500
Standard 8 mm 300
Hi-8 mm 425

corresponds to one pixel output. A pixel clock divides each horizontal line of video
into samples. The higher the frequency of the pixel clock, the more samples per line.

Different video formats provide different numbers of samples per line, as listed
in Table 5.1. Laser disks have about the same resolution as Hi-8. (In comparison,
miniDV 1/4-inch tapes for digital video are 480 lines by 720 samples per line).

NTSC uses the YIQ color model. We employ the technique of quadrature modu-
lation to combine (the spectrally overlapped part of) I (in-phase) and Q (quadrature)
signals into a single chroma signal C [3,1]:

C = I cos(Fsct)+ Q sin(Fsct) (5.1)

This modulated chroma signal is also known as the color subcarrier, whose magni-
tude is

√
I 2 + Q2 and phase is tan−1(Q/I). The frequency of C is Fsc ≈ 3.58 MHz.

The I and Q signals are multiplied in the time domain by cosine and sine functions
with the frequency Fsc [Eq. (5.1)]. This is equivalent to convolving their Fourier
transforms in the frequency domain with two impulse functions at Fsc and −Fsc. As
a result, a copy of I and Q frequency spectra are made which are centered at Fsc and
−Fsc, respectively.1

The NTSC composite signal is a further composition of the luminance signal Y
and the chroma signal, as defined below:

composite = Y + C = Y + I cos(Fsct)+ Q sin(Fsct). (5.2)

NTSC assigned a bandwidth of 4.2 MHz to Y but only 1.6 MHz to I and 0.6 MHz
to Q, due to humans’ insensitivity to color details (high-frequency color changes).
As Fig. 5.5 shows, the picture carrier is at 1.25 MHz in the NTSC video channel,
which has a total bandwidth of 6 MHz. The chroma signal is being “carried” by
Fsc ≈ 3.58 MHz toward the higher end of the channel and is thus centered at 1.25+
3.58 = 4.83 MHz. This greatly reduces the potential interference between the Y
(luminance) and C (chrominance) signals, since the magnitudes of higher frequency
components of Y are significantly smaller than their lower frequency counterparts.

Moreover, as Blinn [3] explains, great care is taken to interleave the discrete Y and
C spectra so as to further reduce the interference between them. The “interleaving”
is illustrated in Fig. 5.5, where the frequency components for Y (from the discrete

1 Negative frequency (−Fsc) is a mathematical notion needed in the Fourier transform. In the
physical spectrum, only positive frequency is used.

120 5 Fundamental Concepts in Video

0 1.25 5.75

6 MHz

4.2 MHz

4.83

Audio
subcarrier

Color
subcarrier

Picture
carrier

I and QY 6.0
f (MHz)

Fig. 5.5 Interleaving Y and C signals in the NTSC spectrum

Fourier transform) are shown as solid lines, and those for I and Q are shown as
dashed lines. As a result, the 4.2 MHz band of Y is overlapped and interleaved with
the 1.6 MHz to I and 0.6 MHz to Q.

The first step in decoding the composite signal at the receiver side is to separate
Y and C . Generally, low-pass filters can be used to extract Y , which is located at the
lower end of the channel. TV sets with higher quality also use comb filters [3] to
exploit the fact that Y and C are interleaved.

After separation from Y , the chroma signal C can be demodulated to extract I
and Q separately.

To extract I :
1. Multiply the signal C by 2 cos(Fsct)

C · 2 cos(Fsct) = I · 2 cos2(Fsct)+ Q · 2 sin(Fsct) cos(Fsct)

= I · (1 + cos(2Fsct))+ Q · 2 sin(Fsct) cos(Fsct)

= I + I · cos(2Fsct)+ Q · sin(2Fsct).

2. Apply a low-pass filter to obtain I and discard the two higher frequency (2Fsc)
terms.
Similarly, extract Q by first multiplying C by 2 sin(Fsct) and then applying low-

pass filtering.
The NTSC bandwidth of 6 MHz is tight. Its audio subcarrier frequency is 4.5 MHz,

which places the center of the audio band at 1.25 + 4.5 = 5.75 MHz in the channel
(Fig. 5.5). This would actually be a bit too close to the color subcarrier—a cause for
potential interference between the audio and color signals. It was due largely to this
reason that NTSC color TV slowed its frame rate to 30 × 1, 000/1, 001 ≈ 29.97 fps
[4]. As a result, the adopted NTSC color subcarrier frequency is slightly lowered, to

fsc = 30 × 1, 000/1, 001 × 525 × 227.5 ≈ 3.579545 MHz

where 227.5 is the number of color samples per scan line in NTSC broadcast TV.

5.1 Analog Video 121

Table 5.2 Comparison of analog broadcast TV systems

TV system Frame rate (fps) Number
of scan lines

Total channel
width (MHz)

Bandwidth allocation (MHz)

Y I or U Q or V

NTSC 29.97 525 6.0 4.2 1.6 0.6
PAL 25 625 8.0 5.5 1.8 1.8
SECAM 25 625 8.0 6.0 2.0 2.0

5.1.2 PALVideo

PAL (Phase Alternating Line) is a TV standard originally invented by German sci-
entists. It uses 625 scan lines per frame, at 25 fps (or 40 ms/frame), with a 4:3 aspect
ratio and interlaced fields. Its broadcast TV signals are also used in composite video.
This important standard is widely used in Western Europe, China, India, and many
other parts of the world. Because it has higher resolution than NTSC (625 vs. 525
scan lines), the visual quality of its pictures is generally better.

PAL uses the YUV color model with an 8 MHz channel, allocating a bandwidth
of 5.5 MHz to Y and 1.8 MHz each to U and V . The color subcarrier frequency is
fsc ≈ 4.43 MHz. To improve picture quality, chroma signals have alternate signs
(e.g., +U and −U) in successive scan lines; hence the name “Phase Alternating
Line.”2 This facilitates the use of a (line-rate) comb filter at the receiver—the signals
in consecutive lines are averaged so as to cancel the chroma signals (which always
carry opposite signs) for separating Y and C and obtain high-quality Y signals.

5.1.3 SECAMVideo

SECAM, which was invented by the French, is the third major broadcast TV standard.
SECAM stands for Systeme Electronique Couleur Avec Memoire. SECAM also uses
625 scan lines per frame, at 25 fps, with a 4:3 aspect ratio and interlaced fields. The
original design called for a higher number of scan lines (over 800), but the final
version settled for 625.

SECAM and PAL are similar, differing slightly in their color coding scheme. In
SECAM, U and V signals are modulated using separate color subcarriers at 4.25 MHz
and 4.41 MHz, respectively. They are sent in alternate lines—that is, only one of the
U or V signals will be sent on each scan line.

Table 5.2 gives a comparison of the three major analog broadcast TV systems.

2 According to Blinn [3], NTSC selects a half integer (227.5) number of color samples for each
scan line. Hence, its chroma signal also switches sign in successive scan lines.

122 5 Fundamental Concepts in Video

5.2 Digital Video

The advantages of digital representation for video are many. It permits
• Storing video on digital devices or in memory, ready to be processed (noise

removal, cut and paste, and so on) and integrated into various multimedia appli-
cations.

• Direct access, which makes nonlinear video editing simple.
• Repeated recording without degradation of image quality.
• Ease of encryption and better tolerance to channel noise.

In earlier Sony or Panasonic recorders, digital video was in the form of composite
video. Modern digital video generally uses component video, although RGB signals
are first converted into a certain type of color opponent space. The usual color space
is YCbCr [5].

5.2.1 Chroma Subsampling

Since humans see color with much less spatial resolution than black and white, it
makes sense to decimate the chrominance signal. Interesting but not necessarily
informative names have arisen to label the different schemes used. To begin with,
numbers are given stating how many pixel values, per four original pixels, are actu-
ally sent. Thus the chroma subsampling scheme “4:4:4” indicates that no chroma
subsampling is used. Each pixel’s Y , Cb, and Cr values are transmitted, four for
each of Y , Cb, and Cr .

The scheme “4:2:2” indicates horizontal subsampling of the Cb and Cr signals
by a factor of 2. That is, of four pixels horizontally labeled 0 to 3, all four Y s are
sent, and every other Cb and Cr are sent, as (Cb0, Y 0)(Cr0, Y 1)(Cb2, Y 2)(Cr2,
Y 3)(Cb4, Y 4), and so on.

The scheme “4:1:1” subsamples horizontally by a factor of 4. The scheme “4:2:0”
subsamples in both the horizontal and vertical dimensions by a factor of 2. Theo-
retically, an average chroma pixel is positioned between the rows and columns, as
shown in Fig. 5.6. We can see that the scheme 4:2:0 is in fact another kind of 4:1:1
sampling, in the sense that we send 4, 1, and 1 values per 4 pixels. Therefore, the
labeling scheme is not a very reliable mnemonic!

Scheme 4:2:0, along with others, is commonly used in JPEG and MPEG (see later
chapters in Part II).

5.2.2 CCIR and ITU-R Standards for Digital Video

The CCIR is the Consultative Committee for International Radio. One of the most
important standards it has produced is CCIR-601 for component digital video.
This standard has since become standard ITU-R Rec. 601, an international standard
for professional video applications. It is adopted by several digital video formats,
including the popular DV video.

5.2 Digital Video 123

4:4:4 4:2:2

4:2:04:1:1

Pixel with Y, Cr, and Cb values

Pixel with only Cr and Cb values

Pixel with only Y value

Fig. 5.6 Chroma subsampling

The NTSC version has 525 scan lines, each having 858 pixels (with 720 of them
visible, not in the blanking period). Because the NTSC version uses 4:2:2, each pixel
can be represented with two bytes (8 bits for Y and 8 bits alternating between Cb
and Cr). The Rec. 601 (NTSC) data rate (including blanking and sync but excluding
audio) is thus approximately 216 Mbps (megabits per second):

525 × 858 × 30 × 2 bytes × 8
bits
byte

≈ 216 Mbps

During blanking, digital video systems may make use of the extra data capac-
ity to carry audio signals, translations into foreign languages, or error-correction
information.

Table 5.3 shows some of the digital video specifications, all with an aspect ratio
of 4:3. The Rec. 601 standard uses an interlaced scan, so each field has only half as
much vertical resolution (e.g., 240 lines in NTSC).

CIF stands for Common Intermediate Format, specified by the International Tele-
graph and Telephone Consultative Committee (CCITT), now superseded by the
International Telecommunication Union, which oversees both telecommunications
(ITU-T) and radio frequency matters (ITU-R) under one United Nations body. The
idea of CIF, which is about the same as VHS quality, is to specify a format for lower
bitrate. CIF uses a progressive (noninterlaced) scan. QCIF stands for Quarter-CIF,

124 5 Fundamental Concepts in Video

Table 5.3 ITU-R digital video specifications

Rec. 601 525/60 Rec. 601 625/50 CIF QCIF
NTSC PAL/SECAM

Luminance resolution 720 × 480 720 × 576 352 × 288 176 × 144
Chrominance resolution 360 × 480 360 × 576 176 × 144 88 × 72
Color subsampling 4:2:2 4:2:2 4:2:0 4:2:0
Aspect ratio 4:3 4:3 4:3 4:3
Fields/sec 60 50 30 30
Interlaced Yes Yes No No

and is for even lower bitrate. All the CIF/QCIF resolutions are evenly divisible by 8,
and all except 88 are divisible by 16; this is convenient for block-based video coding
in H.261 and H.263, discussed in Chap. 10.

CIF is a compromise between NTSC and PAL, in that it adopts the NTSC frame
rate and half the number of active lines in PAL. When played on existing TV sets,
NTSC TV will first need to convert the number of lines, whereas PAL TV will require
frame rate conversion.

5.2.3 High-Definition TV

The introduction of wide-screen movies brought the discovery that viewers seated
near the screen enjoyed a level of participation (sensation of immersion) not experi-
enced with conventional movies. Apparently the exposure to a greater field of view,
especially the involvement of peripheral vision, contributes to the sense of “being
there.” The main thrust of High-Definition TV (HDTV) is not to increase the “defi-
nition” in each unit area, but rather to increase the visual field, especially its width.

First-generation HDTV was based on an analog technology developed by Sony
and NHK in Japan in the late 1970s. HDTV successfully broadcasted the 1984
Los Angeles Olympic Games in Japan. MUltiple sub-Nyquist Sampling Encoding
(MUSE) was an improved NHK HDTV with hybrid analog/digital technologies that
was put in use in the 1990s. It has 1,125 scan lines, interlaced (60 fields per second),
and a 16:9 aspect ratio. It uses satellite to broadcast—quite appropriate for Japan,
which can be covered with one or two satellites. The Direct Broadcast Satellite (DBS)
channels used have a bandwidth of 24 MHz.

In general, terrestrial broadcast, satellite broadcast, cable, and broadband networks
are all feasible means for transmitting HDTV as well as conventional TV. Since
uncompressed HDTV will easily demand more than 20 MHz bandwidth, which will
not fit in the current 6 or 8 MHz channels, various compression techniques are being
investigated. It is also anticipated that high-quality HDTV signals will be transmitted
using more than one channel, even after compression.

http://dx.doi.org/10.1007/978-3-319-05290-8_10

5.2 Digital Video 125

Table 5.4 Advanced digital TV formats supported by ATSC

Number of active pixels per line Number of active lines Aspect ratio Picture rate

1,920 1,080 16:9 60P 60I 30P 24P
1,280 720 16:9 60P 30P 24P
720 480 16:9 or 4:3 60P 60I 30P 24P
640 480 4:3 60P 60I 30P 24P

In 1987, the FCC decided that HDTV standards must be compatible with the
existing NTSC standard and must be confined to the existing Very High Frequency
(VHF) and Ultra High Frequency (UHF) bands. This prompted a number of proposals
in North America by the end of 1988, all of them analog or mixed analog/digital.

In 1990, the FCC announced a different initiative—its preference for full-
resolution HDTV. They decided that HDTV would be simultaneously broadcast
with existing NTSC TV and eventually replace it. The development of digital HDTV
immediately took off in North America.

Witnessing a boom of proposals for digital HDTV, the FCC made a key decision
to go all digital in 1993. A “grand alliance” was formed that included four main pro-
posals, by General Instruments, MIT, Zenith, and AT&T, and by Thomson, Philips,
Sarnoff, and others. This eventually led to the formation of the Advanced Television
Systems Committee (ATSC), which was responsible for the standard for TV broad-
casting of HDTV. In 1995, the U.S. FCC Advisory Committee on Advanced Televi-
sion Service recommended that the ATSC digital television standard be adopted.

Table 5.4 lists some of the standard supported video scanning formats. (For the
50 Hz systems, 60P becomes 50P, 30P becomes 25P, etc.) In the table, “I” means
interlaced scan and “P” means progressive (noninterlaced) scan. The frame rates
supported are both integer rates and the NTSC rates—that is, 60.00 or 59.94, 30.00
or 29.97, 24.00, or 23.98 fps.

For video, MPEG-2 was initially chosen as the compression standard. As will be
seen in Chap. 11, it uses Main Level to High Level of the Main Profile of MPEG-
2. For audio, AC-3 is the standard. It supports the so-called 5.1 channel Dolby
surround sound—five surround channels plus a subwoofer channel. In 2008, ATSC
was updated to adopt the H.264 video compression standard.

The salient difference between conventional TV and HDTV [4,6] is that the latter
has a much wider aspect ratio of 16:9 instead of 4:3. (Actually, it works out to be
exactly one-third wider than current TV.) Another feature of HDTV is its move
toward progressive (noninterlaced) scan. The rationale is that interlacing introduces
serrated edges to moving objects and flickers along horizontal edges.

Consumers with analog TV sets will still be able to receive signals via an 8-VSB
(8-level vestigial sideband) demodulation box. The services provided include:
• Standard Definition TV (SDTV)—the NTSC TV or higher.

http://dx.doi.org/10.1007/978-3-319-05290-8_11

126 5 Fundamental Concepts in Video

• Enhanced Definition TV (EDTV)—480 active lines or higher—the third and
fourth rows in Table 5.4.

• High-Definition TV (HDTV)—720 active lines or higher. So far, the popular
choices are 720P (1, 280 × 720, progressive scan, 30 fps), 1080I (1, 920 × 1, 080,
interlaced, 30 fps), and 1080P (1, 920 × 1, 080, progressive scan, 30 or 60 fps).

5.2.4 Ultra High Definition TV (UHDTV)

UHDTV is a new development—a new generation of HDTV! The standards announ-
ced in 2012 support 4K UHDTV: 2160P (3, 840 × 2, 160, progressive scan) and 8K
UHDTV: 4320P (7, 680 × 4, 320, progressive scan). The aspect ratio is 16:9. The
bit-depth can be up to 12 bits, and the chroma subsampling can be 4:2:0 or 4:2:2.
The supported frame rate has been gradually increased to 120 fps. The UHDTV will
provide superior picture quality, comparable to IMAX movies, but it will require a
much higher bandwidth and/or bitrate.

In early 2013, the ATSC called for proposals to support the 4K UHDTV (2160P)
at 60 fps.

5.3 Video Display Interfaces

We now discuss the interfaces for video signal transmission from some output devices
(e.g., set-top box, video player, video card, and etc.) to a video display (e.g., TV,
monitor, projector, etc.). There have been a wide range of video display interfaces,
supporting video signals of different formats (analog or digital, interlaced or pro-
gressive), different frame rates, and different resolutions [7]. We start our discussion
with analog interfaces, including Component Video, Composite Video, and S-Video,
and then digital interfaces, including DVI, HDMI, and DisplayPort.

5.3.1 Analog Display Interfaces

Analog video signals are often transmitted in one of three different interfaces: Com-
ponent video, Composite video, and S-video. Figure 5.7 shows the typical connectors
for them.

ComponentVideo

Higher end video systems, such as for studios, make use of three separate video
signals for the red, green, and blue image planes. This is referred to as component
video. This kind of system has three wires (and connectors) connecting the camera
or other devices to a TV or monitor.

5.3 Video Display Interfaces 127

Fig. 5.7 Connectors for typical analog display interfaces. From left to right: Component video,
Composite video, S-video, and VGA

Color signals are not restricted to always being RGB separations. Instead, as we
saw in Chap. 4 on color models for images and video, we can form three signals via
a luminance–chrominance transformation of the RGB signals—for example, YIQ or
YUV.

For any color separation scheme, component video gives the best color repro-
duction, since there is no “crosstalk” between the three different channels, unlike
composite video or S-video. Component video, however, requires more bandwidth
and good synchronization of the three components.

Composite Video

In composite video, color (“chrominance”) and intensity (“luminance”) signals are
mixed into a single carrier wave. Chrominance is a composite of two color compo-
nents (I and Q, or U and V). This is the type of signal used by broadcast color TV;
it is downward compatible with black-and-white TV.

In NTSC TV, for example [3], I and Q are combined into a chroma signal, and a
color subcarrier then puts the chroma signal at the higher frequency end of the channel
shared with the luminance signal. The chrominance and luminance components
can be separated at the receiver end, and the two color components can be further
recovered.

When connecting to TVs or VCRs, composite video uses only one wire (and
hence one connector, such as a BNC connector at each end of a coaxial cable or an
RCA plug at each end of an ordinary wire), and video color signals are mixed, not
sent separately. The audio signal is another addition to this one signal. Since color
information is mixed and both color and intensity are wrapped into the same signal,
some interference between the luminance and chrominance signals is inevitable.

S-Video

As a compromise, S-video (separated video, or super-video, e.g., in S-VHS) uses
two wires: one for luminance and another for a composite chrominance signal. As a

http://dx.doi.org/10.1007/978-3-319-05290-8_4

128 5 Fundamental Concepts in Video

result, there is less crosstalk between the color information and the crucial grayscale
information.

The reason for placing luminance into its own part of the signal is that black-and-
white information is most important for visual perception. As noted in the previous
chapter, humans are able to differentiate spatial resolution in the grayscale (“black-
and-white”) part much better than for the color part of RGB images. Therefore, color
information transmitted can be much less accurate than intensity information. We
can see only fairly large blobs of color, so it makes sense to send less color detail.

Video Graphics Array (VGA)

The Video Graphics Array (VGA) is a video display interface that was first introduced
by IBM in 1987, along with its PS/2 personal computers. It has since been widely
used in the computer industry with many variations, which are collectively referred
to as VGA.

The initial VGA resolution was 640×480 using the 15-pin D-subminiature VGA
connector. Later extensions can carry resolutions ranging from 640 × 400 pixels
at 70 Hz (24 MHz of signal bandwidth) to 1, 280 × 1, 024 pixels (SXGA) at 85 Hz
(160 MHz) and up to 2, 048 × 1, 536 (QXGA) at 85 Hz (388 MHz).

The VGA video signals are based on analog component RGBHV (red, green, blue,
horizontal sync, vertical sync). It also carries the Display Data Channel (DDC) data
defined by Video Electronics Standards Association (VESA). Since the video signals
are analog, it will suffer from interferences, particularly when the cable is long.

5.3.2 Digital Display Interfaces

Given the rise of digital video processing and the monitors that directly accept digital
video signals, there is a great demand toward video display interfaces that transmit
digital video signals. Such interfaces emerged in 1980s (e.g., Color Graphics Adapter
(CGA) with the D-subminiature connector), and evolved rapidly. Today, the most
widely used digital video interfaces include Digital Visual Interface (DVI), High-
Definition Multimedia Interface (HDMI), and DisplayPort, as shown in Fig. 5.8.

Digital Visual Interface (DVI)

Digital Visual Interface (DVI) was developed by the Digital Display Working Group
(DDWG) for transferring digital video signals, particularly from a computer’s video
card to a monitor. It carries uncompressed digital video and can be configured to
support multiple modes, including DVI-D (digital only), DVI-A (analog only), or
DVI-I (digital and analog). The support for analog connections makes DVI backward-
compatible with VGA (though an adapter is needed between the two interfaces).

5.3 Video Display Interfaces 129

Fig. 5.8 Connectors of different digital display interfaces. From left to right: DVI, HDMI,
DisplayPort

DVI’s digital video transmission format is based on PanelLink, a high-speed serial
link technology using transition minimized differential signaling (TMDS). Through
DVI, a source, e.g., video card, can read the display’s extended display identification
data (EDID), which contains the display’s identification, color characteristics (such
as gamma level), and table of supported video modes. When a source and a display are
connected, the source first queries the display’s capabilities by reading the monitor’s
EDID block. A preferred mode or native resolution can then be chosen.

In a single-link mode, the maximum pixel clock frequency of DVI is 165 MHz,
which supports a maximum resolution of 2.75 megapixels at the 60 Hz refresh rate.
This allows a maximum 16:9 screen resolution of 1, 920 × 1, 080 at 60 Hz. The DVI
specification also supports dual link, which achieves even higher resolutions up to
2, 560 × 1, 600 at 60 Hz.

High-DefinitionMultimedia Interface (HDMI)

HDMI is a newer digital audio/video interface developed to be backward-compatible
with DVI. It was promoted by the consumer electronics industry, and has been widely
used in the consumer market since 2002. The HDMI specification defines the proto-
cols, signals, electrical interfaces, and mechanical requirements. Its electrical spec-
ifications, in terms of TMDS and VESA/DDC links, are identical to those of DVI.
As such, for the basic video, an adapter can convert their video signals losslessly.
HDMI, however, differs from DVI in the following aspects:
1. HDMI does not carry analog signal and hence is not compatible with VGA.
2. DVI is limited to the RGB color range (0–255). HDMI supports both RGB and

YCbCr 4:4:4 or 4:2:2. The latter are more common in application fields other
than computer graphics.

3. HDMI supports digital audio, in addition to digital video.
The maximum pixel clock rate for HDMI 1.0 is 165 MHz, which is sufficient to

support 1080P and WUXGA (1, 920 × 1, 200) at 60 Hz. HDMI 1.3 increases that
to 340 MHz, which allows for higher resolution (such as WQXGA, 2, 560 × 1, 600)
over a single digital link. The latest HDMI 2.0 was released in 2013, which supports
4K resolution at 60 fps.

130 5 Fundamental Concepts in Video

DisplayPort

DisplayPort is a digital display interface developed by VESA, starting from 2006. It
is the first display interface that uses packetized data transmission, like the Internet
or Ethernet (see Chap. 15). Specifically, it is based on small data packets known as
micro packets, which can embed the clock signal within the data stream. As such,
DisplayPort can achieve a higher resolution yet with fewer pins than the previous
technologies. The use of data packets also allows DisplayPort to be extensible, i.e.,
new features can be added over time without significant changes to the physical
interface itself.

DisplayPort can be used to transmit audio and video simultaneously, or either of
them. The video signal path can have 6–16 bits per color channel, and the audio path
can have up to eight channels of 24-bit 192 kHz uncompressed PCM audio or carry
compressed audio. A dedicated bi-directional channel carries device management
and control data.

VESA designed DisplayPort to replace VGA and DVI. To this end, it has a much
higher video bandwidth, enough for four simultaneous 1080P 60 Hz displays, or
4K video at 60 Hz. Backward compatibility to VGA and DVI is achieved by using
active adapters. Compared with HDMI, DisplayPort has slightly more bandwidth,
which also accommodates multiple streams of audio and video to separate devices.
Furthermore, the VESA specification is royalty-free, while HDMI charges an annual
fee to manufacturers. These points make DisplayPort a strong competitor to HDMI
in the consumer electronics market, as well.

5.4 3DVideo andTV

Three-dimensional (3D) pictures and movies have been in existence for decades.
However, the rapid progress in the research and development of 3D technology and
the success of the 2009 film Avatar have pushed 3D video to its peak. Increasingly,
it is in movie theaters, broadcast TV (e.g., sporting events), personal computers, and
various handheld devices.

The main advantage of the 3D video is that it enables the experience of immer-
sion—be there, and really Be there!

We will start with an introduction to the fundamentals of 3D vision or 3D percept,
emphasizing stereo vision (or stereopsis) since most modern 3D video and 3D TV
are based on stereoscopic vision.

5.4.1 Cues for 3D Percept

The human vision system is capable of achieving a 3D percept by utilizing multiple
cues. They are combined to produce optimal (or nearly optimal) depth estimates.

http://dx.doi.org/10.1007/978-3-319-05290-8_15

5.4 3D Video and TV 131

When the multiple cues agree, this enhances the 3D percept. When they conflict
with each other, the 3D percept can be hindered. Sometimes, illusions can arise.

Monocular Cues

The monocular cues that do not necessarily involve both eyes include:
• Shading—depth perception by shading and highlights
• Perspective scaling—converging parallel lines with distance and at infinity
• Relative size—distant objects appear smaller compared to known same-size

objects not in distance
• Texture gradient—the appearance of textures change when they recede in distance
• Blur gradient—objects appear sharper at the distance where the eyes are focused,

whereas nearer and farther objects are gradually blurred
• Haze—due to light scattering by the atmosphere, objects at distance have lower

contrast and lower color saturation
• Occlusion—a far object occluded by nearer object(s)
• Motion parallax—induced by object movement and head movement, such that

nearer objects appear to move faster.
Among the above monocular cues, it has been said that Occlusion and Motion

parallax are more effective.

Binocular Cues

The human vision system utilizes effective binocular vision, i.e., stereo vision, aka.
stereopsis. Our left and right eyes are separated by a small distance, on average
approximately 2.5 inches, or 65 mm. This is known as the interocular distance. As
a result, the left and right eyes have slightly different views, i.e., images of objects
are shifted horizontally. The amount of the shift, or disparity, is dependent on the
object’s distance from the eyes, i.e., its depth, thus providing the binocular cue for
the 3D percept. The horizontal shift is also known as horizontal parallax. The fusion
of the left and right images into single vision occurs in the brain, producing the 3D
percept.

Current 3D video and TV systems are almost all based on stereopsis because it is
believed to be the most effective cue.

5.4.2 3D CameraModels

Simple Stereo CameraModel

We can design a simple (artificial) stereo camera system in which the left and right
cameras are identical (same lens, same focal length, etc.); the cameras’ optical axes

132 5 Fundamental Concepts in Video

are in parallel, pointing at the Z -direction, the scene depth. The cameras are placed
at (−b/2, 0, 0) and (b/2, 0, 0) in the world coordinate system (as opposed to a local
coordinate system based on the camera axes), where b is camera separation, or the
length of the baseline. Given a point P(X, Y, Z) in the 3D space, and xl and xr being
the x-coordinates of its projections on the left and right camera image planes, the
following can be derived:

d = f b/Z , (5.3)

where f is the focal length, d = xl − xr is the disparity or horizontal parallax.
This suggests that disparity d is inversely proportional to the depth Z of the point

P . Namely, objects near the cameras yield large disparity values, and far objects
yield small disparity values. When the point is very far, approaching infinity, d → 0.

Almost all amateur and professional stereo video cameras use the above Simple
Stereo Camera Model where the camera axes are in parallel. The obvious reason is
that it is simple and easy to manufacture. Moreover, objects at the same depth in the
scene will have the same disparity d according to Eq. (5.3). This enables us to depict
the 3D space with a stack of depth planes, or equivalently, disparity planes, which
is handy in camera calibration, video processing and analysis.

Toed-in Stereo CameraModel

Human eyes are known to behave differently from the Simple camera model above.
When humans focus on an object at a certain distance, our eyes rotate around a
vertical axis in opposite directions in order to obtain (or maintain) single binocular
vision. As a result, disparity d = 0 at the object of focus, and at the locations that
have the same distance from the observer as the object of focus. d > 0 for objects
farther than the object of focus (the so-called positive parallax), and d < 0 for nearer
objects (negative parallax).

Human eyes can be emulated by so-called Toed-in Stereo Cameras, in which the
camera axes are usually converging and not in parallel.

One of the complications of this model is that objects at the same depth (i.e., the
same Z) in the scene no longer yield the same disparity. In other words, the “disparity
planes” are now curved. Objects on both sides of the view appear farther away than
the objects in the middle, even when they have the same depth Z .

5.4.3 3DMovie andTV Based on StereoVision

3DMovie Using Colored Glasses

In the early days, most movie theaters offering a 3D experience provided glasses
tinted with complementary colors, usually red on the left and cyan on the right.
This technique is called Anaglyph 3D. Basically, in preparing the stereo pictures,
the left image is filtered to remove Blue and Green, and the right image is filtered

5.4 3D Video and TV 133

to remove Red. They are projected onto the same screen with good alignment and
proper disparities. After the stereo pictures pass through the colored glasses, they are
mentally combined (fused) and the color 3D picture is reproduced in the viewer’s
brain.

The Anaglyph 3D movies are easy to produce. However, due to the color filtering,
the color quality is not necessarily the best. Anaglyph 3D is still widely used in
scientific visualization and various computer applications.

3DMovies Using Circularly Polarized Glasses

Nowadays, the dominant technology in 3D movie theaters is the RealD Cinema
System. Movie-goers are required to wear polarized glasses in order to see the movie
in 3D. Basically, the lights from the left and right pictures are polarized in different
directions. They are projected and superimposed on the same screen. The left and
right polarized glasses that the audience wear are polarized accordingly, which allows
one of the two polarized pictures to pass through while blocking the other. To cut
costs, a single projector is used in most movie theaters. It has a Z screen polarization
switch to alternatively polarize the lights from the left and right pictures before
projecting onto the screen. The frame rate is said to be 144 fps.

Circularly (as opposed to linearly) polarized glasses are used so the users can tilt
their heads and look around a bit more freely without losing the 3D percept.

3DTVwith Shutter Glasses

Most TVs for home entertainment, however, use Shutter Glasses. Basically, the
liquid crystal layer on the glasses that the user wears becomes opaque (behaving like
a shutter) when some voltage is applied. It is otherwise transparent. The glasses are
actively (e.g., via Infra-Red) synchronized with the TV set that alternately shows
left and right images (e.g., 120 Hz for the left and 120 Hz for the Right) in a Time
Sequential manner.

3D vision with shutter glasses can readily be realized on desktop computers or
laptops with a modest addition of specially designed hardware and software. The
NVIDIA GeForce 3D Vision Kit is such an example.

5.4.4 TheVergence-Accommodation Conflict

Current stereoscopic technology for 3D video has many drawbacks. It is reported
that a large number of viewers have difficulties watching 3D movies and/or TVs.
3D objects can appear darker, smaller, and flattened compared to their appearance in
the real world. Moreover, they cause eye fatigue and strain. They can make viewers
dizzy, causing headache and even nausea.

134 5 Fundamental Concepts in Video

Fo
ca

l d
is

ta
nc

e

RightLeft

Screen

V
er

ge
nc

e
di

st
an

ce

V
er

ge
nc

e
di

st
an

ce

Fo
ca

l d
is

ta
nc

e

Left Right

(a) (b)

Fig. 5.9 The Vergence-Accommodation Conflict. a Real World and b 3D Display

Beside many obvious technical challenges in making the left and right images
undistorted, synchronized, and separated, there is a more fundamental issue, i.e., the
Vergence-Accommodation Conflict [8,9].

The word “accommodation” here refers to the physical act of the eye required to
maintain a clear (focused) image on an object when its distance changes. As depicted
in Fig. 5.9a, human eyes harmonize accommodation and vergence. When we keep
our focus on an object of interest, our eyes also converge at the same spot. As a result,
Focal distance = Vergence distance. The system is of course dynamic: we change
our focus of attention when needed, and adjust our vergence and accommodation
accordingly.

In a 3D movie theater, or when we gaze at a 3D display device, the situation
is different. We are naturally focusing on the screen at a fixed distance. When our
brains process and fuse the left and right images, we are supposed to decouple our
vergence from accommodation. This is the Vergence-Accommodation Conflict. When
the object is supposed to be behind the screen (with positive parallax) as indicated
in Fig. 5.9b, Focal distance < Vergence distance; and vice versa.

Most of us seem capable of doing so, except it demands a heavy cognitive load.
This explains why we quickly feel visual fatigue and so on. To cite Walter Murch,
a distinguished film editor and sound designer, in one of his communications with
Roger Ebert, the legendary film critic: “The biggest problem with 3D is the ‘conver-
gence/focus’ issue. ... 3D films require us to focus at one distance and converge at
another, and 600 million years of evolution has never presented this problem before.
All living things with eyes have always focused and converged at the same point.”

The movie industry has invented many techniques to alleviate this conflict [10].
For example, a common practice is to avoid depth discontinuity between cuts. Within
the clips, efforts are made to keep the main object of interest at roughly the screen
depth, and to keep its average depth at that level when there must be movements
causing depth changes.

5.4 3D Video and TV 135

Left Right Left Right

(a) (b)

Fig. 5.10 Autostereoscopic display devices. a Parallax Barrier and b Lenticular Lens

5.4.5 Autostereoscopic (Glasses-Free) Display Devices

Wearing glasses while watching 3D video/TV/movie itself is another major draw-
back. It is uncomfortable, especially for those who already wear prescription eye
glasses. The filters in the glasses inevitably dim the picture by reducing its bright-
ness and contrast, not to mention the color distortion. Figure 5.10 shows two popular
glasses-free, so-called Autostereoscopic Display Devices.

Figure 5.10a depicts the technique of Parallax Barrier, in which a layer of opaque
material with slits is placed in front of the normal display device, e.g., an LCD. As a
result, each eye only sees half of the columns on the display. By properly arranging
the stereo left–right images, separate viewing of the two images in the left and right
eyes is realized.

A number of commercial products use the Parallax Barrier technology, such as the
portable Nintendo 3DS game console, the screen on the Fujifilm 3D camera FinePix
Real 3D W3, and several smartphones.

In order to allow a larger viewing angle so the device can be used from multiple
positions, and potentially by multiple users, more than one pair of stereo images can
be used, e.g., in one of Toshiba’s glasses-free 3D TVs.

Figure 5.10b depicts the technique of using a Lenticular Lens. Instead of barriers,
columns of magnifying lenses can be placed in front of the display to direct lights
properly to the left and right eyes. The same technology has also been applied to
lenticular printing to generate various 3D pictures and/or animations.

The lenticular technology is a type of Integral Imaging, originally proposed by
Gabriel Lippmann in 1908 [11]. Instead of cylindrical lenses as shown above, an
array of spherical convex microlenses can be used to generate a large number of
distinct microimages. These are computer-generated 2D views of the 3D scene, with
one view per microlens. Therefore, this technique enables the rendering of multiple
views from any directions. The Lytro camera, based on the technology of the 4D
light field [12], is one attempt toward this goal.

136 5 Fundamental Concepts in Video

5.4.6 Disparity Manipulation in 3D Content Creation

The creation of 3D video content is a major challenge technically, perceptually, and
artistically. In postproduction, disparity values are manipulated to create the best 3D
percept. Below we will focus on various methods of disparity manipulation where
the geometry will be altered. The disparity here is the image disparity measured in
pixels.

As summarized by Lang et al. in their SIGGRAPH 2010 paper on nonlinear
disparity mapping [13], the following are essential concepts:
• Disparity Range—When we are asked to look (focus) at the screen, there is a

comfort zone near the screen distance. Objects in this zone are in the viewing
angles of both eyes, and will yield an acceptable range of disparities so they are
readily perceived in 3D. In creating 3D video contents it is a common practice
to map (often suppress) the original disparities into the range that will fit in the
comfort zone of most viewers. To cite [13], “Practical values for disparity on a 30
foot cinema screen, are between +30 (appears behind screen) and −100 (appears
in front of screen) pixels, assuming video with a width of 2,048 pixels.”

• Disparity Sensitivity—Our vision system is more capable of discriminating dif-
ferent depths when they are nearby. The sensitivity to depth drops rapidly with
increased viewing distance: it is said to be inversely proportional to the square
of the distance. This justifies a nonlinear disparity mapping [13] in which more
disparity compression takes place at larger viewing distances. Since the disparity
range of nearby objects is better preserved, this alleviates the problem of flattening
of foreground objects, which are often more of interest.

• Disparity Gradient—This measures the rate of disparity changes within a distance
in the stereoscopic images. For example, two points on a frontal surface in the 3D
world will yield (approximately) the same disparity in the left and right images due
to their identical depth; this will yield a disparity gradient of (near) zero. On the
other hand, two points on an oblique surface may yield different disparity values
due to their difference in depth, and hence yield a nonzero disparity gradient. Burt
and Julesz [14] pointed out that human vision has a limit of disparity gradient
in binocular fusion. Beyond this limit, fusion into a single vision is difficult and
mostly impossible, which is thus avoided in disparity gradient editing.

• Disparity Velocity—When consecutive scenes present little disparity change, we
can process the stereoscopic information very quickly. When there are large accom-
modation and vergence changes (i.e., disparity changes), we will slow down con-
siderably. This is due to the limit of temporal modulation frequency of disparity.
As discussed earlier, while focusing on the screen watching 3D video, the rapid
change in vergence is a main cause for visual fatigue and must be restricted. We
can tolerate some changes of convergence (i.e., disparity) as long as the speed of
the changes is moderate.
Some additional technical issues are as follows:

• Most stereoscopic cameras adopt the Simple camera model where the camera
optical axes are in parallel. This yields near-zero disparity for far objects and very

5.4 3D Video and TV 137

large disparity for nearby objects, and is very different from the toed-in camera
model which better emulates the human vision system. In this case, a conversion
of the image disparity values is necessary in the 3D video postproduction stage. A
variety of techniques are described in [10] and [15], among them floating window
where the screen distance can be artificially shifted.

• As stated above, the average interocular distance of viewers is approximately
2.5 inches. As a result, in the toed-in camera model, the projected images of a
very far object (near infinity), for example, should be about 2.5 inches apart in
the left and right images on the screen in order to generate the required positive
parallax. Depending on the screen size and screen resolution, a very different image
disparity will be required. It is therefore a common practice to produce different 3D
contents with very different image disparity values targeted for different purposes
(large cinema screens vs. small PC or smartphone screens, high resolution vs. low
resolution).
The multimedia and movie industries are keenly interested in converting the vast

amount of 2D contents into 3D. Zhang et al. [16] provide a good survey on the issues
involved in manually and (semi)automatically converting such videos and films.

5.5 Exercises

1. NTSC video has 525 lines per frame and 63.6µs per line, with 20 lines per field
of vertical retrace and 10.9µs horizontal retrace.
(a) Where does the 63.6µs come from?
(b) Which takes more time, horizontal retrace or vertical retrace? How much

more time?
2. Which do you think has less detectable flicker, PAL in Europe or NTSC in North

America? Justify your conclusion.
3. Sometimes the signals for television are combined into fewer than all the parts

required for TV transmission.
(a) Altogether, how many and what are the signals used for studio broadcast

TV?
(b) What does S-video stand for? How many and what signals are used in

S-video?
(c) How many signals are actually broadcasted for standard analog TV recep-

tion? What kind of video is that called?
4. Show how the Q signal can be extracted from the NTSC chroma signal C

[Eq. (5.1)] during demodulation.
5. One sometimes hears that the old Betamax format for videotape, which competed

with VHS and lost, was actually a better format. How would such a statement
be justified?

6. We do not see flicker on a workstation screen when displaying video at NTSC
frame rate. Why do you think this might be?

138 5 Fundamental Concepts in Video

7. Digital video uses chroma subsampling. What is the purpose of this? Why is it
feasible?

8. What are the most salient differences between ordinary TV and HDTV/UHDTV?
What was the main impetus for the development of HDTV/UHDTV?

9. What is the advantage of interlaced video? What are some of its problems?
10. One solution that removes the problems of interlaced video is to deinterlace

it. Why can we not just overlay the two fields to obtain a deinterlaced image?
Suggest some simple deinterlacing algorithms that retain information from both
fields.

11. Assuming the bit-depth of 12 bits, 120 fps, and 4:2:2 chroma subsampling, what
are the bitrates of the 4K UHDTV and 8K UHDTV videos if they are uncom-
pressed?

12. Assuming we use the toed-in stereo camera model, the interocular distance is I ,
and the screen is D meters away, (a) At what distance will a point P generate a
positive parallax equal to I on the screen? (b) At what distance will a point P
generate a negative parallax equal to −I ?

References

1. A.M. Tekalp, Digital Video Processing (Prentice Hall PTR, Upper Saddle River, 1995)
2. A. Bovik (ed.), Handbook of Image and Video Processing, 2nd edn. (Academic Press, New

York, 2010)
3. J.F. Blinn, NTSC: Nice Technology, Super Color. IEEE Comput. Graphics Appl. 13(2), 17–23

(1993)
4. C.A. Poynton, A Technical Introduction to Digital Video (Wiley, New York, 1996)
5. J.F. Blinn, The world of digital video. IEEE Comput. Graphics Appl. 12(5), 106–112 (1992)
6. C.A. Poynton, Digital Video and HDTV Algorithms and InterfacesDigital Video and HDTV

Algorithms and Interfaces (Morgan Kaufmann, San Francisco, 2002)
7. R. L. Myers, Display Interfaces: Fundamentals and Standards (Wiley, New York, 2002)
8. D.M. Hoffman, A.R. Girshick, K. Akeley, M.S. Banks, Vergence-accommodation conflicts

hinder visual performance and cause visual fatigue. J. Vis. 8(3) (2008)
9. T. Shibata, J. Kim, D.M. Hoffman, M.S. Banks, The zone of comfort: predicting visual dis-

comfort with stereo displays. J. Vis. 11(8) (2011)
10. B. Mendiburu, 3D Movie Making: Stereoscopic Digital Cinema from Script to Screen (Elsevier

Science, Burlington, 2009)
11. G. Lippmann, La Photographie Integrale. Comptes Rendus Academie des Sciences 146, 446–

451 (1908)
12. M. Levoy, P. Hanrahan, Light field rendering, in Proceedings of International Conference on

Computer Graphics and Interactive Techniques (SIGGRAPH), 1996
13. M. Lang, A. Hornung, O. Wang, S. Poulakos, A. Smolic, M. Gross, Nonlinear disparity mapping

for stereoscopic 3D. ACM Trans. Graph. 29(4) (2010)
14. P. Burt, B. Julesz, A disparity gradient limit for binocular fusion. Science 208(4444), 615–617

(1980)
15. R. Ronfard, G. Taubin (eds.), Image and Geometry Processing for 3-D Cinematography: An

Introduction (Springer, Berlin Heidelberg, 2010)
16. L. Zhang, C. Vazquez, S. Knorr, 3D-TV content creation: automatic 2D-to-3D video conversion.

IEEE Trans. Broadcast. 57(2), 372–383 (2011)

6Basics ofDigital Audio

Audio information is crucial for multimedia presentations and, in a sense, is the
simplest type of multimedia data. However, some important differences between
audio and image information cannot be ignored. For example, while it is customary
and useful to occasionally drop a video frame from a video stream, to facilitate
viewing speed, we simply cannot do the same with sound information or all sense
will be lost from that dimension. We introduce basic concepts for sound in multimedia
in this chapter and examine the arcane details of compression of sound information
in Chaps. 13 and 14. The digitization of sound necessarily implies sampling and
quantization of signals, so we introduce these topics here.

We begin with a discussion of just what makes up sound information, then we
go on to examine the use of MIDI as an enabling technology to capture, store, and
play back musical notes. We go on to look at some details of audio quantization, and
give some introductory information on how digital audio is dealt with for storage
or transmission. This entails a first discussion of how subtraction of signals from
predicted values yield numbers that are close to zero, and hence easier to deal with.

6.1 Digitization of Sound

6.1.1 What is Sound?

Sound is a wave phenomenon like light, but it is macroscopic and involves molecules
of air being compressed and expanded under the action of some physical device.
For example, a speaker in an audio system vibrates back and forth and produces
a longitudinal pressure wave that we perceive as sound. (As an example, we get
a longitudinal wave by vibrating a Slinky along its length; in contrast, we get a
transverse wave by waving the Slinky back and forth perpendicular to its length).

Without air there is no sound—for example, in space. Since sound is a pressure
wave, it takes on continuous values, as opposed to digitized ones with a finite range.

Z.-N. Li et al., Fundamentals of Multimedia, 139
Texts in Computer Science, DOI: 10.1007/978-3-319-05290-8_6,
© Springer International Publishing Switzerland 2014

http://dx.doi.org/10.1007/978-3-319-05290-8_13
http://dx.doi.org/10.1007/978-3-319-05290-8_14

140 6 Basics of Digital Audio

Nevertheless, if we wish to use a digital version of sound waves, we must form
digitized representations of audio information.

Although such pressure waves are longitudinal, they still have ordinary wave
properties and behaviors, such as reflection (bouncing), refraction (change of angle
when entering a medium with a different density), and diffraction (bending around
an obstacle). This makes the design of “surround sound” possible.

Since sound consists of measurable pressures at any 3D point, we can detect it by
measuring the pressure level at a location, using a transducer to convert pressure to
voltage levels.

In general, any signal can be decomposed into a sum of sinusoids, if we are willing
to use enough sinusoids. Figure 6.1 shows how weighted sinusoids can build up quite
a complex signal. Whereas frequency is an absolute measure, pitch is a perceptual,
subjective quality of sound. Generally, pitch is relative. Pitch and frequency are
linked by setting the note A above middle C to exactly 440 Hz. An octave above that
note corresponds to doubling the frequency and takes us to another A note. Thus,
with the middle A on a piano (“A4” or “A440”) set to 440 Hz, the next A up is
880 Hz, one octave above; and so on.

Given a sound with fundamental frequency f , we define harmonics as any musical
tones whose frequencies are integral multiples of the fundamental frequency, i.e.,
2 f , 3 f , 4 f , . . ., etc. For example, if the fundamental frequency (also known as first
harmonic) is f = 100 Hz, the frequency of the second harmonic is 200 Hz. For
the third harmonic it is 300 Hz, and so on. The harmonics can be linearly combined
to form a new signal. Because all the harmonics are periodic at the fundamental
frequency, their linear combinations are also periodic at the fundamental frequency.
Figure 6.1 shows the appearance of the combination of these harmonics.

Now, if we allow any (integer and noninteger) multiples higher than the fun-
damental frequency, we allow overtones and have a more complex and interesting
resulting sound. Together, the fundamental frequency and overtones are referred to
as partials. The harmonics we discussed above can also be referred to as harmonic
partials.

6.1.2 Digitization

Figure 6.2 shows the “one-dimensional” nature of sound. Values change over time
in amplitude: the pressure increases or decreases with time [1]. Since there is only
one independent variable, time, we call this a 1D signal—as opposed to images,
with data that depends on two variables, x , and y, or video, which depends on
3 variables, x, y, t . The amplitude value is a continuous quantity. Since we are
interested in working with such data in computer storage, we must digitize the analog
signals (i.e., continuous-valued voltages) produced by microphones. Digitization
means conversion to a stream of numbers—preferably integers for efficiency.

Since the graph in Fig. 6.2 is two-dimensional, to fully digitize the signal shown
we have to sample in each dimension—in time and in amplitude. Sampling means
measuring the quantity we are interested in, usually at evenly spaced intervals.

6.1 Digitization of Sound 141

Fundamental
frequency

+ 0.5 ×
2 × fundamental

+ 0.33 ×
3 × fundamental

+ 0.25 ×
4 × fundamental

+ 0.5 ×
5 × fundamental

=

=

=

=

Fig. 6.1 Building up a complex signal by superposing sinusoids

Fig. 6.2 An analog signal:
continuous measurement of
pressure wave

Time

A
m

pl
itu

de

The first kind of sampling—using measurements only at evenly spaced time
intervals—is simply called sampling (surprisingly), and the rate at which it is per-
formed is called the sampling frequency. Figure 6.3a shows this type of digitization.

142 6 Basics of Digital Audio

Time

A
m

pl
itu

de
(a)

Time

A
m

pl
itu

de

(b)

Fig. 6.3 Sampling and quantization: a sampling the analog signal in the time dimension; b quan-
tization is sampling the analog signal in the amplitude dimension

For audio, typical sampling rates are from 8 kHz (8,000 samples per second) to
48 kHz. The human ear can hear from about 20 Hz (a very deep rumble) to as much
as 20 kHz; above this level, we enter the range of ultrasound. The human voice can
reach approximately 4 kHz and we need to bound our sampling rate from below by at
least double this frequency (see the discussion of the Nyquist sampling rate, below).
Thus, we arrive at the useful range about 8 to 40 or so kHz.

Sampling in the amplitude or voltage dimension is called quantization, shown
in Fig. 6.3b. While we have discussed only uniform sampling, with equally spaced
sampling intervals, nonuniform sampling is possible. This is not used for sampling
in time but is used for quantization (see the µ-law rule, below). Typical uniform
quantization rates are 8-bit and 16-bit; 8-bit quantization divides the vertical axis
into 256 levels, and 16-bit divides it into 65,536 levels.

To decide how to digitize audio data, we need to answer the following questions:
1. What is the sampling rate?
2. How finely is the data to be quantized, and is the quantization uniform?
3. How is audio data formatted (i.e., what is the file format)?

6.1.3 Nyquist Theorem

As we know now, each sound is just made from sinusoids. As a simple illustration,
Fig. 6.4a shows a single sinusoid: it is a single, pure, frequency (only electronic
instruments can create such boring sounds).

Now if the sampling rate just equals the actual frequency, we can see from Fig. 6.4b
that a false signal is detected: it is simply a constant, with zero frequency. If, on the
other hand, we sample at 1.5 times the frequency, Fig. 6.4c shows that we obtain an
incorrect (alias) frequency that is lower than the correct one—it is half the correct one
(the wavelength, from peak to peak, is double that of the actual signal). In computer

6.1 Digitization of Sound 143

Fig. 6.4 Aliasing: a a single
frequency; b sampling at
exactly the frequency
produces a constant;
c sampling at 1.5 times per
cycle produces an alias
frequency that is perceived

(a)

(b)

(c)

graphics, much effort is aimed at masking such alias effects by various methods of
anti-aliasing. An alias is any artifact that does not belong to the original signal. Thus,
for correct sampling we must use a sampling rate equal to at least twice the maximum
frequency content in the signal. This is called the Nyquist rate.

The Nyquist Theorem is named after Harry Nyquist, a famous mathematician who
worked at Bell Labs. More generally, if a signal is band-limited—that is, if it has a
lower limit f1 and an upper limit f2 of frequency components in the signal—then
we need a sampling rate of at least 2(f2 − f1).

Suppose we have a fixed sampling rate. Since it would be impossible to recover
frequencies higher than half the sampling rate in any event, most systems have an
anti-aliasing filter that restricts the frequency content of the sampler’s input to a
range at or below half the sampling frequency. Confusingly, the frequency equal to
half the Nyquist rate is called the Nyquist frequency. Then for our fixed sampling
rate, the Nyquist frequency is half the sampling rate. The highest possible signal
frequency component has frequency equal to that of the sampling itself.

Note that the true frequency and its alias are located symmetrically on the fre-
quency axis with respect to the Nyquist frequency pertaining to the sampling rate

144 6 Basics of Digital Audio

Fig. 6.5 Folding of sinusoid
frequency sampled at
8,000 Hz. The folding
frequency, shown dashed, is
4,000 Hz

True frequency (kHz)

A
pp

ar
en

t f
re

qu
en

cy
 (k

H
z)

0
0

1

2

3

4

2 4 6 8 10

used. For this reason, the Nyquist frequency associated with the sampling frequency
is often called the “folding” frequency. That is to say, if the sampling frequency is
less than twice the true frequency, and is greater than the true frequency, then the
alias frequency equals the sampling frequency minus the true frequency. For exam-
ple, if the true frequency is 5.5 kHz and the sampling frequency is 8 kHz, then the
alias frequency is 2.5 kHz:

falias = fsampling − ftrue, for ftrue < fsampling < 2 × ftrue. (6.1)

As well, a frequency at double any frequency could also fit sample points. In
fact, adding any positive or negative multiple of the sampling frequency to the true
frequency always gives another possible alias frequency, in that such an alias gives
the same set of samples when sampled at the sampling frequency.

So, if again the sampling frequency is less than twice the true frequency and is
less than the true frequency, then the alias frequency equals n times the sampling
frequency minus the true frequency, where the n is the lowest integer that makes
n times the sampling frequency larger than the true frequency. For example, when
the true frequency is between 1.0 and 1.5 times the sampling frequency, the alias
frequency equals the true frequency minus the sampling frequency.

In general, the apparent frequency of a sinusoid is the lowest frequency of a
sinusoid that has exactly the same samples as the input sinusoid. Figure 6.5 shows
the relationship of the apparent frequency to the input (true) frequency.

6.1.4 Signal-to-Noise Ratio (SNR)

In any analog system, random fluctuations produce noise added to the signal, and
the measured voltage is thus incorrect. The ratio of the power of the correct signal to
the noise is called the signal-to-noise ratio (SNR). Therefore, the SNR is a measure
of the quality of the signal.

The SNR is usually measured in decibels (dB), where 1 dB is a tenth of a bel.
The SNR value, in units of dB, is defined in terms of base-10 logarithms of squared

6.1 Digitization of Sound 145

Table 6.1 Magnitudes of
common sounds, in decibels Threshold of hearing 0

Rustle of leaves 10
Very quiet room 20
Average room 40
Conversation 60
Busy street 70
Loud radio 80
Train through station 90
Riveter 100
Threshold of discomfort 120
Threshold of pain 140
Damage to eardrum 160

voltages:

SNR = 10 log10

V 2
signal

V 2
noise

= 20 log10
Vsignal

Vnoise
(6.2)

The power in a signal is proportional to the square of the voltage. For example, if
the signal voltage Vsignal is 10 times the noise, the SNR is 20 × log10(10) = 20 dB.

In terms of power, if the squeaking we hear from ten violins playing is ten times
the squeaking we hear from one violin playing, then the ratio of power is given
in terms of decibels as 10 dB, or, in other words, 1 Bel. Notice that decibels are
always defined in terms of a ratio. The term “decibels” as applied to sounds in our
environment usually is in comparison to a just-audible sound with frequency 1 kHz.
The levels of sound we hear around us are described in terms of decibels, as a ratio
to the quietest sound we are capable of hearing. Table 6.1 shows approximate levels
for these sounds.

6.1.5 Signal-to-Quantization-Noise Ratio (SQNR)

For digital signals, we must take into account the fact that only quantized values are
stored. For a digital audio signal, the precision of each sample is determined by the
number of bits per sample, typically 8 or 16.

Aside from any noise that may have been present in the original analog signal,
additional error results from quantization. That is, if voltages are in the range of 0 to
1 but we have only 8 bits in which to store values, we effectively force all continuous
values of voltage into only 256 different values.

Inevitably, this introduces a roundoff error. Although it is not really “noise,” it is
called quantization noise (or quantization error). The association with the concept
of noise is that such errors will essentially occur randomly from sample to sample.

146 6 Basics of Digital Audio

The quality of the quantization is characterized by the signal-to-quantization-
noise ratio (SQNR). Quantization noise is defined as the difference between the value
of the analog signal, for the particular sampling time, and the nearest quantization
interval value. At most, this error can be as much as half of the interval.

For a quantization accuracy of N bits per sample, the range of the digital signal
is −2N−1 to 2N−1 − 1. Thus, if the actual analog signal is in the range from −Vmax
to +Vmax, each quantization level represents a voltage of 2Vmax/2N , or Vmax/2N−1.
SQNR can be simply expressed in terms of the peak signal, which is mapped to
the level Vsignal of about 2N−1, and the SQNR has as denominator the maximum
Vquan_noise of 1/2. The ratio of the two is a simple definition of the SQNR1:

SQN R = 20 log10
Vsignal

Vquan_noise
= 20 log10

2N−1

1
2

= 20 × N × log 2 = 6.02N (dB) (6.3)
In other words, each bit adds about 6 dB of resolution, so 16 bits provide a maximum
SQNR of 96 dB.

We have examined the worst case. If, on the other hand, we assume that the input
signal is sinusoidal, that quantization error is statistically independent, and that its
magnitude is uniformly distributed between 0 and half the interval, we can show [2]
that the expression for the SQNR becomes

SQNR = 6.02N + 1.76(dB) (6.4)
Since larger is better, this shows that a more realistic approximation gives a better
characterization number for the quality of a system.

We can simulate quantizing samples, e.g., drawing values from a sinusoidal prob-
ability function, and verify Eq. (6.4). Defining the SQNR in terms of the RMS (root-
mean-square) value of the signal, versus the RMS value of the quantization noise,
the following MATLAB fragment does indeed comply with Eq. (6.4):

% sqnr_sinusoid.m
%
% Simulation to verify SQNR for sinusoidal
% probability density function.
b = 8; % 8-bit quantized signals
q = 1/10000; % make sampled signal with interval size 1/10001
seq = [0 : q : 1];
x = sin(2*pi*seq); % analog signal --> 10001 samples
% Now quantize:
x8bit = round(2ˆ(b-1)*x) / 2ˆ(b-1); % in [-128,128]/128=[-1,+1]
quanterror = x - x8bit;
%
SQNR = 20*log10(sqrt(mean(x.ˆ2))/sqrt(mean(quanterror.ˆ2))) %
% 50.0189dB
SQNRtheory = 6.02*b + 1.76 % 1.76=20*log10(sqrt(3/2))
% 49.9200dB

1 This ratio is actually the peak signal-to-quantization-noise ratio, or PSQNR.

6.1 Digitization of Sound 147

The more careful equation, Eq. (6.4), can actually be proved analytically if wish
to do so: if the error obeys a uniform-random probability distribution in the range

[−0.5, 0.5], then its RMS (Root-Mean-Square) value is
√∫ 0.5

−0.5 x2dx = 1/
√

12. Now
assume the signal itself is a sinusoid, sin(2πx) = sin(θ). This has to multiplied by a
scalar value D, giving the range over which the sinusoid travels, i.e. the max minus
the min: D = [2N−1 − 1) − (−2N−1)] ≃ 2N . The sine curve is multiplied by the
factor D/2.

Then the RMS value of the signal is
√

1/(2π)
∫ 2π

0 (D
2 sin θ)2dθ = D/(2

√
2).

Forming the ratio of the RMS signal over the RMS quantization noise, we get
20 log10(

√
12D/(2

√
2)) = 20 log10(D

√
3/2) = 20 log10(D) + 20 log10(

√
3/2) =

20 log10(2
N)+ 20 log10(

√
3/2), which just gives Eq. (6.4).

Typical digital audio sample precision is either 8 bits per sample, equivalent to
about telephone quality, or 16 bits, for CD quality. In fact, 12 bits or so would likely
do fine for adequate sound reproduction.

6.1.6 Linear and Nonlinear Quantization

We mentioned above that samples are typically stored as uniformly quantized values.
This is called linear format. However, with a limited number of bits available, it may
be more sensible to try to take into account the properties of human perception and
set up nonuniform quantization levels that pay more attention to the frequency range
over which humans hear best.

Remember that here we are quantizing magnitude, or amplitude—how loud the
signal is. In Chap. 4, we discussed an interesting feature of many human perception
subsystems (as it were)—Weber’s Law —which states that the more there is, propor-
tionately more must be added to discern a difference. Stated formally, Weber’s Law
says that equally perceived differences have values proportional to absolute levels:

#Response ∝ #Stimulus/Stimulus (6.5)

This means that, for example, if we can feel an increase in weight from 10 to
11 pounds, then if instead we start at 20 pounds, it would take 22 pounds for us
to feel an increase in weight.

Inserting a constant of proportionality k, we have a differential equation that states

dr = k(1/s) ds (6.6)

with response r and stimulus s. Integrating, we arrive at a solution

r = k ln s + C (6.7)

with constant of integration C . Stated differently, the solution is

r = k ln(s/s0) (6.8)

where s0 is the lowest level of stimulus that causes a response (r = 0 when s = s0).

http://dx.doi.org/10.1007/978-3-319-05290-8_4

148 6 Basics of Digital Audio

Fig. 6.6 Nonlinear transform
for audio signals

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

s/s
p

r:
µ−

L
aw

 o
r A

−L
aw

−Law and A−Law

µ−law: µ=100
µ−law: µ=255
A−law: A=87.6

µ

Thus, nonuniform quantization schemes that take advantage of this perceptual
characteristic make use of logarithms. The idea is that in a log plot derived from
Eq. (6.8), if we simply take uniform steps along the s axis, we are not mirroring the
nonlinear response along the r axis.

Instead, we would like to take uniform steps along the r axis. Thus, nonlinear
quantization works by first transforming an analog signal from the raw s space into
the theoretical r space, then uniformly quantizing the resulting values. The result is
that for steps near the low end of the signal, quantization steps are effectively more
concentrated on the s axis, whereas for large values of s, one quantization step in r
encompasses a wide range of s values.

Such a law for audio is called µ-law encoding, or u-law, since it’s easier to write.
A very similar rule, called A-law, is used in telephony in Europe.

The equations for these similar encoding methods are as follows:
µ-law:

r = sign(s)
ln(1 + µ)

ln
{

1 + µ

∣∣∣∣
s
sp

∣∣∣∣

}
,

∣∣∣∣
s
sp

∣∣∣∣ ≤ 1 (6.9)

A-law:

r =

⎧
⎪⎪⎨

⎪⎪⎩

A
1+lnA

(
s
sp

)
,

∣∣∣ s
sp

∣∣∣ ≤ 1
A

sign(s)
1+lnA

[
1 + lnA

∣∣∣ s
sp

∣∣∣
]
, 1

A ≤
∣∣∣ s

sp

∣∣∣ ≤ 1

(6.10)

where sign(s) =
{

1 if s > 0,
−1 otherwise

Figure 6.6 depicts these curves. The parameter of the µ-law encoder is usually set
to µ = 100 or µ = 255, while the parameter for the A-law encoder is usually set to
A = 87.6.

6.1 Digitization of Sound 149

Here, sp is the peak signal value and s is the current signal value. So far, this
simply means that we wish to deal with s/sp, in the range −1 to 1.

The idea of using this type of law is that if s/sp is first transformed to values r
as above and then r is quantized uniformly before transmitting or storing the signal,
most of the available bits will be used to store information where changes in the signal
are most apparent to a human listener, because of our perceptual nonuniformity.

To see this, consider a small change in |s/sp| near the value 1.0, where the curve
in Fig. 6.6 is flattest. Clearly, the change in s has to be much larger in the flat area
than near the origin to be registered by a change in the quantized r value. And it is
at the quiet, low end of our hearing that we can best discern small changes in s. The
µ-law transform concentrates the available information at that end.

First we carry out the µ-law transformation, then we quantize the resulting value,
which is a nonlinear transform away from the input. The logarithmic steps represent
low-amplitude, quiet signals with more accuracy than loud, high-amplitude ones.
What this means for signals that are then encoded as a fixed number of bits is that
for low-amplitude, quiet signals, the amount of noise—the error in representing the
signal—is a smaller number than for high-amplitude signals. Therefore, the µ-law
transform effectively makes the signal-to-noise ratio more uniform across the range
of input signals.

This technique is based on human perception—a simple form of “perceptual
coder.” Interestingly, we have in effect also made use of the statistics of sounds we
are likely to hear, which are generally in the low-volume range. In effect, we are
asking for most bits to be assigned where most sounds occur—where the probability
density is highest. So this type of coder is also one that is driven by statistics.

In summary, a logarithmic transform, called a “compressor” in the parlance of
telephony, is applied to the analog signal before it is sampled and converted to digital
(by an analog-to-digital, or AD, converter). The amount of compression increases as
the amplitude of the input signal increases. The AD converter carries out a uniform
quantization on the “compressed” signal. After transmission, since we need analog
to hear sound, the signal is converted back, using a digital-to-analog (DA) converter,
then passed through an “expander” circuit that reverses the logarithm. The overall
transformation is called companding. Nowadays, companding can also be carried
out in the digital domain.

The µ-law in audio is used to develop a nonuniform quantization rule for sound.
In general, we would like to put the available bits where the most perceptual acuity
(sensitivity to small changes) is. Ideally, bit allocation occurs by examining a curve
of stimulus versus response for humans. Then we try to allocate bit levels to intervals
for which a small change in stimulus produces a large change in response.

That is, the idea of companding reflects a less specific idea used in assigning
bits to signals: put the bits where they are most needed to deliver finer resolution
where the result can be perceived. This idea militates against simply using uniform
quantization schemes, instead favoring nonuniform schemes for quantization. The
µ-law (or A-law) for audio is an application of this idea.

Savings in bits can be gained by transmitting a smaller bit-depth for the signal, if
this is indeed possible without introducing too much error. Once telephony signals

150 6 Basics of Digital Audio

became digital, it was found that the original continuous-domain µ-law transform
could be used with a substantial reduction of bits during transmission and still produce
reasonable-sounding speech upon expansion at the receiver end. The µ-law often
starts with a bit-depth of 16 bits, but transmits using 8 bits, and then expands back
to 16 bits at the receiver.

Suppose we use the µ-law Eq. (6.9) with µ = 255. Here the signal s is normalized
into the range [−1, 1]. If the input is in −215 to (+215 − 1), we divide by 215 to
normalize. Then the µ-law is applied to turn s into r ; this is followed by reducing
the bit-depth down to 8-bit samples, using r̂ = sign(s) ∗ floor(128 ∗ r).

Now the 8-bit signal r̂ is transmitted.
Then, at the receiver side, we normalize r̂ by dividing by 27, and then apply the

inverse function to Eq. (6.9), which is as follows:

ŝ = sign(s)

(
(µ+ 1)|r̂ | − 1

µ

)

(6.11)

Finally, we expand back up to 16 bits: s̃ = ceil(215 ∗ ŝ). Below we show a
MATLAB function for these operations.

function x_out = mu_law_8bitsf(x)
% signal x is 16-bit
mu=255;
xnormd = x/2ˆ15;
y=sign(x)*((log(1+mu*abs(xnormd)))/log(1+mu));

y8bit = floor(128*y);
% TRANSMIT
y8bitnormd = y8bit/2ˆ7;
x_hat = sign(x)*(((mu+1)ˆabs(y8bitnormd)-1)/mu);

% scale to 16 bits:
x_out = ceil(2ˆ15*x_hat);

For the 216 input values, shown as a solid line in Fig.6.7, the companded output
values are shown as the staircase steps, in a thicker line. Indeed, we see that the
companding puts the most accuracy at the quiet end nearest zero.

6.1.7 Audio Filtering

Prior to sampling and AD conversion, the audio signal is also usually filtered to
remove unwanted frequencies. The frequencies kept depend on the application. For
speech, typically from 50 Hz to 10 kHz is retained. Other frequencies are blocked

6.1 Digitization of Sound 151

Fig. 6.7 Nonlinear
quantization by companding

−4 −3 −2 −1 0 1 2 3 4
x 10

4

−4

−3

−2

−1

0

1

2

3

4 x 10
4

Signal

R
ec

on
st

itu
te

d
Si

gn
al

by a bandpass filter, also called a band-limiting filter, which screens out lower and
higher frequencies.

An audio music signal will typically contain from about 20 Hz up to 20 kHz.
(Twenty Hz is the low rumble produced by an upset elephant. Twenty kHz is about
the highest squeak we can hear.) So the bandpass filter for music will screen out
frequencies outside this range.

At the DA converter end, even though we have removed high frequencies that are
likely just noise in any event, they reappear in the output. The reason is that because
of sampling and then quantization, we have effectively replaced a perhaps smooth
input signal by a series of step functions. In theory, such a discontinuous signal
contains all possible frequencies. Therefore, at the decoder side, a low-pass filter is
used after the DA circuit, making use of the same cutoff as at the high-frequency end
of the coder’s bandpass filter.

6.1.8 Audio Quality Versus Data Rate

The uncompressed data rate increases as more bits are used for quantization. Stereo
information, as opposed to mono, doubles the bitrate (in bits per second) needed to
transmit a digital audio signal. Table 6.2 shows how audio quality is related to bitrate
and bandwidth.

The term bandwidth, derived from analog devices in Signal Processing, refers
to the part of the response or transfer function of a device that is approximately
constant, or flat, with the x-axis being the frequency and the y-axis equal to the
transfer function. Half-power bandwidth (HPBW) refers to the bandwidth between
points when the power falls to half the maximum power. Since 10 log10(0.5) ≈ −3.0,
the term −3 dB bandwidth is also used to refer to the HPBW.

152 6 Basics of Digital Audio

Table 6.2 Bitrate and bandwidth in sample audio applications

Quality Sampling Bits per Mono/ Bitrate Signal
rate sample Stereo (if uncompressed) bandwidth
(kHz) (kB/s) (Hz)

Telephone 8 8 Mono 8 200–3,400
AM radio 11.025 8 Mono 11.0 100–5,500
FM radio 22.05 16 Stereo 88.2 20–11,000
CD 44.1 16 Stereo 176.4 5–20,000
DVD audio 192 (max) 24 (max) Up to 6 channels 1,200.0 (max) 0–96,000 (max)

So for analog devices, the bandwidth was expressed in the frequency unit, called
Hertz (Hz), which is cycles per second (for example, heartbeats per second). For
digital devices, on the other hand, the amount of data that can be transmitted in a
fixed bandwidth is usually expressed in bitrate, i.e., bits per second (bps) or bytes
per amount of time.

In contrast, in Computer Networking, the term bandwidth refers to the data rate
(bps) that the network or tranmission link can deliver. We will examine this issue in
detail in later chapters on multimedia networks.

Telephony uses µ-law (which may be written “u-law”) encoding, or A-law in
Europe. The other formats use linear quantization. Using the µ-law rule shown in
Eq. (6.9), the dynamic range—the ratio of highest to lowest nonzero value, expressed
in dB for the value 2n for an n-bit system, or simply stated as the number of bits—of
digital telephone signals is effectively improved from 8 bits to 12 or 13.

The standard sampling frequencies used in audio are 5.0125 kHz, 11.025 kHz,
22.05 kHz, and 44.1 kHz, with some exceptions, and these frequencies are supported
by most sound cards.

Sometimes it is useful to remember the kinds of data rates in Table 6.2 in terms of
bytes per minute. For example, the uncompressed digital audio signal for CD-quality
stereo sound is 10.6 megabytes per minute—roughly 10 megabytes—per minute.

6.1.9 Synthetic Sounds

Digitized sound must still be converted to analog, for us to hear it. There are two
fundamentally different approaches to handling stored sampled audio. The first is
termed FM, for frequency modulation. The second is called Wave Table, or just Wave,
sound.

In the first approach, a carrier sinusoid is changed by adding another term involving
a second, modulating frequency. A more interesting sound is created by changing
the argument of the main cosine term, putting the second cosine inside the argument
itself—then we have a cosine of a cosine. A time-varying amplitude “envelope”
function multiplies the whole signal, and another time-varying function multiplies

6.1 Digitization of Sound 153

the inner cosine, to account for overtones. Adding a couple of extra constants, the
resulting function is complex indeed.

For example, Fig. 6.8a shows the function cos(2π t), and Fig. 6.8b is another
sinusoid at twice the frequency. A cosine of a cosine is the more interesting function
Fig. 6.8c, and finally, with carrier frequency 2 and modulating frequency 4, we have
the much more interesting curve Fig. 6.8d. Obviously, once we consider a more
complex signal, such as the following [3],

x(t) = A(t) cos[ωcπ t + I (t) cos(ωmπ t + φm)+ φc] (6.12)

we can create a most complicated signal.
This FM synthesis equation states that we make a signal using a basic carrier

frequency ωc and also use an additional, modulating frequency ωm . In Fig. 6.8d,
these values were ωc = 2 and ωm = 4. The phase constants φm and φc create time-
shifts for a more interesting sound. The time-dependent function A(t) is called the
envelope—it specifies overall loudness over time and is used to fade in and fade out
the sound. A guitar string has an attack period, then a decay period, a sustain period,
and finally a release period. This is shown below in Fig. 6.10.

Finally, the time-dependent function I (t) is used to produce a feeling of harmonics
(“overtones”) by changing the amount of modulation frequency heard. When I (t)
is small, we hear mainly low frequencies, and when I (t) is larger, we hear higher
frequencies as well. FM synthesis is used in low-end sound cards, but is also provided
in many sound cards to provide backward compatibility.

A more accurate way of generating sounds from digital signals is called wave table
synthesis. In this technique, digital samples are stored sounds from real instruments.
Since wave tables are stored in memory on the sound card, they can be manipulated by
software so that sounds can be combined, edited, and enhanced. Sound reproduction
is a good deal better with wave tables than with FM synthesis. To save memory space,
a variety of special techniques, such as sample looping, pitch shifting, mathematical
interpolation, and polyphonic digital filtering, can be applied [4,5].

For example, it is useful to be able to change the key—suppose a song is a bit too
high for your voice. A wave table can be mathematically shifted so that it produces
lower pitched sounds. However, this kind of extrapolation can be used only just so far
without sounding wrong. Wave tables often include sampling at various notes of the
instrument, so that a key change need not be stretched too far. Wave table synthesis
is more expensive than FM synthesis, partly because the data storage needed is
much larger. On the other hand, storage has become much less expensive, and it is
possible to compress wave table data; but nonetheless there are clearly simple tricks
that one can accomplish easily using the compact formulation of FM synthesis,
whereas making changes from a particular wave table is a good deal more complex.
Nevertheless with the advent of cheap storage, wave data has become generally used,
including in ring tones.

154 6 Basics of Digital Audio

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time

M
ag

ni
tu

de
cos (2 π t)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time

M
ag

ni
tu

de

cos (4 π t)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time

M
ag

ni
tu

de

cos (cos (4 π t))

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time

M
ag

ni
tu

de

cos(2 π t+cos(4 π t))

(a) (b)

(c) (d)

Fig. 6.8 Frequency modulation: a a single frequency; b twice the frequency; c usually, FM is
carried out using a sinusoid argument to a sinusoid; d a more complex form arises from a carrier
frequency 2π t and a modulating frequency 4π t cosine inside the sinusoid

6.2 MIDI:Musical Instrument Digital Interface

Wave table files provide an accurate rendering of real instrument sounds but are
quite large. For simple music, we might be satisfied with FM synthesis versions
of audio signals that could easily be generated by a sound card. Essentially, every
computer is equipped with a sound card; a sound card is capable of manipulating and
outputting sounds through speakers connected to the board, recording sound input
from a microphone or line-in connection to the computer, and manipulating sound
stored in memory.

If we are willing to be satisfied with the sound card’s defaults for many of the
sounds we wish to include in a multimedia project, we can use a simple scripting
language and hardware setup called MIDI.

6.2 MIDI:Musical Instrument Digital Interface 155

6.2.1 MIDI Overview

MIDI, which dates from the early 1980s, is an acronym that stands for Musical
Instrument Digital Interface. It forms a protocol adopted by the electronic music
industry that enables computers, synthesizers, keyboards, and other musical devices
to communicate with each other. A synthesizer produces synthetic music and is
included on sound cards, using one of the two methods discussed above. The MIDI
standard is supported by most synthesizers, so sounds created on one can be played
and manipulated on another and sound reasonably close. Computers must have a
special MIDI interface, but this is incorporated into most sound cards. The sound
card must also have both DA and AD converters.

MIDI is a scripting language—it codes “events” that stand for the production
of certain sounds. Therefore, MIDI files are generally very small. For example, a
MIDI event might include values for the pitch of a single note, its volume, and what
instrument sound to play.

Role of MIDI. MIDI makes music notes (among other capabilities), so is useful for
inventing, editing, and exchanging musical ideas that can be encapsulated as notes.
This is quite a different idea than sampling, where the specifics of actual sounds are
captured. Instead, MIDI is aimed at music, which can then be altered as the “user”
wishes. Since MIDI is intimately related to music composition (music notation)
programs, MIDI is a very useful vehicle for music education.

One strong capability of MIDI-based musical communication is the availability
of a single MIDI instrument to control other MIDI instruments, allowing a master-
slave relationship: the other MIDI instruments must play the same music, in part,
as the master instrument, thus allowing interesting music. MIDI instruments may
include excellent, or poor, musical capabilities. For example, suppose a keyboard
mimics a traditional instrument well, but generates poor actual sound with a built-
in synthesizer. Then “daisy-chaining” to a different synthesizer, one that generates
excellent sound, may make an overall good combination. Since MIDI comes with
a built-in timecode, the master’s clock can be used to synchronize all the slave
timecodes, making for more exact synchronization.

A so-called “sequencer-sampler” can be used to reorder and manipulate sets of
digital-audio samples and/or sequences of MIDI. In a Digital Audio Workstation,
running ProTools for example, multitrack recording is possible, either sequentially
or concurrently. For example, one could simultaneously record 8 vocal tracks and 8
instrument tracks.

MIDI Concepts

• Music is organized into tracks in a sequencer. Each track can be turned on or
off on recording or playing back. Usually, a particular instrument is associated
with a MIDI channel. MIDI channels are used to separate messages. There are
16 channels, numbered from 0 to 15. The channel forms the last four bits (the

156 6 Basics of Digital Audio

least significant bits) of that do refer to the channel. The idea is that each channel
is associated with a particular instrument—for example, channel 1 is the piano,
channel 10 is the drums. Nevertheless, you can switch instruments midstream, if
desired, and associate another instrument with any channel.

• Along with channel messages (which include a channel number), several other
types of messages are sent, such as a general message for all instruments indicating
a change in tuning or timing; these are called system messages. It is also possible
to send a special message to an instrument’s channel that allows sending many
notes without a channel specified. We will describe these messages in detail later.

• The way a synthetic musical instrument responds to a MIDI message is usually
by simply ignoring any “play sound” message that is not for its channel. If several
messages are for its channel, say several simultaneous notes being played on a
piano, then the instrument responds, provided it is multi-voice—that is, can play
more than a single note at once.

MIDI Terminology

• A synthesizer was, and still can be, a stand-alone sound generator that can vary
pitch, loudness, and tone color. (The pitch is the musical note the instrument
plays—a C, as opposed to a G, say. Whereas frequency in Hz is an absolute musical
sound, pitch is relative: e.g., tuning your guitar to itself may sound fine but not
have the same absolute notes as another guitar.) It can also change additional music
characteristics, such as attack and delay time. A good (musician’s) synthesizer
often has a microprocessor, keyboard, control panels, memory, and so on. However,
inexpensive synthesizers are also included on PC sound cards. Units that generate
sound are referred to as tone modules or sound modules.

• A sequencer started off as a special hardware device for storing and editing a
sequence of musical events, in the form of MIDI data. Now it is more often a
software music editor on the computer.

• A MIDI keyboard produces no sound, instead generating sequences of MIDI in-
structions, called MIDI messages (but can also include a synthesizer for generating
sound). MIDI messages are rather like assembler code and usually consist of just
a few bytes. Stored as a sequence of MIDI messages, you might have 3 minutes
of music, say, stored in only 3 kB. In comparison, a wave table file (WAV) stores
1 minute of music in about 10 MB. In MIDI parlance, the keyboard is referred to
as a keyboard controller.

• It is easy to confuse the term voice with the term timbre. The latter is MIDI
terminology for just what instrument we are trying to emulate—for example, a
piano as opposed to a violin. It is the quality of the sound. An instrument (or sound
card) that is multi-timbral is capable of playing many different sounds at the same
time, (e.g., piano, brass, drums).

• On the other hand, the term “voice”, while sometimes used by musicians to mean
the same thing as timbre, is used in MIDI to mean every different timbre and
pitch that the tone module can produce at the same time. Synthesizers can have

6.2 MIDI:Musical Instrument Digital Interface 157

Transmitting
device

Synthesizer0 11101110 0 0 10110011 0 0 110111010

One
byte

Start
bit

Stop
bit

Fig.6.9 Stream of 10-bit bytes; for typical MIDI messages, these consist of {status byte, data byte,
data byte} = {Note On, Note Number, Note Velocity}

many (typically 16, 32, 64, 256, etc.) voices. Each voice works independently and
simultaneously to produce sounds of different timbre and pitch.

• The term polyphony refers to the number of voices that can be produced at the same
time. So a typical tone module may be able to produce “64 voices of polyphony”
(64 different notes at once) and be “16-part multi-timbral” (can produce sounds
like 16 different instruments at once).

MIDI Specifics

How different timbres are produced digitally is by using a patch, which is the set
of control settings that define a particular timbre. Patches are often organized into
databases, called banks. For true aficionados, software patch editors are available.

A standard mapping specifying just what instruments (patches) will be associated
with what channels has been agreed on and is called General MIDI. In General
MIDI, there are 128 patches associated with standard instruments, and channel 10
is reserved for percussion instruments.

For most instruments, a typical message might be Note On (meaning, e.g., a
keypress), consisting of what channel, what pitch, and what velocity (i.e., volume).
For percussion instruments, the pitch data means which kind of drum. A Note On
message thus consists of a status byte—which channel, what pitch—followed by
two data bytes. It is followed by a Note Off message (key release), which also has a
pitch (which note to turn off) and—for consistency, one supposes—a velocity (often
set to zero and ignored).

The data in a MIDI status byte is between 128 and 255; each of the data bytes is
between 0 and 127. Actual MIDI bytes are 8 bit, plus a 0 start and stop bit, making
them 10-bit “bytes”. Figure 6.9 shows the MIDI datastream.

A MIDI device often is capable of programmability, which means it has filters
available for changing the bass and treble response and can also change the “enve-
lope” describing how the amplitude of a sound changes over time. Figure 6.10 shows
a model of a digital instrument’s response to Note On/Note Off messages.

158 6 Basics of Digital Audio

Fig. 6.10 Stages of
amplitude versus time for a
music note

Decay

A
tta

ck

t

Amplitude

Note on

Note off

Release

Sustain

MIDI sequencers (editors) allow you to work with standard music notation or get
right into the data, if desired. MIDI files can also store wave table data. The advantage
of wave-table data (WAV files) is that it much more precisely stores the exact sound
of an instrument. A sampler is used to sample the audio data—for example, a “drum
machine” always stores wave table data of real drums. So one could have a music
editor using MIDI on one track plus digital audio such as vocals, say, on another
track.

Of interest to computer science or engineering students is the fact that MIDI
provides a full messaging protocol that can be used for whatever one likes, for
example for controlling lights in a theater. We shall see below that there is a MIDI
message for sending any kind and any number of bytes, which can then be used as
the programmer desires.

Sequencers employ several techniques for producing more music from what is
actually available. For example, looping over (repeating) a few bars can be more
or less convincing. Volume can be easily controlled over time—this is called time-
varying amplitude modulation. More interestingly, sequencers can also accomplish
time compression or expansion with no pitch change.

While it is possible to change the pitch of a sampled instrument, if the key change
is large, the resulting sound begins to sound displeasing. For this reason, samplers
employ multisampling. A sound is recorded using several bandpass filters, and the
resulting recordings are assigned to different keyboard keys. This makes frequency
shifting for a change of key more reliable, since less shift is involved for each note.

MIDI Machine Control (MMC) is a subset of the MIDI specification that can
be used for controlling recording equipment, e.g. multitrack recorders. The most
common use of this facility is to effectively press “Play” on a remote device. An
example usage would be if a MIDI device has a poor timer, then the master could
activate it at just the right time. In general, MIDI can be used for controlling and
synchronizing musical instrument synthesizers and recording equipment, and even
control lighting.

6.2 MIDI:Musical Instrument Digital Interface 159

Keyboard

Modulation
wheel

Pitch bend
wheel

Fig. 6.11 A MIDI synthesizer

6.2.2 Hardware Aspects of MIDI

The MIDI hardware setup consists of a 31.25 kbps (kilobits per second) serial con-
nection, with the 10-bit bytes including a 0 start and stop bit. Usually, MIDI-capable
units are either input devices or output devices, not both.

Figure 6.11 shows a traditional synthesizer. The modulation wheel adds vibrato.
Pitch bend alters the frequency, much like pulling a guitar string over slightly. There
are often other controls, such as foots pedals, sliders, and so on.

The physical MIDI ports consist of 5-pin connectors labeled IN and OUT and
there can also be a third connector, THRU. This last data channel simply copies
data entering the IN channel. MIDI communication is half-duplex. MIDI IN is the
connector via which the device receives all MIDI data. MIDI OUT is the connector
through which the device transmits all the MIDI data it generates itself. MIDI THRU
is the connector by which the device echoes the data it receives from MIDI IN (and
only that—all the data generated by the device itself is sent via MIDI OUT). These
ports are on the sound card or interface externally, either on a separate card or using
a special interface to a serial port.

Figure 6.12 shows a typical MIDI sequencer setup. Here, the MIDI OUT of the
keyboard is connected to the MIDI IN of a synthesizer and then THRU to each of the
additional sound modules. During recording, a keyboard-equipped synthesizer sends
MIDI messages to a sequencer, which records them. During playback, messages are
sent from the sequencer to all the sound modules and the synthesizer, which play the
music.

MIDI Message Transmission

The 31.25 kbps data rate is actually quite restrictive. To initiate playing a note, a
3-byte message is sent (with bytes equal to ten bits). If my hands are playing chords
with all ten fingers, then a single crashing chord will take ten notes at 30 bits each,
requiring transmission of 300 bits. At 31.25 kbps transmission of this chord will take
about 0.01 sec, at a speed of about 0.001 seconds per note—and all this not counting
the additional messages we’ll have to send to turn off these ten notes. Moreover,

160 6 Basics of Digital Audio

Master keyboard

MIDI module A

MIDI module B

IN THRUOUT

INTHRU

IN THRU

etc.

Fig. 6.12 A typical MIDI setup

using the pitch bend and modulation wheels in a synthesizer could generate many
messages as well, all taking time to transmit. Hence, there could be an audible time
lag generated by the slow bit transmission rate.

A trick used to tackle this problem is called Running Status: MIDI allows sending
just the data, provided the command from the previous message has not changed. So
instead of three bytes—command, data, data—MIDI would use just two bytes for
the next message having the same command.

6.2.3 Structure of MIDI Messages

MIDI messages can be classified into two types, as in Fig. 6.13—channel messages
and system messages—and further classified as shown. Each type of message will
be examined below.
Channel Messages. A channel message can have up to 3 bytes; the first is the status
byte (the opcode, as it were), and has its most significant bit set to 1. The four low-
order bits identify which of the 16 possible channels this message belongs to, with
the three remaining bits holding the message. For a data byte, the most significant
bit is set to zero.

Voice Messages. This type of channel message controls a voice—that is, sends
information specifying which note to play or to turn off—and encodes key pressure.
Voice messages are also used to specify controller effects, such as sustain, vibrato,
tremolo, and the pitch wheel. Table 6.3 lists these operations.

6.2 MIDI:Musical Instrument Digital Interface 161

Mode messages

Common messages

Exclusive messages
Real-time messages

Voice messages

System messages

MIDI messages

Channel messages

Fig. 6.13 MIDI message taxonomy

Table 6.3 MIDI voice messages

Voice message Status byte Data byte1 Data byte2

Note off &H8n Key number Note off velocity
Note on &H9n Key number Note on velocity
Polyphonic key Pressure &HAn Key number Amount
Control change &HBn Controller number Controller value
Program change &HCn Program number None
Channel pressure &HDn Pressure value None
Pitch bend &HEn MSB LSB

&H indicates hexadecimal, and n in the Status byte hex value stands for a channel number. All
values are in 0 . . . 127 except Controller number, which is in 0 . . . 120

For Note On and Note Off messages, the velocity is how quickly the key is played.
Typically, a synthesizer responds to a higher velocity by making the note louder or
brighter. Note On makes a note occur, and the synthesizer also attempts to make the
note sound like the real instrument while the note is playing. Pressure messages can
be used to alter the sound of notes while they are playing. The Channel Pressure
message is a force measure for the keys on a specific channel (instrument) and has
an identical effect on all notes playing on that channel. The other pressure message,
Polyphonic Key Pressure (also called Key Pressure), specifies how much volume keys
played together are to have and can be different for each note in a chord. Pressure is
also called aftertouch.

The Control Change instruction sets various controllers (faders, vibrato, etc.).
Each manufacturer may make use of different controller numbers for different tasks.
However, controller 1 is likely the modulation wheel (for vibrato).

For example, a Note On message is followed by two bytes, one to identify the note
and one to specify the velocity. Therefore, to play note number 80 with maximum
velocity on channel 13, the MIDI device would send the following three hex byte
values: &H9C &H50 &H7F. (A hexadecimal number has a range 0 .. 15. Since it is
used to denote channels 1 to 16, “&HC” refers to channel 13). Notes are numbered
such that middle C has number 60.

To play two notes simultaneously (effectively), first we would send a Program
Change message for each of two channels. Recall that Program Change means to
load a particular patch for that channel. So far, we have attached two timbres to two

162 6 Basics of Digital Audio

Table 6.4 MIDI mode messages

1st data byte Description Meaning of 2nd data byte

& H79 Reset all controllers None; set to 0
& H7A Local control 0 = off; 127 = on
& H7B All notes off None; set to 0

& H7C Omni mode off None; set to 0
& H7D Omni mode on None; set to 0
& H7E Mono mode on (Poly mode off) Controller number
& H7F Poly mode on (Mono mode off) None; set to 0

different channels. Then sending two Note On messages (in serial) would turn on
both channels. Alternatively, we could also send a Note On message for a particular
channel and then another Note On message, with another pitch, before sending the
Note Off message for the first note. Then we would be playing two notes effectively
at the same time on the same instrument.

Recall that the Running Status method allows one to send one status byte, e.g., a
Note On message, followed by a stream of data bytes that all are associated with the
same status byte. For instance, a Note On message on channel 1, “&H90”, could be
followed by two data bytes as indicated in Table 6.3. But with Running Status we
need not send another Note On but instead simply keep sending data-byte pairs for
the next stream of Note On data. As well, in fact Running Status has another trick:
if the Velocity data byte is 0 then that Note On message is interpreted as a Note Off.
Hence one can send a single “&H90” followed by numerous Note On and Note Off
data sets. So for example a Note On, Note Off pair for playing middle C on channel 1
could be sent as &H90 &H3C &H7F; &H3C &H00 (middle C is note number 60 =
“&H3C”).

Polyphonic Pressure refers to how much force simultaneous notes have on several
instruments. Channel Pressure refers to how much force a single note has on one
instrument.

Channel Mode Messages. Channel mode messages form a special case of the
Control Change message, and therefore all mode messages have opcode B (so the
message is “&HBn,” or 1011nnnn). However, a Channel Mode message has its first
data byte in 121 through 127 (&H79–7F).

Channel mode messages determine how an instrument processes MIDI voice
messages. Some examples include respond to all messages, respond just to the correct
channel, don’t respond at all, or go over to local control of the instrument.

Recall that the status byte is “&HBn,” where n is the channel. The data bytes have
meanings as shown in Table 6.4. Local Control Off means that the keyboard should
be disconnected from the synthesizer (and another, external, device will be used to
control the sound). All Notes Off is a handy command, especially if, as sometimes
happens, a bug arises such that a note is left playing inadvertently. Omni means that

6.2 MIDI:Musical Instrument Digital Interface 163

Table 6.5 MIDI system common messages

System common message Status byte Number of data bytes

MIDI timing code &HF1 1
Song position pointer &HF2 2
Song select &HF3 1
Tune request &HF6 None
EOX (terminator) &HF7 None

Table 6.6 MIDI system
real-time messages System real-time message Status byte

Timing clock &HF8
Start sequence &HFA
Continue sequence &HFB
Stop sequence &HFC
Active sensing &HFE
System reset &HFF

devices respond to messages from all channels. The usual mode is OMNI OFF—pay
attention to your own messages only, and do not respond to every message regardless
of what channel it is on. Poly means a device will play back several notes at once if
requested to do so. The usual mode is POLY ON.

In POLY OFF—monophonic mode—the argument that represents the number
of monophonic channels can have a value of zero, in which case it defaults to the
number of voices the receiver can play; or it may set to a specific number of channels.
However, the exact meaning of the combination of OMNI ON/OFF and Mono/Poly
depends on the specific combination, with four possibilities. Suffice it to say that the
usual combination is OMNI OFF, POLY ON.

System Messages. System messages have no channel number and are meant for
commands that are not channel-specific, such as timing signals for synchronization,
positioning information in prerecorded MIDI sequences, and detailed setup informa-
tion for the destination device. Opcodes for all system messages start with “&HF.”
System messages are divided into three classifications, according to their use.

System Common Messages. Table 6.5 sets out these messages, which relate to
timing or positioning. Song Position is measured in beats. The messages determine
what is to be played upon receipt of a “start” real-time message (see below).

System Real-Time Messages. Table 6.6 sets out system real-time messages, which
are related to synchronization.

System Exclusive Message. the final type of system message, System Exclusive
messages, is included so that manufacturers can extend the MIDI standard. After the
initial code, they can insert a stream of any specific messages that apply to their own

164 6 Basics of Digital Audio

product. A System Exclusive message is supposed to be terminated by a terminator
byte “&HF7,” as specified in Table 6.5. However, the terminator is optional, and the
datastream may simply be ended by sending the status byte of the next message.

6.2.4 General MIDI

For MIDI music to sound more or less the same on every machine, we would at
least like to have the same patch numbers associated with the same instruments—for
example, patch 1 should always be a piano, not a flugelhorn. To this end, General
MIDI [5] is a scheme for assigning instruments to patch numbers. A standard percus-
sion map also specifies 47 percussion sounds. Where a “note” appears on a musical
score determines just what percussion element is being struck. This book’s website
includes both the General MIDI Instrument Path Map and the Percussion Key map.

Other requirements for General MIDI compatibility are that a MIDI device must
support all 16 channels; must be multi-timbral (i.e., each channel can play a different
instrument/program); must be polyphonic (i.e., each channel is able to play many
voices); and must have a minimum of 24 dynamically allocated voices.

General MIDI Level2

An extended General MIDI, GM-2, was defined in 1999 and updated in 2003, with a
standard SMF Standard MIDI File format defined. A nice extension is the inclusion
of extra character information, such as karaoke lyrics, which can be displayed on a
good sequencer.

6.2.5 MIDI-to-WAV Conversion

Some programs, such as early versions of Adobe Premiere, cannot include MIDI
files—instead, they insist on WAV format files. Various shareware programs can ap-
proximate a reasonable conversion between these formats. The programs essentially
consist of large lookup files that try to do a reasonable job of substituting predefined
or shifted WAV output for some MIDI messages, with inconsistent success.

6.3 Quantization andTransmission of Audio

To be transmitted, sampled audio information must be digitized, and here we look
at some of the details of this process. Once the information has been quantized, it
can then be transmitted or stored. We go through a few examples in complete detail,
which helps in understanding what is being discussed.

6.3 Quantization and Transmission of Audio 165

6.3.1 Coding of Audio

Quantization and transformation of data are collectively known as coding of the data.
For audio, the µ-law technique for companding audio signals is usually combined
with a simple algorithm that exploits the temporal redundancy present in audio
signals. Differences in signals between the present and a previous time can effectively
reduce the size of signal values and, most important, concentrate the histogram of
pixel values (differences, now) into a much smaller range. The result of reducing the
variance of values is that lossless compression methods that produce a bitstream with
shorter bit lengths for more likely values, introduced in Chap. 7, fare much better
and produce a greatly compressed bitstream.

In general, producing quantized sampled output for audio is called Pulse Code
Modulation, or PCM. The differences version is called DPCM (and a crude but
efficient variant is called DM). The adaptive version is called ADPCM, and variants
that take into account speech properties follow from these. More complex models
for audio are outlined in Chap. 13.

6.3.2 Pulse CodeModulation

6.3.2.1 PCM in General

Audio is analog—the waves we hear travel through the air to reach our eardrums. We
know that the basic techniques for creating digital signals from analog ones consist
of sampling and quantization. Sampling is invariably done uniformly—we select a
sampling rate and produce one value for each sampling time.

In the magnitude direction, we digitize by quantization, selecting breakpoints in
magnitude and remapping any value within an interval to one representative output
level. The set of interval boundaries is sometimes called decision boundaries, and
the representative values are called reconstruction levels.

We say that the boundaries for quantizer input intervals that will all be mapped into
the same output level form a coder mapping, and the representative values that are the
output values from a quantizer are a decoder mapping. Since we quantize, we may
choose to create either an accurate or less accurate representation of sound magnitude
values. Finally, we may wish to compress the data, by assigning a bitstream that uses
fewer bits for the most prevalent signal values.

Every compression scheme has three stages:
1. Transformation. The input data is transformed to a new representation that is

easier or more efficient to compress. For example, in Predictive Coding, (dis-
cussed later in the chapter) we predict the next signal from previous ones and
transmit the prediction error.

2. Loss. We may introduce loss of information. Quantization is the main lossy step.
Here, we use a limited number of reconstruction levels fewer than in the original
signal. Therefore, quantization necessitates some loss of information.

http://dx.doi.org/10.1007/978-3-319-05290-8_7
http://dx.doi.org/10.1007/978-3-319-05290-8_13

166 6 Basics of Digital Audio

3. Coding. Here, we assign a codeword (thus forming a binary bitstream) to each
output level or symbol. This could be a fixed-length code or a variable-length
code, such as Huffman coding (discussed in Chap. 7).

For audio signals, we first consider PCM, the digitization method. That enables us
to consider Lossless Predictive Coding as well as the DPCM scheme; these methods
use differential coding. We also look at the adaptive version, ADPCM, which is
meant to provide better compression.

Pulse Code Modulation, is a formal term for the sampling and quantization we
have already been using. Pulse comes from an engineer’s point of view that the
resulting digital signals can be thought of as infinitely narrow vertical “pulses.” As
an example of PCM, audio samples on a CD might be sampled at a rate of 44.1 kHz,
with 16 bits per sample. For stereo sound, with two channels, this amounts to a data
rate of about 1,400 kbps.

PCM in Speech Compression

Recall that in Sect. 6.1.6 we considered companding: the so-called compressor and
expander stages for speech signal processing, for telephony. For this application,
signals are first transformed using the µ-law (or A-law for Europe) rule into what
is essentially a logarithmic scale. Only then is PCM, using uniform quantization,
applied. The result is that finer increments in sound volume are used at the low-
volume end of speech rather than at the high-volume end, where we can’t discern
small changes in any event.

Assuming a bandwidth for speech from about 50 Hz to about 10 kHz, the Nyquist
rate would dictate a sampling rate of 20 kHz. Using uniform quantization without
companding, the minimum sample size we could get away with would likely be
about 12 bits. Hence, for mono speech transmission the bitrate would be 240 kbps.
With companding, we can safely reduce the sample size to 8 bits with the same
perceived level of quality and thus reduce the bitrate to 160 kbps. However, the
standard approach to telephony assumes that the highest-frequency audio signal we
want to reproduce is about 4 kHz. Therefore, the sampling rate is only 8 kHz, and
the companded bitrate thus reduces to only 64 kbps.

We must also address two small wrinkles to get this comparatively simple form of
speech compression right. First because only sounds up to 4 kHz are to be considered,
all other frequency content must be noise. Therefore, we should remove this high-
frequency content from the analog input signal. This is done using a band-limiting
filter that blocks out high frequencies as well as very low ones. The “band” of not-
removed (“passed”) frequencies are what we wish to keep. This type of filter is
therefore also called a bandpass filter.

Second, once we arrive at a pulse signal, such as the one in Fig. 6.14a, we must
still perform digital-to-analog conversion and then construct an output analog signal.
But the signal we arrive at is effectively the staircase shown in Fig. 6.14b. This type
of discontinuous signal contains not just frequency components due to the original

http://dx.doi.org/10.1007/978-3-319-05290-8_7

6.3 Quantization and Transmission of Audio 167

t

Amplitude

Original signal

PCM signals

edutilpmAedutilpmA

2
3
4

−4
−3
−2
−1

0
1
2
3
4

1

−4
−3
−2
−1

0
1
2
3
4

−4
−3
−2
−1

0 tt

(a)

(b) (c)

Fig. 6.14 Pulse code modulation (PCM): a original analog signal and its corresponding PCM
signals; b decoded staircase signal; c reconstructed signal after low-pass filtering

Bandlimiting
filter

Linear PCM

Transmission

Low-pass
filter

Digital-to-analog
converter

Input analog
speech signal

Output analog
speech signal

µ-law or
A-law

compressor

µ-law or
A-law

expander

Fig. 6.15 PCM signal encoding and decoding

signal but, because of the sharp corners, also a theoretically infinite set of higher fre-
quency components (from the theory of Fourier analysis, in signal processing). We
know these higher frequencies are extraneous. Therefore, the output of the digital-
to-analog converter is in turn passed to a low-pass filter, which allows only frequen-
cies up to the original maximum to be retained. Figure 6.15 shows the complete
scheme for encoding and decoding telephony signals as a schematic. As a result
of the low-pass filtering, the output becomes smoothed, as Fig. 6.14c shows. For
simplicity, Fig. 6.14 does not show the effect of companding.

168 6 Basics of Digital Audio

A-law or µ-law PCM coding is used in the older International Telegraph and
Telephone Consultative Committee (CCITT) standard G.711, for digital telephony.
This CCITT standard is now subsumed into standards promulgated by a newer or-
ganization, the International Telecommunication Union (ITU).

6.3.3 Differential Coding of Audio

Audio is often stored not in simple PCM but in a form that exploits differences. For
a start, differences will generally be smaller numbers and hence offer the possibility
of using fewer bits to store.

An advantage of forming differences is that the histogram of a difference signal
is usually considerably more peaked than the histogram for the original signal. For
example, as an extreme case, the histogram for a linear ramp signal that has constant
slope is uniform, whereas the histogram for the derivative of the signal (i.e., the
differences, from sampling point to sampling point) consists of a spike at the slope
value.

Generally, if a time-dependent signal has some consistency over time (temporal re-
dundancy), the difference signal—subtracting the current sample from the previous
one—will have a more peaked histogram, with a maximum around zero. Conse-
quently, if we then go on to assign bitstring codewords to differences, we can assign
short codes to prevalent values and long codewords to rarely occurring ones.

To begin with, consider a lossless version of this scheme. Loss arises when
we quantize. If we apply no quantization, we can still have compression—via the
decrease in the variance of values that occurs in differences, compared to the origi-
nal signal. Chapter 7 introduces more sophisticated versions of lossless compression
methods, but it helps to see a simple version here as well. With quantization, Predic-
tive Coding becomes DPCM, a lossy method; we will also try out that scheme.

6.3.4 Lossless Predictive Coding

Predictive coding simply means transmitting differences—we predict the next sample
as being equal to the current sample and send not the sample itself but the error
involved in making this assumption. That is, if we predict that the next sample
equals the previous one, then the error is just the difference between previous and
next. Our prediction scheme could also be more complex.

However, we do note one problem. Suppose our integer sample values are in
the range 0 .. 255. Then differences could be as much as −255 .. 255. So we have
unfortunately increased our dynamic range (ratio of maximum to minimum) by
a factor of two: we may well need more bits than we needed before to transmit
some differences. Fortunately, we can use a trick to get around this problem, as we
shall see.

So, basically, predictive coding consists of finding differences and transmitting
them, using a PCM system such as the one introduced in Sect. 6.3.2. First, note that

http://dx.doi.org/10.1007/978-3-319-05290-8_7

6.3 Quantization and Transmission of Audio 169

differences of integers will at least be integers. Let’s formalize our statement of what
we are doing by defining the integer signal as the set of values fn. Then we predict
values f̂n as simply the previous value, and we define the error en as the difference
between the actual and predicted signals:

f̂n = fn−1

en = fn − f̂n (6.13)

We certainly would like our error value en to be as small as possible. Therefore, we
would wish our prediction f̂n to be as close as possible to the actual signal fn. But
for a particular sequence of signal values, some function of a few of the previous
values, fn−1, fn−2, fn−3, etc., may provide a better prediction of fn. Typically, a
linear predictor function is used:

f̂n =
2 to 4∑

k=1

an−k fn−k (6.14)

Such a predictor can be followed by a truncating or rounding operation to result in
integer values. In fact, since now we have such coefficients an−k available, we can
even change them adaptively (see Sect. 6.3.7 below).

The idea of forming differences is to make the histogram of sample values more
peaked. For example, Fig. 6.16a plots 1 second of sampled speech at 8 kHz, with
magnitude resolution of 8 bits per sample.

A histogram of these values is centered around zero, as in Fig. 6.16b. Figure 6.16c
shows the histogram for corresponding speech signal differences: difference values
are much more clustered around zero than are sample values themselves. As a result,
a method that assigns short codewords to frequently occurring symbols will assign
a short code to zero and do rather well. Such a coding scheme will much more
efficiently code sample differences than samples themselves, and a similar statement
applies if we use a more sophisticated predictor than simply the previous signal
value.

However, we are still left with the problem of what to do if, for some reason,
a particular set of difference values does indeed consist of some exceptional large
differences. A clever solution to this difficulty involves defining two new codes to
add to our list of difference values, denoted SU and SD, standing for Shift-Up and
Shift-Down. Some special values will be reserved for them.

Suppose samples are in the range 0 .. 255, and differences are in −255 .. 255.
Define SU and SD as shifts by 32. Then we could in fact produce codewords for
a limited set of signal differences, say only the range −15 .. 16. Differences (that
inherently are in the range −255 .. 255) lying in the limited range can be coded as is,
but if we add the extra two values for SU, SD, a value outside the range −15 .. 16
can be transmitted as a series of shifts, followed by a value that is indeed inside the
range −15 .. 16. For example, 100 is transmitted as SU, SU, SU, 4, where (the
codes for) SU and for 4 are what are sent.

Lossless Predictive Coding is …lossless! That is, the decoder produces the same
signals as the original. It is helpful to consider an explicit scheme for such coding

170 6 Basics of Digital Audio

Fig. 6.16 Differencing
concentrates the histogram:
a digital speech signal;
b histogram of digital speech
signal values; c histogram of
digital speech signal
differences

Sample value

Samples

C
ou

nt

M
ag

ni
tu

de

Sample difference

C
ou

nt

−1.0 −0.5 0.0 0.5 1.0

−1.0

0

-0.04

0.0

0.04

2000 4000 6000 8000

−0.5 0.0 0.5 1.0

(a)

(b)

(c)

considerations, so let’s do that here (we won’t use the most complicated scheme, but
we’ll try to carry out an entire calculation). As a simple example, suppose we devise
a predictor for f̂n as follows:

f̂n = ⌊1
2
(fn−1 + fn−2)⌋

en = fn − f̂n (6.15)

Then the error en (or a codeword for it) is what is actually transmitted.
Let’s consider an explicit example. Suppose we wish to code the sequence

f1, f2, f3, f4, f5 = 21, 22, 27, 25, 22. For the purposes of the predictor, we’ll invent an
extra signal value f0, equal to f1 = 21, and first transmit this initial value, uncoded;
after all, every coding scheme has the extra expense of some header information.

6.3 Quantization and Transmission of Audio 171

fn

f̂n

Predictor

−

+
en+

+

Predictor

fn Reconstructed

f̂n

en

(a)

(b)

Fig. 6.17 Schematic diagram for Predictive Coding: a encoder; b decoder

Then the first error, e1, is zero, and subsequently

f̂2 = 21, e2 = 22 − 21 = 1

f̂3 = ⌊1
2
(f2 + f1)⌋ = ⌊1

2
(22 + 21)⌋ = 21

e3 = 27 − 21 = 6

f̂4 = ⌊1
2
(f3 + f2)⌋ = ⌊1

2
(27 + 22)⌋ = 24

e4 = 25 − 24 = 1

f̂5 = ⌊1
2
(f4 + f3)⌋ = ⌊1

2
(25 + 27)⌋ = 26

e5 = 22 − 26 = −4 (6.16)

The error does center around zero, we see, and coding (assigning bitstring codewords)
will be efficient. Figure 6.17 shows a typical schematic diagram used to encapsulate
this type of system. Notice that the Predictor emits the predicted value f̂n. What is
invariably (and annoyingly) left out of such schematics is the fact that the predictor
is based on fn−1, fn−2, Therefore, the predictor must involve a memory. At
the least, the predictor includes a circuit for incorporating a delay in the signal,
to store fn−1.

6.3.5 DPCM

Differential Pulse Code Modulation is exactly the same as Predictive Coding, Pre-
dictive coding except that it incorporates a quantizer step. Quantization is as in PCM
and can be uniform or nonuniform. One scheme for analytically determining the
best set of nonuniform quantizer steps is the Lloyd-Max quantizer, named for Stuart

172 6 Basics of Digital Audio

Lloyd and Joel Max, which is based on a least-squares minimization of the error
term.

Here, we should adopt some nomenclature for signal values. We shall call the
original signal fn, the predicted signal f̂n, and the quantized, reconstructed signal
f̃n. How DPCM operates is to form the prediction, form an error en by subtracting
the prediction from the actual signal, then quantize the error to a quantized version,
ẽn. The equations that describe DPCM are as follows:

f̂n = function_of (f̃n−1, f̃n−2, f̃n−3, . . .)

en = fn − f̂n

ẽn = Q[en] (6.17)

transmit codeword(ẽn)

reconstruct: f̃n = f̂n + ẽn

Codewords for quantized error values ẽn are produced using entropy coding, such as
Huffman coding (discussed in Chap. 7).

Notice that the predictor is always based on the reconstructed, quantized version of
the signal: the reason for this is that then the encoder side is not using any information
not available to the decoder side. Generally, if by mistake we made use of the actual
signals fn in the predictor instead of the reconstructed ones f̃n, quantization error
would tend to accumulate and could get worse rather than being centered on zero.

The main effect of the coder–decoder process is to produce reconstructed, quan-
tized signal values f̃n = f̂n + ẽn. The “distortion” is the average squared error
[∑N

n=1(f̃n − fn)
2]/N , and one often sees diagrams of distortion versus the number

of bit levels used. A Lloyd-Max quantizer will do better (have less distortion) than
a uniform quantizer.

For any signal, we want to choose the size of quantization steps so that they
correspond to the range (the maximum and minimum) of the signal. Even using a
uniform, equal-step quantization will naturally do better if we follow such a practice.
For speech, we could modify quantization steps as we go, by estimating the mean
and variance of a patch of signal values and shifting quantization steps accordingly,
for every block of signal values. That is, starting at time i we could take a block of
N values fn and try to minimize the quantization error:

min
i+N−1∑

n=i

(fn − Q[fn])2 (6.18)

Since signal differences are very peaked, we could model them using a Laplacian
probability distribution function, which is also strongly peaked at zero [6]: it looks
like l(x) = (1/

√
2σ 2)exp(−

√
2|x |/σ), for variance σ 2. So typically, we assign

quantization steps for a quantizer with nonuniform steps by assuming that signal
differences, dn, say, are drawn from such a distribution and then choosing steps to
minimize

min
i+N−1∑

n=i

(dn − Q[dn])2 l(dn) (6.19)

http://dx.doi.org/10.1007/978-3-319-05290-8_7

6.3 Quantization and Transmission of Audio 173

Quantizer

−

Binary stream

+ Symbol
coder

Predictor +

fn

f̂n f
~
n

en e~n

Binary stream

f
~
n Reconstructed

Predictor

Symbol
decoder +

f̂n

e~n

(a)

(b)

Fig. 6.18 Schematic diagram for DPCM: a encoder; b decoder

This is a least-squares problem and can be solved iteratively using the Lloyd-Max
quantizer.

Figure 6.18 shows a schematic diagram for the DPCM coder and decoder. As is
common in such diagrams, several interesting features are more or less not indicated.
First, we notice that the predictor makes use of the reconstructed, quantized signal
values f̃n, not actual signal values fn—that is, the encoder simulates the decoder in
the predictor path. The quantizer can be uniform or nonuniform.

The box labeled “Symbol coder” in the block diagram simply means a Huffman
coder—the details of this step are set out in Chap. 7. The prediction value f̂n is based
on however much history the prediction scheme requires: we need to buffer previous
values of f̃ to form the prediction. Notice that the quantization noise, fn − f̃n, is
equal to the quantization effect on the error term, en − ẽn.

It helps us explicitly to understand the process of coding to look at actual numbers.
Suppose we adopt a particular predictor as follows:

f̂n = trunc
[(

f̃n−1 + f̃n−2

)
/2

]

so that en = fn − f̂n is an integer. (6.20)

Let us use the particular quantization scheme

ẽn = Q[en] = 16 ∗ trunc [(255 + en) /16] − 256 + 8

f̃n = f̂n + ẽn (6.21)

First, we note that the error is in the range −255 .. 255—that is, 511 levels are
possible for the error term. The quantizer takes the simple course of dividing the
error range into 32 patches of about 16 levels each. It also makes the representative
reconstructed value for each patch equal to the midway point for each group of 16
levels.

http://dx.doi.org/10.1007/978-3-319-05290-8_7

174 6 Basics of Digital Audio

Table 6.7 DPCM quantizer
reconstruction levels en in range Quantized to value

−255 ..−240 −248
−239 ..−224 −232

...
...

−31 ..−16 −24
−15 .. 0 −8
1 .. 16 8

17 .. 32 24
...

...

225 .. 240 232
241 .. 255 248

Table 6.7 gives output values for any of the input codes: 4-bit codes are mapped
to 32 reconstruction levels in a staircase fashion. (Notice that the final range includes
only 15 levels, not 16.)

As an example stream of signal values, consider the set of values

f1 f2 f3 f4 f5
130 150 140 200 230

We prepend extra values f = 130 in the datastream that replicate the first value, f1,
and initialize with quantized error ẽ1 ≡ 0, so that we ensure the first reconstructed
value is exact: f̃1 = 130. Then subsequent values calculated are as follows (with
prepended values in a box):

f̂ = 130 , 130, 142, 144, 167

e = 0 , 20, −2, 56, 63

ẽ = 0 , 24, −8, 56, 56

f̃ = 130 , 154, 134, 200, 223

On the decoder side, we again assume extra values f̃ equal to the correct value f̃1,
so that the first reconstructed value f̃1 is correct. What is received is ẽn, and the
reconstructed f̃n is identical to the one on the encoder side, provided we use exactly
the same prediction rule.

6.3.6 DM

DM stands for Delta Modulation, a much-simplified version of DPCM often used as
a quick analog-to-digital converter. We include this scheme here for completeness.

6.3 Quantization and Transmission of Audio 175

6.3.6.1 Uniform-Delta DM

The idea in DM is to use only a single quantized error value, either positive or
negative. Such a 1-bit coder thus produces coded output that follows the original
signal in a staircase fashion. The relevant set of equations is as follows:

f̂n = f̃n−1

en = fn − f̂n = fn − f̃n−1

ẽn =
{+k if en > 0, where k is a constant

−k otherwise,
(6.22)

f̃n = f̂n + ẽn

Note that the prediction simply involves a delay.
Again, let’s consider actual numbers. Suppose signal values are as follows:

f1 f2 f3 f4
10 11 13 15

We also define an exact reconstructed value f̃1 = f1 = 10.
Suppose we use a step value k = 4. Then we arrive at the following values:

f̂2 = 10, e2 = 11 − 10 = 1, ẽ2 = 4, f̃2 = 10 + 4 = 14
f̂3 = 14, e3 = 13 − 14 = −1, ẽ3 = −4, f̃3 = 14 − 4 = 10
f̂4 = 10, e4 = 15 − 10 = 5, ẽ4 = 4, f̃4 = 10 + 4 = 14

We see that the reconstructed set of values 10, 14, 10, 14 never strays far from the
correct set 10, 11, 13, 15.

Nevertheless, it is not difficult to discover that DM copes well with more or less
constant signals, but not as well with rapidly changing signals. One approach to
mitigating this problem is to simply increase the sampling, perhaps to many times
the Nyquist rate. This scheme can work well and makes DM a very simple yet
effective analog-to-digital converter.

6.3.6.2 Adaptive DM

However, if the slope of the actual signal curve is high, the staircase approximation
cannot keep up. A straightforward approach to dealing with a steep curve is to
simply change the step size k adaptively—that is, in response to the signal’s current
properties.

6.3.7 ADPCM

Adaptive DPCM takes the idea of adapting the coder to suit the input much further.
Basically, two pieces make up a DPCM coder: the quantizer and the predictor. Above,
in Adaptive DM, we adapted the quantizer step size to suit the input. In DPCM, we

176 6 Basics of Digital Audio

can adaptively modify the quantizer, by changing the step size as well as decision
boundaries in a nonuniform quantizer.

We can carry this out in two ways: using the properties of the input signal (called
forward adaptive quantization), or the properties of the quantized output. For if
quantized errors become too large, we should change the nonuniform Lloyd-Max
quantizer (this is called backward adaptive quantization).

We can also adapt the predictor, again using forward or backward adaptation.
Generally, making the predictor coefficients adaptive is called Adaptive Predictive
Coding (APC). It is interesting to see how this is done. Recall that the predictor is
usually taken to be a linear function of previously reconstructed quantized values, f̃n.
The number of previous values used is called the order of the predictor. For example,
if we use M previous values, we need M coefficients ai , i = 1 .. M in a predictor

f̂n =
M∑

i=1

ai f̃n−i (6.23)

However we can get into a difficult situation if we try to change the prediction
coefficients that multiply previous quantized values, because that makes a compli-
cated set of equations to solve for these coefficients. Suppose we decide to use a
least-squares approach to solving a minimization, trying to find the best values of
the ai :

min
N∑

n=1

(fn − f̂n)
2 (6.24)

where here we would sum over a large number of samples fn for the current patch of
speech, say. But because f̂n depends on the quantization, we have a difficult problem
to solve. Also, we should really be changing the fineness of the quantization at the
same time, to suit the signal’s changing nature; this makes things problematical.

Instead, we usually resort to solving the simpler problem that results from using
not f̃n in the prediction but simply the signal fn itself. This is indeed simply solved,
since, explicitly writing in terms of the coefficients ai , we wish to solve

min
N∑

n=1

(fn −
M∑

i=1

ai fn−i)
2 (6.25)

Differentiation with respect to each of the ai and setting to zero produces a linear
system of M equations that is easy to solve. (The set of equations is called the
Wiener-Hopf equations.)

Thus, we indeed find a simple way to adaptively change the predictor as we go.
For speech signals, it is common to consider blocks of signal values, just as for
image coding, and adaptively change the predictor, quantizer, or both. If we sample
at 8 kHz, a common block size is 128 samples—16 msec of speech. Figure 6.19
shows a schematic diagram for the ADPCM coder and decoder [7].

6.4 Exercises 177

Convert to
uniform PCM

Adaptive
quantizer

Adaptive
predictor

32 kbps
output

−

64 kbps A-law
or µ-law
PCM input

+

+

f̂n

fn

f
~
n

en e~n

32 kbps
input

+ Convert to
PCM

64 kbps A-law
or µ-law
PCM output

Adaptive
predictor

f̂n

f
~

ne~n

(a)

(b)

Fig. 6.19 Schematic diagram for: a ADPCM encoder; b decoder

6.4 Exercises

1. We wish to develop a new Internet service, for doctors. Medical ultrasound is in
the range 2–10 MHz; what should our sampling rate be chosen as?

2. My old Soundblaster card is an 8-bit card.
(a) What is it 8 bits of?
(b) What is the best SQNR (Signal to Quantization Noise Ratio) it can achieve?

3. If a tuba is 20 dB louder than a singer’s voice, what is the ratio of intensities of
the tuba to the voice?

4. If a set of ear protectors reduces the noise level by 30 dB, how much do they
reduce the intensity (the power)?

5. It is known that a loss of audio output at both ends of the audible frequency
range is inevitable due to the frequency response function of audio amplifier.

(a) If the output was 1 volt for frequencies at mid-range, after a loss of −3 dB
at 18 kHz, what is the output voltage at this frequency?

(b) To compensate the loss, a listener can adjust the gain (and hence the output)
at different frequencies from an equalizer. If the loss remains −3 dB and a
gain through the equalizer is 6 dB at 18 kHz, what is the output voltage now?
[Hint: Assume log10 2 = 0.3.]

6. Suppose the Sampling Frequency is 1.5 times the True Frequency. What is the
Alias Frequency?

7. In a crowded room, we can still pick out and understand a nearby speaker’s voice
notwithstanding the fact that general noise levels may be high. This is what is

178 6 Basics of Digital Audio

known as the “cocktail-party effect”; how it operates is that our hearing can
localize a sound source by taking advantage of the difference in phase between
the two signals entering our left and right ears (“binaural auditory perception”).
In mono, we could not hear our neighbor’s conversation very well if the noise
level were at all high.
State how you think a karaoke machine works.
Hint: the mix for commercial music recordings is such that the “pan” parameter
is different going to the left and right channels for each instrument. That is,
for an instrument, the left, or the right, channel is emphasized. How would the
singer’s track timing have to be recorded in order to make it easy to subtract out
the sound of the singer? (And this is typically done.)

8. The dynamic range of a signal V is the ratio of the maximum to the minimum,
expressed in decibels. The dynamic range expected in a signal is to some ex-
tent an expression of the signal quality. It also dictates the number of bits per
sample needed in order to reduce the quantization noise down to an acceptable
level; e.g., we may like to reduce the noise to at least an order of magnitude
below Vmin.
Suppose the dynamic range for a signal is 60 dB. Can we use 10 bits for this
signal? Can we use 16 bits?

9. Suppose the dynamic range of speech in telephony implies a ratio Vmax/Vmin of
about 256. Using uniform quantization, how many bits should we use to encode
speech, so as to make the quantization noise at least an order of magnitude less
than the smallest detectable telephonic sound?

10. Perceptual nonuniformity is a general term for describing the nonlinearity of
human perception, e.g., when a certain parameter of an audio signal varies,
humans do not necessarily perceive the difference in proportion to the amount
of change.

(a) Briefly describe at least two types of Perceptual nonuniformities in human
auditory perception.

(b) Which one of them does A-law (or µ-law) attempt to approximate? Why
could it improve the quantization?

11. Suppose we mistakenly always use the 0.75 point instead of the 0.50 point in
a quantization interval as the decision point, in deciding to which quantization
level an analog value should be mapped. Above, we have a rough calculation of
SQNR. What effect does this mistake have on the SQNR?

12. State the Nyquist frequency for the following digital sample intervals. Express
the result in Hertz in each case.
(a) 1 ms
(b) 0.005 s
(c) 1 h

13. Draw a diagram showing a sinusoid at 5.5 kHz, and sampling at 8 kHz (just
show 8 intervalsbetween samples in your plot). Draw the alias at 2.5 kHz and

6.4 Exercises 179

show that in the 8 sample intervals, exactly 5.5 cycles of the true signal fit into
2.5 cycles of the alias signal.

14. In an old Western movie, we notice that a stagecoach wheel appears to be moving
backwards at 5◦ per frame, even though the stagecoach is moving forward. To
what is this effect due? What is the true situation?

15. Suppose a signal contains tones at 1 kHz, 10 kHz, and 21 kHz, and is sampled
at the rate 12 kHz (and then processed with an anti-aliasing filter limiting output
to 6 kHz). What tones are included in the output?
Hint: most of the output consists of aliasing.

16. The Pitch Bend opcode in MIDI is followed by two data bytes specifying how
the control is to be altered. How many bits of accuracy does this amount of data
correspond to? Why?

17. (a) Can a single MIDI message produce more than one note sounding?
(b) Is it possible that more than one note can be sounding on a particular instru-

ment at once? How is that done in MIDI?
(c) Is the Program Change MIDI message a Channel Message? What does this

message accomplish? Based on the Program Change message, how many
different instruments are there in General MIDI? Why?

(d) In general, what are the two main kinds of MIDI messages? In terms of data,
what is the main difference between the two types of messages? Within those
two categories, please list the different sub-types.

18. The note “A above Middle C” (with frequency 440 Hz) is note 69 in General
MIDI. What MIDI bytes (in hex) should be sent to play a note twice the frequency
of (i.e., one octave above) “A above Middle C” at maximum volume on channel
1? (Don’t include start/stop bits.)
Information: An octave is 12 steps on a piano, i.e., 12 notes up.

19. Give an example (in English, not hex) of a MIDI voice message.
Describe the parts of the “assembler” statement for the message you suggested
above.
What does a “program change” message do? Suppose “Program change” is hex
&HC1 . What does the instruction &HC103 do?

20. We have suddenly invented a new kind of music: “18-tone music”, that requires
a keyboard with 180 keys. How would we have to change the MIDI standard to
be able to play this music?

21. In PCM, what is the delay, assuming 8 kHz sampling? Generally, delay is the
penalty associated with any algorithm due to sampling, processing, and analysis.

22. (a) Suppose we use a predictor as follows:

f̂n = trunc
(

1
2
(f̃n−1 + f̃n−2)

)
,

en = fn − f̂n. (6.26)

180 6 Basics of Digital Audio

Time

Si
gn

al

50

100

150

200

250

Time

Si
gn

al

50

100

150

200

250
(a) (b)

Fig. 6.20 a DPCM reconstructed signal (dotted line) tracks the input signal (solid line). b DPCM
reconstructed signal (dashed line) steers farther and farther from the input signal (solid line)

Also, suppose we adopt the quantizer Eq. (6.21). If the input signal has
values as follows:

20 38 56 74 92 110 128 146 164 182 200 218 236 254

then show that the output from a DPCM coder (without entropy coding) is as follows:

20 44 56 74 89 105 121 153 161 181 195 212 243 251.

Figure 6.20a shows how the quantized reconstructed signal tracks the input
signal.

(b) Now, suppose by mistake on the coder side we inadvertently use the predictor
for lossless coding, Eq. (6.15), using original values fn instead of quantized
ones, f̃n. Show that on the decoder side we end up with reconstructed signal
values as follows:

20 44 56 74 89 105 121 137 153 169 185 201 217 233,

so that the error gets progressively worse.
Figure 6.20b shows how this appears: the reconstructed signal gets progres-
sively worse.

References

1. B. Truax, Handbook for Acoustic Ecology, 2nd edn. (Cambridge Street Publishing, 1999)
2. K.C. Pohlmann, Principles of Digital Audio, 6th edn. (McGraw-Hill, New York, 2010)
3. J.H. McClellan, R.W. Schafer, M.A. Yoder, DSP First: A Multimedia Approach. (Prentice-Hall

PTR, Upper Saddle River, 1998)
4. J. Heckroth, Tutorial on MIDI and music synthesis. The MIDI Manufacturers Association, POB

3173, La Habra, CA 90632–3173, (1995).

References 181

5. P.K. Andleigh, K. Thakrar, Multimedia Systems Design. (Prentice-Hall PTR, Upper Saddle River,
1995)

6. K. Sayood, Introduction to Data Compression, 4th edn. (Morgan Kaufmann, San Francisco,
2012)

7. R.L. Freeman, Reference Manual for Telecommunications Engineering, 3rd edn. (Wiley, New
York, 2001)

Part II
Multimedia Data Compression

In this Part we examine the role played in multimedia by data compression,
perhaps the most important enabling technology that makes modern multimedia
systems possible. So much data exist, in archives, via streaming, and elsewhere,
that it has become critical to compress this information.

We start off in Chap. 7 looking at lossless data compression— i.e., involving no
distortion of the original signal once it is decompressed or reconstituted. A good
example is archival storage of precious artworks. Here, we may go to the trouble
of imaging an Old Master’s painting using a high-powered camera mounted on a
dolly to avoid parallax. Certainly, we do not wish to lose any of this hard-won
information, so we’d best use lossless compression. Winzip, for example, is an
ubiquitous tool that utilizes lossless compression.

On the other hand, when it comes to my home movies I’m more willing to lose
some information. If there is a choice between losing some information anyway
because my computer, tablet, or smartphone cannot handle all the data I want to
push through it, or else losing some information on purpose, using a ‘‘lossy’’
compression method, I ’ll choose the latter. Nowadays, almost all video you see is
compressed in some way, and the compression used is mostly lossy. As well,
almost every image on the Web is in the standard JPEG format. And this is almost
always a lossy compression format. It is known that lossy compression methods
achieve a much higher level of compression than the lossless ones.

So in Chap. 8 we go on to look at the fundamentals of lossy methods of
compression, mainly focusing on the Discrete Cosine Transform and the Discrete
Wavelet Transform. The major applications of these important methods are in the
set of JPEG still image compression standards, including JPEG2000. These are
examined in Chap. 9. We then go on to look at how data compression methods can
be applied to moving images—videos. We start with basic video compression
techniques in Chap. 10. We examine the ideas behind the MPEG standards,
starting with MPEG-1, 2, and then MPEG-4, and 7 in Chap. 11. In Chap. 12, we
introduce the newer video compression standards H.264 and H.265.

http://dx.doi.org/10.1007/978-3-319-05290-8_7
http://dx.doi.org/10.1007/978-3-319-05290-8_8
http://dx.doi.org/10.1007/978-3-319-05290-8_9
http://dx.doi.org/10.1007/978-3-319-05290-8_10
http://dx.doi.org/10.1007/978-3-319-05290-8_11
http://dx.doi.org/10.1007/978-3-319-05290-8_12

Audio compression in a sense stands by itself, and we consider some basic audio
compression techniques in Chap. 13, while in Chap. 14 we look at MPEG Audio,
including MP3 and AAC.

184 Part II Multimedia Data Compression

http://dx.doi.org/10.1007/978-3-319-05290-8_13
http://dx.doi.org/10.1007/978-3-319-05290-8_14

7Lossless CompressionAlgorithms

7.1 Introduction

The emergence of multimedia technologies has made digital libraries a reality.
Nowadays, libraries, museums, film studios, and governments are converting more
and more data and archives into digital form. Some of the data (e.g., precious books
and paintings) indeed need to be stored without any loss.

As a start, suppose we want to encode the call numbers of the 120 million or so
items in the Library of Congress (a mere 20 million, if we consider just books). Why
don’t we just transmit each item as a 27-bit number, giving each item a unique binary
code (since 227 > 120, 000, 000)?

The main problem is that this “great idea” requires too many bits. And in fact
there exist many coding techniques that will effectively reduce the total number of
bits needed to represent the above information. The process involved is generally
referred to as compression [1, 2].

In Chap. 6, we had a beginning look at compression schemes aimed at audio.
There, we had to first consider the complexity of transforming analog signals to
digital ones, whereas here, we shall consider that we at least start with digital signals.
For example, even though we know an image is captured using analog signals, the file
produced by a digital camera is indeed digital. The more general problem of coding
(compressing) a set of any symbols, not just byte values, say, has been studied for a
long time.

Getting back to our Library of Congress problem, it is well known that certain parts
of call numbers appear more frequently than others, so it would be more economic to
assign fewer bits as their codes. This is known as variable-length coding (VLC)—the
more frequently appearing symbols are coded with fewer bits per symbol, and vice
versa. As a result, fewer bits are usually needed to represent the whole collection.

In this chapter we study the basics of information theory and several popular loss-
less compression techniques. Figure 7.1 depicts a general data compression scheme,
in which compression is performed by an encoder and decompression is performed
by a decoder.

Z.-N. Li et al., Fundamentals of Multimedia, 185
Texts in Computer Science, DOI: 10.1007/978-3-319-05290-8_7,
© Springer International Publishing Switzerland 2014

http://dx.doi.org/10.1007/978-3-319-05290-8_6

186 7 Lossless Compression Algorithms

Encoder
(compression)

Decoder
(decompression)

Storage or
networks

OutputInput

datadata

Fig. 7.1 A general data compression scheme

We call the output of the encoder codes or codewords. The intermediate medium
could either be data storage or a communication/computer network. If the com-
pression and decompression processes induce no information loss, the compression
scheme is lossless; otherwise, it is lossy. The next several chapters deal with lossy
compression algorithms as they are commonly used for image, video, and audio
compression. Here, we concentrate on lossless compression.

If the total number of bits required to represent the data before compression is B0
and the total number of bits required to represent the data after compression is B1,
then we define the compression ratio as

compression ratio = B0

B1
. (7.1)

In general, we would desire any codec (encoder/decoder scheme) to have a com-
pression ratio much larger than 1.0. The higher the compression ratio, the better the
lossless compression scheme, as long as it is computationally feasible.

7.2 Basics of Information Theory

According to the famous scientist Shannon, of Bell Labs [3, 4], the entropy η of an
information source with alphabet S = {s1, s2, . . . , sn} is defined as:

η = H(S) =
n∑

i=1

pi log2
1
pi

(7.2)

= −
n∑

i=1

pi log2 pi (7.3)

where pi is the probability that symbol si in S will occur.
The term log2

1
pi

indicates the amount of information (the so-called self-infor-
mation defined by Shannon [3]) contained in si , which corresponds to the number
of bits1 needed to encode si . For example, if the probability of having the character
n in a manuscript is 1/32, the amount of information associated with receiving this
character is 5 bits. In other words, a character string nnn will require 15 bits to code.
This is the basis for possible data reduction in text compression, since it will lead

1 Since we have chosen 2 as the base for logarithms in the above definition, the unit of information
is bit—naturally also most appropriate for the binary code representation used in digital computers.
If the log base is 10, the unit is the hartley; if the base is e, the unit is the nat.

7.2 Basics of Information Theory 187

to character coding schemes different from the ASCII representation, in which each
character requires at least 7 bits.

What is entropy? In science, entropy is a measure of the disorder of a system—
the more the entropy, the more the disorder. Typically, we add negative entropy to
a system when we impart more order to it. For example, suppose we sort a deck of
cards. (Think of a bubble sort for the deck—perhaps this is not the usual way you
actually sort cards, though.) For every decision to swap or not, we impart 1 bit of
information to the card system and transfer 1 bit of negative entropy to the card deck.

Now suppose we wish to communicate those swapping decisions, via a network,
say. If we had to make two consecutive swap decisions, the possible number of
outcomes will be 4. If all outcomes have an equal probability of 1/4, then the number
of bits to send is on average 4 × (1/4) × log2((1/(1/4)) = 2 bits—no surprise
here. To communicate (transmit) the results of our two decisions, we would need to
transmit 2 bits.

But if the probability for one of the outcomes were higher than the others, the
average number of bits we would send would be different. (This situation might
occur if the deck were already partially ordered, so that the probability of a not-swap
were higher than for a swap.) Suppose the probabilities of one of our four states were
1/2, and the other three states each had probability 1/6 of occurring. To extend our
modeling of how many bits to send on average, we need to go to noninteger powers
of 2 for probabilities. Then we can use a logarithm to ask how many (float) bits of
information must be sent to transmit the information content. Equation (7.3) says that
in this case, we would have to send just (1/2)×log2(2)+3×(1/6)×log2(6) = 1.7925
bits, a value less than 2. This reflects the idea that if we could somehow encode our
four states, such that the most-occurring one means fewer bits to send, we would do
better (fewer bits) on average.

The definition of entropy is aimed at identifying often-occurring symbols in the
datastream as good candidates for short codewords in the compressed bitstream.
As described earlier, we use a variable-length coding scheme for entropy coding—
frequently occurring symbols are given codes that are quickly transmitted, while
infrequently occurring ones are given longer codes. For example, E occurs frequently
in English, so we should give it a shorter code than Q, say.

This aspect of “surprise” in receiving an infrequent symbol in the datastream is
reflected in Eq. (7.3). For if a symbol occurs rarely, its probability pi is low (e.g.,
1/100), and thus its self-information log2

1
pi

= log2 100 is a relatively large number.
This reflects the fact that it takes a longer bitstring to encode it. The probabilities
pi sitting outside the logarithm in Eq. (7.3) say that over a long stream, the symbols
come by with an average frequency equal to the probability of their occurrence. This
weighting should multiply the long or short information content given by the element
of “surprise” in seeing a particular symbol.

One wrinkle in the algorithm implied by Eq. (7.3) is that if a symbol occurs with
zero frequency, we simply do not count it into the entropy: we cannot take a log
of zero.

As another concrete example, if the information source S is a gray-level digital
image, each si is a gray-level intensity ranging from 0 to (2k − 1), where k is the

188 7 Lossless Compression Algorithms

Fig. 7.2 Histograms for two
gray-level images. a Uniform
distribution; b A sample
binary image

0

0 255

255

1

2/3

1/3

1/256

i

i

Pi

Pi

(a)

(b)

number of bits used to represent each pixel in an uncompressed image. The range
is often [0, 255], since 8 bits are typically used: this makes a convenient one byte
per pixel. The image histogram (as discussed in Chap. 3) is a way of calculating the
probability pi of having pixels with gray-level intensity i in the image.

Figure 7.2a shows the histogram of an image with uniform distribution of gray-
level intensities—that is, ∀i pi = 1/256. Hence, the entropy of this image is

η =
255∑

i=0

1
256

· log2 256 = 256 · 1
256

· log2 256 = 8 (7.4)

As can be seen in Eq. (7.3), the entropy η is a weighted sum of terms log2
1
pi

;
hence it represents the average amount of information contained per symbol in the
source S. For a memoryless source2 S, the entropy η represents the minimum average
number of bits required to represent each symbol in S. In other words, it specifies
the lower bound for the average number of bits to code each symbol in S.

If we use l̄ to denote the average length (measured in bits) of the codewords
produced by the encoder, the Shannon Coding Theorem states that the entropy is the
best we can do (under certain conditions):

η ≤ l̄ (7.5)

Coding schemes aim to get as close as possible to this theoretical lower bound.
It is interesting to observe that in the above uniform-distribution example we

found that η = 8—the minimum average number of bits to represent each gray-level
intensity is at least 8. No compression is possible for this image! In the context of

2 An information source that is independently distributed, meaning that the value of the current
symbol does not depend on the values of the previously appeared symbols.

http://dx.doi.org/10.1007/978-3-319-05290-8_3

7.2 Basics of Information Theory 189

imaging, this will correspond to the “worst case,” where neighboring pixel values
have no similarity.

Figure 7.2b shows the histogram of another image, in which 1/3 of the pixels are
rather dark and 2/3 of them are rather bright. The entropy of this image is

η = 1
3
· log2 3 + 2

3
· log2

3
2

= 0.33 × 1.59 + 0.67 × 0.59 = 0.52 + 0.40 = 0.92

In general, the entropy is greater when the probability distribution is flat and smaller
when it is more peaked.

7.3 Run-Length Coding

Instead of assuming a memoryless source, run-length coding (RLC) exploits memory
present in the information source. It is one of the simplest forms of data compression.
The basic idea is that if the information source we wish to compress has the property
that symbols tend to form continuous groups, instead of coding each symbol in the
group individually, we can code one such symbol and the length of the group.

As an example, consider a bilevel image (one with only 1-bit black and white
pixels) with monotone regions—like an fx. This information source can be efficiently
coded using run-length coding. In fact, since there are only two symbols, we do not
even need to code any symbol at the start of each run. Instead, we can assume that
the starting run is always of a particular color (either black or white) and simply code
the length of each run.

The above description is the one-dimensional run-length coding algorithm. A two-
dimensional variant of it is generally used to code bilevel images. This algorithm
uses the coded run information in the previous row of the image to code the run in
the current row. A full description of this algorithm can be found in [5].

7.4 Variable-Length Coding

Since the entropy indicates the information content in an information source S, it
leads to a family of coding methods commonly known as entropy coding methods.
As described earlier, variable-length coding (VLC) is one of the best-known such
methods. Here, we will study the Shannon–Fano algorithm, Huffman coding, and
adaptive Huffman coding.

7.4.1 Shannon–Fano Algorithm

The Shannon–Fano algorithm was independently developed by Shannon at Bell Labs
and Robert Fano at MIT [6]. To illustrate the algorithm, let us suppose the symbols to

190 7 Lossless Compression Algorithms

L:(2)

(5)

H,E,O:(3)

0 1

L:(2)

(5)

H:(1) E,O:(2)

(3)
0 1

0 1

L:(2)

O:(1)

(5)

E:(1)

H:(1)
(2)

(3)
0 1

0 1

0 1

(a) (b)

(c)

Fig. 7.3 Coding tree for HELLO by the Shannon–Fano algorithm. a First division; b Second
division; c Third division

be coded are the characters in the word HELLO. The frequency count of the symbols
is

Symbol H E L O
Count 1 1 2 1

The encoding steps of the Shannon–Fano algorithm can be presented in the following
top-down manner:
1. Sort the symbols according to the frequency count of their occurrences.
2. Recursively divide the symbols into two parts, each with approximately the same

number of counts, until all parts contain only one symbol.
A natural way of implementing the above procedure is to build a binary tree. As a
convention, let us assign bit 0 to its left branches and 1 to the right branches.

Initially, the symbols are sorted as LHEO. As Fig. 7.3 shows, the first division
yields two parts: L with a count of 2, denoted as L:(2); and H, E and O with a total
count of 3, denoted as H, E, O:(3). The second division yields H:(1) and E, O:(2).
The last division is E:(1) and O:(1).

Table 7.1 summarizes the result, showing each symbol, its frequency count, infor-
mation content

(
log2

1
pi

)
, resulting codeword, and the number of bits needed to

encode each symbol in the word HELLO. The total number of bits used is shown at
the bottom.

To revisit the previous discussion on entropy, in this case

η = pL · log2
1
pL

+ pH · log2
1

pH
+ pE · log2

1
pE

+ pO · log2
1

pO

= 0.4 × 1.32 + 0.2 × 2.32 + 0.2 × 2.32 + 0.2 × 2.32 = 1.92

7.4 Variable-Length Coding 191

Table 7.1 One result of performing the Shannon–Fano algorithm on HELLO

Symbol Count log2
1
pi

Code Number of bits used

L 2 1.32 0 2
H 1 2.32 10 2
E 1 2.32 110 3
O 1 2.32 111 3

TOTAL number of bits: 10

(5)

L,H:(3) E,O:(2)

0 1

(5)

(2)

H:(1) E:(1) O:(1)

(3)

L:(2)

10

0 1

0 1

(a) (b)

Fig. 7.4 Another coding tree for HELLO by the Shannon–Fano algorithm. a First split; b Second
split

Table 7.2 Another result of performing the Shannon–Fano algorithm on HELLO

Symbol Count log2
1
pi

Code Number of bits used

L 2 1.32 00 4
H 1 2.32 01 2
E 1 2.32 10 2
O 1 2.32 11 2

TOTAL number of bits: 10

This suggests that the minimum average number of bits to code each character in the
word HELLO would be at least 1.92. In this example, the Shannon–Fano algorithm
uses an average of 10/5 = 2 bits to code each symbol, which is fairly close to the
lower bound of 1.92. Apparently, the result is satisfactory.

It should be pointed out that the outcome of the Shannon–Fano algorithm is not
necessarily unique. For instance, at the first division in the above example, it would be
equally valid to divide into the two parts L, H:(3) and E, O:(2). This would result in the
coding in Fig. 7.4. Table 7.2 shows the codewords are different now. Also, these two
sets of codewords may behave differently when errors are present. Coincidentally,
the total number of bits required to encode the world HELLO remains at 10.

The Shannon–Fano algorithm delivers satisfactory coding results for data com-
pression, but it was soon outperformed and overtaken by the Huffman coding
method.

192 7 Lossless Compression Algorithms

7.4.2 Huffman Coding

First presented by Huffman in a 1952 paper [7], this method attracted an overwhelm-
ing amount of research and has been adopted in many important and/or commercial
applications, such as fax machines, JPEG, and MPEG.

In contradistinction to Shannon–Fano, which is top-down, the encoding steps of
the Huffman algorithm are described in the following bottom-up manner. Let us
use the same example word, HELLO. A similar binary coding tree will be used as
above, in which the left branches are coded 0 and right branches 1. A simple list data
structure is also used.

Algorithm 7.1 (Huffman Coding).

1. Initialization: put all symbols on the list sorted according to their frequency counts.
2. Repeat until the list has only one symbol left.

(a) From the list, pick two symbols with the lowest frequency counts. Form a Huffman subtree
that has these two symbols as child nodes and create a parent node for them.

(b) Assign the sum of the children’s frequency counts to the parent and insert it into the list,
such that the order is maintained.

(c) Delete the children from the list.
3. Assign a codeword for each leaf based on the path from the root.

In Fig. 7.5, new symbols P1, P2, P3 are created to refer to the parent nodes in the
Huffman coding tree. The contents in the list are illustrated below:

After initialization: L H E O
After iteration (a): L P1 H
After iteration (b): L P2
After iteration (c): P3

For this simple example, the Huffman algorithm apparently generated the same
coding result as one of the Shannon–Fano results shown in Fig. 7.3, although the
results are usually better. The average number of bits used to code each character is
also 2, (i.e., (1+ 1+ 2+ 3+ 3)/5 = 2). As another simple example, consider a text
string containing a set of characters and their frequency counts as follows: A:(15),
B:(7), C:(6), D:(6) and E:(5). It is easy to show that the Shannon–Fano algorithm
needs a total of 89 bits to encode this string, whereas the Huffman algorithm needs
only 87.

As shown above, if correct probabilities (“prior statistics”) are available and accu-
rate, the Huffman coding method produces good compression results. Decoding for
the Huffman coding is trivial as long as the statistics and/or coding tree are sent
before the data to be compressed (in the file header, say). This overhead becomes
negligible if the data file is sufficiently large.

The following are important properties of Huffman coding:
• Unique prefix property. No Huffman code is a prefix of any other Huffman code.

For instance, the code 0 assigned to L in Fig. 7.5c is not a prefix of the code 10

7.4 Variable-Length Coding 193

E:(1)

P1:(2)

O:(1)

0 1

H:(1)

P2:(3)

E:(1) O:(1)

P1:(2)
0 1

0 1

L:(2)

O:(1)

P3:(5)

E:(1)

H:(1)
P1:(2)

P2:(3)
0 1

0 1

0 1

(a) (b)

(c)

Fig.7.5 Coding tree for HELLO using the Huffman algorithm. a First iteration; b Second iteration;
c Third iteration

for H or 110 for E or 111 for O; nor is the code 10 for H a prefix of the code
110 for E or 111 for O. It turns out that the unique prefix property is guaranteed
by the above Huffman algorithm, since it always places all input symbols at the
leaf nodes of the Huffman tree. The Huffman code is one of the prefix codes for
which the unique prefix property holds. The code generated by the Shannon–Fano
algorithm is another such example.
This property is essential and also makes for an efficient decoder, since it precludes
any ambiguity in decoding. In the above example, if a bit 0 is received, the decoder
can immediately produce a symbol L without waiting for any more bits to be
transmitted.

• Optimality. The Huffman code is a minimum-redundancy code, as shown in
Huffman’s 1952 paper [7]. It has been proven [2, 8] that the Huffman code is
optimal for a given data model (i.e., a given, accurate, probability distribution):
– The two least frequent symbols will have the same length for their Huffman

codes, differing only at the last bit. This should be obvious from the above
algorithm.

– Symbols that occur more frequently will have shorter Huffman codes than sym-
bols that occur less frequently. Namely, for symbols si and s j , if pi ≥ p j then
li ≤ l j , where li is the number of bits in the codeword for si .

– It has been shown (see [2]) that the average code length for an information source
S is strictly less than η + 1. Combined with Eq. (7.5), we have

η ≤ l̄ < η + 1. (7.6)

Extended Huffman Coding

The discussion of Huffman coding so far assigns each symbol a codeword that has
an integer bit length. As stated earlier, log2

1
pi

indicates the amount of information

194 7 Lossless Compression Algorithms

contained in the information source si , which corresponds to the number of bits
needed to represent it. When a particular symbol si has a large probability (close to
1.0), log2

1
pi

will be close to 0, and assigning one bit to represent that symbol will be

costly. Only when the probabilities of all symbols can be expressed as 2−k , where k
is a positive integer, would the average length of codewords be truly optimal—that
is, l̄ ≡ η. Clearly, l̄ > η in most cases.

One way to address the problem of integral codeword length is to group several
symbols and assign a single codeword to the group. Huffman coding of this type is
called Extended Huffman Coding [2]. Assume an information source has alphabet
S = {s1, s2, . . . , sn}. If k symbols are grouped together, then the extended alphabet is

S(k) = {
k symbols

︷ ︸︸ ︷
s1s1 . . . s1, s1s1 . . . s2, . . . , s1s1 . . . sn, s1s1 . . . s2s1, . . . , snsn . . . sn}

Note that the size of the new alphabet S(k) is nk . If k is relatively large (e.g.,
k ≥ 3), then for most practical applications where n ≫ 1, nk would be a very large
number, implying a huge symbol table. This overhead makes Extended Huffman
Coding impractical.

As shown in [2], if the entropy of S is η, then the average number of bits needed
for each symbol in S is now

η ≤ l̄ < η + 1
k

(7.7)

so we have shaved quite a bit from the coding schemes’ bracketing of the theoretical
best limit. Nevertheless, this is not as much of an improvement over the original
Huffman coding (where group size is 1) as one might have hoped for.

Extended Huffman Example

As an explicit example of the power of Extended Huffman Coding, let us construct
a binary Huffman code for a source S with just three symbols A, B, and C , having
probabilities 0.6, 0.3, and 0.1, respectively. That is, here we have n = 3.

We are interested in what the average codeword length is, in bits per symbol. To
start with, in comparison let us first look at the value of the entropy of this source,
and the bitrate given by Huffman coding for single symbols, not blocks.

Generating a Huffman tree gives:

A : 0; B : 10;C : 11;
Average = 0.6 × 1 + 0.3 × 2 + 0.1 × 2 = 1.4 bits/symbol.

Below, we calculate the entropy and get

η = −
∑

i

pi log2 pi = −0.6× log2 0.6−0.3× log2 0.3−0.1× log2 0.1 ≈ 1.2955.

Now let us extend this code by grouping symbols into 2-character groups—i.e.,
we use blocks of k = 2 characters. We wish to compare the performance now, in
bits per original source symbol, with the best possible.

7.4 Variable-Length Coding 195

CCCB

BC

BBACCA

BAAB

AA

Fig. 7.6 Huffman tree for extended alphabet

The extended Huffman tree is as shown in Fig. 7.6:
Codeword bitlengths are then as follows:

Symbol group Probability Codeword Bitlength

AA 0.36 0 1
AB 0.18 100 3
BA 0.18 101 3
CA 0.06 1100 4
AC 0.06 1101 4
BB 0.09 1110 4
BC 0.03 11110 5
CB 0.03 111110 6
CC 0.01 111111 6

Consequently, the average bitrate per symbol is:

Average = 0.5×(0.36 + 3 × 0.18 + 3 × 0.18 + 4 × 0.06 + 4 × 0.06 + 4 × 0.09

+ 5 × 0.03 + 6 × 0.03 + 6 × 0.01) = 1.3350.

(The reason for the factor 0.5 is that each leaf gives us a k = 2-length block of
symbols, whereas we want to compare to the bitrate per single symbol.)

Now recall that the average bitrate per symbol was 1.4 for length-1 symbols, and
the best possible is the entropy: η ≈ 1.2955.

So we found that, indeed, the Extended Huffman bitrate does fit into the bound
Eq. (7.7) as advertised, and in fact does result in a modest improvement in compres-
sion ratio in practice.

196 7 Lossless Compression Algorithms

7.4.3 Adaptive Huffman Coding

The Huffman algorithm requires prior statistical knowledge about the information
source, and such information is often not available. This is particularly true in mul-
timedia applications, where future data is unknown before its arrival, as for example
in live (or streaming) audio and video. Even when the statistics are available, the
transmission of the symbol table could represent heavy overhead.

For the non-extended version of Huffman coding, the above discussion assumes a
so-called order-0 model—that is, symbols/characters were treated singly, without any
context or history maintained. One possible way to include contextual information
is to examine k preceding (or succeeding) symbols each time; this is known as an
order-k model. For example, an order-1 model can incorporate such statistics as
the probability of “qu” in addition to the individual probabilities of “q” and “u.”
Nevertheless, this again implies that much more statistical data has to be stored and
sent for the order-k model when k ≥ 1.

The solution is to use adaptive compression algorithms, in which statistics are
gathered and updated dynamically as the datastream arrives. The probabilities are
no longer based on prior knowledge but on the actual data received so far. The
new coding methods are “adaptive” because, as the probability distribution of the
received symbols changes, symbols will be given new (longer or shorter) codes. This
is especially desirable for multimedia data, when the content (the music or the color
of the scene) and hence the statistics can change rapidly.

As an example, we introduce the Adaptive Huffman Coding algorithm in this
section. Many ideas, however, are also applicable to other adaptive compression
algorithms.

Procedure 7.1 (Procedures for Adaptive Huffman Coding).

ENCODER DECODER
------- -------

Initial_code(); Initial_code();
while not EOF while not EOF
{ {

get(c); decode(c);
encode(c); output(c);
update_tree(c); update_tree(c);

} }

• Initial_code assigns symbols with some initially agreed-upon codes, with-
out any prior knowledge of the frequency counts for them. For example, some
conventional codes such as ASCII may be used for coding character symbols.

• update_tree is a procedure for constructing an adaptive Huffman tree. It basi-
cally does two things: it increments the frequency counts for the symbols (including
any new ones), and updates the configuration of the tree.

7.4 Variable-Length Coding 197

9. (11)

7. P:(5)

5. A:(3)

3. C:(1)

1. D:(1) 2. B:(1)

4. (2)

6. (3)

8. (6)

5. A:(3)

9. (10)

7. (5+1)
8. P:(5)

6. (3)

3. C:(1)

1. D:(1) 2. B:(1)

4. (2)

9. (10)

7. (5)
8. P:(5)

5. (2) 6. (3)

1. D:(1) 2. B:(1) 3. C:(1) 4. A:(2)

1. D:(1)

9. (10)

7. (5)
8. P:(5)

5. (2) 6. (3)

2. B:(1) 3. C:(1) 4. A:(2+1)

9. (9)

7. (4)
8. P:(5)

5. (2) 6. (2)

3. C:(1) 4. D:(1)1. A:(1) 2. B:(1)

(a) (b)

(c1) (c2)

(c3)

Fig.7.7 Node swapping for updating an adaptive Huffman tree: a a Huffman tree; b receiving 2nd
‘A’ triggered a swap; c1 a swap is needed after receiving 3rd ‘A’; c2 another swap is needed; c3 the
Huffman tree after receiving 3rd ‘A’

– The Huffman tree must always maintain its sibling property—that is, all nodes
(internal and leaf) are arranged in the order of increasing counts. Nodes are
numbered in order from left to right, bottom to top. (See Fig. 7.7, in which the
first node is 1.A:(1), the second node is 2.B:(1), and so on, where the numbers
in parentheses indicate the count.) If the sibling property is about to be violated,
a swap procedure is invoked to update the tree by rearranging the nodes.

– When a swap is necessary, the farthest node with count N is swapped with the
node whose count has just been increased to N + 1. Note that if the node with
count N is not a leaf-node—it is the root of a subtree—the entire subtree will
go with it during the swap.

• The encoder and decoder must use exactly the same Initial_code and
update_tree routines.

198 7 Lossless Compression Algorithms

Table 7.3 Initial code
assignment for AADCCDD
using adaptive Huffman
coding

Symbol Initial code

NEW 0
A 00001
B 00010
C 00011
D 00100
...

...

Figure 7.7a depicts a Huffman tree with some symbols already received.
Figure 7.7b shows the updated tree after an additional A (i.e., the second A) was
received. This increased the count of As to N + 1 = 2 and triggered a swap. In this
case, the farthest node with count N = 1 was D:(1). Hence, A:(2) and D:(1) were
swapped.

Apparently, the same result could also be obtained by first swapping A:(2) with
B:(1), then with C:(1), and finally with D:(1). The problem is that such a procedure
would take three swaps; the rule of swapping with “the farthest node with count N”
helps avoid such unnecessary swaps.

The update of the Huffman tree after receiving the third A is more involved and is
illustrated in the three steps shown in Fig. 7.7c1–c3. Since A:(2) will become A:(3)
[temporarily denoted as A:(2+1)], it is now necessary to swap A:(2+1) with the fifth
node. This is illustrated with an arrow in Fig. 7.7c1.

Since the fifth node is a non-leaf node, the subtree with nodes 1. D:(1), 2. B:(1),
and 5. (2) is swapped as a whole with A:(3). Figure 7.7c2 shows the tree after this
first swap. Now the seventh node will become (5+1), which triggers another swap
with the eighth node. Figure 7.7c3 shows the Huffman tree after this second swap.

The above example shows an update process that aims to maintain the sibling
property of the adaptive Huffman tree—the update of the tree sometimes requires
more than one swap. When this occurs, the swaps should be executed in multiple
steps in a “bottom-up” manner, starting from the lowest level where a swap is needed.
In other words, the update is carried out sequentially: tree nodes are examined in
order, and swaps are made whenever necessary.

To clearly illustrate more implementation details, let us examine another example.
Here, we show exactly what bits are sent, as opposed to simply stating how the tree
is updated.

Example 7.1 (Adaptive Huffman Coding for Symbol String AADCCDD).

Let us assume that the initial code assignment for both the encoder and decoder
simply follows the ASCII order for the 26 symbols in an alphabet, A through Z,
as Table 7.3 shows. To improve the implementation of the algorithm, we adopt an
additional rule: if any character/symbol is to be sent the first time, it must be preceded
by a special symbol, NEW. The initial code for NEW is 0. The count for NEW is
always kept as 0 (the count is never increased); hence it is always denoted as NEW:(0)
in Fig. 7.8.

7.4 Variable-Length Coding 199

“AA”

0

NEW:(0)

1

(2)

A:(2)

“AADCCD”

C:(2)

NEW:(0)

0

0

0

1

1

1

(2)
A:(2)

D:(2)

(4)

(6)

“AADCC” step 1

1
(1)

1

0

NEW:(0)

0

0

1

(2)

A:(2)

D:(1)

C:(1+1)

(4)

“AAD”

(1)

NEW:(0)

0

0

1

1

A:(2)

D:(1)

(3)

“AADCCDD”

C:(2)

NEW:(0)

0

0

0

1

1

1
(2)

A:(2)

D:(3)

(4)

(7)

“AADCC” step 2

1 C:(2)

0

1

NEW:(0)

0

0
(1)

1
(2+1)

A:(2)

D:(1)

(4)

“A”

NEW:(0)

(1)

A:(1)

0 1

“AADC”

0
(1)

NEW:(0)

0

0 1

1

1

(2)

A:(2)

D:(1)

(4)

C:(1)

“AADCC” step 3

NEW:(0)

0

0

0

(1)

(3)

1

1

1

A:(2)

D:(1)

C:(2)

(5)

Fig. 7.8 Adaptive Huffman tree for AADCCDD

Table 7.4 Sequence of symbols and codes sent to the decoder

Symbol NEW A A NEW D NEW C C D D

Code 0 00001 1 0 00100 00 00011 001 101 101

Figure 7.8 shows the Huffman tree after each step. Initially, there is no tree. For
the first A, 0 for NEW and the initial code 00001 for A are sent. Afterward, the tree
is built and shown as the first one, labeled A. Now both the encoder and decoder
have constructed the same first tree, from which it can be seen that the code for the
second A is 1. The code sent is thus 1.

After the second A, the tree is updated, shown labeled as AA. The updates after
receiving D and C are similar. More subtrees are spawned, and the code for NEW is
getting longer—from 0 to 00 to 000.

From AADC to AADCC takes two swaps. To illustrate the update process clearly,
this is shown in three steps, with the required swaps again indicated by arrows.
• AADCC Step 1. The frequency count for C is increased from 1 to 1+ 1 = 2; this

necessitates its swap with D:(1).
• AADCC Step 2. After the swap between C and D, the count of the parent node of

C:(2) will be increased from 2 to 2 + 1 = 3; this requires its swap with A:(2).
• AADCC Step 3. The swap between A and the parent of C is completed.

200 7 Lossless Compression Algorithms

Table 7.4 summarizes the sequence of symbols and code (zeros and ones) being
sent to the decoder.

It is important to emphasize that the code for a particular symbol often changes
during the adaptive Huffman coding process. The more frequent the symbol up to the
moment, the shorter the code. For example, after AADCCDD, when the character D
overtakes A as the most frequent symbol, its code changes from 101 to 0. This is of
course fundamental for the adaptive algorithm—codes are reassigned dynamically
according to the new probability distribution of the symbols.

The “Squeeze Page” on this book’s website provides a Java applet for adaptive
Huffman coding that should aid you in learning this algorithm.

7.5 Dictionary-Based Coding

The Lempel-Ziv-Welch (LZW) algorithm employs an adaptive, dictionary-based
compression technique. Unlike variable-length coding, in which the lengths of the
codewords are different, LZW uses fixed-length codewords to represent variable-
length strings of symbols/characters that commonly occur together, such as words
in English text.

As in the other adaptive compression techniques, the LZW encoder and decoder
builds up the same dictionary dynamically while receiving the data—the encoder and
the decoder both develop the same dictionary. Since a single code can now represent
more than one symbol/character, data compression is realized.

Algorithm 7.2 (LZW Compression).

BEGIN
 s = next input character;
 while not EOF
 {
 c = next input character;

 if s + c exists in the dictionary
 s = s + c;
 else
 {
 output the code for s;
 add string s + c to the dictionary with a new code;
 s = c;
 }
 }
 output the code for s;
END

7.5 Dictionary-Based Coding 201

LZW proceeds by placing longer and longer repeated entries into a dictionary,
then emitting the code for an element rather than the string itself, if the element has
already been placed in the dictionary. The predecessors of LZW are LZ77 [9] and
LZ78 [10], due to Jacob Ziv and Abraham Lempel in 1977 and 1978. Welch [11]
improved the technique in 1984. LZW is used in many applications, such as UNIX
compress, GIF for images, WinZip, and others.

Example 7.2 (LZW Compression for String ABABBABCABABBA).

Let us start with a very simple dictionary (also referred to as a string table), initially
containing only three characters, with codes as follows:

code string

1 A
2 B
3 C

Now if the input string is ABABBABCABABBA, the LZW compression algo-
rithm works as follows:

s c output code string

1 A
2 B
3 C

A B 1 4 AB
B A 2 5 BA
A B

AB B 4 6 ABB
B A

BA B 5 7 BAB
B C 2 8 BC
C A 3 9 CA
A B

AB A 4 10 ABA
A B

AB B
ABB A 6 11 ABBA

A EOF 1

The output codes are 1 2 4 5 2 3 4 6 1. Instead of 14 characters, only 9 codes need
to be sent. If we assume each character or code is transmitted as a byte, that is quite
a saving (the compression ratio would be 14/9 = 1.56). (Remember, the LZW is an
adaptive algorithm, in which the encoder and decoder independently build their own
string tables. Hence, there is no overhead involving transmitting the string table.)

Obviously, for our illustration the above example is replete with a great deal of
redundancy in the input string, which is why it achieves compression so quickly. In
general, savings for LZW would not come until the text is more than a few hundred
bytes long.

202 7 Lossless Compression Algorithms

The above LZW algorithm is simple, and it makes no effort in selecting optimal
new strings to enter into its dictionary. As a result, its string table grows rapidly,
as illustrated above. A typical LZW implementation for textual data uses a 12-bit
codelength. Hence, its dictionary can contain up to 4,096 entries, with the first 256
(0–255) entries being ASCII codes. If we take this into account, the above compres-
sion ratio is reduced to (14 × 8)/(9 × 12) = 1.04.

Algorithm 7.3 (LZW Decompression (Simple Version)).

BEGIN
 s = NIL;
 while not EOF
 {
 k = next input code;
 entry = dictionary entry for k;
 output entry;
 if (s != NIL)
 add string s + entry[0] to dictionary
 with a new code;
 s = entry;
 }
END

Example 7.3 (LZW decompression for string ABABBABCABABBA).

Input codes to the decoder are 1 2 4 5 2 3 4 6 1. The initial string table is identical
to what is used by the encoder.

The LZW decompression algorithm then works as follows:

s k entry/output code string

1 A
2 B
3 C

NIL 1 A
A 2 B 4 AB
B 4 AB 5 BA
AB 5 BA 6 ABB
BA 2 B 7 BAB
B 3 C 8 BC
C 4 AB 9 CA
AB 6 ABB 10 ABA

ABB 1 A 11 ABBA
A EOF

Apparently the output string is ABABBABCABABBA—a truly lossless result!

7.5 Dictionary-Based Coding 203

LZWAlgorithmDetails

A more careful examination of the above simple version of the LZW decompression
algorithm will reveal a potential problem. In adaptively updating the dictionaries, the
encoder is sometimes ahead of the decoder. For example, after the sequence ABABB,
the encoder will output code 4 and create a dictionary entry with code 6 for the new
string ABB.

On the decoder side, after receiving the code 4, the output will be AB, and the
dictionary is updated with code 5 for a new string, BA. This occurs several times in
the above example, such as after the encoder outputs another code 4, code 6. In a
way, this is anticipated—after all, it is a sequential process, and the encoder had to
be ahead. In this example, this did not cause a problem.

Welch [11] points out that the simple version of the LZW decompression algorithm
will break down when the following scenario occurs. Assume that the input string is
ABABBABCABBABBAX....

The LZW encoder:
s c output code string

1 A
2 B
3 C

A B 1 4 AB
B A 2 5 BA
A B

AB B 4 6 ABB
B A

BA B 5 7 BAB
B C 2 8 BC
C A 3 9 CA
A B

AB B
ABB A 6 10 ABBA

A B
AB B

ABB A
ABBA X 10 11 ABBAX

.

.

.
The sequence of output codes from the encoder (and hence the input codes for

the decoder) is 1 2 4 5 2 3 6 10 ...

204 7 Lossless Compression Algorithms

The simple LZW decoder:

s k entry/output code string

1 A
2 B
3 C

NIL 1 A
A 2 B 4 AB
B 4 AB 5 BA

AB 5 BA 6 ABB
BA 2 B 7 BAB
B 3 C 8 BC
C 6 ABB 9 CA

ABB 10 ???

Here “???” indicates that the decoder has encountered a difficulty: no dictionary
entry exists for the last input code, 10. A closer examination reveals that code 10 was
most recently created at the encoder side, formed by a concatenation of Character,
String, Character. In this case, the character is A, and string is BB—that is, A+BB+
A. Meanwhile, the sequence of the output symbols from the encoder are A, BB, A,
BB, A.

This example illustrates that whenever the sequence of symbols to be coded is
Character, String, Character, String, Character, and so on, the encoder will create a
new code to represent Character + String + Character and use it right away, before
the decoder has had a chance to create it!

Fortunately, this is the only case in which the above simple LZW decompression
algorithm will fail. Also, when this occurs, the variable s = Character + String.
A modified version of the algorithm can handle this exceptional case by checking
whether the input code has been defined in the decoder’s dictionary. If not, it will
simply assume that the code represents the symbols s + s[0]; that is, Character +
String + Character.

Implementation requires some practical limit for the dictionary size—for example,
a maximum of 4,096 entries for GIF. Nevertheless, this still yields a 12-bit or 11-bit
code length for LZW codes, which is longer than the word length for the original
data—8-bit for ASCII.

In real applications, the code length l is kept in the range of [l0, lmax]. For the UNIX
compress command, l0 = 9 and lmax is by default 16. The dictionary initially has a
size of 2l0 . When it is filled up, the code length will be increased by 1; this is allowed
to repeat until l = lmax.

If the data to be compressed lacks any repetitive structure, the chance of using the
new codes in the dictionary entries could be low. Sometimes, this will lead to data
expansion instead of data reduction, since the code length is often longer than the
word length of the original data. To deal with this, the algorithm can build in two

7.5 Dictionary-Based Coding 205

Algorithm 7.4 (LZW Decompression (Modified)).

BEGIN
 s = NIL;
 while not EOF
 {
 k = next input code;
 entry = dictionary entry for k;

 /* exception handler */
 if (entry == NULL)
 entry = s + s[0];

 output entry;
 if (s != NIL)
 add string s + entry[0] to dictionary
 with a new code;
 s = entry;
 }
END

modes: compressed and transparent. The latter turns off compression and is invoked
when data expansion is detected.

Since the dictionary has a maximum size, once it reaches 2lmax entries, LZW
loses its adaptive power and becomes a static, dictionary-based technique. UNIX
compress, for example, will monitor its own performance at this point. It will
simply flush and reinitialize the dictionary when the compression ratio falls below
a threshold. A better dictionary management is perhaps to remove the LRU (least
recently used) entries. The algorithm will look for any entry that is not a prefix to any
other dictionary entry, because this indicates that the code has not been used since
its creation.

7.6 Arithmetic Coding

Arithmetic coding is a more modern coding method that usually outperforms
Huffman coding in practice. It was initially developed in the late 1970s and 1980s
[12–14]. The initial idea of arithmetic coding was introduced in Shannon’s 1948
work [3]. Peter Elias developed its first recursive implementation (which was not
published but was mentioned in Abramson’s 1963 book [15]). The method was
further developed and described in Jelinek’s 1968 book [16]. Some better known
improved arithmetic coding methods can be attributed to Pasco (1976) [17] and
Rissanen and Langdon (1979) [12].

Various modern versions of arithmetic coding have been developed for newer mul-
timedia standards: for example, Fast Binary Arithmetic Coding in JBIG, JBIG2 and
JPEG-2000, and Context-Adaptive Binary Arithmetic Coding (CABAC) in H.264

206 7 Lossless Compression Algorithms

and H.265. We will introduce some of the fundamentals in this section and later in
Chap. 12.

Normally (in its non-extended mode), Huffman coding assigns each symbol a
codeword that has an integral bit length. As stated earlier, log2

1
pi

indicates the
amount of information contained in the information source si , which corresponds to
the number of bits needed to represent it. For example, when a particular symbol si
has a large probability (close to 1.0), log2

1
pi

will be close to 0, and even assigning
only one bit to represent that symbol will be very costly if we have to transmit that
one bit many times.

Although it is possible to group symbols into metasymbols for codeword assign-
ment (as in extended Huffman coding) to overcome the limitation of integral number
of bits per symbol, the increase in the resultant symbol table required by the Huffman
encoder and decoder would be formidable.

Arithmetic coding can treat the whole message as one unit and achieve fractional
number of bits for each input symbol. In practice, the input data is usually broken
up into chunks to avoid error propagation. In our presentation below, we will start
with a simplistic approach and include a terminator symbol. Then we will introduce
some improved methods for practical implementations.

7.6.1 Basic Arithmetic Coding Algorithm

A message is represented by a half-open interval [a, b) where a and b are real
numbers between 0 and 1. Initially, the interval is [0, 1). When the message becomes
longer, the length of the interval shortens, and the number of bits needed to represent
the interval increases. Suppose the alphabet is [A, B,C, D, E, F, $], in which $ is a
special symbol used to terminate the message, and the known probability distribution
is as shown in Fig. 7.9a.

Algorithm 7.5 (Arithmetic Coding Encoder).

BEGIN
 low = 0.0; high = 1.0; range = 1.0;
 initialize symbol; // so symbol != terminator

 while (symbol != terminator)
 {
 get (symbol);
 low = low + range * Range_low(symbol);
 high = low + range * Range_high(symbol);
 range = high - low;
 }

 output a code so that low <= code < high;
END

http://dx.doi.org/10.1007/978-3-319-05290-8_12

7.6 Arithmetic Coding 207

Symbol Probability Range Range low Range high
A 0.2 [0,0.2) 0 0.2
B 0.1 [0.2,0.3) 0.2 0.3
C 0.2 [0.3,0.5) 0.3 0.5
D 0.05 [0.5,0.55) 0.5 0.55
E 0.3 [0.55,0.85) 0.55 0.85
F 0.05 [0.85,0.9) 0.85 0.9
$ 0.1 [0.9,1.0) 0.9 1.0

A

B

C

D

E

F
$

A

B

C

D

E

F
$

A

B

C

D

E

F
$

A

B

C

D

E

F
$

A

B

C

D

E

F
$

A

B

C

D

E

F
$

0.3 0.3 0.322 0.3286 0.33184

0.33220.33220.340.5

0

0.3340.1

0.9
0.85

0.55
0.5

0.3

0.2

Symbol low high range
0 1.0 1.0

C 0.3 0.5 0.2
A 0.30 0.34 0.04
E 0.322 0.334 0.012
E 0.3286 0.3322 0.0036
$ 0.33184 0.33220 0.00036

(a)

(b)

(c)

Fig. 7.9 Arithmetic coding: encode symbols CAEE$: a probability distribution of symbols;
b graphical display of shrinking ranges; c new low, high, and range generated

The encoding process is illustrated in Fig. 7.9b and c, in which a string of symbols
CAEE$ is encoded. Initially, low = 0, high = 1.0, and range = 1.0. The first
symbol is C, Range_low(C) = 0.3, Range_high(C) = 0.5, so after the symbol C,
low = 0 + 1.0 × 0.3 = 0.3, high = 0 + 1.0 × 0.5 = 0.5. The new range is now
reduced to 0.2.

For clarity of illustration, the ever-shrinking ranges are enlarged in each step
(indicated by dashed lines) in Fig. 7.9b. After the second symbol A, low, high, and
range are 0.30, 0.34, and 0.04. The process repeats itself until after the terminating

208 7 Lossless Compression Algorithms

symbol $ is received. By then low and high are 0.33184 and 0.33220, respectively.
It is apparent that finally we have

range = PC × PA × PE × PE × P$ = 0.2 × 0.2 × 0.3 × 0.3 × 0.1 = 0.00036

The final step in encoding calls for generation of a number that falls within the
range [low, high). This number is referred to as a tag, i.e., a unique identifier for the
interval that represents the sequence of symbols. Although it is trivial to pick such
a number in decimal, such as 0.33184, 0.33185, or 0.332 in the above example, it is
less obvious how to do it with a binary fractional number. The following algorithm
will ensure that the shortest binary codeword is found if low and high are the two
ends of the range and low < high.

Procedure 7.2 (Generating Codeword for Encoder).
BEGIN

code = 0;
k = 1;
while (value(code) < low)

{
assign 1 to the kth binary fraction bit;
if (value(code) > high)

replace the kth bit by 0;
k = k + 1;

}
END

For the above example, low = 0.33184, high = 0.3322. If we assign 1 to the
first binary fraction bit, it would be 0.1 in binary, and its decimal value(code) =
value(0.1) = 0.5 > high. Hence, we assign 0 to the first bit. Since value(0.0) =
0 < low, the while loop continues.

Assigning 1 to the second bit makes a binary code 0.01 and value(0.01)= 0.25,
which is less than high, so it is accepted. Since it is still true that value(0.01) < low,
the iteration continues. Eventually, the binary codeword generated is 0.01010101,
which is 2−2 + 2−4 + 2−6 + 2−8 = 0.33203125.

It must be pointed out that we were lucky to have found a codeword of only 8
bits to represent this sequence of symbols CAEE$. In this case, log2

1
PC

+ log2
1

PA
+

log2
1

PE
+ log2

1
PE

+ log2
1
P$

= log2
1

range = log2
1

0.00036 ≈ 11.44, which would
suggest that it could take 12 bits to encode a string of symbols like this.

It can be proven [2] that ⌈log2(1/
∏

i Pi)⌉ is the upper bound. Namely, in the
worst case, the shortest codeword in arithmetic coding will require k bits to encode
a sequence of symbols, and

k = ⌈log2
1

range
⌉ = ⌈log2

1
∏

i Pi
⌉ (7.8)

where Pi is the probability for each symbol i in the sequence, and range is the final
range generated by the encoder.

7.6 Arithmetic Coding 209

Table 7.5 Arithmetic
coding: decode symbols
CAEE$

Value Output symbol Range_low Range_high range

0.33203125 C 0.3 0.5 0.2
0.16015625 A 0.0 0.2 0.2
0.80078125 E 0.55 0.85 0.3
0.8359375 E 0.55 0.85 0.3
0.953125 $ 0.9 1.0 0.1

Apparently, when the length of the message is long, its range quickly becomes
very small, and hence log2

1
range becomes very large; the difference between log2

1
range

and ⌈log2
1

range⌉ is negligible.
Generally, arithmetic coding achieves better performance than Huffman coding,

because the former treats an entire sequence of symbols as one unit, whereas the
latter has the restriction of assigning an integral number of bits to each symbol. For
example, Huffman coding would require 12 bits for CAEE$, equaling the worst-case
performance of arithmetic coding.

Moreover, Huffman coding cannot always attain the upper bound given in
Eq. (7.8). It can be shown (see Exercise 7) that if the alphabet is [A, B,C] and the
known probability distribution is PA = 0.5, PB = 0.4, PC = 0.1, then for sending
BBB, Huffman coding will require 6 bits, which is more than ⌈log2

1
0.4×0.4×0.4⌉ = 4,

whereas arithmetic coding will need only 4 bits.

Algorithm 7.6 (Arithmetic Coding Decoder).

BEGIN
 get binary code and convert to decimal value = value(code);
 Do
 {
 find a symbol s so that
 Range_low(s) <= value < Range_high(s);
 output s;
 low = Rang_low(s);
 high = Range_high(s);
 range = high - low;
 value = [value - low] / range;
 }
 Until symbol s is a terminator
END

Table 7.5 illustrates the decoding process for the above example. Initially, value =
0.33203125. Since Range_low(C) = 0.3 ≤ 0.33203125 < 0.5 = Range_high(C),
the first output symbol is C. This yields value = [0.33203125 − 0.3]/0.2 =
0.16015625, which in turn determines that the second symbol is A. Eventually,
value is 0.953125, which falls in the range [0.9, 1.0) of the terminator $.

210 7 Lossless Compression Algorithms

In the above discussion, a special symbol, $, is used as a terminator of the string
of symbols. This is analogous to sending end-of-line (EOL) in image transmission.
However, the coding of the EOL symbol itself is an interesting problem. Usually,
EOL ends up being relatively long. Lei et al. [18] address some of these issues and
propose an algorithm that controls the length of the EOL codeword it generates.
Also, if the transmission channel/network is noisy (lossy), the protection of having
a terminator (or EOL) symbol is crucial for the decoder to regain synchronization
with the encoder.

Naturally, if both the encoder and decoder know the number of symbols in the
sequence, no terminator symbol is needed.

7.6.2 Scaling and Incremental Coding

The basic algorithm described in the last section has the following limitations that
make its practical implementation infeasible.
• When it is used to code long sequences of symbols, the tag intervals shrink to a

very small range. Representing these small intervals requires very high-precision
numbers (i.e., even 32-bit or 64-bit floating-point may not be enough) as more
than a few symbols are coded.

• The encoder will not produce any output codeword until the entire sequence is
entered. Likewise, the decoder needs to have the codeword for the entire sequence
of the input symbols before decoding.
Some key observations [2, 13]:

1. Although the binary representations for the low, high, and any number within
the small interval usually require many bits, they always have the same MSBs
(Most Significant Bits). For example, 0.1000110 for 0.5469 (low), 0.1000111 for
0.5547 (high).

2. Subsequent intervals will always stay within the current interval. Hence, we can
output the common MSBs and remove them from subsequent considerations.

These are the bases for scaling and incremental coding. They provide a solution to
the above problems.

Scaling

There are three types of scaling methods. They are shown in Fig. 7.10. Dark segments
indicate the tag intervals [low, high), with low < high.
• E1 scaling: This applies when the tag interval is entirely in the first half of the unit

interval, i.e., high ≤ 0.5 (Fig. 7.10a). A ‘0’ is sent to the decoder and the resulting
interval is rescaled as double what it was, i.e., low = 2 × low, high = 2 × high.
The multiplication can be realized by ≪ 1, i.e., left-shift by one bit.

• E2 scaling: This applies when the tag interval is entirely in the second half of
the unit interval, i.e., low ≥ 0.5 (Fig. 7.10b). A ‘1’ is sent to the decoder and
low = 2 × (low − 0.5), high = 2 × (high − 0.5). This can also be realized by
≪ 1, i.e., left-shift by one bit because the bit ‘1’ will simply be moved out.

7.6 Arithmetic Coding 211

Fig. 7.10 Scaling in
arithmetic coding.
a E1 Scaling, b E2 Scaling,
c E3 Scaling

10 0.5

10 0.5

10 0.5

10 0.5

10 0.5

10 0.5

0.25 0.75

0.750.25

(a)

(b)

(c)

• E3 scaling: The tag interval straddles the mid-point 0.5, low ≥ 0.25 and high ≤
0.75 (Fig. 7.10c). This can be handled by low = 2 × (low − 0.25), high = 2 ×
(high − 0.25). The signaling of the E3 scaling is slightly more complicated [2].
We will address it later after we show the E1 and E2 scalings.
Below, we show a procedure and an example that involves E1 and E2 scalings

only.

Procedure 7.3 (E1 and E2 Scalings in Arithmetic Coding).
BEGIN

while (high <= 0.5) OR (low >= 0.5)
{ if (high <= 0.5) // E1 scaling

{ output ‘0’;
low = 2 * low;
high = 2 * high;

}
else // E2 scaling
{ output ‘1’;

low = 2 * (low - 0.5);
high = 2 * (high - 0.5);

}
}

END

212 7 Lossless Compression Algorithms

Input B:

4.062.0

0.70

10 0.90.7

0.630.49

0.8

0.04

0.52

0.544 0.60.432

Input A:
CA B

E2: output "1"

E1: output "0"

E2: output "1"

0.5
Final number 0.5
(binary 0.1) selected,
output "1"

Input C:

Fig. 7.11 Example: arithmetic coding with scaling and incremental coding—encoder

Example 7.4 (Arithmetic Coding with Scaling and Incremental Coding).

Assume we only have three symbols A, B, C, and their probabilities are: A: 0.7,
B: 0.2, C: 0.1. Suppose the input sequence for this example is ACB, and both the
encoder and decoder know that the length of the sequence is 3. The encoder works
as below (see Fig. 7.11):
• After receiving ‘A’, the first interval [0, 0.7) is selected and further examined

(shown as expanded).
• After receiving ‘C’, the last interval [0.63, 0.7) is selected.
• Because [0.63, 0.7) is entirely in the second half of the unit interval, an E2 scaling

is triggered and results in output ‘1’ and the new interval [0.26, 0.4), because
2 × (0.63 − 0.5) = 0.26 and 2 × (0.7 − 0.5) = 0.4.

• Because [0.26, 0.4) is entirely in the first half of the unit interval, an additional E1
scaling is now necessary and results in output ‘0’ and the new interval [0.52, 0.8),
because 2 × 0.26 = 0.52 and 2 × 0.4 = 0.8.

• Again, an E2 scaling is triggered and results in output ‘1’ and the new interval
[0.04, 0.6). At this point, no more scaling is needed. As the third (and last) input
symbol is ‘B’, the interval [0.432, 0.544) is selected. We then generate and output
the shortest codeword ‘1’ (according to the Procedure discussed in the last section)
for this tag interval.
In summary, the encoder has produced 1011 which is equivalent to 0.6875.
It is important to point out that without scaling, the interval [0.63, 0.7) would

have been chosen after the input symbol C, and the same code 1011, i.e., 0.6875

7.6 Arithmetic Coding 213

A

0.26 0.4

0.70

10 0.9

0.630.49

0.8

0.04

0.52

0.544 0.60.432

0.6875

0.7
0.5

0.5

0.375

0.75

Read 2 bits: Output A
Tag: 10 (0.5)

Read 4 bits: Output C
Tag: 1011 (0.6875)

E2: shift out 1 bit, read in 1 bit

E1: shift out 1 bit, read in 1 bit
Tag: 1100 (0.75)

Tag: 1000 (0.5)

Tag: 0110 (0.375)
E2: shift out 1 bit, read in 1 bit

Output B

B C

Fig. 7.12 Example: arithmetic coding with scaling and incremental coding—decoder

would have be chosen as the shortest codeword to represent the sequence ACB. In
other words, we have demonstrated that the scaling procedure does produce a correct
result!

The decoder works as below (see Fig. 7.12):
In general, the length k of the codeword produced by the encoder can be relatively

large. The decoder can choose to use a maximum of l ≤ k bits to work with at any
time during the decoding process. The value l is determined by the size of the smallest
interval. In this example, the smallest interval is [0.9, 1.0), so l = ⌈log2

1
0.1⌉=4.

When needed, the old bits will be shifted out and new bits gradually read in. This of
course is the essence of the incremental coding—both encoder and decoder can start
working with a limited number of bits, and working continuously without seeing the
entire sequence of symbols and the final code.
• After reading the first 2 bits “10,” the symbol A can already be unambiguously

decoded. Output A. Tag: 10, i.e., 0.5.
• After reading 4 bits “1011,” the symbol C can be unambiguously decoded. Output

C. Tag: 1011, i.e., 0.6875.
• Because [0.63, 0.7) in entirely in the second half of the unit interval, an E2 scaling

is triggered: shift out the first bit, read in 1 bit (by default, it will be ‘0’). Tag: 0110,
i.e., 0.375.

• Because [0.26, 0.4) is entirely in the first half of the unit interval, an E1 scaling is
triggered: shift out 1 bit, read in 1 bit. Tag: 1100, i.e., 0.75.

214 7 Lossless Compression Algorithms

• Again, an E2 scaling is triggered: shift out the first bit, read in 1 bit. Tag: 1000,
i.e., 0.5.
At this point, no more scaling is needed. The last symbol B can be decoded.
Output B.

E3 Scaling

As an example, let us first see how E3 scaling works. Given an interval [0.48, 0.51),
an E3 scaling will yield [0.46, 0.52), another E3 will yield [0.42, 0.53), and so
on. Apparently, the intervals are gradually expanding. This addresses the original
concern that representing tiny intervals could require very high precision numbers.
In the subsequent steps of the incremental coding, it is very likely that a chosen
range will fall in the first half (high ≤ 0.5) or the second half (low ≥ 0.5) of the unit
interval, so an E1 or E2 will be triggered. The following can be shown [2]:
• N E3 scaling steps followed by an E1 is equivalent to an E1 followed by N E2

steps.
• N E3 scaling steps followed by an E2 is equivalent to an E2 followed by N E1

steps.
Therefore, a good way to handle the signaling of the E3 scaling is: postpone until

there is an E1 or E2. If there is an E1 after N E3 operations, send ‘0’ followed by
N ‘1’s after the E1; if there is an E2 after N E3 operations, send ‘1’ followed by N
‘0’s after the E2.

7.6.3 Integer Implementation

The algorithm described in the last section also has an integer implementation that
uses only integer arithmetic [2, 13, 19]. It is quite common in modern multimedia
applications. It is a fairly straightforward extension of the original implementation.
Basically, the unit interval is replaced by a range [0, N), where N is an integer,
e.g. 255. Because the integer range could be so small, e.g., [0, 255), applying the
scaling techniques similar to what was discussed above, now in integer arithmetic,
is a necessity.

The main motivation of the integer implementation is of course to avoid any
floating number operations.

7.6.4 Binary Arithmetic Coding

As described, the implementation of arithmetic coding involves continuous genera-
tion (calculation) of new intervals, and checking against delimiters of the intervals.
When the number of symbols is large, this involves many calculations (integer or
floating number) so it can be slow.

As the name suggests, Binary Arithmetic Coding deals with two symbols only,
i.e., 0 and 1. Figure 7.13 illustrates a simple scenario. It is obvious that only one
new value inside the tag interval is generated at each step, i.e., 0.7, 0.49, 0.637, and
0.5929. The decision of which interval to take (first or second) is also simpler.

7.6 Arithmetic Coding 215

Fig. 7.13 Binary arithmetic
coding

Symbol 1

0.7 10

0.637

0.6370.49

0 .094. 7

0.49 0.70

0.5929

Symbol 0

The encoder and decoder including the scaling and possible integer implementa-
tion work the same way as for non-binary symbols.

Non-binary symbols can be converted to binary for Binary Arithmetic Coding
through binarization. Many coding schemes can be used for the binarization. We
will introduce one of them, the Exp-Golomb code, in Chap. 12.

Fast Binary Arithmetic Coding (Q-coder, MQ-coder) was developed in multime-
dia standards such as JBIG, JBIG2, and JPEG-2000. The more advanced version,
Context-Adaptive Binary Arithmetic Coding (CABAC) is used in H.264 (M-coder)
and H.265.

7.6.5 Adaptive Arithmetic Coding

We now know that arithmetic coding can be performed incrementally. Hence, there is
no need to know the probability distribution of all symbols in advance. This makes the
codec process especially adaptive—we can record the current counts of the symbols
received so far, and update the probability distribution after each symbol. The updated
probability distribution will be used for dividing up the interval in the next step.

As in the Adaptive Huffman Coding, as long as the encoder and decoder are
synchronized (i.e., using the same update rules), the adaptive process will work
flawlessly. Nevertheless, Adaptive Arithmetic Coding has a major advantage over
Adaptive Huffman Coding: there is now no need to keep a (potentially) large and
dynamic symbol table and constantly update the Adaptive Huffman tree.

Below we outline the procedures for Adaptive Arithmetic Coding, and give an
example to illustrate how it also works for Binary Arithmetic Coding.

http://dx.doi.org/10.1007/978-3-319-05290-8_12

216 7 Lossless Compression Algorithms

0.546875 (Binary 0.100011)

P(0)=1/2, P(1)=1/2

C(0)=1, C(1)=2
P(0)=1/3, P(1)=2/3

C(0)=2, C(1)=2
P(0)=1/2, P(1)=1/2

C(0)=3, C(1)=2
P(0)=3/5, P(1)=2/5

C(0)=4, C(1)=2
P(0)=2/3, P(1)=1/3

Encode 1

Encode 0

Encode 1

Encode 0

Encode 0

0

1

10.5

Symbol 0 Symbol 1

0.66670.5

0.5

0.5

0.5

0.66670.5834

0.58340.55

0.5333 0.55

Initially, C(0)=C(1) =1

Fig. 7.14 Adaptive binary arithmetic coding—encoder [input symbols:10001]

Procedure 7.4 (Procedures for Adaptive Arithmetic Coding).

ENCODER DECODER
------- -------

Initialization (reset counters) Initialization (reset counters)
while (symbol != terminator) while (symbol != terminator)

{ {
get(symbol); decode(symbol);
encode(symbol); output(symbol);
update stats and interval; update stats and interval;

} }

Example 7.5 (Adaptive Binary Arithmetic Coding).

Figure 7.14 illustrates the encoder for Adaptive Binary Arithmetic Coding. We
assume the input symbols to the encoder is 10001. Again, for this simple exam-
ple, we assume that both the encoder and decoder know the length of the sequence.
[For clarity and simplicity, we will not invoke the scaling procedure (for E1, E2, etc.)
introduced earlier].
• Initially, the counters for symbols 0 and 1 are: C(0) = C(1) = 1. Hence, the initial

probabilities for symbols 0 and 1 are: P(0) = P(1) = 1/2. The first binary symbol 1
is encoded. The interval [0.5, 1) is expanded as shown in the figure

7.6 Arithmetic Coding 217

Decode 1

0

1

1

Symbol 0 Symbol 1

0.66670.5

0.5

0.5

0.5

0.66670.5834

0.5834

0.5333

0.55

0.55
0.546875

0.546875

0.546875

0.546875

0.546875
0.5 Decode 1

C(0)=1, C(1)=2

Initially, C(0)=C(1)=1
P(0)=P(1)=1/2

P(0)=1/3, P(1)=2/3
Decode 0

P(0)=P(1)=1/2
C(0)=2, C(1)=2

Decode 0

P(0)=3/5, P(1)=2/5
Decode 0

C(0)=3, C(1)=2

C(0)=4, C(1)=2
P(0)=2/3, P(1)=1/3

Fig. 7.15 Adaptive binary arithmetic coding—decoder. [input: 0.546875 (binary 0.100011)]

• The counter C(1) is updated, so C(1) = 2 (and C(0) remains 1). Accordingly,
the new probabilities are: P(0) = 1/3, P(1) = 2/3. The second binary symbol 0 is
encoded. The interval [0.5, 0.6667) is expanded.

• The counter C(0) is updated, so C(0) = 2 and C(1) = 2. The new probabilities are:
P(0) = 1/2, P(1) = 1/2.

• The encoding process for the third and fourth binary symbols are very similar to
the last one. So now we are at the last line.

• We will encode the fifth (last) symbol 1, and finish this example by selecting
a number that is inside the interval [0.5333, 0.55). According to the Procedure
in Sect. 7.6.1 for generating the shortest codeword, it is binary 0.100011, i.e.,
0.546875.
The encoder outputs 0.546875 (Binary 0.100011).

Figure 7.15 illustrates the decoder. It receives the input code 0.546875 (Binary
0.100011) from the encoder.
• As in the encoder, initially, the counters for symbols 0 and 1 are: C(0) = C(1) =

1. Hence, the initial probabilities for symbols 0 and 1 are: P(0) = P(1) = 1/2. The
first binary symbol 1 is decoded. The interval [0.5, 1) is expanded.

• The counter C(1) is updated, so C(1) = 2 (and C(0) remains 1). The new proba-
bilities are: P(0) = 1/3, P(1) = 2/3. The second binary symbol 0 is decoded. The
interval [0.5, 0.6667) is expanded.

• The counter C(0) is updated, so C(0) = 2 and C(1) = 2. The new probabilities are:
P(0) = 1/2, P(1) = 1/2.

218 7 Lossless Compression Algorithms

• The decoding process for the third and fourth binary symbols are very similar to
the last one. So now we are again at the last line.

• The fifth (last) symbol 1 is decoded in this small example, because 0.546875 is
inside the interval [0.5333, 0.55).

Note, normally, the encoder and decoder work incrementally, and they are capable
of continuously handling a long sequence of symbols until a terminator is finally
reached.

7.7 Lossless Image Compression

One of the most commonly used compression techniques in multimedia data com-
pression is differential coding. The basis of data reduction in differential coding is
the redundancy in consecutive symbols in a datastream. Recall that we considered
lossless differential coding in Chap. 6, when we examined how audio must be dealt
with via subtraction from predicted values. Audio is a signal indexed by one-
dimensional time. Here we consider how to apply the lessons learned from audio
to the context of digital image signals that are indexed by two, spatial, dimensions
(x, y).

7.7.1 Differential Coding of Images

Let us consider differential coding in the context of digital images. In a sense, we
move from signals with domain in one dimension to signals indexed by numbers in
two dimensions (x, y)—the rows and columns of an image. Later, we will look at
video signals. These are even more complex, in that they are indexed by space and
time (x, y, t).

Because of the continuity of the physical world, the gray-level intensities (or color)
of background and foreground objects in images tend to change relatively slowly
across the image frame. Since we were dealing with signals in the time domain for
audio, practitioners generally refer to images as signals in the spatial domain. The
generally slowly changing nature of imagery spatially produces a high likelihood
that neighboring pixels will have similar intensity values. Given an original image
I (x, y), using a simple difference operator we can define a difference image d(x, y)
as follows:

d(x, y) = I (x, y) − I (x − 1, y) (7.9)

This is a simple approximation of a partial differential operator ∂/∂x applied to an
image defined in terms of integer values of x and y.

Another approach is to use the discrete version of the 2D Laplacian operator to
define a difference image d(x, y) as

d(x, y) = 4 I (x, y)− I (x, y −1)− I (x, y+1)− I (x +1, y)− I (x −1, y) (7.10)

http://dx.doi.org/10.1007/978-3-319-05290-8_6

7.6 Arithmetic Coding 219

0
0.5

1
1.5

2
2.5

3
3.5

4
× 104

0 50 100 150 200 250

(a) (b)

(c) (d)

−80 −60 −40 −20 0 20 40 60 80
0

2

4

6

8

10

12x 10
4

Fig. 7.16 Distributions for original versus derivative images. a, b original gray-level image and
its partial derivative image; c, d histograms for original and derivative images. This figure uses a
commonly employed image called Barb

In both cases, the difference image will have a histogram as in Fig. 7.16d, derived
from the d(x, y) partial derivative image in Fig. 7.16b for the original image I in
Fig. 7.16a. Notice that the histogram for the unsubtracted I itself is much broader, as
in Fig. 7.16c. It can be shown that image I has larger entropy than image d, since it
has a more even distribution in its intensity values. Consequently, Huffman coding or
some other variable-length coding scheme will produce shorter bit-length codewords
for the difference image. Compression will work better on a difference image.

7.7.2 Lossless JPEG

Lossless JPEG is a special case of JPEG image compression. It differs drastically
from other JPEG modes in that the algorithm has no lossy steps. Thus we treat it here
and consider the more used lossy JPEG methods in Chap. 9. Lossless JPEG is invoked
when the user selects a 100 % quality factor in an image tool. Essentially, lossless
JPEG is included in the JPEG compression standard simply for completeness.

The following predictive method is applied on the unprocessed original image
(or each color band of the original color image). It essentially involves two steps:
forming a differential prediction and encoding.

http://dx.doi.org/10.1007/978-3-319-05290-8_9

220 7 Lossless Compression Algorithms

C B

XA

Fig. 7.17 Neighboring pixels for predictors in lossless JPEG. Note that any of A, B, or C has
already been decoded before it is used in the predictor, on the decoder side of an encode/decode
cycle

Table 7.6 Predictors for
lossless JPEG Predictor Prediction

P1 A
P2 B
P3 C
P4 A+B−C
P5 A+ (B−C) / 2
P6 B+ (A−C) / 2
P7 (A+B) / 2

1. A predictor combines the values of up to three neighboring pixels as the predicted
value for the current pixel, indicated by X in Fig. 7.17. The predictor can use
any one of the seven schemes listed in Table 7.6. If predictor P1 is used, the
neighboring intensity value A will be adopted as the predicted intensity of the
current pixel; if predictor P4 is used, the current pixel value is derived from the
three neighboring pixels as A + B − C; and so on.

2. The encoder compares the prediction with the actual pixel value at position X
and encodes the difference using one of the lossless compression techniques we
have discussed, such as the Huffman coding scheme.
Since prediction must be based on previously encoded neighbors, the very first

pixel in the image I (0, 0) will have to simply use its own value. The pixels in the
first row always use predictor P1, and those in the first column always use P2.

Lossless JPEG usually yields a relatively low compression ratio, which renders it
impractical for most multimedia applications. An empirical comparison using some
20 images indicates that the compression ratio for lossless JPEG with any one of the
seven predictors ranges from 1.0 to 3.0, with an average of around 2.0. Predictors
4–7 that consider neighboring nodes in both horizontal and vertical dimensions offer
slightly better compression (approximately 0.2–0.5 higher) than predictors 1–3.

7.6 Arithmetic Coding 221

Table 7.7 Comparison of
lossless JPEG with other
lossless compression
programs

Compression program Compression ratio
Lena Football F-18 Flowers

Lossless JPEG 1.45 1.54 2.29 1.26
Optimal lossless JPEG 1.49 1.67 2.71 1.33
compress (LZW) 0.86 1.24 2.21 0.87
gzip (LZ77) 1.08 1.36 3.10 1.05
gzip-9 (optimal LZ77) 1.08 1.36 3.13 1.05
pack (Huffman coding) 1.02 1.12 1.19 1.00

Table 7.7 shows a comparison of the compression ratio for several lossless com-
pression techniques using test images Lena, football, F-18, and flowers. These stan-
dard images used for many purposes in imaging work are shown on the textbook
website for this chapter.

This chapter has been devoted to the discussion of lossless compression algo-
rithms. It should be apparent that their compression ratio is generally limited (with
a maximum at about 2–3). However, many of the multimedia applications we will
address in the next several chapters require a much higher compression ratio. This
is accomplished by lossy compression schemes.

7.8 Exercises

1. Calculate the entropy of a “checkerboard” image in which half of the pixels are
BLACK and half of them are WHITE.

2. Suppose eight characters have a distribution A:(1), B:(1), C:(1), D:(2), E:(3),
F:(5), G:(5), H:(10). Draw a Huffman tree for this distribution. (Because the
algorithm may group subtrees with equal probability in a different order, your
answer is not strictly unique.)

3. (a) What is the entropy η of the image below, where numbers (0, 20, 50, 99)
denote the graylevel intensities?

99 99 99 99 99 99 99 99
20 20 20 20 20 20 20 20
0 0 0 0 0 0 0 0
0 0 50 50 50 50 0 0
0 0 50 50 50 50 0 0
0 0 50 50 50 50 0 0
0 0 50 50 50 50 0 0
0 0 0 0 0 0 0 0

(b) Show step-by-step how to construct the Huffman tree to encode the above
four intensity values in this image. Show the resulting code for each intensity
value.

222 7 Lossless Compression Algorithms

(c) What is the average number of bits needed for each pixel, using your Huff-
man code? How does it compare to η?

4. Consider an alphabet with two symbols A, B, with probability P(A) = x and
P(B) = 1 − x .
(a) Plot the entropy as a function of x . You might want to use log2 3 = 1.6 and

log2 7 = 2.8.
(b) Discuss why it must be the case that if the probability of the two symbols is

1/2 + ϵ and 1/2 − ϵ, with small ϵ, the entropy is less than the maximum.
(c) Generalize the above result by showing that, for a source generating N

symbols, the entropy is maximum when the symbols are all equiprobable.
(d) As a small programming project, write code to verify the conclusions above.

5. Extended Huffman Coding assigns one codeword to each group of k symbols.
Why is average(l) (the average number of bits for each symbol) still no less than
the entropy η as indicated in Eq. (7.7)?

6. (a) Suppose we are coding a binary source, i.e., the alphabet consists of 0 or 1.
For example, a fax is like this.
Suppose the probability of a 0 is 7/8, and that for a 1 is 1/8;
What is the entropy? (Note: In case you don’t have a calculator,
log2(7)=2.8)
What is the set of Huffman codes? And what is the average bitrate?

(b) Now code the problem in terms of Extended Huffman compression, using
n = 2 and groups of k = 2 pairs of symbols. What is the average bitrate
now? Show your work (you can just use fractions, not decimal numbers, if
you like).

7. (a) What are the advantages and disadvantages of Arithmetic Coding as com-
pared to Huffman Coding?

(b) Suppose the alphabet is [A, B,C], and the known probability distribution
is PA = 0.5, PB = 0.4, PC = 0.1. For simplicity, let us also assume that
both encoder and decoder know that the length of the messages is always 3,
so there is no need for a terminator.

i. How many bits are needed to encode the message BBB by Huffman
coding?

ii. How many bits are needed to encode the message BBB by Arithmetic
coding?

8. (a) What are the advantages of Adaptive Huffman Coding compared to the
original Huffman Coding algorithm?

(b) Assume that Adaptive Huffman Coding is used to code an information
source S with a vocabulary of four letters (a, b, c, d). Before any transmis-
sion, the initial coding is a=00, b=01, c=10, d= 11. As in the example
illustrated in Fig. 7.8, a special symbol NEW will be sent before any letter
if it is to be sent the first time.
Figure 7.18 is the Adaptive Huffman tree after sending letters aabb. After
that, the additional bitstream received by the decoder for the next few letters
is 01010010101.

7.6 Arithmetic Coding 223

a

bNEW

10

10

20

22

4

Fig. 7.18 Adaptive Huffman tree

i. What are the additional letters received?
ii. Draw the adaptive Huffman trees after each of the additional letters is

received.

9. Work out the details of Scaling and incremental coding in Arithmetic coding
when the probabilities for the three symbols are A: 0.8, B: 0.02, C: 0.18, and the
input sequence is ACBA.

10. Work out the details of the encoder and decoder for Adaptive Arithmetic coding
when the input symbols are 01111.

11. Compare the rate of adaptation of Adaptive Huffman coding and Adaptive Arith-
metic coding. What prevents each method from adapting to quick changes in
source statistics?

12. Consider the dictionary-based LZW compression algorithm. Suppose the alpha-
bet is the set of symbols{0,1}. Show the dictionary (symbol sets plus associated
codes) and output for LZW compression of the input

0110011

13. Implement Huffman coding, LZW coding, and Arithmetic coding algorithms
using your favorite programming language. Generate at least three types of sta-
tistically different artificial data sources to test your implementation of these
algorithms. Compare and comment on each algorithm’s performance in terms
of compression ratio for each type of data source.

Optionally, implement Adaptive Huffman and Adaptive Arithmetic coding algo-
rithms.

References

1. M. Nelson, J.L. Gailly, The Data Compression Book, 2nd edn. (M&T Books, New York, 1995)
2. K. Sayood, Introduction to Data Compression, 4th edn. (Morgan Kaufmann, San Francisco,

2012)

224 7 Lossless Compression Algorithms

3. C.E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J. 27:379–423,
623–656 (1948)

4. C.E. Shannon, W. Weaver, The Mathematical Theory of Communication. (University of Illinois
Press, Illinois, 1971)

5. R.C. Gonzalez, R.E. Woods, Digital Image Processing, 3rd edn. (Prentice-Hall, USA, 2007)
6. R. Fano, Transmission of Information, (MIT Press, Cambridge, 1961)
7. D.A. Huffman, A method for the construction of minimum-redundancy codes. Proc. IRE 40(9),

1098–1101 (1952)
8. T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction to Algorithms, 3rd edn. (The MIT

Press, Cambridge, Massachusetts, 2009)
9. J. Ziv, A. Lempel, A universal algorithm for sequential data compression. IEEE Trans. Inf.

Theory 23(3), 337–343 (1977)
10. J. Ziv, A. Lempel, Compression of individual sequences via variable-rate coding. IEEE Trans.

Inf. Theory 24(5), 530–536 (1978)
11. T.A. Welch, A technique for high performance data compression. IEEE Comput. 17(6), 8–19

(1984)
12. J. Rissanen, G.G. Langdon, Arithmetic coding. IBM J. Res. Dev. 23(2), 149–162 (1979)
13. I.H. Witten, R.M. Neal, J.G. Cleary, Arithmetic coding for data compression. Commun. ACM

30(6), 520–540 (1987)
14. T.C. Bell, J.G. Cleary, I.H. Witten, Text Compression (Prentice Hall, Englewood Cliffs, New

Jersey, 1990)
15. N. Abramson, Information Theory and Coding (McGraw-Hill, New York, 1963)
16. F. Jelinek, Probabilistic Information Theory (McGraw-Hill, New York, 1968)
17. R. Pasco, Source Coding Algorithms for Data Compression. Ph.D. thesis, Department of Elec-

trical Engineering, Stanford University, 1976
18. S.M. Lei, M.T. Sun, An entropy coding system for digital HDTV applications. IEEE Trans.

Circuits Syst. Video Technol. 1(1):147–154 (1991)
19. P. G. Howard and J. S. Vitter. Practical implementation of arithmetic coding. In J. A. Storer,

editor, Image and Text Compression, pages 85–112. Kluwer Academic Publishers, 1992.

8LossyCompressionAlgorithms

In this chapter, we consider lossy compression methods. Since information loss
implies some tradeoff between error and bitrate, we first consider measures of
distortion—e.g., squared error. Different quantizers are introduced, each of which has
a different distortion behavior. A discussion of transform coding leads into an intro-
duction to the Discrete Cosine Transform used in JPEG compression (see Chap. 9)
and the Karhunen Loève transform. Another transform scheme, wavelet-based cod-
ing, is then set out.

Sayood [1] deals extensively with the subject of lossy data compression in a
well-organized and easy-to-understand manner. The mathematical foundation for the
development of many lossy data compression algorithms is the study of stochastic
processes. Stark and Woods [2] is an excellent textbook on this subject.

8.1 Introduction

As discussed in Chap. 7, the compression ratio for image data using lossless com-
pression techniques (e.g., Huffman Coding, Arithmetic Coding, LZW) is low when
the image histogram is relatively flat. For image compression in multimedia appli-
cations, where a higher compression ratio is required, lossy methods are usually
adopted. In lossy compression, the compressed image is usually not the same as the
original image but is meant to form a close approximation to the original image per-
ceptually. To quantitatively describe how close the approximation is to the original
data, some form of distortion measure is required.

8.2 DistortionMeasures

A distortion measure is a mathematical quantity that specifies how close an approxi-
mation is to its original, using some distortion criteria. When looking at compressed
data, it is natural to think of the distortion in terms of the numerical difference

Z.-N. Li et al., Fundamentals of Multimedia, 225
Texts in Computer Science, DOI: 10.1007/978-3-319-05290-8_8,
© Springer International Publishing Switzerland 2014

http://dx.doi.org/10.1007/978-3-319-05290-8_9
http://dx.doi.org/10.1007/978-3-319-05290-8_7

226 8 Lossy Compression Algorithms

between the original data and the reconstructed data. However, when the data to be
compressed is an image, such a measure may not yield the intended result.

For example, if the reconstructed image is the same as original image except that
it is shifted to the right by one vertical scan line, an average human observer would
have a hard time distinguishing it from the original and would therefore conclude
that the distortion is small. However, when the calculation is carried out numerically,
we find a large distortion, because of the large changes in individual pixels of the
reconstructed image. The problem is that we need a measure of perceptual distortion,
not a more naive numerical approach. However, the study of perceptual distortions
is beyond the scope of this book.

Of the many numerical distortion measures that have been defined, we present the
three most commonly used in image compression. If we are interested in the average
pixel difference, the mean square error (MSE) σ 2 is often used. It is defined as

σ 2 = 1
N

N∑

n=1

(xn − yn)
2 (8.1)

where xn , yn , and N are the input data sequence, reconstructed data sequence, and
length of the data sequence, respectively.

If we are interested in the size of the error relative to the signal, we can measure the
signal-to-noise ratio (SNR) by taking the ratio of the average square of the original
data sequence and the mean square error (MSE), as discussed in Chap. 6. In decibel
units (dB), it is defined as

SNR = 10 log10
σ 2

x

σ 2
d

(8.2)

where σ 2
x is the average square value of the original data sequence and σ 2

d is the
MSE. Another commonly used measure for distortion is the peak-signal-to-noise
ratio (PSNR), which measures the size of the error relative to the peak value of the
signal xpeak. It is given by

PSNR = 10 log10

x2
peak

σ 2
d

. (8.3)

8.3 The Rate-Distortion Theory

Lossy compression always involves a tradeoff between rate and distortion. Rate is
the average number of bits required to represent each source symbol. Within this
framework, the tradeoff between rate and distortion is represented in the form of a
rate-distortion function R(D).

Intuitively, for a given source and a given distortion measure, if D is a tolerable
amount of distortion, R(D) specifies the lowest rate at which the source data can be
encoded while keeping the distortion bounded above by D. It is easy to see that when
D = 0, we have a lossless compression of the source. The rate-distortion function

http://dx.doi.org/10.1007/978-3-319-05290-8_6

8.3 The Rate-Distortion Theory 227

R(D)

0

H

Dmax

D

Fig. 8.1 Typical rate-distortion function

is meant to describe a fundamental limit for the performance of a coding algorithm
and so can be used to evaluate the performance of different algorithms.

Figure 8.1 shows a typical rate-distortion function. Notice that the minimum pos-
sible rate at D = 0, no loss, is the entropy of the source data. The distortion corre-
sponding to a rate R(D) ≡ 0 is the maximum amount of distortion incurred when
“nothing” is coded.

Finding a closed-form analytic description of the rate-distortion function for a
given source is difficult, if not impossible. Gyorgy [3] presents analytic expressions
of the rate-distortion function for various sources. For sources for which an analytic
solution cannot be readily obtained, the rate-distortion function can be calculated
numerically, using algorithms developed by Arimoto [4] and Blahut [5].

8.4 Quantization

Quantization in some form is the heart of any lossy scheme. Without quantization,
we would indeed be losing little information. Here, we embark on a more detailed
discussion of quantization than in Sect. 6.3.2.

The source we are interested in compressing may contain a large number of
distinct output values (or even infinite, if analog). To efficiently represent the source
output, we have to reduce the number of distinct values to a much smaller set, via
quantization.

Each algorithm (each quantizer) can be uniquely determined by its partition of
the input range, on the encoder side, and the set of output values, on the decoder side.
The input and output of each quantizer can be either scalar values or vector values,

http://dx.doi.org/10.1007/978-3-319-05290-8_6

228 8 Lossy Compression Algorithms

1.0

−1.0

−2.0

−3.0

−4.0

−4 −3 −2 −1
4321

3.5

2.5

1.5

0.5

−3.5

−0.5

−1.5

2.0

Q(X)Q(X)

x ∆/ ∆/
4.5

−4.5
2.51.50.5 3.5

−3.5 −2.5 −1.5 −0.5 x

4.0

3.0

−2.5

(a) (b)

Fig. 8.2 Uniform scalar quantizers: a midrise; b midtread

thus leading to scalar quantizers and vector quantizers. In this section, we examine
the design of both uniform and nonuniform scalar quantizers and briefly introduce
the topic of vector quantization (VQ).

8.4.1 Uniform Scalar Quantization

A uniform scalar quantizer partitions the domain of input values into equally spaced
intervals, except possibly at the two outer intervals. The endpoints of partition inter-
vals are called the quantizer’s decision boundaries. The output or reconstruction
value corresponding to each interval is taken to be the midpoint of the interval. The
length of each interval is referred to as the step size, denoted by the symbol ".

Uniform scalar quantizers are of two types: midrise and midtread. A midrise
quantizer is used with an even number of output levels, and a midtread quantizer
with an odd number. The midrise quantizer has a partition interval that brackets zero
(see Fig. 8.2). The midtread quantizer has zero as one of its output values, hence, it is
also known as dead-zone quantizer, because it turns a range of nonzero input values
into the zero output.

The midtread quantizer is important when source data represents the zero value
by fluctuating between small positive and negative numbers. Applying the midtread
quantizer in this case would produce an accurate and steady representation of the
value zero. For the special case " = 1, we can simply compute the output values for
these quantizers as

Qmidrise(x) = ⌈x⌉ − 0.5 (8.4)

Qmidtread(x) = ⌊x + 0.5⌋. (8.5)

8.4 Quantization 229

The goal for the design of a successful uniform quantizer is to minimize the
distortion for a given source input with a desired number of output values. This can
be done by adjusting the step size " to match the input statistics.

Let’s examine the performance of an M level quantizer. Let B = {b0, b1, . . . , bM }
be the set of decision boundaries and Y = {y1, y2, . . . , yM } be the set of recon-
struction or output values. Suppose the input is uniformly distributed in the interval
[−Xmax, Xmax]. The rate of the quantizer is

R = ⌈log2 M⌉. (8.6)

That is, R is the number of bits required to code M things—in this case, the M output
levels.

The step size " is given by

" = 2Xmax

M
(8.7)

since the entire range of input values is from −Xmax to Xmax. For bounded input,
the quantization error caused by the quantizer is referred to as granular distortion.
If the quantizer replaces a whole range of values, from a maximum value to ∞,
and similarly for negative values, that part of the distortion is called the overload
distortion.

To get an overall figure for granular distortion, notice that decision boundaries
bi for a midrise quantizer are [(i − 1)", i"], i = 1 .. M/2, covering positive data
X (and another half for negative X values). Output values yi are the midpoints
i" − "/2, i = 1 .. M/2, again just considering positive data. The total distortion is
twice the sum over the positive data, or

Dgran = 2

M
2∑

i=1

∫ i"

(i−1)"

(
x − 2i − 1

2
"

)2 1
2Xmax

dx (8.8)

where we divide by the range of X to normalize to a value of at most 1.
Since the reconstruction values yi are the midpoints of each interval, the quanti-

zation error must lie within the values [−"
2 ,

"
2]. Figure 8.3 is a graph of quantization

error for a uniformly distributed source. The quantization error in this case is also
uniformly distributed. Therefore, the average squared error is the same as the vari-
ance σ 2

d of the quantization error calculated from just the interval [0, "] with error
values in [−"

2 ,
"
2]. The error value at x is e(x) = x −"/2, so the variance of errors

is given by

σ 2
d = 1

"

∫ "

0
(e(x) − ē)2 dx

= 1
"

∫ "

0

(
x − "

2
− 0

)2

dx (8.9)

= "2

12
.

230 8 Lossy Compression Algorithms

Error

∆

−∆/2

∆/2

0 x

Fig. 8.3 Quantization error of a uniformly distributed source

Similarly, the signal variance is σ 2
x = (2Xmax)

2/12 for a random signal, so if the
quantizer is n bits, M = 2n , then from Eq. (8.2) we have

SQNR = 10 log10

(
σ 2

x

σ 2
d

)

= 10 log10

(
(2Xmax)

2

12
· 12
"2

)

= 10 log10

⎛

⎜⎝
(2Xmax)

2

12
· 12
(

2Xmax
M

)2

⎞

⎟⎠

= 10 log10 M2 = 20 n log10 2 (8.10)

= 6.02 n (dB). (8.11)

Hence, we have rederived the formula (6.3) derived more simply in Sect. 6.1. From
Eq. (8.11), we have the important result that increasing one bit in the quantizer
increases the signal-to-quantization noise ratio by 6.02 dB. In Sect. 6.1.5 we also
showed that if we know the signal probability density function we can get a more
accurate figure for the SQNR: there we assumed a sinusoidal signal and derived a
more exact SQNR Eq. (6.4). As well, more sophisticated estimates of D result from
more sophisticated models of the probability distribution of errors.

8.4.2 Nonuniform Scalar Quantization

If the input source is not uniformly distributed, a uniform quantizer may be inefficient.
Increasing the number of decision levels within the region where the source is densely

http://dx.doi.org/10.1007/978-3-319-05290-8_6
http://dx.doi.org/10.1007/978-3-319-05290-8_6
http://dx.doi.org/10.1007/978-3-319-05290-8_6
http://dx.doi.org/10.1007/978-3-319-05290-8_6

8.4 Quantization 231

distributed can effectively lower granular distortion. In addition, without having to
increase the total number of decision levels, we can enlarge the region in which the
source is sparsely distributed. Such nonuniform quantizers thus have nonuniformly
defined decision boundaries.

There are two common approaches for nonuniform quantization: the Lloyd–Max
quantizer and the companded quantizer, both introduced in Chap. 6.

Lloyd–Max Quantizer∗

For a uniform quantizer, the total distortion is equal to the granular distortion, as
in Eq. (8.8). If the source distribution is not uniform, we must explicitly consider
its probability distribution (probability density function) fX (x). Now we need the
correct decision boundaries bi and reconstruction values yi , by solving for both
simultaneously. To do so, we plug variables bi , yi into a total distortion measure

Dgran =
M∑

j=1

∫ b j

b j−1

(
x − y j

)2 1
Xmax

fX (x) dx . (8.12)

Then we can minimize the total distortion by setting the derivative of Eq. (8.12) to
zero. Differentiating with respect to y j yields the set of reconstruction values

y j =
∫ b j

b j−1
x fX (x) dx

∫ b j
b j−1

fX (x) dx
. (8.13)

This says that the optimal reconstruction value is the weighted centroid of the x
interval. Differentiating with respect to b j and setting the result to zero yields

b j =
y j+1 + y j

2
. (8.14)

This gives a decision boundary b j at the midpoint of two adjacent reconstruction
values. Solving these two equations simultaneously is carried out by iteration. The
result is termed the Lloyd–Max quantizer.

Starting with an initial guess of the optimal reconstruction levels, the algorithm
above iteratively estimates the optimal boundaries, based on the current estimate of
the reconstruction levels. It then updates the current estimate of the reconstruction
levels, using the newly computed boundary information. The process is repeated until
the reconstruction levels converge. For an example of the algorithm in operation, see
Exercise 3.

Companded Quantizer

In companded quantization, the input is mapped by a compressor function G and
then quantized using a uniform quantizer. After transmission, the quantized values

http://dx.doi.org/10.1007/978-3-319-05290-8_6

232 8 Lossy Compression Algorithms

Algorithm 8.1 (Lloyd–Max Quantization)

BEGIN
Choose initial level set y0
i = 0
Repeat
Compute bi using Equation 8.14
i = i + 1
Compute yi using Equation 8.13

Until |yi − yi−1| < ϵ

END

G −1

Uniform quantizerX X̂

G

Fig. 8.4 Companded quantization

are mapped back using an expander function G−1. The block diagram for the com-
panding process is shown in Fig. 8.4, where X̂ is the quantized version of X . If the
input source is bounded by xmax, then any nonuniform quantizer can be represented
as a companded quantizer. The two commonly used companders are the µ-law and
A-law companders (Sect. 6.1).

8.4.3 Vector Quantization

One of the fundamental ideas in Shannon’s original work on information theory is
that any compression system performs better if it operates on vectors or groups of
samples rather than on individual symbols or samples. We can form vectors of input
samples by concatenating a number of consecutive samples into a single vector.
For example, an input vector might be a segment of a speech sample, a group of
consecutive pixels in an image, or a chunk of data in any other format.

The idea behind vector quantization (VQ) is similar to that of scalar quantization
but extended into multiple dimensions. Instead of representing values within an
interval in one-dimensional space by a reconstruction value, as in scalar quantization,
in VQ an n-component code vector represents vectors that lie within a region in n-
dimensional space. A collection of these code vectors forms the codebook for the
vector quantizer.

Since there is no implicit ordering of code vectors, as there is in the one-
dimensional case, an index set is also needed to index into the codebook. Figure 8.5
shows the basic vector quantization procedure. In the diagram, the encoder finds

http://dx.doi.org/10.1007/978-3-319-05290-8_6

8.4 Quantization 233

N

Find closest
code vector Table lookup

Index

DecoderEncoder

X X
^

. . .

10

1
2
3
4
5
6
7
8
9

10

1
2
3
4
5
6
7
8
9

N

. .
 .

. .
 .

Fig. 8.5 Basic vector quantization procedure

the closest code vector to the input vector and outputs the associated index. On the
decoder side, exactly the same codebook is used. When the coded index of the input
vector is received, a simple table lookup is performed to determine the reconstruction
vector.

Finding the appropriate codebook and searching for the closest code vector at
the encoder end may require considerable computational resources. However, the
decoder can execute quickly, since only a constant time operation is needed to obtain
the reconstruction. Because of this property, VQ is attractive for systems with a lot
of resources at the encoder end while the decoder has only limited resources, and the
need is for quick execution time. Most multimedia applications fall into this category.

Gersho and Gray [6] cover quantization, especially vector quantization, compre-
hensively. In addition to the basic theory, this book provides a nearly exhaustive
description of available VQ methods.

8.5 Transform Coding

From basic principles of information theory, we know that coding vectors is more
efficient than coding scalars (see Sect. 7.4.2). To carry out such an intention, we need
to group blocks of consecutive samples from the source input into vectors.

Let X = {x1, x2, . . . , xk}T be a vector of samples. Whether our input data is an
image, a piece of music, an audio or video clip, or even a piece of text, there is a
good chance that a substantial amount of correlation is inherent among neighboring
samples xi . The rationale behind transform coding is that if Y is the result of a linear

http://dx.doi.org/10.1007/978-3-319-05290-8_7

234 8 Lossy Compression Algorithms

transform T of the input vector X in such a way that the components of Y are much
less correlated, then Y can be coded more efficiently than X.

For example, if most information in an RGB image is contained in a main axis,
rotating so that this direction is the first component means that luminance can be
compressed differently from color information. This will approximate the luminance
channel in the eye.

In higher dimensions than three, if most information is accurately described by
the first few components of a transformed vector, the remaining components can
be coarsely quantized, or even set to zero, with little signal distortion. The more
decorrelated—that is, the less effect one dimension has on another (the more orthog-
onal the axes), the more chance we have of dealing differently with the axes that
store relatively minor amounts of information without affecting reasonably accurate
reconstruction of the signal from its quantized or truncated transform coefficients.

Generally, the transform T itself does not compress any data. The compression
comes from the processing and quantization of the components of Y. In this section,
we will study the Discrete Cosine Transform (DCT) as a tool to decorrelate the
input signal. We will also examine the Karhunen–Loève Transform (KLT), which
optimally decorrelates the components of the input X.

8.5.1 Discrete Cosine Transform (DCT)

The Discrete Cosine Transform (DCT), a widely used transform coding technique, is
able to perform decorrelation of the input signal in a data-independent manner [7,8].
Because of this, it has gained tremendous popularity. We will examine the definition
of the DCT and discuss some of its properties, in particular the relationship between
it and the more familiar Discrete Fourier Transform (DFT).

Definition of DCT

Let’s start with the two-dimensional DCT. Given a function f (i, j) over two integer
variables i and j (a piece of an image), the 2D DCT transforms it into a new function
F(u, v), with integer u and v running over the same range as i and j . The general
definition of the transform is

F(u, v) = 2 C(u)C(v)√
M N

M−1∑

i=0

N−1∑

j=0

cos
(2i + 1)uπ

2M
cos

(2 j + 1)vπ
2N

f (i, j) (8.15)

where i, u = 0, 1, . . . , M − 1, j, v = 0, 1, . . . , N − 1, and the constants C(u) and
C(v) are determined by

C(ξ) =
{ √

2
2 if ξ = 0,
1 otherwise.

(8.16)

8.5 Transform Coding 235

In the JPEG image compression standard (see Chap. 9), an image block is defined
to have dimension M = N = 8. Therefore, the definitions for the 2D DCT and its
inverse (IDCT) in this case are as follows:

2D Discrete Cosine Transform (2D DCT)

F(u, v) = C(u)C(v)

4

7∑

i=0

7∑

j=0

cos
(2i + 1)uπ

16
cos

(2 j + 1)vπ
16

f (i, j), (8.17)

where i, j, u, v = 0, 1, . . . , 7, and the constants C(u) and C(v) are determined by
Eq. (8.16).

2D Inverse Discrete Cosine Transform (2D IDCT)

The inverse function is almost the same, with the roles of f (i, j) and F(u, v)
reversed, except that now C(u)C(v) must stand inside the sums:

f̃ (i, j) =
7∑

u=0

7∑

v=0

C(u)C(v)

4
cos

(2i + 1)uπ

16
cos

(2 j + 1)vπ
16

F(u, v) (8.18)

where i, j, u, v = 0, 1, . . . , 7, and the constants C(u) and C(v) are determined by
Eq. (8.16).

The 2D transforms are applicable to 2D signals, such as digital images. As shown
below, the 1D version of the DCT and IDCT is similar to the 2D version.

1D Discrete Cosine Transform (1D DCT)

F(u) = C(u)
2

7∑

i=0

cos
(2i + 1)uπ

16
f (i), (8.19)

where i = 0, 1, . . . , 7, u = 0, 1, . . . , 7, and the constant C(u) is the same as in
Eq. (8.16).

1D Inverse Discrete Cosine Transform (1D-IDCT)

f̃ (i) =
7∑

u=0

C(u)
2

cos
(2i + 1)uπ

16
F(u), (8.20)

http://dx.doi.org/10.1007/978-3-319-05290-8_9

236 8 Lossy Compression Algorithms

where i = 0, 1, . . . , 7, u = 0, 1, . . . , 7, and the constant C(u) is the same as in
Eq. (8.16).

One-Dimensional DCT

Let’s examine the DCT for a one-dimensional signal; almost all concepts are readily
extensible to the 2D DCT.

An electrical signal with constant magnitude is known as a DC (direct current)
signal. A common example is a battery that carries 1.5 or 9 volts DC. An electrical
signal that changes its magnitude periodically at a certain frequency is known as
an AC (alternating current) signal. A good example is the household electric power
circuit, which carries electricity with sinusoidal waveform at 110 volts AC, 60 Hz
(or 220 volts, 50 Hz in many other countries).

Most real signals are more complex. Speech signals or a row of gray-level inten-
sities in a digital image are examples of such 1D signals. However, any signal can be
expressed as a sum of multiple signals that are sine or cosine waveforms at various
amplitudes and frequencies. This is known as Fourier analysis. The terms DC and AC,
originating in electrical engineering, are carried over to describe these components
of a signal (usually) composed of one DC and several AC components.

If a cosine function is used, the process of determining the amplitudes of the
AC and DC components of the signal is called a Cosine Transform, and the integer
indices make it a Discrete Cosine Transform. When u = 0, Eq. (8.19) yields the DC
coefficient; when u = 1, or 2,..., up to 7, it yields the first or second, etc., up to the
seventh AC coefficient.

Equation (8.20) shows the Inverse Discrete Cosine Transform. This uses a sum
of the products of the DC or AC coefficients and the cosine functions to reconstruct
(recompose) the function f (i). Since computing the DCT and IDCT involves some
loss, f (i) is now denoted by f̃ (i).

In short, the role of the DCT is to decompose the original signal into its DC and AC
components; the role of the IDCT is to reconstruct (recompose) the signal. The DCT
and IDCT use the same set of cosine functions; they are known as basis functions.
Figure 8.6 shows the family of eight 1D DCT basis functions: u = 0 .. 7.

The DCT enables a new means of signal processing and analysis in the frequency
domain. In the original Signal Processing that deals with electrical and electronic
signals (e.g., electricity, speech), f (i) usually represents a signal that changes with
time i (we will not be bothered here by the convention that time is usually denoted
as t). The 1D DCT transforms f (i), which is in the time domain, to F(u), which is in
the frequency domain. The coefficients F(u) are known as the frequency responses
and form the frequency spectrum of f (i). In Image Processing, the image content
f (i, j) changes with the spatial indices i and j in the space domain. The 2D DCT
now transforms f (i, j) to F(u, v), which is in the spatial frequency domain. For the
convenience of discussion, we sometimes use 1D images and 1D DCT as examples.

Let’s use some examples to illustrate frequency responses.

8.5 Transform Coding 237

The 0th basis function (u = 0)

−1.0
−0.5

0
0.5
1.0

0 1 2 3 4 5 6 7
i

The 1st basis function (u = 1)

−1.0
−0.5

0
0.5
1.0

0 1 2 3 4 5 6 7
i

The 2nd basis function (u = 2)

−1.0
−0.5

0
0.5
1.0

0 1 2 3 4 5 6 7
i

The 3rd basis function (u = 3)

−1.0
−0.5

0
0.5
1.0

0 1 2 3 4 5 6 7
i

The 4th basis function (u = 4)

−1.0
−0.5

0
0.5
1.0

0 1 2 3 4 5 6 7
i

The 5th basis function (u = 5)

−1.0
−0.5

0
0.5
1.0

0 1 2 3 4 5 6 7
i

The 6th basis function (u = 6)

−1.0
−0.5

0
0.5
1.0

0 1 2 3 4 5 6 7
i

The 7th basis function (u = 7)

−1.0
−0.5

0
0.5
1.0

0 1 2 3 4 5 6 7
i

Fig. 8.6 The 1D DCT basis functions

Example 8.1

The left side of Fig. 8.7a shows a DC signal with a magnitude of 100, i.e., f1(i) = 100.
Since we are examining the Discrete Cosine Transform, the input signal is discrete,
and its domain is [0, 7].

When u = 0, regardless of the i value, all the cosine terms in Eq. (8.19) become
cos 0, which equals 1. Taking into account that C(0) =

√
2/2, F1(0) is given by

F1(0) =
√

2
2 · 2

· (1 · 100 + 1 · 100 + 1 · 100 + 1 · 100

+ 1 · 100 + 1 · 100 + 1 · 100 + 1 · 100)

≈ 283

238 8 Lossy Compression Algorithms

0

50

100

150

200

0 1 2 3 4 5 6 7
i

Signal f1(i) that does not change

0

100

200

300

400

0 1 2 3 4 5 6 7
u

DCT output F1(u)

−100
−50

0
50

100

0 1 2 3 4 5 6 7

i

A changing signal f2(i)
that has an AC component

0

100

200

300

400

0 1 2 3 4 5 6 7
u

DCT output F2(u)

0
50

100
150
200

0 1 2 3 4 5 6 7
i

Signal f3(i) = f1(i) + f2(i)

0

100

200

300

400

0 1 2 3 4 5 6 7
u

DCT output F3(u)

−100
−50

0
50

100

0 1 2 3 4 5 6 7
i

An arbitrary signal f(i)

−200
−100

0
100
200

0 1 2 3 4 5 6 7
u

DCT output F(u)

(a)

(b)

(c)

(d)

Fig.8.7 Examples of 1D Discrete Cosine Transform: a a DC signal f1(i); b an AC signal f2(i); c
f3(i) = f1(i)+ f2(i); and d an arbitrary signal f (i)

when u = 1, F1(u) is as below. Because cos π
16 = − cos 15π

16 , cos 3π
16 = − cos 13π

16 ,
etc. and C(1) = 1, we have

F1(1) =
1
2
· (cos

π

16
· 100 + cos

3π

16
· 100 + cos

5π

16
· 100 + cos

7π

16
· 100

+ cos
9π

16
· 100 + cos

11π

16
· 100 + cos

13π

16
· 100 + cos

15π

16
· 100)

= 0.

8.5 Transform Coding 239

Similarly, it can be shown that F1(2) = F1(3) = ... = F1(7) = 0. The 1D-DCT
result F1(u) for this DC signal f1(i) is depicted on the right side of Fig. 8.7a—only
a DC (i.e., first) component of F is nonzero.

Example 8.2

The left side of Fig. 8.7b shows a discrete cosine signal f2(i). Incidentally (or, rather,
purposely), it has the same frequency and phase as the second cosine basis function,
and its amplitude is 100.

When u = 0, again, all the cosine terms in Eq. (8.19) equal 1. Because cos π
8 =

− cos 7π
8 , cos 3π

8 = − cos 5π
8 , and so on, we have

F2(0) =
√

2
2 · 2

· 1 · (100 cos
π

8
+ 100 cos

3π

8
+ 100 cos

5π

8
+ 100 cos

7π

8

+ 100 cos
9π

8
+ 100 cos

11π

8
+ 100 cos

13π

8
+ 100 cos

15π

8
)

= 0.

To calculate F2(u), we first note that when u = 2, because cos 3π
8 = sin π

8 , we
have

cos2 π

8
+ cos2 3π

8
= cos2 π

8
+ sin2 π

8
= 1.

Similarly,

cos2 5π

8
+ cos2 7π

8
= 1

cos2 9π

8
+ cos2 11π

8
= 1

cos2 13π

8
+ cos2 15π

8
= 1.

Then we end up with

F2(2) =
1
2
· (cos

π

8
· cos

π

8
+ cos

3π

8
· cos

3π

8
+ cos

5π

8
· cos

5π

8

+ cos
7π

8
· cos

7π

8
+ cos

9π

8
· cos

9π

8
+ cos

11π

8
· cos

11π

8

+ cos
13π

8
· cos

13π

8
+ cos

15π

8
· cos

15π

8
) · 100

= 1
2
· (1 + 1 + 1 + 1) · 100 = 200.

We will not show the other derivations in detail. It turns out that F2(1) = F2(3) =
F2(4) = · · · = F2(7) = 0.

Example 8.3

In the third row of Fig. 8.7 the input signal to the DCT is now the sum of the previous
two signals—that is, f3(i) = f1(i)+ f2(i). The output F(u) values are

240 8 Lossy Compression Algorithms

F3(0) = 283,

F3(2) = 200,

F3(1) = F3(3) = F3(4) = · · · = F3(7) = 0.

Thus we discover that F3(u) = F1(u)+ F2(u).

Example 8.4

The fourth row of the figure shows an arbitrary (or at least relatively complex) input
signal f (i) and its DCT output F(u):

f (i)(i = 0 .. 7) : 85 −65 15 30 −56 35 90 60
F(u)(u = 0 .. 7) : 69 −49 74 11 16 117 44 −5.

Note that in this more general case, all the DCT coefficients F(u) are nonzero and
some are negative.
From the above examples, the characteristics of the DCT can be summarized as
follows:
1. The DCT produces the spatial frequency spectrum F(u) corresponding to the

spatial signal f (i).
In particular, the 0th DCT coefficient F(0) is the DC component of the signal
f (i). Up to a constant factor (i.e., 1

2 ·
√

2
2 · 8 = 2 ·

√
2 in the 1D DCT and

1
4 ·

√
2

2 ·
√

2
2 · 64 = 8 in the 2D DCT), F(0) equals the average magnitude of the

signal. In Fig. 8.7a, the average magnitude of the DC signal is obviously 100,
and F(0) = 2

√
2 × 100; in Fig. 8.7b, the average magnitude of the AC signal

is 0, and so is F(0); in Fig. 8.7c, the average magnitude of f3(i) is apparently
100, and again we have F(0) = 2

√
2 × 100.

The other seven DCT coefficients reflect the various changing (i.e., AC) compo-
nents of the signal f (i) at different frequencies. If we denote F(1) as AC1, F(2)
as AC2, ..., F(7) as AC7, then AC1 is the first AC component, which completes
half a cycle as a cosine function over [0, 7]; AC2 completes a full cycle; AC3
completes one and one-half cycles; ..., and AC7, three and a half cycles. All these
are, of course, due to the cosine basis functions, which are arranged in exactly
this manner. In other words, the second basis function corresponds to AC1, the
third corresponds to AC2, and so on. In the example in Fig. 8.7b, since the sig-
nal f2(i) and the third basis function have exactly the same cosine waveform,
with identical frequency and phase, they will reach the maximum (positive) and
minimum (negative) values synchronously. As a result, their products are always
positive, and the sum of their products (F2(2) or AC2) is large. It turns out that
all other AC coefficients are zero, since f2(i) and all the other basis functions
happen to be orthogonal. (We will discuss orthogonality later in this chapter.)
It should be pointed out that the DCT coefficients can easily take on negative
values. For DC, this occurs when the average of f (i) is less than zero. (For an
image, this never happens so the DC is nonnegative.) For AC, a special case
occurs when f (i) and some basis function have the same frequency but one

8.5 Transform Coding 241

of them happens to be half a cycle behind—this yields a negative coefficient,
possibly with a large magnitude.
In general, signals will look more like the one in Fig. 8.7d. Then f (i) will
produce many nonzero AC components, with the ones toward AC7 indicating
higher frequency content. A signal will have large (positive or negative) response
in its high-frequency components only when it alternates rapidly within the small
range [0, 7].
As an example, if AC7 is a large positive number, this indicates that the sig-
nal f (i) has a component that alternates synchronously with the eighth basis
function—three and half cycles. According to the Nyqist theorem, this is the
highest frequency in the signal that can be sampled with eight discrete values
without significant loss and aliasing.

2. The DCT is a linear transform.
In general, a transform T (or function) is linear, iff

T (αp + βq) = αT (p)+ βT (q), (8.21)

whereα andβ are constants, and p and q are any functions, variables or constants.

From the definition in Eq. (8.19), this property can readily be proven for the
DCT, because it uses only simple arithmetic operations.

One-Dimensional Inverse DCT

Let’s finish the example in Fig. 8.7d by showing its inverse DCT (IDCT). Recall that
F(u) contains the following:

F(u)(u = 0 .. 7) : 69 −49 74 11 16 117 44 −5.

The 1D IDCT, as indicated in Eq. (8.20), can readily be implemented as a loop with
eight iterations, as illustrated in Fig. 8.8.

Iteration 0: f̃ (i) = C(0)
2 · cos 0 · F(0) =

√
2

2·2 · 1 · 69 ≈ 24.3.

Iteration 1: f̃ (i) = C(0)
2 · cos 0 · F(0)+ C(1)

2 · cos (2i+1)π
16 · F(1)

≈ 24.3 + 1
2 · (−49) · cos (2i+1)π

16 ≈ 24.3 − 24.5 · cos (2i+1)π
16 .

Iteration 2: f̃ (i) = C(0)
2 ·cos 0 ·F(0)+ C(1)

2 ·cos (2i+1)π
16 ·F(1)+ C(2)

2 ·cos (2i+1)π
8 ·

F(2)
≈ 24.3 − 24.5 · cos (2i+1)π

16 + 37 · cos (2i+1)π
8 .

After iteration 0, f̃ (i) has a constant value of approximately 24.3, which is the
recovery of the DC component in f (i); after iteration 1, f̃ (i) ≈ 24.3 − 24.5 ·
cos (2i+1)π

16 , which is the sum of the DC and first AC component; after iteration 2,
f̃ (i) reflects the sum of DC and AC1 and AC2; and so on. As shown, the process
of the sum-of-product in IDCT eventually reconstructs (recomposes) the function
f (i), which is approximately

242 8 Lossy Compression Algorithms

−100
−50

0
50

100

0 1 2 3 4 5 6 7
i

After 0th iteration (DC)

−100
−50

0
50

100

0 1 2 3 4 5 6 7
i

After 1st iteration (DC + AC1)

−100
−50

0
50

100

0 1 2 3 4 5 6 7
i

After 2nd iteration
(DC + AC1 + AC2)

−100
−50

0
50

100

0 1 2 3 4 5 6 7
i

After 3rd iteration
(DC + AC1 + AC2 + AC3)

−100
−50

0
50

100

0 1 2 3 4 5 6 7
i

After 4th iteration
(DC + AC1 + . . . + AC4)

−100
−50

0
50

100

0 1 2 3 4 5 6 7
i

After 5th iteration
(DC + AC1 + . . . + AC5)

−100
−50

0
50

100

0 1 2 3 4 5 6 7
i

After 6th iteration
(DC + AC1 + . . . + AC6)

−100
−50

0
50

100

0 1 2 3 4 5 6 7

i

After 7th iteration
(DC + AC1 + . . . + AC7)

Fig. 8.8 An example of 1D IDCT

f̃ (i)(i = 0 .. 7) : 85 −65 15 30 −56 35 90 60.

As it happens, even though we went from integer to integer via intermediate floats,
we recovered the signal exactly. This is not always true, but the answer is always
close.

The Cosine Basis Functions

For a better decomposition, the basis functions should be orthogonal, so as to have
the least redundancy among them.

8.5 Transform Coding 243

Functions Bp(i) and Bq(i) are orthogonal if
∑

i

[Bp(i) · Bq(i)] = 0 if p ̸= q. (8.22)

Functions Bp(i) and Bq(i) are orthonormal if they are orthogonal and
∑

i

[Bp(i) · Bq(i)] = 1 if p = q. (8.23)

The orthonormal property is desirable. With this property, the signal is not ampli-
fied during the transform. When the same basis function is used in both the trans-
formation and its inverse (sometimes called forward transform and backward trans-
form), we will get (approximately) the same signal back.

It can be shown that
7∑

i=0

[
cos

(2i + 1) · pπ

16
· cos

(2i + 1) · qπ

16

]
= 0 if p ̸= q

7∑

i=0

[
C(p)

2
cos

(2i + 1) · pπ

16
· C(q)

2
cos

(2i + 1) · qπ

16

]
= 1 if p = q.

The cosine basis functions in the DCT are indeed orthogonal. With the help
of constants C(p) and C(q) they are also orthonormal. (Now we understand why
constants C(u) and C(v) in the definitions of DCT and IDCT seemed to have taken
some arbitrary values.)

Recall that because of the orthogonality, for f2(i) in Fig. 8.7b, only F2(2) (for
u = 2) has a nonzero output whereas all other DCT coefficients are zero. This is
desirable for some signal processing and analysis in the frequency domain, since we
are now able to precisely identify the frequency components in the original signal.

The cosine basis functions are analogous to the basis vectors x⃗ , y⃗, z⃗ for the 3D
Cartesian space, or the so-called 3D vector space. The vectors are orthonormal,
because

x⃗ · y⃗ = (1, 0, 0) · (0, 1, 0) = 0

x⃗ · z⃗ = (1, 0, 0) · (0, 0, 1) = 0

y⃗ · z⃗ = (0, 1, 0) · (0, 0, 1) = 0

x⃗ · x⃗ = (1, 0, 0) · (1, 0, 0) = 1

y⃗ · y⃗ = (1, 0, 0) · (1, 0, 0) = 1

z⃗ · z⃗ = (1, 0, 0) · (1, 0, 0) = 1.

Any point P = (x p, yp, z p) can be represented by a vector O⃗ P = (x p, yp, z p),
where O is the origin, which can in turn be decomposed into x p · x⃗ + yp · y⃗ + z p · z⃗.

If we view the sum-of-products operation in Eq. (8.19) as the dot product of one
of the discrete cosine basis functions (for a specified u) and the signal f (i), then the
analogy between the DCT and the Cartesian projection is remarkable. Namely, to get
the x-coordinate of point P , we simply project P onto the x axis. Mathematically, this

244 8 Lossy Compression Algorithms

is equivalent to a dot product x⃗ · O⃗ P = x p. Obviously, the same goes for obtaining
yp and z p.

Now, compare this to the example in Fig. 8.7b, for a point P = (0, 5, 0) in the
Cartesian space. Only its projection onto the y axis is yp = 5 and its projections
onto the x and z axes are both 0.

Finally, for reconstruction of P , use the dot product of (x p, yp, z p) and (x⃗, y⃗, z⃗)
to obtain x p · x⃗ + yp · y⃗ + z p · z⃗.

2D Basis Functions

For two-dimensional DCT functions, we use the basis depicted as 8 × 8 images in
Fig. 8.9, where u and v indicate their spatial frequencies, white indicates positive
values and black indicates negative. For a particular pair of u and v, the respective
basis function is:

cos
(2i + 1) · uπ

16
· cos

(2 j + 1) · vπ
16

, (8.24)

where i and j are their row and column indices.
For example, for the enlarged block shown in Fig. 8.9, where u = 1 and v = 2,

it is:

cos
(2i + 1) · 1π

16
· cos

(2 j + 1) · 2π

16
.

To obtain DCT coefficients, we essentially just form the inner product of each
of these 64 basis functions with an 8 × 8 block from an original image. Again, we
are talking about an original signal indexed by space, not time. The 64 products we
calculate make up an 8 × 8 spatial frequency response F(u, v). We do this for each
8 × 8 image block.

2D Separable Basis

Of course, for speed, most software implementations use fixed point arithmetic to
calculate the DCT transform. Just as there is a mathematically derived Fast Fourier
Transform, there is also a Fast DCT. Some fast implementations approximate coeffi-
cients so that all multiplies are shifts and adds. Moreover, a much simpler mechanism
is used to produce 2D DCT coefficients—factorization into two 1D DCT transforms.

The 2D DCT can be separated into a sequence of two 1D DCT steps. First,
we calculate an intermediate function G(u, j) by performing a 1D DCT in each
column—in this way, we have taken care of the 1D transform vertically, i.e., replacing
the row index by its frequency counterpart u. When the block size is 8 × 8:

G(u, j) = 1
2

C(u)
7∑

i=0

cos
(2i + 1)uπ

16
f (i, j). (8.25)

8.5 Transform Coding 245

Fig. 8.9 Graphical
illustration of 8 × 8 2D DCT
basis

u

v

j

i

Then we calculate another 1D DCT horizontally in each row, this time replacing the
column index j by its frequency counterpart v:

F(u, v) = 1
2

C(v)

7∑

j=0

cos
(2 j + 1)vπ

16
G(u, j). (8.26)

This is possible because the 2D DCT basis functions are separable (multiply separate
functions of i and j). It is straightforward to see that this simple change saves many
arithmetic steps. The number of iterations required is reduced from 8 × 8 to 8 + 8.

2D DCT-Matrix Implementation

The above factorization of a 2D DCT into two 1D DCTs can be implemented by two
consecutive matrix multiplications, i.e.,

F(u, v) = T · f (i, j) · TT . (8.27)

246 8 Lossy Compression Algorithms

We will name T the DCT-matrix.

T[i, j] =

⎧
⎪⎨

⎪⎩

1√
N
, if i = 0

√
2
N · cos (2 j+1)·iπ

2N , if i > 0
(8.28)

where i = 0, ..., N − 1 and j = 0, ..., N − 1 are the row and column indices, and
the block size is N × N .

When N = 8, we have:

T8[i, j] =

⎧
⎨

⎩

1
2
√

2
, if i = 0

1
2 · cos (2 j+1)·iπ

16 , if i > 0.
(8.29)

Hence,

T8 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2
√

2
1

2
√

2
1

2
√

2
· · · 1

2
√

2

1
2 · cos π

16
1
2 · cos 3π

16
1
2 · cos 5π

16 · · · 1
2 · cos 15π

16
1
2 · cosπ

8
1
2 · cos 3π

8
1
2 · cos 5π

8 · · · 1
2 · cos 15π

8
1
2 · cos 3π

16
1
2 · cos 9π

16
1
2 · cos 15π

16 · · · 1
2 · cos 45π

16

...
...

...
. . .

...

1
2 · cos 7π

16
1
2 · cos 21π

16
1
2 · cos 35π

16 · · · 1
2 · cos 105π

16

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8.30)

A closer look at the DCT-matrix will reveal that each row of the matrix is basically
a 1D DCT basis function, ranging from DC to AC1, AC2, ..., AC7. Compared to
the functions in Fig. 8.6, the only difference is that we have added some constants
and taken care of the orthonormal aspect of the DCT basis functions. Indeed, the
constants and basis functions in Eqs. (8.19) and (8.29) are exactly the same. (We will
leave it as an exercise (see Exercise 7) to verify that the rows and columns of T8 are
orthonormal vectors, i.e., T8 is an Orthogonal Matrix.)

In summary, the implementation of the 2D DCT is now a simple matter of applying
two matrix multiplications as in Eq. (8.27). The first multiplication applies 1D DCT
vertically (for each column), and the second applies 1D DCT horizontally (for each
row). What has been achieved is exactly the two steps as indicated in Eqs. (8.25) and
(8.26).

2D IDCTMatrix Implementation

In this section, we will show how to reconstruct f (i, j) from F(u, v) losslessly by
matrix multiplications. In the next several chapters, when we discuss lossy compres-
sion of images and videos, quantization steps will usually be applied to the DCT
coefficients F(u, v) before the IDCT.

8.5 Transform Coding 247

It turns out that the 2D IDCT matrix implementation is simply:

f (i, j) = TT · F(u, v) · T. (8.31)

Its derivation is as follows:
First, because T · T−1 = T−1 · T = I, where I is the identity matrix, we can

simply rewrite f (i, j) as:

f (i, j) = T−1 · T · f (i, j) · TT · (TT)−1.

According to Eq. (8.27),

F(u, v) = T · f (i, j) · TT .

Hence,
f (i, j) = T−1 · F(u, v) · (TT)−1.

As stated above, the DCT-matrix T is orthogonal, therefore,

TT = T−1.

It follows,
f (i, j) = TT · F(u, v) · T.

Comparison of DCT and DFT

The discrete cosine transform is a close counterpart to the Discrete Fourier Transform
(DFT) [9], and in the world of signal processing, the latter is likely the more common.
We have started off with the DCT instead because it is simpler and is also much used
in multimedia. Nevertheless, we should not entirely ignore the DFT.

For a continuous signal, we define the continuous Fourier transform F as follows:

F(ω) =
∫ ∞

−∞
f (t)e−iωt dt. (8.32)

Using Euler’s formula, we have

eix = cos(x)+ i sin(x). (8.33)

Thus, the continuous Fourier transform is composed of an infinite sum of sine and
cosine terms. Because digital computers require us to discretize the input signal, we
define a DFT that operates on eight samples of the input signal { f0, f1, . . . , f7} as

Fω =
7∑

x=0

fx · e− 2π iωx
8 . (8.34)

Writing the sine and cosine terms explicitly, we have

Fω =
7∑

x=0

fx cos
(

2πωx
8

)
− i

7∑

x=0

fx sin
(

2πωx
8

)
. (8.35)

248 8 Lossy Compression Algorithms

Fig. 8.10 Symmetric
extension of the ramp
function

y

10 11 12 13 14 150

1

2

3

4

5

7

6

x
1 2 3 4 5 6 7 8 9

Table 8.1 DCT and DFT
coefficients of the ramp
function

Ramp DCT DFT

0 9.90 28.00
1 −6.44 −4.00
2 0.00 9.66
3 −0.67 −4.00
4 0.00 4.00
5 −0.20 −4.00
6 0.00 1.66
7 −0.51 −4.00

Even without giving an explicit definition of the DCT, we can guess that the DCT
is likely a transform that involves only the real part of the DFT. The intuition behind
the formulation of the DCT that allows it to use only the cosine basis functions of the
DFT is that we can cancel out the imaginary part of the DFT by making a symmetric
copy of the original input signal.

This works because sine is an odd function; thus, the contributions from the sine
terms cancel each other out when the signal is symmetrically extended. Therefore,
the DCT of eight input samples corresponds to the DFT of 16 samples made up of
the original eight input samples and a symmetric copy of these, as in Fig. 8.10.

With the symmetric extension, the DCT is now working on a triangular wave,
whereas the DFT tries to code the repeated ramp. Because the DFT is trying to
model the artificial discontinuity created between each copy of the samples of the
ramp function, a lot of high-frequency components are needed. (Refer to [9] for a
thorough discussion and comparison of DCT and DFT.)

Table 8.1 shows the calculated DCT and DFT coefficients. We can see that more
energy is concentrated in the first few coefficients in the DCT than in the DFT. If
we try to approximate the original ramp function using only three terms of both the
DCT and DFT, we notice that the DCT approximation is much closer. Figure 8.11
shows the comparison.

8.5 Transform Coding 249

0

1

2

3

4

5

6

7

y

x
1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

y

x
1 2 3 4 5 6 7

(a) (b)

Fig. 8.11 Approximation of the ramp function: a three-term DCT approximation; b three-term
DFT approximation

8.5.2 Karhunen–Loève Transform*

The Karhunen–Loève Transform (KLT) is a reversible linear transform that exploits
the statistical properties of the vector representation. Its primary property is that it
optimally decorrelates the input. To do so, it fits an n-dimensional ellipsoid around
the (mean-subtracted) data. The main ellipsoid axis is the major direction of change
in the data.

Think of a cigar that has unfortunately been stepped on. Cigar data consists of
a cloud of points in 3-space giving the coordinates of positions of measured points
in the cigar. The long axis of the cigar will be identified by a statistical program as
the first KLT axis. The second most important axis is the horizontal axis across the
squashed cigar, perpendicular to the first axis. The third axis is orthogonal to both
and is in the vertical, thin direction. A KLT component program carries out just this
analysis.

To understand the optimality of the KLT, consider the autocorrelation matrix RX
of the set of k input vectors X, defined in terms of the expectation value E(·) as

RX = E[XXT] (8.36)

=

⎡

⎢⎢⎢⎣

RX (1, 1) RX (1, 2) · · · RX (1, k)
RX (2, 1) RX (2, 2) · · · RX (2, k)

...
...

. . .
...

RX (k, 1) RX (k, 2) · · · RX (k, k)

⎤

⎥⎥⎥⎦
(8.37)

where RX (t, s) = E[Xt Xs] is the autocorrelation function. Our goal is to find a
transform T such that the components of the output Y are uncorrelated—that is,
E[Yt Ys] = 0, if t ̸= s. Thus, the autocorrelation matrix of Y takes on the form of a
positive diagonal matrix.

250 8 Lossy Compression Algorithms

Since any autocorrelation matrix is symmetric and nonnegative definite, there are
k orthogonal eigenvectors u1, u2, . . . , uk and k corresponding real and nonnegative
eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0. We define the Karhunen-Loève transform as

T = [u1,u2, · · · , uk]T . (8.38)

Then, the autocorrelation matrix of Y becomes

RY = E[YYT] (8.39)

= E[TXXT T] (8.40)

= TRXTT (8.41)

=

⎡

⎢⎢⎢⎣

λ1 0 · · · 0
0 λ2 · · · 0

0
...
. . . 0

0 0 · · · λk

⎤

⎥⎥⎥⎦
. (8.42)

Clearly, we have the required autocorrelation matrix for Y. Therefore, the KLT is
optimal, in the sense that it completely decorrelates the input. In addition, since the
KLT depends on the computation of the autocorrelation matrix of the input vector,
it is data-dependent: it has to be computed for every dataset.

Example 8.5

To illustrate the mechanics of the KLT, consider the four 3D input vectors x1 =
(4, 4, 5), x2 = (3, 2, 5), x3 = (5, 7, 6), and x4 = (6, 7, 7). To find the required
transform, we must first estimate the autocorrelation matrix of the input. The mean
of the four input vectors is

mx = 1
4

⎡

⎣
18
20
23

⎤

⎦ .

We can estimate the autocorrelation matrix using the formula

RX = 1
n

n∑

i=1

xi xT
i − mx mT

x (8.43)

where n is the number of input vectors, which is 4. From this equation, we obtain

RX =

⎡

⎣
1.25 2.25 0.88
2.25 4.50 1.50
0.88 1.50 0.69

⎤

⎦ .

We are trying to diagonalize matrix RX, which is the same as forming an
eigenvector-eigenvalue decomposition (from linear algebra). That is, we want to
rewrite RX as RX = TDT−1, where the matrix D is diagonal, with off-diagonal val-
ues equaling zero: D = diag(λ1, λ2, λ3), with the λ values called the eigenvalues
and the columns of matrix T called the eigenvectors. These are easy to calculate
using various math libraries; in Matlab, function eig will do the job.

8.5 Transform Coding 251

Here, the eigenvalues of RX are λ1 = 6.1963, λ2 = 0.2147, and λ3 = 0.0264.
Clearly, the first component is by far the most important. The corresponding eigen-
vectors are

u1 =

⎡

⎣
0.4385
0.8471
0.3003

⎤

⎦ u2 =

⎡

⎣
0.4460

−0.4952
0.7456

⎤

⎦ u3 =

⎡

⎣
−0.7803

0.1929
0.5949

⎤

⎦ .

Therefore, the KLT is given by the matrix

T =

⎡

⎣
0.4385 0.8471 0.3003
0.4460 −0.4952 0.7456

−0.7803 0.1929 0.5949

⎤

⎦.

Subtracting the mean vector from each input vector and applying the KLT, we have

y1 =

⎡

⎣
−1.2916
−0.2870
−0.2490

⎤

⎦ y2 =

⎡

⎣
−3.4242

0.2573
0.1453

⎤

⎦

y3 =

⎡

⎣
1.9885

−0.5809
0.1445

⎤

⎦ y4 =

⎡

⎣
2.7273
0.6107

−0.0408

⎤

⎦.

Since the rows of T are orthonormal vectors, the inverse transform is just the
transpose: T−1 = TT . We can obtain the original vectors from the transform
coefficients using the inverse relation

x = TT y + mx . (8.44)

In terms of the transform coefficients yi , the magnitude of the first few components
is usually considerably larger than that of the other components. In general, after the
KLT, most of the “energy” of the transform coefficients is concentrated within the
first few components. This is the energy compaction property of the KLT.

For an input vector x with n components, if we coarsely quantize the output vector
y by setting its last k components to zero, calling the resulting vector ŷ, the KLT
minimizes the mean squared error between the original vector and its reconstruction.

8.6 Wavelet-Based Coding

8.6.1 Introduction

Decomposing the input signal into its constituents allows us to apply coding tech-
niques suitable for each constituent, to improve compression performance. Consider
again a time-dependent signal f (t) (it is best to base discussion on continuous func-
tions to start with). The traditional method of signal decomposition is the Fourier
transform. Above, in our discussion of the DCT, we considered a special cosine-
based transform. If we carry out analysis based on both sine and cosine, then a con-
cise notation assembles the results into a function F(ω), a complex-valued function

252 8 Lossy Compression Algorithms

of real-valued frequency ω given in Eq. (8.32). Such decomposition results in very
fine resolution in the frequency domain. However, since a sinusoid is theoretically
infinite in extent in time, such a decomposition gives no temporal resolution.

Another method of decomposition that has gained a great deal of popularity in
recent years is the wavelet transform. It seeks to represent a signal with good reso-
lution in both time and frequency, by using a set of basis functions called wavelets.

There are two types of wavelet transforms: the Continuous Wavelet Transform
(CWT) and the Discrete Wavelet Transform (DWT). We assume that the CWT is
applied to the large class of functions f (x) that are square integrable on the real
line—that is,

∫
[f (x)]2 dx < ∞. In mathematics, this is written as f (x) ∈ L2(R).

The other kind of wavelet transform, the DWT, operates on discrete samples of
the input signal. The DWT resembles other discrete linear transforms, such as the
DFT or the DCT, and is very useful for image processing and compression.

Before we begin a discussion of the theory of wavelets, let’s develop an intuition
about this approach by going through an example using the simplest wavelet trans-
form, the so-called Haar Wavelet Transform, to form averages and differences of a
sequence of float values.

If we repeatedly take averages and differences and keep results for every step, we
effectively create a multiresolution analysis of the sequence. For images, this would
be equivalent to creating smaller and smaller summary images, one-quarter the size
for each step, and keeping track of differences from the average as well. Mentally
stacking the full-size image, the quarter-size image, the sixteenth size image, and so
on, creates a pyramid. The full set, along with difference images, is the multiresolu-
tion decomposition.

Example 8.6 (A Simple Wavelet Transform)

The objective of the wavelet transform is to decompose the input signal, for com-
pression purposes, into components that are easier to deal with, have special inter-
pretations, or have some components that can be thresholded away. Furthermore, we
want to be able to at least approximately reconstruct the original signal, given these
components. Suppose we are given the following input sequence:

{xn,i } = {10, 13, 25, 26, 29, 21, 7, 15} (8.45)

here, i ∈ [0 .. 7] indexes “pixels”, and n stands for the level of a pyramid we are on. At
the top, n = 3 for this sequence, and we shall form three more sequences, for n = 2,
1, and 0. At each level, less information will be retained in the beginning elements
of the transformed signal sequence. When we reach pyramid level n = 0, we end up
with the sequence average stored in the first element. The remaining elements store
detail information.

Consider the transform that replaces the original sequence with its pairwise aver-
age xn−1,i and difference dn−1,i , defined as follows:

xn−1,i =
xn,2i + xn,2i+1

2
(8.46)

dn−1,i =
xn,2i − xn,2i+1

2
(8.47)

8.6 Wavelet-Based Coding 253

where now i ∈ [0 .. 3]. Notice that the averages and differences are applied only
on consecutive pairs of input sequences whose first element has an even index.
Therefore, the number of elements in each set {xn−1,i } and {dn−1,i } is exactly half the
number of elements in the original sequence. We can form a new sequence having
length equal to that of the original sequence by concatenating the two sequences
{xn−1,i } and {dn−1,i }. The resulting sequence is thus

{xn−1,i , dn−1,i } = {11.5, 25.5, 25, 11,−1.5,−0.5, 4,−4} (8.48)

where we are now at level n − 1 = 2. This sequence has exactly the same number
of elements as the input sequence—the transform did not increase the amount of
data. Since the first half of the above sequence contains averages from the original
sequence, we can view it as a coarser approximation to the original signal.

The second half of this sequence can be viewed as the details or approximation
errors of the first half. Most of the values in the detail sequence are much smaller than
those of the original sequence. Thus, most of the energy is effectively concentrated
in the first half. Therefore, we can potentially store {dn−1,i } using fewer bits.

It is easily verified that the original sequence can be reconstructed from the trans-
formed sequence, using the relations

xn,2i = xn−1,i + dn−1,i

xn,2i+1 = xn−1,i − dn−1,i . (8.49)

This transform is the discrete Haar wavelet transform. Averaging and differencing
can be carried out by applying a so-called scaling function and wavelet function
along the signal. Figure 8.12 shows the Haar version of these functions.

We can further apply the same transform to {xn−1,i }, to obtain another level of
approximation xn−2,i and detail dn−2,i :

{xn−2,i , dn−2,i , dn−1,i } = {18.5, 18,−7, 7,−1.5,−0.5, 4,−4}. (8.50)

This is an essential idea of multiresolution analysis. We can now study the input
signal in three different scales, along with the details needed to go from one scale
to another. This process can continue n times, until only one element is left in the
approximation sequence. In this case, n = 3, and the final sequence is given below:

{xn−3,i , dn−3,i , dn−2,i , dn−1,i } = {18.25, 0.25,−7, 7,−1.5,−0.5, 4,−4}. (8.51)

Now we realize that n was 3 because only three resolution changes were available
until we reached the final form.

The value 18.25, corresponding to the coarsest approximation to the original
signal, is the average of all the elements in the original sequence. From this example,
it is easy to see that the cost of computing this transform is proportional to the number
of elements N in the input sequence—that is, O(N).

Extending the one-dimensional Haar wavelet transform into two dimensions is
relatively easy: we simply apply the one-dimensional transform to the rows and
columns of the two-dimensional input separately. We will demonstrate the two-
dimensional Haar transform applied to the 8 × 8 input image shown in Fig. 8.13.

254 8 Lossy Compression Algorithms

1.510
−2

−1

0

1

2

−2

−1

0

1

2

−0.5 1.510−0.5 0.50.5

(a) (b)

Fig. 8.12 Haar Wavelet Transform: a scaling function; b wavelet function

63

0

0

0

0

0

0

00

0

0

0

0

0

0000000

0

0

0

0

0 0

0

0

0

00000

127 127

127127

127

127

127

127

255 255

255255

63

63 63

0 00000

00 0 00000

(a) (b)

Fig. 8.13 Input image for the 2D Haar Wavelet Transform: a pixel values; b an 8 × 8 image

Example 8.7 (2D Haar Transform)

This example of the 2D Haar transform not only serves to illustrate how the wavelet
transform is applied to two-dimensional inputs but also points out useful interpre-
tations of the transformed coefficients. However, it is intended only to provide the
reader with an intuitive feeling of the kinds of operations involved in performing a
general 2D wavelet transform. Subsequent sections provide more detailed descrip-
tion of the forward and inverse 2D wavelet transform algorithms, as well as a more
elaborate example using a more complex wavelet.

2D HaarWavelet Transform

We begin by applying a one-dimensional Haar wavelet transform to each row of the
input. The first and last two rows of the input are trivial. After performing the aver-
aging and differencing operations on the remaining rows, we obtain the intermediate
output shown in Fig. 8.14.

8.6 Wavelet-Based Coding 255

0

0

0

0

0

0

00

0

0

0

0

0000000

0 00000

95 95

95 95

191 191

191 191

−32

−32

−64

−64

32

32

64

64

0

0

0

0

0

0 0

0

00

0000000

0 00000

Fig. 8.14 Intermediate output of the 2D Haar Wavelet Transform

−48

0

0

0

0

0

0

00

0

0

0

0

0

0000000

00

0

0

0

0

0

0

143 143

143143

−16

−16

16

16

−48

−48

48

48

00

48

−48

48

00

00

00

00

00

00 00 00 00

Fig. 8.15 Output of the first level of the 2D Haar Wavelet Transform

We continue by applying the same 1D Haar transform to each column of the inter-
mediate output. This step completes one level of the 2D Haar transform. Figure 8.15
gives the resulting coefficients.

We can naturally divide the result into four quadrants. The upper left quadrant
contains the averaged coefficients from both the horizontal and vertical passes. There-
fore, it can be viewed as a low-pass-filtered version of the original image, in the sense
that higher frequency edge information is lost, while low spatial frequency smooth
information is retained.

The upper right quadrant contains the vertical averages of the horizontal dif-
ferences and can be interpreted as information about the vertical edges within the
original image. Similarly, the lower left quadrant contains the vertical differences of
the horizontal averages and represents the horizontal edges in the original image. The
lower right quadrant contains the differences from both the horizontal and vertical
passes. The coefficients in this quadrant represent diagonal edges.

256 8 Lossy Compression Algorithms

Fig. 8.16 A simple graphical illustration of the Wavelet Transform

These interpretations are shown more clearly as images in Fig. 8.16 where bright
pixels code are positive and dark pixels code are negative image values.

The inverse of the 2D Haar transform can be calculated by first inverting the
columns using Eq. (8.49), and then inverting the resulting rows.

8.6.2 ContinuousWavelet Transform*

We noted that the motivation for the use of wavelets is to provide a set of basis
functions that decompose a signal in time over parameters in the frequency domain
and the time domain simultaneously. A Fourier transform aims to pin down only the
frequency content of a signal, in terms of spatially varying rather than time varying
signals. What wavelets aim to do is pin down the frequency content at different parts
of the image.

For example, one part of the image may be “busy” with texture and thus high-
frequency content, while another part may be smooth, with little high-frequency con-
tent. Naturally, one can think of obvious ways to consider frequencies for localized
areas of an image: divide an image into parts and fire away with Fourier analysis. The
time-sequence version of that idea is called the Short-Term (or Windowed) Fourier
Transform. And other ideas have also arisen. However, it turns out that wavelets, a
much newer development, have neater characteristics.

To further motivate the subject, we should consider the Heisenberg uncertainty
principle, from physics. In the context of signal processing, this says that there is a
tradeoff between accuracy in pinning down a function’s frequency, and its extent in
time. We cannot do both accurately, in general, and still have a useful basis function.
For example, a sine wave is exact in terms of its frequency but infinite in extent.

As an example of a function that dies away quickly and also has limited frequency
content, suppose we start with a Gaussian function,

8.6 Wavelet-Based Coding 257

−10 −5 0 5 10
−2

−1

0

1

2

3

4

Time

ψ
(t

)

−10 −5 0 5 10
0

0.5

1

1.5

2

2.5

3

Frequency ω

F(
ω

)

(a) (b)

Fig. 8.17 A Mexican-hat Wavelet: a σ = 0.5; b its Fourier transform

f (t) = 1

σ
√

2π
e

−t2

2σ2 . (8.52)

The parameter σ expresses the scale of the Gaussian (bell-shaped) function.
The second derivative of this function, called ψ(t), looks like a Mexican hat, as

in Fig. 8.17a. Clearly, the function ψ(t) is limited in time. Its equation is as follows:

ψ(t) = 1

σ 3
√

2π

[
e

−t2

2σ2

(
t2

σ 2 − 1
)]

. (8.53)

We can explore the frequency content of functionψ(t)by taking its Fourier transform.
This turns out to be given by

F(ω) = ω2e− σ2ω2
2 . (8.54)

Figure 8.17b displays this function: the candidate wavelet (8.53) is indeed limited in
frequency as well.

In general, a wavelet is a function ψ ∈ L2(R) with a zero average,
∫ +∞

−∞
ψ(t) dt = 0 (8.55)

that satisfies some conditions that ensure it can be utilized in a multiresolution decom-
position. The conditions ensure that we can use the decomposition for zooming in
locally in some part of an image, much as we might be interested in closer or farther
views of some neighborhood in a map.

The constraint (8.55) is called the admissibility condition for wavelets. A function
that sums to zero must oscillate around zero. Also, from (8.32), we see that the DC
value, the Fourier transform of ψ(t) for ω = 0, is zero. Another way to state this is
that the 0th moment M0 of ψ(t) is zero. The pth moment is defined as

Mp =
∫ ∞

−∞
t pψ(t) dt. (8.56)

258 8 Lossy Compression Algorithms

The function ψ is normalized with ∥ψ∥ = 1 and centered in the neighborhood
of t = 0. We can obtain a family of wavelet functions by scaling and translating the
mother wavelet ψ as follows:

ψs,u(t) =
1√
s
ψ

(
t − u

s

)
. (8.57)

If ψ(t) is normalized, so is ψs,u(t).
The Continuous Wavelet Transform (CWT) of f ∈ L2(R) at time u and scale s

is defined as

W(f, s, u) =
∫ +∞

−∞
f (t)ψs,u(t) dt (8.58)

The CWT of a 1D signal is a 2D function—a function of both scale s and shift u.
A very important issue is that, in contradistinction to (8.32), where the Fourier

analysis function is stipulated to be the sinusoid, here (8.58) does not state what ψ(t)
actually is! Instead, we create a set of rules such functions must obey and then invent
useful functions that obey these rules—different functions for different uses.

Just as we defined the DCT in terms of products of a function with a set of basis
functions, here the transform W is written in terms of inner products with basis
functions that are a scaled and shifted version of the mother wavelet ψ(t).

The mother wavelet ψ(t) is a wave, since it must be an oscillatory function. Why
is it wavelet? The spatial-frequency analyzer parameter in (8.58) is s, the scale. We
choose some scale s and see how much content the signal has around that scale.
To make the function decay rapidly, away from the chosen s, we have to choose a
mother wavelet ψ(t) that decays as fast as some power of s.

It is actually easy to show, from (8.58), that if all moments of ψ(t) up to the nth
are zero (or quite small, practically speaking), then the CWT coefficient W(f, s, u)
has a Taylor expansion around u = 0 that is of order sn+2 (see Exercise 12). This is
the localization in frequency we desire in a good mother wavelet.

We derive wavelet coefficients by applying wavelets at different scales over many
locations of the signal. Excitingly, if we shrink the wavelets down small enough
that they cover a part of the function f (t) that is a polynomial of degree n or less,
the coefficient for that wavelet and all smaller ones will be zero. The condition
that the wavelet should have vanishing moments up to some order is one way of
characterizing mathematical regularity conditions on the mother wavelet.

The inverse of the continuous wavelet transform is:

f (t) = 1
Cψ

∫ +∞

0

∫ +∞

−∞
W(f, s, u)

1√
s

ψ

(
t − u

s

)
1
s2 du ds (8.59)

where

Cψ =
∫ +∞

0

|+(ω)|2
ω

dω < +∞ (8.60)

and +(ω) is the Fourier transform of ψ(t). Eq. (8.60) is another phrasing of the
admissibility condition.

The trouble with the CWT is that (8.58) is nasty: most wavelets are not analytic
but result simply from numerical calculations. The resulting infinite set of scaled and

8.6 Wavelet-Based Coding 259

shifted functions is not necessary for the analysis of sampled functions, such as the
ones arise in image processing. For this reason, we apply the ideas that pertain to the
CWT to the discrete domain.

8.6.3 DiscreteWavelet Transform*

Discrete wavelets are again formed from a mother wavelet, but with scale and shift
in discrete steps.

Multiresolution Analysis and the DiscreteWavelet Transform

The connection between wavelets in the continuous time domain and filter banks in
the discrete time domain is multiresolution analysis; we discuss the DWT within this
framework. Mallat [10] showed that it is possible to construct wavelets ψ such that
the dilated and translated family

{
ψ j,n(t) =

1√
2 j

ψ

(
t − 2 j n

2 j

)}

(j,n)∈Z2
(8.61)

is an orthonormal basis of L2(R), where Z represents the set of integers. This is
known as “dyadic” scaling and translation and corresponds to the notion of zooming
out in a map by factors of 2. (If we draw a cosine function cos(t) from time 0 to 2π

and then draw cos(t/2), we see that while cos(t) goes over a whole cycle, cos(t/2)
has only a half cycle: the function cos(2−1t) is a wider function and thus is at a
broader scale.)

Note that, we change the scale of translations along with the overall scale 2 j , so as
to keep movement in the lower resolution image in proportion. Notice also that the
notation used says that a larger index j corresponds to a coarser version of the image.

Multiresolution analysis provides the tool to adapt signal resolution to only rele-
vant details for a particular task. The octave decomposition introduced by Mallat [11]
initially decomposes a signal into an approximation component and a detail com-
ponent. The approximation component is then recursively decomposed into approx-
imation and detail at successively coarser scales. Wavelets are set up such that the
approximation at resolution 2− j contains all the necessary information to compute
an approximation at coarser resolution 2−(j+1).

Wavelets are used to characterize detail information. The averaging information
is formally determined by a kind of dual to the mother wavelet, called the scaling
function φ(t).

The main idea in the theory of wavelets is that at a particular level of resolution j ,
the set of translates indexed by n form a basis at that level. Interestingly, the set of
translates forming the basis at the j + 1 next level, a coarser level, can all be written
as a sum of weights times the level- j basis. The scaling function is chosen such that
the coefficients of its translates are all necessarily bounded (less than infinite).

260 8 Lossy Compression Algorithms

The scaling function, along with its translates, forms a basis at the coarser level
j + 1 (say 3, or the 1/8 level) but not at level j (say 2, or the 1/4 level). Instead, at
level j the set of translates of the scaling function φ along with the set of translates
of the mother wavelet φ do form a basis. We are left with the situation that the scaling
function describes smooth, or approximation, information, and the wavelet describes
what is left over—detail information.

Since the set of translates of the scaling function φ at a coarser level can be written
exactly as a weighted sum of the translates at a finer level, the scaling function must
satisfy the so-called dilation equation [12]:

φ(t) =
∑

n∈Z

√
2h0[n]φ(2t − n) (8.62)

The square brackets come from the theory of filters, and their use is carried over
here. The dilation equation is a recipe for finding a function that can be built from a
sum of copies of itself that are first scaled, translated, and dilated. Equation (8.62)
expresses a condition that a function must satisfy to be a scaling function and at the
same time forms a definition of the scaling vector h0.

Not only is the scaling function expressible as a sum of translates, but as well the
wavelet at the coarser level is also expressible as such:

ψ(t) =
∑

n∈Z

√
2h1[n]φ(2t − n) (8.63)

Below, we’ll show that the set of coefficients h1 for the wavelet can in fact be derived
from the scaling function ones h0 [Eq. (8.65) below], so we also have that the wavelet
can be derived from the scaling function, once we have one. The equation reads

ψ(t) =
∑

n∈Z

(−1)nh0[1 − n]φ(2t − n) (8.64)

So the condition on a wavelet is similar to that on the scaling function, Eq. (8.62),
and in fact uses the same coefficients, only in the opposite order and with alternating
signs.

Clearly, for efficiency, we would like the sums in (8.62) and (8.63) to be as few as
possible, so we choose wavelets that have as few vector entries h0 and h1 as possible.
The effect of the scaling function is a kind of smoothing, or filtering, operation on a
signal. Therefore, it acts as a low-pass filter, screening out high-frequency content.
The vector values h0[n] are called the low-pass filter impulse response coefficients,
since they describe the effect of the filtering operation on a signal consisting of a
single spike with magnitude unity (an impulse) at time t = 0. A complete discrete
signal is made of a set of such spikes, shifted in time from 0 and weighted by the
magnitudes of the discrete samples.

Hence, to specify a DWT, only the discrete low-pass filter impulse response h0[n]
is needed. These specify the approximation filtering, given by the scaling func-
tion. The discrete high-pass impulse response h1[n], describing the details using the
wavelet function, can be derived from h0[n] using the following equation:

h1[n] = (−1)nh0[1 − n] (8.65)

8.6 Wavelet-Based Coding 261

Table 8.2 Orthogonal wavelet filters

Wavelet Number of taps Start index Coefficients

Haar 2 0 [0.707, 0.707]
Daubechies 4 4 0 [0.483, 0.837, 0.224, −0.129]
Daubechies 6 6 0 [0.332, 0.807, 0.460, −0.135,

−0.085, 0.0352]
Daubechies 8 8 0 [0.230, 0.715, 0.631, −0.028,

−0.187, 0.031, 0.033, −0.011]

The number of coefficients in the impulse response is called the number of taps in
the filter. If h0[n] has only a finite number of nonzero entries, the resulting wavelet
is said to have compact support. Additional constraints, such as orthonormality and
regularity, can be imposed on the coefficients h0[n]. The vectors h0[n] and h1[n] are
called the low-pass and high-pass analysis filters.

To reconstruct the original input, an inverse operation is needed. The inverse
filters are called synthesis filters. For orthonormal wavelets, the forward transform
and its inverse are transposes of each other, and the analysis filters are identical to
the synthesis filters.

Without orthogonality, the wavelets for analysis and synthesis are called biorthog-
onal, a weaker condition. In this case, the synthesis filters are not identical to the
analysis filters. We denote them as h̃0[n] and h̃1[n]. To specify a biorthogonal wavelet
transform, we require both h0[n] and h̃0[n]. As before, we can compute the discrete
high-pass filters in terms of sums of the low-pass ones:

h1[n] = (−1)nh̃0[1 − n] (8.66)

h̃1[n] = (−1)nh0[1 − n] (8.67)

Tables 8.2 and 8.3 (cf. [13]) give some commonly used orthogonal and biorthogonal
wavelet filters. The “start index” columns in these tables refer to the starting value
of the index n used in Eqs. (8.66) and (8.67).

Figure 8.18 shows a block diagram for the 1D dyadic wavelet transform. Here,
x[n] is the discrete sampled signal. The box ↓ 2 means subsampling by taking

every second element, and the box ↑ 2 means upsampling by replication. The
reconstruction phase yields series y[n].

For analysis, at each level we transform the series x[n] into another series of the
same length, in which the first half of the elements is approximation information and
the second half consists of detail information. For an N -tap filter, this is simply the
series

{x[n]} → y[n] =

⎧
⎨

⎩
∑

j

x[j]h0[n − j] ;
∑

j

x[j]h1[n − j]

⎫
⎬

⎭ (8.68)

where for each half, the odd-numbered results are discarded. The summation over
shifted coefficients in (8.68) is referred to as a convolution.

262 8 Lossy Compression Algorithms

Table 8.3 Biorthogonal wavelet filters

Wavelet Filter Number of taps Start index Coefficients

Antonini
9/7

h0[n] 9 −4 [0.038, −0.024, −0.111, 0.377, 0.853,
0.377, −0.111, −0.024, 0.038]

h̃0[n] 7 −3 [−0.065, −0.041, 0.418, 0.788, 0.418,
−0.041, −0.065]

Villa
10/18

h0[n] 10 −4 [0.029, 0.0000824, −0.158, 0.077, 0.759,
0.759, 0.077, −0.158, 0.0000824, 0.029]

h̃0[n] 18 −8 [0.000954, −0.00000273, −0.009, −0.003,
0.031, −0.014, −0.086, 0.163, 0.623,
0.623, 0.163, −0.086, −0.014, 0.031,
−0.003, −0.009, −0.00000273,
0.000954]

Brislawn h0[n] 10 −4 [0.027, −0.032, −0.241, 0.054, 0.900,
0.900, 0.054, −0.241, −0.032, 0.027]

h̃0[n] 10 −4 [0.020, 0.024, −0.023, 0.146, 0.541, 0.541,
0.146, −0.023, 0.024, 0.020]

2D DiscreteWavelet Transform

The extension of the wavelet transform to two dimensions is quite straightforward.
A two-dimensional scaling function is said to be separable if it can be factored into
a product of two one-dimensional scaling functions. That is,

φ(x, y) = φ(x)φ(y) (8.69)

For simplicity, only separable wavelets are considered in this section. Furthermore,
let’s assume that the width and height of the input image are powers of 2.

For an N by N input image, the two-dimensional DWT proceeds as follows:
1. Convolve each row of the image with h0[n] and h1[n], discard the odd-numbered

columns of the resulting arrays, and concatenate them to form a transformed row.
2. After all rows have been transformed, convolve each column of the result with

h0[n] and h1[n]. Again discard the odd-numbered rows and concatenate the
result.

After the above two steps, one stage of the DWT is complete. The transformed image
now contains four subbands LL, HL, LH, and HH, standing for low-low, high-low,
and so on, as Fig. 8.19a shows. As in the one-dimensional transform, the LL subband
can be further decomposed to yield yet another level of decomposition. This process
can be continued until the desired number of decomposition levels is reached or the
LL component only has a single element left. A two-level decomposition is shown
in Fig. 8.19b.

8.6 Wavelet-Based Coding 263

y[n]

2

2

2

2

2

2

2

2

2

2

2

2

x[n]

h0 [n]

h1 [n]

h0 [n]

h0 [n]

h1 [n]

h1 [n]

h0 [n]

h1 [n]

h0 [n]

h1 [n]

h0 [n]

h1 [n]

Fig. 8.18 Block diagram of the 1D dyadic wavelet transform

LL2

HL

HH

LL

LH

LH2

HL2

HH2

LH1 HH1

HL1

(a) (b)

Fig. 8.19 The two-dimensional discrete wavelet transform: a one-level transform; b two-level
transform

264 8 Lossy Compression Algorithms

Fig. 8.20 Lena: a original 128 × 128 image; b 16 × 16 subsampled image

The inverse transform simply reverses the steps of the forward transform.
1. For each stage of the transformed image, starting with the last, separate each

column into low-pass and high-pass coefficients. Upsample each of the low-
pass and high-pass arrays by inserting a zero after each coefficient.

2. Convolve the low-pass coefficients with h0[n] and high-pass coefficients with
h1[n] and add the two resulting arrays.

3. After all columns have been processed, separate each row into low-pass and
high-pass coefficients and upsample each of the two arrays by inserting a zero
after each coefficient.

4. Convolve the low-pass coefficients with h0[n] and high-pass coefficients with
h1[n] and add the two resulting arrays.

If biorthogonal filters are used for the forward transform, we must replace the h0[n]
and h1[n] above with h̃0[n] and h̃1[n] in the inverse transform.

Example 8.8

The input image is a subsampled version of the image Lena, as shown in Fig. 8.20.
The size of the input is 16 × 16. The filter used in the example is the Antonini 9/7
filter set given in Table 8.3.

Before we begin, we need to compute the analysis and synthesis high-pass filters
using Eqs. (8.66) and (8.67). The resulting filter coefficients are

h1[n] = [−0.065, 0.041, 0.418,−0.788, 0.418, 0.041,−0.065]
h̃1[n] = [−0.038,−0.024, 0.111, 0.377,−0.853, 0.377, 0.111,−0.024,−0.038]

(8.70)

8.6 Wavelet-Based Coding 265

The input image in numerical form is

I00(x, y) =
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

158 170 97 104 123 130 133 125 132 127 112 158 159 144 116 91
164 153 91 99 124 152 131 160 189 116 106 145 140 143 227 53
116 149 90 101 118 118 131 152 202 211 84 154 127 146 58 58

95 145 88 105 188 123 117 182 185 204 203 154 153 229 46 147
101 156 89 100 165 113 148 170 163 186 144 194 208 39 113 159
103 153 94 103 203 136 146 92 66 192 188 103 178 47 167 159
102 146 106 99 99 121 39 60 164 175 198 46 56 56 156 156

99 146 95 97 144 61 103 107 108 111 192 62 65 128 153 154
99 140 103 109 103 124 54 81 172 137 178 54 43 159 149 174
84 133 107 84 149 43 158 95 151 120 183 46 30 147 142 201
58 153 110 41 94 213 71 73 140 103 138 83 152 143 128 207
56 141 108 58 92 51 55 61 88 166 58 103 146 150 116 211
89 115 188 47 113 104 56 67 128 155 187 71 153 134 203 95
35 99 151 67 35 88 88 128 140 142 176 213 144 128 214 100
89 98 97 51 49 101 47 90 136 136 157 205 106 43 54 76
44 105 69 69 68 53 110 127 134 146 159 184 109 121 72 113

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

I represents the pixel values. The first subscript of I indicates the current stage of
the transform, while the second subscript indicates the current step within a stage.
We start by convolving the first row with both h0[n] and h1[n] and discarding the
values with odd-numbered index. The results of these two operations are

(I00(:, 0) ∗ h0[n]) ↓ 2 = [245, 156, 171, 183, 184, 173, 228, 160]
(I00(:, 0) ∗ h1[n]) ↓ 2 = [−30, 3, 0, 7,−5,−16,−3, 16]

where the colon in the first index position indicates that we are showing a whole row.
If you like, you can verify these operations using MATLAB’s conv function.

Next, we form the transformed output row by concatenating the resulting coeffi-
cients. The first row of the transformed image is then

[245, 156, 171, 183, 184, 173, 228, 160,−30, 3, 0, 7,−5,−16,−3, 16].
Similar to the simple one-dimensional Haar transform examples, most of the energy
is now concentrated on the first half of the transformed image. We continue the same
process for the remaining rows and obtain the following result:

266 8 Lossy Compression Algorithms

I11(x, y) =
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

245 156 171 183 184 173 228 160 −30 3 0 7 −5 −16 −3 16
239 141 181 197 242 158 202 229 −17 5 −20 3 26 −27 27 141
195 147 163 177 288 173 209 106 −34 2 2 19 −50 −35 −38 −1
180 139 226 177 274 267 247 163 −45 29 24 −29 −2 30 −101 −78
191 145 197 198 247 230 239 143 −49 22 36 −11 −26 −14 101 −54
192 145 237 184 135 253 169 192 −47 38 36 4 −58 66 94 −4
176 159 156 77 204 232 51 196 −31 9 −48 30 11 58 29 4
179 148 162 129 146 213 92 217 −39 18 50 −10 33 51 −23 8
169 159 163 97 204 202 85 234 −29 1 −42 23 37 41 −56 −5
155 153 149 159 176 204 65 236 −32 32 85 39 38 44 −54 −31
145 148 158 148 164 157 188 215 −55 59 −110 28 26 48 −1 −64
134 152 102 70 153 126 199 207 −47 38 13 10 −76 3 −7 −76
127 203 130 94 171 218 171 228 12 88 −27 15 1 76 24 85
70 188 63 144 191 257 215 232 −5 24 −28 −9 19 −46 36 91

129 124 87 96 177 236 162 77 −2 20 −48 1 17 −56 30 −24
103 115 85 142 188 234 184 132 −37 0 27 −4 5 −35 −22 −33

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We now go on and apply the filters to the columns of the above resulting image. As
before, we apply both h0[n] and h1[n] to each column and discard the odd indexed
results:

(I11(0, :) ∗ h0[n]) ↓ 2 = [353, 280, 269, 256, 240, 206, 160, 153]T
(I11(0, :) ∗ h1[n]) ↓ 2 = [−12, 10,−7,−4, 2,−1, 43, 16]T .

Concatenating the above results into a single column and applying the same procedure
to each of the remaining columns, we arrive at the final transformed image:

I12(x, y) =
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

353 212 251 272 281 234 308 289 −33 6 −15 5 24 −29 38 120
280 203 254 250 402 269 297 207 −45 11 −2 9 −31 −26 −74 23
269 202 312 280 316 353 337 227 −70 43 56 −23 −41 21 82 −81
256 217 247 155 236 328 114 283 −52 27 −14 23 −2 90 49 12
240 221 226 172 264 294 113 330 −41 14 31 23 57 60 −78 −3
206 204 201 192 230 219 232 300 −76 67 −53 40 4 46 −18 −107
160 275 150 135 244 294 267 331 −2 90 −17 10 −24 49 29 89
153 189 113 173 260 342 256 176 −20 18 −38 −4 24 −75 25 −5
−12 7 −9 −13 −6 11 12 −69 −10 −1 14 6 −38 3 −45 −99

10 3 −31 16 −1 −51 −10 −30 2 −12 0 24 −32 −45 109 42
−7 5 −44 −35 67 −10 −17 −15 3 −15 −28 0 41 −30 −18 −19
−4 9 −1 −37 41 6 −33 2 9 −12 −67 31 −7 3 2 0

2 −3 9 −25 2 −25 60 −8 −11 −4 −123 −12 −6 −4 14 −12
−1 22 32 46 10 48 −11 20 19 32 −59 9 70 50 16 73
43 −18 32 −40 −13 −23 −37 −61 8 22 2 13 −12 43 −8 −45
16 2 −6 −32 −7 5 −13 −50 24 7 −61 2 11 −33 43 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

8.6 Wavelet-Based Coding 267

This completes one stage of the Discrete Wavelet Transform. We can perform another
stage by applying the same transform procedure to the upper left 8 × 8 DC image of
I12(x, y). The resulting two-stage transformed image is

I22(x, y) =
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

558 451 608 532 75 26 94 25 −33 6 −15 5 24 −29 38 120
463 511 627 566 66 68 −43 68 −45 11 −2 9 −31 −26 −74 23
464 401 478 416 14 84 −97 −229 −70 43 56 −23 −41 21 82 −81
422 335 477 553 −88 46 −31 −6 −52 27 −14 23 −2 90 49 12

14 33 −56 42 22 −43 −36 1 −41 14 31 23 57 60 −78 −3
−13 36 54 52 12 −21 51 70 −76 67 −53 40 4 46 −18 −107

25 −20 25 −7 −35 35 −56 −55 −2 90 −17 10 −24 49 29 89
46 37 −51 51 −44 26 39 −74 −20 18 −38 −4 24 −75 25 −5

−12 7 −9 −13 −6 11 12 −69 −10 −1 14 6 −38 3 −45 −99
10 3 −31 16 −1 −51 −10 −30 2 −12 0 24 −32 −45 109 42
−7 5 −44 −35 67 −10 −17 −15 3 −15 −28 0 41 −30 −18 −19
−4 9 −1 −37 41 6 −33 2 9 −12 −67 31 −7 3 2 0

2 −3 9 −25 2 −25 60 −8 −11 −4 −123 −12 −6 −4 14 −12
−1 22 32 46 10 48 −11 20 19 32 −59 9 70 50 16 73
43 −18 32 −40 −13 −23 −37 −61 8 22 2 13 −12 43 −8 −45
16 2 −6 −32 −7 5 −13 −50 24 7 −61 2 11 −33 43 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Notice that I12 corresponds to the subband diagram shown in Fig. 8.19a, and I22
corresponds to Fig. 8.19b. At this point, we may apply different levels of quantization
to each subband according to some preferred bit allocation algorithm, given a desired
bitrate. This is the basis for a simple wavelet-based compression algorithm. However,
since in this example we are illustrating the mechanics of the DWT, here we will
simply bypass the quantization step and perform an inverse transform to reconstruct
the input image.

We refer to the top left 8 × 8 block of values as the innermost stage in correspon-
dence with Fig. 8.19. Starting with the innermost stage, we extract the first column
and separate the low-pass and high-pass coefficients. The low-pass coefficient is
simply the first half of the column, and the high-pass coefficients are the second
half. Then, we upsample them by appending a zero after each coefficient. The two
resulting arrays are

a⃗ = [558, 0, 463, 0, 464, 0, 422, 0]T
b⃗ = [14, 0,−13, 0, 25, 0, 46, 0]T .

Since we are using biorthogonal filters, we convolve a⃗ and b⃗ with h̃0[n] and h̃1[n]
respectively. The results of the two convolutions are then added to form a single 8×1
array. The resulting column is

[414, 354, 323, 338, 333, 294, 324, 260]T .

268 8 Lossy Compression Algorithms

All columns in the innermost stage are processed in this manner. The resulting
image is

I
′
21(x, y) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

414 337 382 403 70 −16 48 12 −33 6 −15 5 24 −29 38 120
354 322 490 368 39 59 63 55 −45 11 −2 9 −31 −26 −74 23
323 395 450 442 62 25 −26 90 −70 43 56 −23 −41 21 82 −81
338 298 346 296 23 77 −117 −131 −52 27 −14 23 −2 90 49 12
333 286 364 298 4 67 −75 −176 −41 14 31 23 57 60 −78 −3
294 279 308 350 −2 17 12 −53 −76 67 −53 40 4 46 −18 −107
324 240 326 412 −96 54 −25 −45 −2 90 −17 10 −24 49 29 89
260 189 382 359 −47 14 −63 69 −20 18 −38 −4 24 −75 25 −5
−12 7 −9 −13 −6 11 12 −69 −10 −1 14 6 −38 3 −45 −99

10 3 −31 16 −1 −51 −10 −30 2 −12 0 24 −32 −45 109 42
−7 5 −44 −35 67 −10 −17 −15 3 −15 −28 0 41 −30 −18 −19
−4 9 −1 −37 41 6 −33 2 9 −12 −67 31 −7 3 2 0

2 −3 9 −25 2 −25 60 −8 −11 −4 −123 −12 −6 −4 14 −12
−1 22 32 46 10 48 −11 20 19 32 −59 9 70 50 16 73
43 −18 32 −40 −13 −23 −37 −61 8 22 2 13 −12 43 −8 −45
16 2 −6 −32 −7 5 −13 −50 24 7 −61 2 11 −33 43 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We are now ready to process the rows. For each row of the upper left 8 × 8 sub-
image, we again separate them into low-pass and high-pass coefficients. Then we
upsample both by adding a zero after each coefficient. The results are convolved with
the appropriate h̃0[n] and h̃1[n] filters. After these steps are completed for all rows,
we have

I
′
12(x, y) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

353 212 251 272 281 234 308 289 −33 6 −15 5 24 −29 38 120
280 203 254 250 402 269 297 207 −45 11 −2 9 −31 −26 −74 23
269 202 312 280 316 353 337 227 −70 43 56 −23 −41 21 82 −81
256 217 247 155 236 328 114 283 −52 27 −14 23 −2 90 49 12
240 221 226 172 264 294 113 330 −41 14 31 23 57 60 −78 −3
206 204 201 192 230 219 232 300 −76 67 −53 40 4 46 −18 −107
160 275 150 135 244 294 267 331 −2 90 −17 10 −24 49 29 89
153 189 113 173 260 342 256 176 −20 18 −38 −4 24 −75 25 −5
−12 7 −9 −13 −6 11 12 −69 −10 −1 14 6 −38 3 −45 −99

10 3 −31 16 −1 −51 −10 −30 2 −12 0 24 −32 −45 109 42
−7 5 −44 −35 67 −10 −17 −15 3 −15 −28 0 41 −30 −18 −19
−4 9 −1 −37 41 6 −33 2 9 −12 −67 31 −7 3 2 0

2 −3 9 −25 2 −25 60 −8 −11 −4 −123 −12 −6 −4 14 −12
−1 22 32 46 10 48 −11 20 19 32 −59 9 70 50 16 73
43 −18 32 −40 −13 −23 −37 −61 8 22 2 13 −12 43 −8 −45
16 2 −6 −32 −7 5 −13 −50 24 7 −61 2 11 −33 43 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We then repeat the same inverse transform procedure on I
′
12(x, y), to obtain I

′
00(x, y).

Notice that I
′
00(x, y) is not exactly the same as I00(x, y), but the difference is small.

8.6 Wavelet-Based Coding 269

Fig. 8.21 Haar Wavelet Decomposition

These small differences are caused by round-off errors during the forward and inverse
transform, and truncation errors when converting from floating point numbers to
integer grayscale values.

I
′
00(x, y) =
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

158 170 97 103 122 129 132 125 132 126 111 157 159 144 116 91
164 152 90 98 123 151 131 159 188 115 106 145 140 143 227 52
115 148 89 100 117 118 131 151 201 210 84 154 127 146 58 58
94 144 88 104 187 123 117 181 184 203 202 153 152 228 45 146

100 155 88 99 164 112 147 169 163 186 143 193 207 38 112 158
103 153 93 102 203 135 145 91 66 192 188 103 177 46 166 158
102 146 106 99 99 121 39 60 164 175 198 46 56 56 156 156

99 146 95 97 143 60 102 106 107 110 191 61 65 128 153 154
98 139 102 109 103 123 53 80 171 136 177 53 43 158 148 173
84 133 107 84 148 42 157 94 150 119 182 45 29 146 141 200
57 152 109 41 93 213 70 72 139 102 137 82 151 143 128 207
56 141 108 58 91 50 54 60 87 165 57 102 146 149 116 211
89 114 187 46 113 104 55 66 127 154 186 71 153 134 203 94
35 99 150 66 34 88 88 127 140 141 175 212 144 128 213 100
88 97 96 50 49 101 47 90 136 136 156 204 105 43 54 76
43 104 69 69 68 53 110 127 134 145 158 183 109 121 72 113

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Figure 8.21 shows a three-level image decomposition using the Haar wavelet.

270 8 Lossy Compression Algorithms

8.7 Wavelet Packets

Wavelet packets can be viewed as a generalization of wavelets. They were first intro-
duced by Coifman, Meyer, Quake, and Wickerhauser [14] as a family of orthonormal
bases for discrete functions of RN . A complete subband decomposition can be viewed
as a decomposition of the input signal, using an analysis tree of depth log N .

In the usual dyadic wavelet decomposition, only the low-pass-filtered subband is
recursively decomposed and thus can be represented by a logarithmic tree structure.
However, a wavelet packet decomposition allows the decomposition to be represented
by any pruned subtree of the full tree topology. Therefore, this representation of the
decomposition topology is isomorphic to all permissible subband topologies [15].
The leaf nodes of each pruned subtree represent one permissible orthonormal basis.

The wavelet packet decomposition offers a number of attractive properties,
including
• Flexibility, since a best wavelet basis in the sense of some cost metric can be found

within a large library of permissible bases.
• Favorable localization of wavelet packets in both frequency and space.
• Low computational requirement for wavelet packet decomposition, because each

decomposition can be computed in the order of N log N using fast filter banks.
Wavelet packets are currently being applied to solve various practical problems

such as image compression, signal de-noising, fingerprint identification, and so on.

8.8 Embedded Zerotree ofWavelet Coefficients

So far, we have described a wavelet-based scheme for image decomposition. How-
ever, aside from referring to the idea of quantizing away small coefficients, we have
not really addressed how to code the wavelet transform values—how to form a bit-
stream. This problem is precisely what is dealt with in terms of a new data structure,
the Embedded Zerotree.

The Embedded Zerotree Wavelet (EZW) algorithm introduced by Shapiro [16]
is an effective and computationally efficient technique in image coding. This work
has inspired a number of refinements to the initial EZW algorithm, the most notable
being Said and Pearlman’s Set Partitioning in Hierarchical Trees (SPIHT) algorithm
[17] and Taubman’s Embedded Block Coding with Optimized Truncation (EBCOT)
algorithm [18], which is adopted into the JPEG2000 standard.

The EZW algorithm addresses two problems: obtaining the best image quality for a
given bitrate and accomplishing this task in an embedded fashion. An embedded code
is one that contains all lower rate codes “embedded” at the beginning of the bitstream.
The bits are effectively ordered by importance in the bitstream. An embedded code
allows the encoder to terminate the encoding at any point and thus meet any target
bitrate exactly. Similarly, a decoder can cease to decode at any point and produce
reconstructions corresponding to all lower rate encodings.

8.8 Embedded Zerotree ofWavelet Coefficients 271

Fig. 8.22 Parent–child relationship in a zerotree

To achieve this goal, the EZW algorithm takes advantage of an important aspect
of low-bitrate image coding. When conventional coding methods are used to achieve
low bitrates, using scalar quantization followed by entropy coding, say, the most
likely symbol, after quantization, is zero. It turns out that a large fraction of the bit
budget is spent encoding the significance map, which flags whether input samples (in
the case of the 2D discrete wavelet transform, the transform coefficients) have a zero
or nonzero quantized value. The EZW algorithm exploits this observation to turn any
significant improvement in encoding the significance map into a corresponding gain
in compression efficiency. The EZW algorithm consists of two central components:
the zerotree data structure and the method of successive approximation quantization.

8.8.1 The Zerotree Data Structure

The coding of the significance map is achieved using a new data structure called
the zerotree. A wavelet coefficient x is said to be insignificant with respect to a
given threshold T if |x | < T . The zerotree operates under the hypothesis that if a
wavelet coefficient at a coarse scale is insignificant with respect to a given threshold
T , all wavelet coefficients of the same orientation in the same spatial location at finer
scales are likely to be insignificant with respect to T . Using the hierarchical wavelet
decomposition presented in this chapter, we can relate every coefficient at a given
scale to a set of coefficients at the next finer scale of similar orientation.

Figure 8.22 provides a pictorial representation of the zerotree on a three-stage
wavelet decomposition. The coefficient at the coarse scale is called the parent while
all corresponding coefficients are the next finer scale of the same spatial location and
similar orientation are called children. For a given parent, the set of all coefficients
at all finer scales are called descendants. Similarly, for a given child, the set of all
coefficients at all coarser scales are called ancestors.

272 8 Lossy Compression Algorithms

Fig. 8.23 EZW scanning order

The scanning of the coefficients is performed in such a way that no child node is
scanned before its parent. Figure 8.23 depicts the scanning pattern for a three-level
wavelet decomposition.

Given a threshold T , a coefficient x is an element of the zerotree if it is insignificant
and all its descendants are insignificant as well. An element of a zerotree is a zerotree
root if it is not the descendant of a previously found zerotree root. The significance
map is coded using the zerotree with a four-symbol alphabet. The four symbols are
• The zerotree root. The root of the zerotree is encoded with a special symbol

indicating that the insignificance of the coefficients at finer scales is completely
predictable.

• Isolated zero. The coefficient is insignificant but has some significant descendants.
• Positive significance. The coefficient is significant with a positive value.
• Negative significance. The coefficient is significant with a negative value.

The cost of encoding the significance map is substantially reduced by employing
the zerotree. The zerotree works by exploiting self-similarity on the transform coeffi-
cients. The underlying justification for the success of the zerotree is that even though
the image has been transformed using a decorrelating transform, the occurrences of
insignificant coefficients are not independent events.

In addition, the zerotree coding technique is based on the observation that it is
much easier to predict insignificance than to predict significant details across scales.
This technique focuses on reducing the cost of encoding the significance map so that
more bits will be available to encode the expensive significant coefficients.

8.8.2 Successive Approximation Quantization

Embedded coding in the EZW coder is achieved using a method called Successive
Approximation Quantization (SAQ). One motivation for developing this method is to

8.8 Embedded Zerotree ofWavelet Coefficients 273

produce an embedded code that provides a coarse-to-fine, multiprecision logarithmic
representation of the scale space corresponding to the wavelet-transformed image.
Another motivation is to take further advantage of the efficient encoding of the
significance map using the zerotree data structure, by allowing it to encode more
significance maps.

The SAQ method sequentially applies a sequence of thresholds T0, . . . , TN−1 to
determine the significance of each coefficient. The thresholds are chosen such that
Ti = Ti−1/2. The initial threshold T0 is chosen so that |x j | < 2T0 for all transform
coefficients x j . A dominant list and a subordinate list are maintained during the
encoding and decoding process. The dominant list contains the coordinates of the
coefficients that have not yet been found to be significant in the same relative order
as the initial scan.

Using the scan ordering shown in Fig. 8.23, all coefficients in a given subband
appear on the initial dominant list prior to coefficients in the next subband. The
subordinate list contains the magnitudes of the coefficients that have been found to
be significant. Each list is scanned only once for each threshold.

During a dominant pass, coefficients having their coordinates on the dominant
list implies that they are not yet significant. These coefficients are compared to the
threshold Ti to determine their significance. If a coefficient is found to be significant,
its magnitude is appended to the subordinate list, and the coefficient in the wavelet
transform array is set to zero to enable the possibility of a zerotree occurring on future
dominant passes at smaller thresholds. The resulting significance map is zerotree-
coded.

The dominant pass is followed by a subordinate pass. All coefficients on the
subordinate list are scanned, and their magnitude, as it is made available to the
decoder, is refined to an additional bit of precision. Effectively, the width of the
uncertainty interval for the true magnitude of the coefficients is cut in half. For each
magnitude on the subordinate list, the refinement can be encoded using a binary
alphabet with a 1 indicating that the true value falls in the upper half of the uncertainty
interval and a 0 indicating that it falls in the lower half. The string of symbols from
this binary alphabet is then entropy-coded. After the subordinate pass, the magnitudes
on the subordinate list are sorted in decreasing order to the extent that the decoder
can perform the same sort.

The process continues to alternate between the two passes, with the threshold
halved before each dominant pass. The encoding stops when some target stopping
criterion has been met.

8.8.3 EZW Example

The following example demonstrates the concept of zerotree coding and successive
approximation quantization. Shapiro [16] presents an example of EZW coding in
his paper for an 8 × 8 three-level wavelet transform. However, unlike the example
given by Shapiro, we will complete the encoding and decoding process and show
the output bitstream up to the point just before entropy coding.

274 8 Lossy Compression Algorithms

1

57 −37

−29 30

39 −20
17 33

14 6

10 19

15 13

−7 9

12 15 33 20

10 3

10

3

−7 14 12 −9

−2

140 7 2 4

4 1

−1 1

3 7 9

8 2 1 6

9 −4 2

5 6 00 3 1 2

2 0 1 0

3 1 0

Fig. 8.24 Coefficients of a three-stage wavelet transform used as input to the EZW algorithm

Figure 8.24 shows the coefficients of a three-stage wavelet transform that we
attempt to code using the EZW algorithm. We will use the symbols p, n, t , and z to
denote positive significance, negative significance, zerotree root, and isolated zero
respectively.

Since the largest coefficient is 57, we will choose the initial threshold T0 to be 32.
At the beginning, the dominant list contains the coordinates of all the coefficients.
We begin scanning in the order shown in Fig. 8.23 and determine the significance of
the coefficients. The following is the list of coefficients visited, in the order of the
scan:

{57,−37,−29, 30, 39,−20, 17, 33, 14, 6, 10, 19, 3, 7, 8, 2, 2, 3, 12,−9, 33, 20,

2, 4}
With respect to the threshold T0 = 32, it is easy to see that the coefficients 57 and

−37 are significant. Thus, we output a p and an n to represent them. The coefficient
−29 is insignificant but contains a significant descendant, 33, in LH1. Therefore,
it is coded as z. The coefficient 30 is also insignificant, and all its descendants are
insignificant with respect to the current threshold, so it is coded as t .

Since we have already determined the insignificance of 30 and all its descendants,
the scan will bypass them, and no additional symbols will be generated. Continuing
in this manner, the dominant pass outputs the following symbols:

D0 : pnztpttptzt t t t t t t t t tptt t

Five coefficients are found to be significant: 57, −37, 39, 33, and another 33. Since
we know that no coefficients are greater than 2T0 = 64, and the threshold used in
the first dominant pass is 32, the uncertainty interval is thus [32, 64). Therefore, we
know that the value of significant coefficients lie somewhere inside this uncertainty
interval.

The subordinate pass following the dominant pass refines the magnitude of these
coefficients by indicating whether they lie in the first half or the second half of the
uncertainty interval. The output is 0 if the values lie in [32, 48) and 1 for values

8.8 Embedded Zerotree ofWavelet Coefficients 275

within [48, 64). According to the order of the scan, the subordinate pass outputs the
following bits:

S0 : 10000

Now the dominant list contains the coordinates of all the coefficients except those
found to be significant, and the subordinate list contains the values
{57, 37, 39, 33, 33}. After the subordinate pass is completed, we attempt to rearrange
the values in the subordinate list such that larger coefficients appear before smaller
ones, with the constraint that the decoder is able do exactly the same.

Since the subordinate pass halves the uncertainty interval, the decoder is able to
distinguish values from [32, 48) and [48, 64). Since 39 and 37 are not distinguishable
in the decoder, their order will not be changed. Therefore, the subordinate list remains
the same after the reordering operation.

Before we move on to the second round of dominant and subordinate passes, we
need to set the values of the significant coefficients to 0 in the wavelet transform
array so that they do not prevent the emergence of a new zerotree.

The new threshold for a second dominant pass is T1 = 16. Using the same
procedure as above, the dominant pass outputs the following symbols. Note that the
coefficients in the dominant list will not be scanned.

D1 : zznptnptt ztptt t t t t t t t t t t tptt t t t t (8.71)

The subordinate list is now {57, 37, 39, 33, 33, 29, 30, 20, 17, 19, 20}. The subor-
dinate pass that follows will halve each of the three current uncertainty intervals
[48, 64), [32, 48), and [16, 32). The subordinate pass outputs the following bits:

S1 : 10000110000

Now we set the value of the coefficients found to be significant to 0 in the wavelet
transform array.

The output of the subsequent dominant and subordinate passes is shown below:

D2 : zzzzzzzzptpzpptnttptppttpttpttpnppttt t t tptt t t t t t t t t t t t t t

S2 : 01100111001101100000110110

D3 : zzzzzzztzpztztnttptt t t tptnntt t tptt tpptppttptt t t t

S3 : 00100010001110100110001001111101100010

D4 : zzzzztt zt zt zzt zzpttpppttt tpttpttnpttptptt tpt

S4 : 1111101001101011000001011101101100010010010101010

D5 : zzzztzt t t t zt zzzzttpttptt t t tnptpptttppttp

Since the length of the uncertainty interval in the last pass is 1, the last subordinate
pass is unnecessary.

On the decoder side, suppose we received information only from the first dominant
and subordinate passes. We can reconstruct a lossy version of the transform coeffi-
cients by reversing the encoding process. From the symbols in D0 we can obtain the
position of the significant coefficients. Then, using the bits decoded from S0, we can

276 8 Lossy Compression Algorithms

0

0

0

0

0

0

0000

0

0

0

0

−40

40

40

4056

0

0

0

0

0

00

0

00

0

0

0

00

0000

0

0

00

0 0000

0

0000

0

000

00

00

0000

Fig. 8.25 Reconstructed transform coefficients from the first dominant and subordinate passes

0

0

0

0

0

0 0

0

0 0

0

0

0

58 −38 38

34

34

30−30

−22

22

18

20

12

12 12

12

12

12 12 −1212

12 12

12

12 12

12

0

0

00

0

000

0

0 0

0

0 00000

0

0

00

0

00

Fig.8.26 Reconstructed transform coefficients from D0, S0, D1, S1, D2, and the first 10 bits of S2

reconstruct the value of these coefficients using the center of the uncertainty interval.
Figure 8.25 shows the resulting reconstruction.

It is evident that we can stop the decoding process at any point to reconstruct
a coarser representation of the original input coefficients. Figure 8.26 shows the
reconstruction if the decoder received only D0, S0, D1, S1, D2, and only the first
10 bits of S2. The coefficients that were not refined during the last subordinate pass
appear as if they were quantized using a coarser quantizer than those that were.

In fact, the reconstruction value used for these coefficients is the center of the
uncertainty interval from the previous pass. The heavily shaded coefficients in the
figure are those that were refined, while the lightly shaded coefficients are those that
were not refined. As a result, it is not easy to see where the decoding process ended,
and this eliminates much of the visual artifact contained in the reconstruction.

8.9 Set Partitioning in Hierarchical Trees (SPIHT) 277

8.9 Set Partitioning in Hierarchical Trees (SPIHT)

SPIHT is a revolutionary extension of the EZW algorithm. Based on EZW’s underly-
ing principles of partial ordering of transformed coefficients, ordered bitplane trans-
mission of refinement bits, and the exploitation of self-similarity in the transformed
wavelet image, the SPIHT algorithm significantly improves the performance of its
predecessor by changing the ways subsets of coefficients are partitioned and refine-
ment information is conveyed.

A unique property of the SPIHT bitstream is its compactness. The resulting bit-
stream from the SPIHT algorithm is so compact that passing it through an entropy
coder would produce only marginal gain in compression at the expense of much
more computation. Therefore, a fast SPIHT coder can be implemented without any
entropy coder or possibly just a simple patent-free Huffman coder.

Another signature of the SPIHT algorithm is that no ordering information is
explicitly transmitted to the decoder. Instead, the decoder reproduces the execution
path of the encoder and recovers the ordering information. A desirable side effect
of this is that the encoder and decoder have similar execution times, which is rarely
the case for other coding methods. Said and Pearlman [17] gives a full description
of this algorithm.

8.10 Exercises

1. Assume we have an unbounded source we wish to quantize using an M-bit
midtread uniform quantizer. Derive an expression for the total distortion if the
step size is 1.

2. Suppose the domain of a uniform quantizer is [−bM , bM]. We define the loading
fraction as

γ = bM

σ

where σ is the standard deviation of the source. Write a simple program to
quantize a Gaussian distributed source having zero mean and unit variance using
a 4-bit uniform quantizer. Plot the SNR against the loading fraction and estimate
the optimal step size that incurs the least amount of distortion from the graph.

3. Suppose the input source is Gaussian distributed with zero mean and unit
variance—that is, the probability density function is defined as

fX (x) =
1√
2π

e− x2
2 . (8.72)

We wish to find a four-level Lloyd–Max quantizer. Let yi = [y0
i , . . . , y3

i]
and bi = [b0

i , . . . , b3
i]. The initial reconstruction levels are set to y0 =

[−2,−1, 1, 2]. This source is unbounded, so the outer two boundaries are +∞
and −∞.
Follow the Lloyd–Max algorithm in this chapter: the other boundary values

278 8 Lossy Compression Algorithms

are calculated as the midpoints of the reconstruction values. We now have
b0 = [−∞,−1.5, 0, 1.5,∞]. Continue one more iteration for i = 1, using
Eq. (8.13) and find y1

0 , y1
1 , y1

2 , y1
3 , using numerical integration. Also calculate

the squared error of the difference between y1 and y0.
Iteration is repeated until the squared error between successive estimates of
the reconstruction levels are below some predefined threshold ϵ. Write a small
program to implement the Lloyd–Max quantizer described above.

4. If the block size for a 2D DCT transform is 8 × 8, and we use only the DC
components to create a thumbnail image, what fraction of the original pixels
would we be using?

5. When the block size is 8, the definition of the DCT is given in Eq. (8.17).
(a) If an 8 × 8 grayscale image is in the range 0 .. 255, what is the largest value

a DCT coefficient could be, and for what input image? (Also, state all the
DCT coefficient values for that image.)

(b) If we first subtract the value 128 from the whole image and then carry out
the DCT, what is the exact effect on the DCT value F[2, 3]?

(c) Why would we carry out that subtraction? Does the subtraction affect the
number of bits we need to code the image?

(d) Would it be possible to invert that subtraction, in the IDCT? If so, how?
6. Write a simple program or refer to the sample DCT program dct_1D.c in the

book’s web site to verify the results in Example 8.2 of the 1D DCT example in
this chapter.

7. Write a program to verify that the DCT-matrix T8 as defined in Eqs. 8.29 and
8.30 is an Orthogonal Matrix, i.e., all its rows and columns are orthogonal unit
vectors (orthonormal vectors).

8. Write a program to verify that the 2D DCT and IDCT matrix implementations
as defined in Eqs. 8.27 and 8.31 are lossless, i.e., they can transform any 8 × 8
values f (i, j) to F(u, v) and back to f (i. j). (Here, we are not concerned with
possible/tiny floating point calculation errors.)

9. We could use a similar DCT scheme for video streams by using a 3D version of
DCT. Suppose one color component of a video has pixels fi jk at position (i, j)
and time k. How could we define its 3D DCT transform?

10. Suppose a uniformly colored sphere is illuminated and has shading varying
smoothly across its surface, as in Fig. 8.27.

(a) What would you expect the DCT coefficients for its image to look like?
(b) What would be the effect on the DCT coefficients of having a checkerboard

of colors on the surface of the sphere?
(c) For the uniformly colored sphere again, describe the DCT values for a block

that straddles the top edge of the sphere, where it meets the black back-
ground.

(d) Describe the DCT values for a block that straddles the left edge of the sphere.

11. The Haar wavelet has a scaling function which is defined as follows:

φ(t) =
{

1 0 ≤ t ≤ 1
0 otherwise

(8.73)

8.10 Exercises 279

Fig. 8.27 Sphere shaded by a
light

and its scaling vector is h0[0] = h0[1] = 1/
√

2.
(a) Draw the scaling function, then verify that its dilated translates φ(2t) and

φ(2t −1) satisfy the dilation equation (8.62). Draw the combination of these
functions that makes up the full function φ(t).

(b) Derive the wavelet vector h1[0], h1[1] from Eq. (8.65) and then derive and
draw the Haar wavelet function ψ(t) from Eq. (8.63).

12. Suppose the mother wavelet ψ(t) has vanishing moments Mp up to and including
Mn . Expand f (t) in a Taylor series around t = 0, up to the nth derivative of f
[i.e., up to leftover error of order O(n+1)]. Evaluate the summation of integrals
produced by substituting the Taylor series into (8.58) and show that the result is
of order O(sn+2).

13. The program wavelet_compression.c on this book’s web site is in fact
simple to implement as a MATLAB function (or similar fourth-generation lan-
guage). The advantage in doing so is that the imread function can input image
formats of a great many types, and imwrite can output as desired. Using the
given program as a template, construct a MATLAB program for wavelet-based
image reduction, with perhaps the number of wavelet levels being a function
parameter.

14. It is interesting to find the Fourier transform of functions, and this is easy if you
have available a symbolic manipulation system such as MAPLE. In that lan-
guage, you can just invoke the fourier function and view the answer directly!
As an example, try the following code fragment:
with(‘inttrans‘);
f := 1;
F := fourier(f,t,w);

The answer should be 2πδ(w). Let’s try a Gaussian:
f := exp(-tˆ2);
F := fourier(f,t,w);

Now the answer should be
√

πe(−w2/4): the Fourier transform of a Gaussian is
simply another Gaussian.

15. Suppose we define the wavelet function

ψ(t) = exp(−t1/4) sin(t4) , t ≥ 0 (8.74)

280 8 Lossy Compression Algorithms

This function oscillates about the value 0. Use a plotting package to convince
yourself that the function has a zero moment Mp for any value of p.

16. Implement both a DCT-based and a wavelet-based image coder. Design your
user interface so that the compressed results from both coders can be seen side
by side for visual comparison. The PSNR for each coded image should also be
shown, for quantitative comparisons.
Include a slider bar that controls the target bitrate for both coders. As you change
the target bitrate, each coder should compress the input image in real time and
show the compressed results immediately on your user interface.
Discuss both qualitative and quantitative compression results observed from
your program at target bitrates of 4, 1, and 0.25 bpp.

References

1. K. Sayood, Introduction to Data Compression, 4th edn. (Morgan Kaufmann, San Francisco,
2012)

2. H. Stark, J.W. Woods, Probability and Random Processes with Application to Signal Process-
ing, 3rd edn. (Prentice Hall, Upper Saddle River, 2002)

3. A. György. On the theoretical limits of lossy source coding, 1998. Tudományos Diákkör (TDK)
Conf. (Hungarian Scientific Student’s Conf.) at Technical University of Budapest

4. S. Arimoto, An algorithm for calculating the capacity of an arbitrary discrete memoryless
channel. IEEE Trans. Inform. Theory 18, 14–20 (1972)

5. R. Blahut, Computation of channel capacity and rate-distortion functions. IEEE Trans. Inform.
Theory 18, 460–473 (1972)

6. A. Gersho, R.M. Gray, Vector Quantization and Signal Compression. (Springer, Boston, 1991)
7. A.K. Jain, Fundamentals of Digital Image Processing (Prentice-Hall, Englewood Cliffs, 1988)
8. K.R. Rao, P. Yip, Discrete Cosine Transform: Algorithms, Advantages, Applications (Academic

Press, Boston, 1990)
9. J.F. Blinn, What’s the deal with the DCT? IEEE Comput. Graphics Appl. 13(4), 78–83 (1993)

10. S. Mallat, A Wavelet Tour of Signal Processing, 3rd edn. (Academic Press, San Diego, 2008)
11. S. Mallat, A theory for multiresolution signal decomposition: the wavelet representation. IEEE

Trans. Pattern Anal. Mach. Intell. 11, 674–693 (1989)
12. R.C. Gonzalez, R.E. Woods, Digital Image Processing, 3rd edn. (Prentice-Hall, Upper Saddle

River, 2007)
13. B.E. Usevitch, A tutorial on modern lossy wavelet image compression: foundations of JPEG

2000. IEEE Signal Process. Mag. 18(5), 22–35 (2001)
14. R. Coifman, Y. Meyer, S. Quake, V. Wickerhauser, Signal Processing and Compression with

Wavelet packets. (Yale University, Numerical Algorithms Research Group, 1990)
15. K. Ramachandran, M. Vetterli, Best wavelet packet basis in a rate-distortion sense. IEEE Trans.

Image Processing 2, 160–173 (1993)
16. J. Shapiro, Embedded image coding using zerotrees of wavelet coefficients. IEEE Trans. Signal

Processing, 41(12), 3445–3462 (1993)
17. A. Said, W.A. Pearlman, A new, fast, and efficient image codec based on set partitioning in

hierarchical trees. IEEE Trans. CSVT 6(3), 243–249 (1996)
18. D. Taubman, High performance scalable image compression with EBCOT. IEEE Trans. Image

Processing 9(7), 1158–1170 (2000)

9ImageCompression Standards

Recent years have seen an explosion in the availability of digital images, because of
the increase in numbers of digital imaging devices such as smartphones, webcams,
digital cameras, and scanners. The need to efficiently process and store images in
digital form has motivated the development of many image compression standards
for various applications and needs. In general, standards have greater longevity than
particular programs or devices and therefore warrant careful study. In this chapter, we
examine some current standards and demonstrate how topics presented in Chaps. 7
and 8 are applied in practice.

We first explore the standard JPEG definition, used in most images, then go on
to look at the wavelet-based JPEG2000 standard. Two other standards, JPEG-LS—
aimed particularly at a lossless JPEG, outside the main JPEG standard—and JBIG,
for bi-level image compression, are included for completeness.

9.1 The JPEG Standard

JPEG is an image compression standard developed by the Joint Photographic Experts
Group. It was formally accepted as an international standard in 1992 [1].

JPEG consists of a number of steps, each of which contributes to compression.
We will look at the motivation behind these steps, then take apart the algorithm piece
by piece.

9.1.1 Main Steps in JPEG Image Compression

As we know, unlike one-dimensional audio signals, a digital image f (i, j) is not
defined over the time domain. Instead, it is defined over a spatial domain—that is,
an image is a function of the two dimensions i and j (or, conventionally, x and y).
The 2D DCT is used as one step in JPEG, to yield a frequency response that is a
function F(u, v) in the spatial frequency domain, indexed by two integers u and v.

Z.-N. Li et al., Fundamentals of Multimedia, 281
Texts in Computer Science, DOI: 10.1007/978-3-319-05290-8_9,
© Springer International Publishing Switzerland 2014

http://dx.doi.org/10.1007/978-3-319-05290-8_7
http://dx.doi.org/10.1007/978-3-319-05290-8_8

282 9 Image Compression Standards

JPEG is a lossy image compression method. The effectiveness of the DCT
transform coding method in JPEG relies on three major observations:
Observation 1. Useful image contents change relatively slowly across the image—

that is, it is unusual for intensity values to vary widely several times
in a small area—for example, in an 8 × 8 image block. Spatial
frequency indicates how many times pixel values change across an
image block. The DCT formalizes this notion with a measure of
how much the image contents change in relation to the number of
cycles of a cosine wave per block.

Observation 2. Psychophysical experiments suggest that humans are much less
likely to notice the loss of very high-spatial frequency components
than lower frequency components.

JPEG’s approach to the use of DCT is basically to reduce high-frequency contents
and then efficiently code the result into a bitstring. The term spatial redundancy
indicates that much of the information in an image is repeated: if a pixel is red, then
its neighbor is likely red also. Because of Observation 2 above, the DCT coefficients
for the lowest frequencies are most important. Therefore, as frequency gets higher,
it becomes less important to represent the DCT coefficient accurately. It may even
be safely set to zero without losing much perceivable image information.

Clearly, a string of zeros can be represented efficiently as the length of such a run
of zeros, and compression of bits required is possible. Since we end up using fewer
numbers to represent the pixels in blocks, by removing some location-dependent
information, we have effectively removed spatial redundancy.

JPEG works for both color and grayscale images. In the case of color images,
such as YCbCr, the encoder works on each component separately, using the same
routines. If the source image is in a different color format, the encoder performs a
color-space conversion to YCbCr. As discussed in Chap. 5, the chrominance images
Cr and Cb are subsampled: JPEG uses the 4:2:0 scheme, making use of another
observation about vision:
Observation 3. Visual acuity (accuracy in distinguishing closely spaced lines) is

much greater for gray (“black and white”) than for color. We simply
cannot see much change in color if it occurs in close proximity—
think of the blobby ink used in comic books. This works simply
because our eye sees the black lines best, and our brain just pushes
the color into place. In fact, ordinary broadcast TV makes use of
this phenomenon to transmit much less color information than gray
information.

When the JPEG image is needed for viewing, the three compressed component
images can be decoded independently and eventually combined. For the color chan-
nels, each pixel must be first enlarged to cover a 2 × 2 block. Without loss of gener-
ality, we will simply use one of them—for example, the Y image, in the description
of the compression algorithm below.

Figure 9.1 shows a block diagram for a JPEG encoder. If we reverse the arrows
in the figure, we basically obtain a JPEG decoder. The JPEG encoder consists of the
following main steps:

http://dx.doi.org/10.1007/978-3-319-05290-8_5

9.1 The JPEG Standard 283

DCT Quantization

Entropy

Coding
RLC

DPCM

Header

Data

DC

AC

Quantiz.
TablesCoding

Tables

Tables

Zag
Zig

YCbCr

8 × 8

f(i,j) F (u,v) F̂ (u,v)

Fig. 9.1 Block diagram for JPEG encoder

• Transform RGB to YCbCr and subsample color
• Perform DCT on image blocks
• Apply Quantization
• Perform Zigzag ordering and run-length encoding
• Perform Entropy coding.

DCT on Image Blocks

Each image is divided into 8 × 8 blocks. The 2D DCT (Eq. 8.17) is applied to each
block image f (i, j), with output being the DCT coefficients F(u, v) for each block.
The choice of a small block size in JPEG is a compromise reached by the committee:
a number larger than 8 would have made accuracy at low frequencies better, but
using 8 makes the DCT (and IDCT) computation very fast.

Using blocks at all, however, has the effect of isolating each block from its neigh-
boring context. This is why JPEG images look choppy (“blocky”) when the user
specifies a high compression ratio—we can see these blocks. (And in fact removing
such “blocking artifacts” is an important concern of researchers.)

To calculate a particular F(u, v), we select the basis image in Fig. 8.9 that corre-
sponds to the appropriate u and v and use it in Eq. 8.17 to derive one of the frequency
responses F(u, v).

Quantization

The quantization step in JPEG is aimed at reducing the total number of bits needed
for a compressed image [2]. It consists of simply dividing each entry in the frequency

http://dx.doi.org/10.1007/978-3-319-05290-8_8
http://dx.doi.org/10.1007/978-3-319-05290-8_8
http://dx.doi.org/10.1007/978-3-319-05290-8_8

284 9 Image Compression Standards

Table 9.1 The luminance
quantization table

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

Table 9.2 The chrominance
quantization table

17 18 24 47 99 99 99 99
18 21 26 66 99 99 99 99
24 26 56 99 99 99 99 99
47 66 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99

space block by an integer, then rounding:

F̂(u, v) = round
(

F(u, v)
Q(u, v)

)
(9.1)

Here, F(u, v) represents a DCT coefficient, Q(u, v) is a quantization matrix entry,
and F̂(u, v) represents the quantized DCT coefficients JPEG will use in the succeed-
ing entropy coding.

The default values in the 8×8 quantization matrix Q(u, v) are listed in Tables 9.1
and 9.2 for luminance and chrominance images, respectively. These numbers resulted
from psychophysical studies, with the goal of maximizing the compression ratio
while minimizing perceptual losses in JPEG images. The following should be
apparent:
• Since the numbers in Q(u, v) are relatively large, the magnitude and variance of

F̂(u, v) are significantly smaller than those of F(u, v). We’ll see later that F̂(u, v)
can be coded with many fewer bits. The quantization step is the main source for
loss in JPEG compression.

• The entries of Q(u, v) tend to have larger values toward the lower right corner. This
aims to introduce more loss at the higher spatial frequencies—a practice supported
by Observations 1 and 2.
We can handily change the compression ratio simply by multiplicatively scaling

the numbers in the Q(u, v) matrix. In fact, the quality factor (q f), a user choice
offered in every JPEG implementation, can be specified. It is usually in the range of
1..100, where q f = 100 corresponds to the highest quality compressed images and
q f = 1 the lowest quality. The relationship between q f and the scaling_ f actor is
as below:

// qf is the user-selected compression quality
// Q is the default Quantization Matrix

9.1 The JPEG Standard 285

// Qx is the scaled Quantization Matrix
// Q1 is a Quantization Matrix which is all 1’s

if qf >= 50
scaling_factor = (100-qf)/50;

else
scaling_factor = (50/qf);

end
if scaling_factor != 0 // if qf is not 100

Qx = round(Q*scaling_factor);
else

Qx = Q1; // no quantization
end
Qx = uint8(Qx); // max is clamped to 255 for qf=1

As an example, when q f = 50, scaling_ f actor will be 1. The resulting Q values
will be equal to the table entries. When q f = 10, the scaling_ f actor will be 5.
The resulting Q values will be five times the table entry values. For q f = 100, the
table entries simply become all 1 values, meaning no quantization from this source.
Very low quality factors, like q f = 1, are a special case: if indeed q f = 1 then
the scaling_ f actor will be 50, and the quantization matrix will contain very large
numbers. However, because of the type-cast to uint8 in a typical implementation,
the table entries go their effective maximum value of 255. Realistically, almost for
all applications, q f should not be less than 10.

JPEG also allows custom quantization tables to be specified and put in the header;
it is interesting to use low-constant or high-constant values such as Q ≡ 2 or Q ≡ 128
to observe the basic effects of Q on visual artifacts.

Figures 9.2 and 9.3 shows some results of JPEG image coding and decoding on the
test image Lena. Only the luminance image (Y) is shown. Also, the lossless coding
steps after quantization are not shown, since they do not affect the quality/loss of the
JPEG images. These results show the effect of compression and decompression
applied to a relatively smooth block in the image and a more textured (higher-
frequency-content) block, respectively.

Suppose f (i, j) represents one of the 8 × 8 blocks extracted from the image,
F(u, v) the DCT coefficients, and F̂(u, v) the quantized DCT coefficients. Let
F̃(u, v) denote the dequantized DCT coefficients, determined by simply multiplying
by Q(u, v), and let f̃ (i, j) be the reconstructed image block. To illustrate the quality
of the JPEG compression, especially the loss, the error ϵ(i, j) = f (i, j) − f̃ (i, j)
is shown in the last row in Figs. 9.2 and 9.3.

In Fig. 9.2, an image block (indicated by a black box in the image) is chosen at
the area where the luminance values change smoothly. Actually, the left side of the
block is brighter, and the right side is slightly darker. As expected, except for the DC
and the first few AC components, representing low spatial frequencies, most of the
DCT coefficients F(u, v) have small magnitudes. This is because the pixel values in
this block contain few high-spatial-frequency changes.

An explanation of a small implementation detail is in order. The range of 8-bit
luminance values f (i, j) is [0, 255]. In the JPEG implementation, each Y value is

286 9 Image Compression Standards

An 8 × 8 block from the Y image of ‘Lena’

200 202 189 188 189 175 175 175
200 203 198 188 189 182 178 175
203 200 200 195 200 187 185 175
200 200 200 200 197 187 187 187
200 205 200 200 195 188 187 175
200 200 200 200 200 190 187 175
205 200 199 200 191 187 187 175
210 200 200 200 188 185 187 186

f(i, j)

515 65 -12 4 1 2 -8 5
-16 3 2 0 0 -11 -2 3
-12 6 11 -1 3 0 1 -2
-8 3 -4 2 -2 -3 -5 -2
0 -2 7 -5 4 0 -1 -4
0 -3 -1 0 4 1 -1 0
3 -2 -3 3 3 -1 -1 3
-2 5 -2 4 -2 2 -3 0

F (u, v)

32 6 -1 0 0 0 0 0
-1 0 0 0 0 0 0 0
-1 0 1 0 0 0 0 0
-1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

F̂ (u, v)

512 66 -10 0 0 0 0 0
-12 0 0 0 0 0 0 0
-14 0 16 0 0 0 0 0
-14 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

F̃ (u, v)

199 196 191 186 182 178 177 176
201 199 196 192 188 183 180 178
203 203 202 200 195 189 183 180
202 203 204 203 198 191 183 179
200 201 202 201 196 189 182 177
200 200 199 197 192 186 181 177
204 202 199 195 190 186 183 181
207 204 200 194 190 187 185 184

f̃(i, j)

1 6 -2 2 7 -3 -2 -1
-1 4 2 -4 1 -1 -2 -3
0 -3 -2 -5 5 -2 2 -5

-2 -3 -4 -3 -1 -4 4 8
0 4 -2 -1 -1 -1 5 -2
0 0 1 3 8 4 6 -2
1 -2 0 5 1 1 4 -6
3 -4 0 6 -2 -2 2 2

(i, j)= f(i, j) − f̃(i, j)

Fig. 9.2 JPEG compression for a smooth image block

first reduced by 128 by simply subtracting 128 before encoding. The idea here is to
turn the Y component into a zero-mean image, the same as the chrominance images.
As a result, we do not waste any bits coding the mean value. (Think of an 8 × 8
block with intensity values ranging from 120 to 135.) Using f (i, j)−128 in place
of f (i, j) will not affect the output of the AC coefficients—it alters only the DC
coefficient.After decoding, the subtracted 128 will be added back onto the Y values.

In Fig. 9.3, the image block chosen has rapidly changing luminance. Hence, many
more AC components have large magnitudes (including those toward the lower right

9.1 The JPEG Standard 287

Another 8 × 8 block from the Y image of ‘Lena’

70 70 100 70 87 87 150 187
85 100 96 79 87 154 87 113

100 85 116 79 70 87 86 196
136 69 87 200 79 71 117 96
161 70 87 200 103 71 96 113
161 123 147 133 113 113 85 161
146 147 175 100 103 103 163 187
156 146 189 70 113 161 163 197

f(i, j)

-80 -40 89 -73 44 32 53 -3
-135 -59 -26 6 14 -3 -13 -28

47 -76 66 -3 -108 -78 33 59
-2 10 -18 0 33 11 -21 1
-1 -9 -22 8 32 65 -36 -1
5 -20 28 -46 3 24 -30 24
6 -20 37 -28 12 -35 33 17

-5 -23 33 -30 17 -5 -4 20

F(u, v)

-5 -4 9 -5 2 1 1 0
-11 -5 -2 0 1 0 0 -1

3 -6 4 0 -3 -1 0 1
0 1 -1 0 1 0 0 0
0 0 -1 0 0 1 0 0
0 -1 1 -1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

F̂(u, v)

-80 -44 90 -80 48 40 51 0
-132 -60 -28 0 26 0 0 -55

42 -78 64 0 -120 -57 0 56
0 17 -22 0 51 0 0 0
0 0 -37 0 0 109 0 0
0 -35 55 -64 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

F̃(u, v)

70 60 106 94 62 103 146 176
85 101 85 75 102 127 93 144
98 99 92 102 74 98 89 167

132 53 111 180 55 70 106 145
173 57 114 207 111 89 84 90
164 123 131 135 133 92 85 162
141 159 169 73 106 101 149 224
150 141 195 79 107 147 210 153

f̃(i, j)

0 10 -6 -24 25 -16 4 11
0 -1 11 4 -15 27 -6 -31
2 -14 24 -23 -4 -11 -3 29
4 16 -24 20 24 1 11 -49

-12 13 -27 -7 -8 -18 12 23
-3 0 16 -2 -20 21 0 -1
5 -12 6 27 -3 2 14 -37
6 5 -6 -9 6 14 -47 44

(i, j)= f(i, j) − f̃(i, j)

Fig. 9.3 JPEG compression for a textured image block

corner, where u and v are large). Notice that the error ϵ(i, j) is also larger now than in
Fig. 9.2—JPEG does introduce more loss if the image has quickly changing details.

An easy-to-use JPEG demo written in Java, linked from this section of the text
website, is available for you to try.

Preparation for Entropy Coding

We have so far seen two of the main steps in JPEG compression: DCT and quan-
tization. The remaining small steps shown in the block diagram in Fig. 9.1 all lead

288 9 Image Compression Standards

Fig. 9.4 Zigzag scan in JPEG

up to entropy coding of the quantized DCT coefficients. These additional data com-
pression steps are lossless. Interestingly, the DC and AC coefficients are treated
quite differently before entropy coding: run-length encoding on ACs versus DPCM
on DCs.

Run-Length Coding on AC Coefficients

Notice in Fig. 9.2 the many zeros in F̂(u, v) after quantization is applied. Run-
length Coding (RLC) (or Run-length Encoding, RLE) is therefore useful in turning
the F̂(u, v) values into sets {#-zeros-to-skip, next nonzero value}. RLC is even more
effective when we use an addressing scheme, making it most likely to hit a long run
of zeros: a zigzag scan turns the 8 × 8 matrix F̂(u, v) into a 64-vector, as Fig. 9.4
illustrates. After all, most image blocks tend to have small high-spatial-frequency
components, which are zeroed out by quantization. Hence the zigzag scan order has
a good chance of concatenating long runs of zeros. For example, F̂(u, v) in Fig. 9.2
will be turned into

(32, 6,−1,−1, 0,−1, 0, 0, 0,−1, 0, 0, 1, 0, 0, . . . , 0)

with three runs of zeros in the middle and a run of 51 zeros at the end.
The RLC step replaces values by a pair (RUNLENGTH, VALUE) for each run

of zeros in the AC coefficients of F̂ , where RUNLENGTH is the number of zeros in
the run and VALUE is the next nonzero coefficient. To further save bits, a special pair
(0,0) indicates the end-of-block after the last nonzero AC coefficient is reached. In
the above example, not considering the first (DC) component, we will thus have

(0, 6)(0,−1)(0,−1)(1,−1)(3,−1)(2, 1)(0, 0)

9.1 The JPEG Standard 289

Differential Pulse CodeModulation on DC Coefficients

The DC coefficients are coded separately from the AC ones. Each 8×8 image block
has only one DC coefficient. The values of the DC coefficients for various blocks
could be large and different, because the DC value reflects the average intensity of
each block, but consistent with Observation 1 above, the DC coefficient is unlikely
to change drastically within a short distance. This makes DPCM an ideal scheme for
coding the DC coefficients.

If the DC coefficients for the first five image blocks are 150, 155, 149, 152,
144, DPCM would produce 150, 5, −6, 3, −8, assuming the predictor for the i th
block is simply di = DCi − DCi−1, and d0 = DC0. We expect DPCM codes
to generally have smaller magnitude and variance, which is beneficial for the next
entropy coding step.

It is worth noting that unlike the run-length coding of the AC coefficients, which
is performed on each individual block, DPCM for the DC coefficients in JPEG is
carried out on the entire image at once.

Entropy Coding

The DC and AC coefficients finally undergo an entropy coding step. Below, we will
discuss only the basic (or baseline1) entropy coding method, which uses Huffman
coding and supports only 8-bit pixels in the original images (or color image compo-
nents).

Let us examine the two entropy coding schemes, using a variant of Huffman
coding for DCs and a slightly different scheme for ACs.

Huffman Coding of DC Coefficients

Each DPCM-coded DC coefficient is represented by a pair of symbols (SIZE,
AMPLITUDE), where SIZE indicates how many bits are needed for representing
the coefficient and AMPLITUDE contains the actual bits.

Table 9.3 illustrates the size category for the different possible amplitudes. Notice
that DPCM values could require more than 8 bits and could be negative values. The
one’s-complement scheme is used for negative numbers—that is, binary code 10 for
2, 01 for −2; 11 for 3, 00 for −3; and so on. In the example we are using, codes 150,
5, −6, 3, −8 will be turned into

(8, 10010110), (3, 101), (3, 001), (2, 11), (4, 0111)

In the JPEG implementation, SIZE is Huffman coded and is hence a variable-
length code. In other words, SIZE 2 might be represented as a single bit (0 or 1) if

1 The JPEG standard allows both Huffman coding and Arithmetic coding; both are entropy coding
methods. It also supports both 8-bit and 12-bit pixel sizes.

290 9 Image Compression Standards

Table 9.3 Baseline entropy
coding details—size category Size Amplitude

1 −1, 1
2 3, −2, 2, 3
3 −7 ..−4, 4 .. 7
4 −15 ..−8, 8 .. 15
. .
. .
. .
10 −1023 ..−512, 512 .. 1023

it appeared most frequently. In general, smaller SIZEs occur much more often—the
entropy of SIZE is low. Hence, deployment of Huffman coding brings additional
compression. After encoding, a custom Huffman table can be stored in the JPEG
image header; otherwise, a default Huffman table is used.

On the other hand,AMPLITUDE is not Huffman coded. Since its value can change
widely, Huffman coding has no appreciable benefit.

Huffman Coding of AC Coefficients

Recall we said that the AC coefficients are run-length coded and are represented
by pairs of numbers (RUNLENGTH, VALUE). However, in an actual JPEG imple-
mentation, VALUE is further represented by SIZE and AMPLITUDE, as for the DCs.
To save bits, RUNLENGTH and SIZE are allocated only 4 bits each and squeezed
into a single byte—let us call this Symbol 1. Symbol 2 is the AMPLITUDE value; its
number of bits is indicated by SIZE:
Symbol 1: (RUNLENGTH, SIZE)
Symbol 2: (AMPLITUDE)

The 4-bit RUNLENGTH can represent only zero-runs of length 0 to 15. Occasionally,
the zero run-length exceeds 15; then a special extension code, (15, 0), is used for
Symbol 1. In the worst case, three consecutive (15, 0) extensions are needed before
a normal terminating Symbol 1, whose RUNLENGTH will then complete the actual
runlength. As in DC, Symbol 1 is Huffman coded, whereas Symbol 2 is not.

9.1.2 JPEGModes

The JPEG standard supports numerous modes (variations). Some of the commonly
used ones are:
• Sequential Mode
• Progressive Mode
• Hierarchical Mode
• Lossless Mode.

9.1 The JPEG Standard 291

Sequential Mode

This is the default JPEG mode. Each graylevel image or color image component
is encoded in a single left-to-right, top-to-bottom scan. We implicitly assumed this
mode in the discussions so far. The “Motion JPEG” video codec uses Baseline
Sequential JPEG, applied to each image frame in the video.

Progressive Mode

Progressive JPEG delivers low quality versions of the image quickly, followed by
higher quality passes, and has become widely supported in web browsers. Such mul-
tiple scans of images are of course most useful when the speed of the communication
line is low. In Progressive Mode, the first few scans carry only a few bits and deliver a
rough picture of what is to follow. After each additional scan, more data is received,
and image quality is gradually enhanced. The advantage is that the user end has a
choice whether to continue receiving image data after the first scan(s).

Progressive JPEG can be realized in one of the following two ways. The main
steps (DCT, quantization, etc.) are identical to those in Sequential Mode.

Spectral selection: This scheme takes advantage of the spectral (spatial frequency
spectrum) characteristics of the DCT coefficients: the higher
AC components provide only detail information.

Scan 1: Encode DC and first few AC components, e.g., AC1,AC2.
Scan 2: Encode a few more AC components, e.g., AC3, AC4, AC5.

...

Scan k: Encode the last few ACs, e.g., AC61, AC62, AC63.

Successive approximation: Instead of gradually encoding spectral bands, all DCT
coefficients are encoded simultaneously, but with their
most significant bits (MSBs) first.

Scan 1: Encode the first few MSBs, e.g., Bits 7, 6, 5, and 4.
Scan 2: Encode a few more less-significant bits, e.g., Bit 3.

...

Scan m: Encode the least significant bit (LSB), Bit 0.

Hierarchical Mode

As its name suggests, Hierarchical JPEG encodes the image in a hierarchy of sev-
eral different resolutions. The encoded image at the lowest resolution is basically a
compressed low-pass-filtered image, whereas the images at successively higher res-
olutions provide additional details (differences from the lower-resolution images).
Similar to Progressive JPEG, Hierarchical JPEG images can be transmitted in mul-
tiple passes with progressively improving quality.

292 9 Image Compression Standards

4

Decode

2

+ Encode

Decode

+

2

+ Encode

Encode

Decode

Decode

2

+

2

+

Decode

2
−

+

+
−

f

f4 F4 f
~

4

f
~
4

d2 = f2 − E(f
~

4)

D2

d1 = f − E(f
~

2)

D1

f
~
2

f2

d
~

2

d
~

1

f
~

2 =

f
~=

E(f
~

4) + d~2

E(f
~

2) + d~1

Fig. 9.5 Block diagram for Hierarchical JPEG

Figure 9.5 illustrates a three-level hierarchical JPEG encoder and decoder (sepa-
rated by the dashed line in the figure).

Algorithm 9.1 (Three-Level Hierarchical JPEG Encoder).
1. Reduction of image resolution. Reduce resolution of the input image f (e.g., 512 × 512) by

a factor of 2 in each dimension to obtain f2 (e.g., 256 × 256). Repeat this to obtain f4 (e.g.,
128 × 128).

2. Compress low-resolution image f 4. Encode f4 using any other JPEG method (e.g., Sequential,
Progressive) to obtain F4.

3. Compress difference image d2. (a) Decode F4 to obtain f̃4. Use any interpolation method to
expand f̃4 to be of the same resolution as f2 and call it E(f̃4). (b) Encode difference d2 =
f2 − E(f̃4) using any other JPEG method (e.g., Sequential, Progressive) to generate D2.

4. Compress difference image d1. (a) Decode D2 to obtain d̃2; add it to E(f̃4) to get f̃2 =
E(f̃4)+d̃2, which is a version of f2 after compression and decompression. (b) Encode difference
d1 = f − E(f̃2) using any other JPEG method (e.g., Sequential, Progressive) to generate D1.

Algorithm 9.2 (Three-Level Hierarchical JPEG Decoder).
1. Decompress the encoded low-resolution image F4. Decode F4 using the same JPEG method

as in the encoder, to obtain f̃4.
2. Restore image f̃2at the intermediate resolution. Use E(f̃4)+ d̃2 to obtain f̃2.
3. Restore image f̃ at the original resolution. Use E(f̃2)+ d̃1 to obtain f̃ .

It should be pointed out that at step 3 in the encoder, the difference d2 is not taken
as f2 − E(f4) but as f2 − E(f̃4). Employing f̃4 has its overhead, since an additional
decoding step must be introduced on the encoder side, as shown in the figure.

9.1 The JPEG Standard 293

So, is it necessary? It is, because the decoder never has a chance to see the original
f4. The restoration step in the decoder uses f̃4 to obtain f̃2 = E(f̃4) + d̃2. Since
f̃4 ̸= f4 when a lossy JPEG method is used in compressing f4, the encoder must
use f̃4 in d2 = f2 − E(f̃4) to avoid unnecessary error at decoding time. This kind of
decoder-encoder step is typical in many compression schemes. In fact, we have seen
it in Sect. 6.3.5. It is present simply because the decoder has access only to encoded,
not original, values.

Similarly, at step 4 in the encoder, d1 uses the difference between f and E(f̃2),
not E(f2).

Lossless Mode

Lossless JPEG is a very special case of JPEG which indeed has no loss in its image
quality. As discussed in Chap. 7, however, it employs only a simple differential coding
method, involving no transform coding. It is rarely used, since its compression ratio
is very low compared to other, lossy modes. On the other hand, it meets a special
need, and the subsequently developed JPEG-LS standard is specifically aimed at
lossless image compression (see Sect. 9.3).

9.1.3 A Glance at the JPEG Bitstream

Figure 9.6 provides a hierarchical view of the organization of the bitstream for JPEG
images. Here, a frame is a picture, a scan is a pass through the pixels (e.g., the red
component), a segment is a group of blocks, and a block consists of 8 × 8 pixels.
Examples of some header information are:
• Frame header

– Bits per pixel
– (Width, height) of image
– Number of components
– Unique ID (for each component)
– Horizontal/vertical sampling factors (for each component)
– Quantization table to use (for each component).

• Scan header
– Number of components in scan
– Component ID (for each component)
– Huffman/Arithmetic coding table (for each component).

9.2 The JPEG2000 Standard

The JPEG standard is no doubt the most successful and popular image format to date.
The main reason for its success is the quality of its output for relatively good compres-
sion ratio. However, in anticipating the needs and requirements of next-generation

http://dx.doi.org/10.1007/978-3-319-05290-8_6
http://dx.doi.org/10.1007/978-3-319-05290-8_7

294 9 Image Compression Standards

Frame

ScanScanHeader

Start_of_image End_of_image

Tables, etc.

Tables, etc. Header Segment Restart Segment Restart

Block Block Block

. . .

. . .

. . .

Fig. 9.6 JPEG bitstream

imagery applications, the JPEG committee also defined a new standard: JPEG2000.
The main part, the core coding system, is specified in ISO/IEC 15444-1 [3].

The new JPEG2000 standard [4–6] aims to provide not only a better rate-distortion
tradeoff and improved subjective image quality but also additional functionalities
the current JPEG standard lacks. In particular, the JPEG2000 standard addresses the
following problems:
• Low bitrate compression. The current JPEG standard offers excellent

rate-distortion performance at medium and high bitrates. However, at bitrates
below 0.25 bpp, subjective distortion becomes unacceptable. This is important
if we hope to receive images on our web-enabled ubiquitous devices, such as
web-aware wristwatches, and so on.

• Lossless and lossy compression. Currently, no standard can provide superior
lossless compression and lossy compression in a single bitstream.

• Large images. The new standard will allow image resolutions greater than 64 k ×
64 k without tiling. It can handle image sizes up to 232 − 1.

• Single decompression architecture. The current JPEG standard has 44 modes,
many of which are application-specific and not used by the majority of JPEG
decoders.

• Transmission in noisy environments. The new standard will provide improved
error resilience for transmission in noisy environments such as wireless networks
and the Internet.

• Progressive transmission. The new standard provides seamless quality and res-
olution scalability from low to high bitrates. The target bitrate and reconstruction
resolution need not be known at the time of compression.

• Region-of-interest coding. The new standard permits specifying Regions of Inter-
est (ROI), which can be coded with better quality than the rest of the image. We
might, for example, like to code the face of someone making a presentation with
more quality than the surrounding furniture.

• Computer-generated imagery. The current JPEG standard is optimized for nat-
ural imagery and does not perform well on computer-generated imagery.

9.2 The JPEG2000 Standard 295

• Compound documents. The new standard offers metadata mechanisms for
incorporating additional nonimage data as part of the file. This might be useful for
including text along with imagery, as one important example.

In addition, JPEG2000 is able to handle up to 256 channels of information, whereas
the current JPEG standard is able to handle only three color channels. Such huge
quantities of data are routinely produced in satellite imagery.

Consequently, JPEG2000 is designed to address a variety of applications, such as
the Internet, color facsimile, printing, scanning, digital photography, remote sensing,
mobile applications, medical imagery, digital library, e-commerce, and so on. The
method looks ahead and provides the power to carry out remote browsing of large
compressed images.

The JPEG2000 standard operates in two coding modes: DCT-based and wavelet-
based. The DCT-based coding mode is offered for backward compatibility with the
current JPEG standard and implements baseline JPEG. All the new functionalities
and improved performance reside in the wavelet-based mode.

9.2.1 Main Steps of JPEG2000 Image Compression∗

The main compression method used in JPEG2000 is the (Embedded Block Cod-
ing with Optimized Truncation) algorithm (EBCOT), designed by Taubman [7]. In
addition to providing excellent compression efficiency, EBCOT produces a bitstream
with a number of desirable features, including quality and resolution scalability and
random access.

The basic idea of EBCOT is the partition of each sub-band LL, LH, HL, HH
produced by the wavelet transform into small blocks called code blocks. Each code
block is coded independently, in such a way that no information for any other block
is used.

A separate, scalable bitstream is generated for each code block. With its block-
based coding scheme, the EBCOT algorithm has improved error resilience. The
EBCOT algorithm consists of three steps:
1. Block coding and bitstream generation
2. Postcompression rate-distortion (PCRD) optimization
3. Layer formation and representation.

Block Coding and Bitstream Generation
Each sub-band generated for the 2D discrete wavelet transform is first partitioned
into small code blocks, typically 64 × 64, or other size no less than 32 × 32. Then
the EBCOT algorithm generates a highly scalable bitstream for each code block Bi .
The bitstream associated with Bi may be independently truncated to any member of
a predetermined collection of different lengths Rn

i , with associated distortion Dn
i .

For each code block Bi (see Fig. 9.7), let si [k] = si [k1, k2] be the 2D sequence of
small code blocks of sub-band samples, with k1 and k2 the row and column index.
(With this definition, the horizontal high-pass sub-band HL must be transposed so that
k1 and k2 will have meaning consistent with the other sub-bands. This transposition

296 9 Image Compression Standards

Fig. 9.7 Code block structure of EBCOT

means that the HL sub-band can be treated in the same way as the LH, HH, and LL
sub-bands and use the same context model.)

The algorithm uses a dead-zone quantizer shown in Fig. 9.8—a double-length
region straddling 0. Let χi [k] ∈ {−1, 1} be the sign of si [k] and let νi [k] be the
quantized magnitude. Explicitly, we have

νi [k] =
∥si [k]∥

δβi

(9.2)

where δβi is the step size for sub-band βi , which contains code block Bi . Let ν
p
i [k]

be the pth bit in the binary representation of νi [k], where p = 0 corresponds to the

least significant bit, and let pmax
i be the maximum value of p such that ν

pmax
i

i [k] ̸= 0
for at least one sample in the code block.

The encoding process is similar to that of a bitplane coder, in which the most

significant bit ν
pmax

i
i [k] is coded first for all samples in the code block, followed by

the next most significant bit ν
p(max−1)

i
i [k], and so on, until all bitplanes have been

coded. In this way, if the bitstream is truncated, then some samples in the code block
may be missing one or more least significant bits. This is equivalent to having used
a coarser dead-zone quantizer for these samples.

9.2 The JPEG2000 Standard 297

Fig. 9.8 Dead-zone
quantizer. The length of the
dead-zone is 2δ. Values inside
the dead-zone are quantized
to 0

y

xδ

2δ

0−1−2−3

0

1

2

−1

−2

1 2 3

In addition, it is important to exploit the previously encoded information about a
particular sample and its neighboring samples. This is done in EBCOT by defining
a binary valued state variable σi [k], which is initially 0 but changes to 1 when the
relevant sample’s first nonzero bitplane v

p
i [k] = 1 is encoded. This binary state

variable is referred to as the significance of a sample.
Section 8.8 introduces the zerotree data structure as a way of efficiently coding the

bitstream for wavelet coefficients. The underlying observation behind the zerotree
data structure is that significant samples tend to be clustered, so that it is often possible
to dispose of a large number of samples by coding a single binary symbol.

EBCOT takes advantage of this observation; however, with efficiency in mind, it
exploits the clustering assumption only down to relatively large sub-blocks of size
16 × 16. As a result, each code block is further partitioned into a two-dimensional
sequence of sub-blocks Bi [j]. For each bitplane, explicit information is first encoded
that identifies sub-blocks containing one or more significant samples. The other
sub-blocks are bypassed in the remaining coding phases for that bitplane.

Let σ p(Bi [j]) be the significance of sub-block Bi [j] in bitplane p. The significance
map is coded using a quad-tree. The tree is constructed by identifying the sub-blocks
with leaf nodes—that is, B0

i [j] = Bi [j]. The higher levels are built using recursion:
Bt

i [j] = ∪z∈{0,1}2 Bt−1
i [2j + z], 0 ≤ t ≤ T . The root of the tree represents the entire

code block: BT
i [0] = ∪j Bi [j].

The significance of the code block is identified one quad level at a time, starting
from the root at t = T and working toward the leaves at t = 0. The significance
values are then sent to an arithmetic coder for entropy coding. Significance values
that are redundant are skipped. A value is taken as redundant if any of the following
conditions is met:
• The parent is insignificant.
• The current quad was already significant in the previous bitplane.
• This is the last quad visited among those that share the same significant parent,

and the other siblings are insignificant.

http://dx.doi.org/10.1007/978-3-319-05290-8_8

298 9 Image Compression Standards

Table 9.4 Context assignment for the zero coding primitive

Label LL, LH and HL sub-bands HH sub-band
hi [k] vi [k] di [k] di [k] hi [k] + vi [k]

0 0 0 0 0 0
1 0 0 1 0 1
2 0 0 >1 0 >1
3 0 1 x 1 0
4 0 2 x 1 1
5 1 0 0 1 >1
6 1 0 >0 2 0
7 1 >0 x 2 >0
8 2 x x >2 x

EBCOT uses four different coding primitives to code new information for a single
sample in a bitplane p, as follows:
• Zero coding. This is used to code ν

p
i [k], given that the quantized sample satisfies

νi [k] < 2p+1. Because the sample statistics are measured to be approximately
Markovian, the significance of the current sample depends on the values of its
eight immediate neighbors. The significance of these neighbors can be classified
into three categories:
– Horizontal. hi [k] =

∑
z∈{1,−1} σi [k1 + z, k2], with 0 ≤ hi [k] ≤ 2

– Vertical. vi [k] =
∑

z∈{1,−1} σi [k1, k2 + z], with 0 ≤ vi [k] ≤ 2
– Diagonal. di [k] =

∑
z1,z2∈{1,−1} σi [k1 + z1, k2 + z2], with 0 ≤ di [k] ≤ 4.

The neighbors outside the code block are considered to be insignificant, but note
that sub-blocks are not at all independent. The 256 possible neighborhood config-
urations are reduced to the nine distinct context assignments listed in Table 9.4.

• Run-length coding. The run-length coding primitive is aimed at producing runs
of the 1-bit significance values, as a prelude for the arithmetic coding engine.
When a horizontal run of insignificant samples having insignificant neighbors is
found, it is invoked instead of the zero coding primitive. Each of the following
four conditions must be met for the run-length coding primitive to be invoked:
– Four consecutive samples must be insignificant.
– The samples must have insignificant neighbors.
– The samples must be within the same sub-block.
– The horizontal index k1 of the first sample must be even.
The last two conditions are simply for efficiency. When four symbols satisfy these
conditions, one special bit is encoded instead, to identify whether any sample in
the group is significant in the current bitplane (using a separate context model). If
any of the four samples becomes significant, the index of the first such sample is
sent as a 2-bit quantity.

9.2 The JPEG2000 Standard 299

Table 9.5 Context
assignments for the sign
coding primitive

Label χ̂i [k] h̄i [k] v̄i [k]

4 1 1 1
3 1 0 1
2 1 −1 1
1 −1 1 0
0 1 0 0
1 1 −1 0
2 −1 1 −1
3 −1 0 −1
4 −1 −1 −1

• Sign coding. The sign coding primitive is invoked at most once for each sam-
ple, immediately after the sample makes a transition from being insignificant to
significant during a zero coding or run-length coding operation. Since it has four
horizontal and vertical neighbors, each of which may be insignificant, positive, or
negative, there are 34 = 81 different context configurations. However, exploiting
both horizontal and vertical symmetry and assuming that the conditional distribu-
tion of χi [k], given any neighborhood configuration, is the same as that of −χi [k],
the number of contexts is reduced to 5. Let h̄i [k] be 0 if both horizontal neigh-
bors are insignificant, 1 if at least one horizontal neighbor is positive, or −1 if
at least one horizontal neighbor is negative (and v̄i [k] is defined similarly). Let
χ̂i [k] be the sign prediction. The binary symbol coded using the relevant context
is χi [k] · χ̂i [k]. Table 9.5 lists these context assignments.

• Magnitude refinement. This primitive is used to code the value ofν p
i [k], given that

νi [k] ≥ 2p+1. Only three context models are used for the magnitude refinement
primitive. A second state variable σ̃i [k] is introduced that changes from 0 to 1 after
the magnitude refinement primitive is first applied to si [k]. The context models
depend on the value of this state variable: v p

i [k] is coded with context 0 if σ̃ [k] =
hi [k] = vi [k] = 0, with context 1 if σ̃i [k] = 0 and hi [k] + vi [k] ̸= 0, and with
context 2 if σ̃i [k] = 1.
To ensure that each code block has a finely embedded bitstream, the coding of

each bitplane p proceeds in four distinct passes, (P p
1) to (P p

4):
• Forward-significance-propagation pass (Pp

1). The sub-block samples are vis-
ited in scanline order. Insignificant samples and samples that do not satisfy the
neighborhood requirement are skipped. For the LH, HL, and LL sub-bands, the
neighborhood requirement is that at least one of the horizontal neighbors has to
be significant. For the HH sub-band, the neighborhood requirement is that at least
one of the four diagonal neighbors must be significant. For significant samples that
pass the neighborhood requirement, the zero coding and run-length coding prim-
itives are invoked as appropriate, to determine whether the sample first becomes
significant in bitplane p. If so, the sign coding primitive is invoked to encode the

300 9 Image Compression Standards

max max −1

S
pi
max

SP4
pi pi pi pi pi pi

max −1 max −1max −1max −1

P1 P2 P3 P4
P1

0 P4
0. . . P2

0 P3
0 S 0

Fig. 9.9 Appearance of coding passes and quad-tree codes in each block’s embedded bitstream

sign. This is called the forward-significance-propagation pass, because a sample
that has been found to be significant helps in the new significance determination
steps that propagate in the direction of the scan.

• Reverse-significance-propagation pass (Pp
2). This pass is identical toP p

1 , except
that it proceeds in the reverse order. The neighborhood requirement is relaxed to
include samples that have at least one significant neighbor in any direction.

• Magnitude refinement pass (Pp
3). This pass encodes samples that are already

significant but that have not been coded in the previous two passes. Such samples
are processed with the magnitude refinement primitive.

• Normalization pass (Pp
4). The value ν

p
i [k] of all samples not considered in the

previous three coding passes is coded using the sign coding and run-length cod-
ing primitives, as appropriate. If a sample is found to be significant, its sign is
immediately coded using the sign coding primitive.
Figure 9.9 shows the layout of coding passes and quad-tree codes in each block’s

embedded bitstream. S p denotes the quad-tree code identifying the significant sub-
blocks in bitplane p. Notice that for any bitplane p, S p appears just before the final
coding pass P p

4 , not the initial coding pass P p
1 . This implies that sub-blocks that

become significant for the first time in bitplane p are ignored until the final pass.

Post Compression Rate-Distortion Optimization

After all the sub-band samples have been compressed, a post compression rate distor-
tion (PCRD) step is performed. The goal of PCRD is to produce an optimal truncation
of each code block’s independent bitstream such that distortion is minimized, sub-
ject to the bit-rate constraint. For each truncated embedded bitstream of code block
Bi having rate Rni

i , the overall distortion of the reconstructed image is (assuming
distortion is additive)

D =
∑

i

Dni
i (9.3)

where Dni
i is the distortion from code block Bi having truncation point ni . For each

code block Bi , distortion is computed by

Dn
i = w2

bi

∑

k∈Bi

(ŝn
i [k] − si [k])2 (9.4)

where si [k] is the 2D sequence of sub-band samples in code block Bi and ŝn
i [k]

is the quantized representation of these samples associated with truncation point n.
The value w2

bi
is the L2 norm of the wavelet basis function for the sub-band bi that

contains code block Bi .

9.2 The JPEG2000 Standard 301

The optimal selection of truncation points ni can be formulated into a minimization
problem subject to the following constraint:

R =
∑

i

Rni
i ≤ Rmax (9.5)

where Rmax is the available bit-rate. For some λ, any set of truncation points {nλ
i }

that minimizes

(D(λ)+ λR(λ)) =
∑

i

(
D

nλ
i

i + λR
nλ

i
i

)
(9.6)

is optimal in the rate-distortion sense. Thus, finding the set of truncation points that
minimizes Eq. (9.6) with total rate R(λ) = Rmax would yield the solution to the
entire optimization problem.

Since the set of truncation points is discrete, it is generally not possible to find
a value of λ for which R(λ) is exactly equal to Rmax. However, since the EBCOT
algorithm uses relatively small code blocks, each of which has many truncation
points, it is sufficient to find the smallest value of λ such that R(λ) ≤ Rmax.

It is easy to see that each code block Bi can be minimized independently. Let Ni
be the set of feasible truncation points and let j1 < j2 < · · · be an enumeration of
these feasible truncation points having corresponding distortion-rate slopes given by
the ratios

S jk
i = (D jk

i

(R jk
i

(9.7)

where (R jk
i = R jk

i − R jk−1
i and (D jk

i = D jk
i −D jk−1

i . It is evident that the slopes are
strictly decreasing, since the operational distortion-rate curve is convex and strictly
decreasing. The minimization problem for a fixed value of λ is simply the trivial
selection

nλ
i = max

{
jk ∈ Ni |S jk

i > λ
}

(9.8)

The optimal value λ∗ can be found using a simple bisection method operating on the
distortion-rate curve. A detailed description of this method can be found in [8].

Layer Formation and Representation

The EBCOT algorithm offers both resolution and quality scalability, as opposed to
other well-known scalable image compression algorithms such as EZW and SPIHT,
which offer only quality scalability. This functionality is achieved using a layered
bitstream organization and a two-tiered coding strategy.

The final bitstream EBCOT produces is composed of a collection of quality layers.

The quality layer Q1 contains the initial R
n1

i
i bytes of each code block Bi and the

other layers Qq contain the incremental contribution Lq
i = R

nq
i

i − Rnq−1
i ≥ 0 from

302 9 Image Compression Standards

Fig. 9.10 Three quality
layers with eight blocks each

Empty

Empty

Empty

Empty Empty Empty

B0 B5B4B3B2B1 B7B6

code block Bi . The quantity nq
i is the truncation point corresponding to the rate-

distortion threshold λq selected for the qth quality layer. Figure 9.10 illustrates the
layered bitstream (after [7]).

Along with these incremental contributions, auxiliary information such as the
length Lq

i , the number of new coding passes N q
i = nq

i − nq−1
i , the value pmax

i when
Bi makes its first nonempty contribution to quality layer Qq , and the index qi of
the quality layer to which Bi first makes a nonempty contribution must be explicitly
stored. This auxiliary information is compressed in the second-tier coding engine.
Hence, in this two-tiered architecture, the first tier produces the embedded block
bitstreams, while the second encodes the block contributions to each quality layer.

The focus of this subsection is the second-tier processing of the auxiliary infor-
mation accompanying each quality layer. The second-tier coding engine handles
carefully the two quantities that exhibit substantial interblock redundancy. These
two quantities are pmax

i and the index qi of the quality layer to which Bi first makes
a nonempty contribution.

The quantity qi is coded using a separate embedded quad-tree code within each
sub-band. Let B0

i = Bi be the leaves and BT
i be the root of the tree that represents the

entire sub-band. Let qt
i = min{q j |B j ⊂ Bt

i } be the index of the first layer in which
any code block in quad Bt

i makes a nonempty contribution. A single bit identifies
whether qt

i > q for each quad at each level t , with redundant quads omitted. A quad
is redundant if either qt

i < q − 1 or qt+1
j > q for some parent quad Bt+1

j .
The other redundant quantity to consider is pmax

i . It is clear that pmax
i is irrelevant

until the coding of the quality layer Qq . Thus, any unnecessary information concern-
ing pmax

i need not be sent until we are ready to encode Qq . EBCOT does this using
a modified embedded quad-tree driven from the leaves rather than from the root.

Let Bt
i be the elements of the quad-tree structure built on top of the code blocks

Bi from any sub-band, and let pmax,t
i = max{pmax

j |B j ⊂ Bt
i }. In addition, let Bt

it
be the ancestor of quads from which Bi descends and let P be a value guaranteed
to be larger than pmax

i for any code block Bi . When code block Bi first contributes
to the bitstream in quality layer Qq , the value of pmax

i = pmax,0
i0

is coded using the
following algorithm:

9.2 The JPEG2000 Standard 303

• For p = P − 1, P − 2, . . . , 0
– Send binary digits to identify whether pmax,t

it
< p. The redundant bits are

skipped.
– If pmax

i = p, then stop.
The redundant bits are those corresponding to the condition pmax,t

it
< p that can

be inferred either from ancestors such that pmax,t+1
it+1

< p or from the partial quad-tree
code used to identify pmax

j for a different code block B j .

9.2.2 Adapting EBCOT to JPEG2000

JPEG2000 uses the EBCOT algorithm as its primary coding method. However, the
algorithm is slightly modified to enhance compression efficiency and reduce com-
putational complexity.

To further enhance compression efficiency, as opposed to initializing the entropy
coder using equiprobable states for all contexts, the JPEG2000 standard makes an
assumption of highly skewed distributions for some contexts, to reduce the model
adaptation cost for typical images. Several small adjustments are made to the original
algorithm to further reduce its execution time.

First, a low complexity arithmetic coder that avoids multiplications and divisions,
known as the MQ coder [9], replaces the usual arithmetic coder used in the origi-
nal algorithm. Furthermore, JPEG2000 does not transpose the HL sub-band’s code
blocks. Instead, the corresponding entries in the zero coding context assignment map
are transposed.

To ensure a consistent scan direction, JPEG2000 combines the forward- and
reverse-significance-propagation passes into a single forward-significance-
propagation pass with a neighborhood requirement equal to that of the original
reverse pass. In addition, reducing the sub-block size to 4 × 4 from the original
16 × 16 eliminates the need to explicitly code sub-block significance. The resulting
probability distribution for these small sub-blocks is highly skewed, so the coder
behaves as if all sub-blocks are significant.

The cumulative effect of these modifications is an increase of about 40 % in
software execution speed, with an average loss of about 0.15 dB relative to the original
algorithm.

9.2.3 Region-of-Interest Coding

A significant feature of the new JPEG2000 standard is the ability to perform region-
of-interest (ROI) coding. Here, particular regions of the image may be coded with
better quality than the rest of the image or the background. The method is called
MAXSHIFT, a scaling-based method that scales up the coefficients in the ROI so
that they are placed into higher bitplanes. During the embedded coding process, the
resulting bits are placed in front of the non-ROI part of the image. Therefore, given

304 9 Image Compression Standards

Fig. 9.11 Region-of-interest (ROI) coding of an image with increasing bit-rate using a circularly
shaped ROI: a 0.4 bpp; b 0.5 bpp; c 0.6 bpp; d 0.7 bpp

a reduced bitrate, the ROI will be decoded and refined before the rest of the image.
As a result of these mechanisms, the ROI will have much better quality than the
background.

One thing to note is that regardless of scaling, full decoding of the bitstream will
result in reconstruction of the entire image with the highest fidelity available. Figure
9.11 demonstrates the effect of region-of-interest coding as the target bitrate of the
sample image is increased.

9.2.4 Comparison of JPEG and JPEG2000 Performance

After studying the internals of the JPEG2000 compression algorithm, a natural ques-
tion that comes to mind is: how well does JPEG2000 perform compared to other well-
known standards, in particular JPEG? Many comparisons have been made between
JPEG and other well-known standards, so here we compare JPEG2000 only to the
popular JPEG.

9.2 The JPEG2000 Standard 305

Various criteria, such as computational complexity, error resilience, compression
efficiency, and so on, have been used to evaluate the performance of systems. Since
our main focus is on the compression aspect of the JPEG2000 standard, here we
simply compare compression efficiency. (Interested readers can refer to [6,10] for
comparisons using other criteria.)

Given a fixed bitrate, let us compare quality of compressed images quantitatively
by the PSNR: for color images, the PSNR is calculated based on the average of
the mean square error of all the RGB components. Also, we visually show results
for both JPEG2000 and JPEG compressed images, so that you can make your own
qualitative assessment. We perform a comparison for three categories of images:
natural, computer generated, and medical, using three images from each category.
The test images used are shown on the textbook web site.

For each image, we compress using JPEG and JPEG2000, at four bitrates:
0.25 bpp, 0.5 bpp, 0.75 bpp, and 1.0 bpp. Figure 9.12 shows plots of the aver-
age PSNR of the images in each category against bitrate. We see that JPEG2000
substantially outperforms JPEG in all categories.

For a qualitative comparison of the compression results, let us choose a single
image and show decompressed output for the two algorithms using a low bitrate
(0.75 bpp) and the lowest bitrate (0.25 bpp). From the results in Fig. 9.13, it should
be obvious that images compressed using JPEG2000 show significantly fewer visual
artifacts.

9.3 The JPEG-LS Standard

Generally, we would likely apply a lossless compression scheme to images that
are critical in some sense, say medical images of a brain, or perhaps images that are
difficult or costly to acquire. A scheme in competition with the lossless mode provided
in JPEG2000 is the JPEG-LS standard, specifically aimed at lossless encoding [11].
The main advantage of JPEG-LS over JPEG2000 is that JPEG-LS is based on a
low complexity algorithm. JPEG-LS is part of a larger ISO effort aimed at better
compression of medical images.

JPEG-LS is in fact the current ISO/ITU standard for lossless or “near loss-
less” compression of continuous-tone images. The core algorithm in JPEG-LS is
called LOw COmplexity LOssless COmpression for Images (LOCO-I), proposed by
Hewlett-Packard [11]. The design of this algorithm is motivated by the observation
that complexity reduction is often more important overall than any small increase in
compression offered by more complex algorithms.

LOCO-I exploits a concept called context modeling. The idea of context modeling
is to take advantage of the structure in the input source—conditional probabilities
of what pixel values follow from each other in the image. This extra knowledge is
called the context. If the input source contains substantial structure, as is usually the
case, we could potentially compress it using fewer bits than the 0th-order entropy.

306 9 Image Compression Standards

Fig. 9.12 Performance
comparison for JPEG and
JPEG2000 on different image
types: a Natural images;
b Computer-generated
images; c Medical images

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
20

22

24

26

28

30

32

34

36

38

40

Bitrate

PS
N

R
 (d

B
)

J2K
JPEG

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
20

22

24

26

28

30

32

34

36

38

40

Bitrate

PS
N

R
 (d

B
)

J2K
JPEG

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
20

22

24

26

28

30

32

34

36

38

40

Bitrate

PS
N

R
 (d

B
)

J2K
JPEG

(a)

(b)

(c)

9.3 The JPEG-LS Standard 307

Fig. 9.13 Comparison of JPEG and JPEG2000: a original image; b JPEG (left) and JPEG2000
(right) images compressed at 0.75 bpp; c JPEG (left) and JPEG2000 (right) images compressed at
0.25 bpp

As a simple example, suppose we have a binary source with P(0) = 0.4 and
P(1) = 0.6. Then the 0th-order entropy H(S) = −0.4 log2(0.4) − 0.6 log2(0.6) =
0.97. Now suppose we also know that this source has the property that if the previous
symbol is 0, the probability of the current symbol being 0 is 0.8, and if the previous
symbol is 1, the probability of the current symbol being 0 is 0.1.

If we use the previous symbol as our context, we can divide the input symbols into
two sets, corresponding to context 0 and context 1, respectively. Then the entropy of
each of the two sets is

H(S1) = −0.8 log2(0.8) − 0.2 log2(0.2) = 0.72

H(S2) = −0.1 log2(0.1) − 0.9 log2(0.9) = 0.47

The average bit-rate for the entire source would be 0.4 × 0.72 + 0.6 × 0.47 = 0.57,
which is substantially less than the 0th-order entropy of the entire source in this case.

308 9 Image Compression Standards

d

b x

c a

Fig. 9.14 JPEG-LS context model

LOCO-I uses a context model shown in Fig. 9.14. In raster scan order, the context
pixels a, b, c, and d all appear before the current pixel x . Thus, this is called a causal
context.

LOCO-I can be broken down into three components:
• Prediction. Predicting the value of the next sample x ′ using a causal template
• Context determination. Determining the context in which x ′ occurs
• Residual coding. Entropy coding of the prediction residual conditioned by the

context of x ′.

9.3.1 Prediction

A better version of prediction can use an adaptive model based on a calculation of
the local edge direction. However, because JPEG-LS is aimed at low complexity,
the LOCO-I algorithm instead uses a fixed predictor that performs primitive tests
to detect vertical and horizontal edges. The fixed predictor used by the algorithm is
given as follows:

x̂ ′ =

⎧
⎪⎨

⎪⎩

min(a, b) c ≥ max(a, b)
max(a, b) c ≤ min(a, b)
a + b − c otherwise

(9.9)

It is easy to see that this predictor switches between three simple predictors. It outputs
a when there is a vertical edge to the left of the current location; it outputs b when
there is a horizontal edge above the current location; and finally it outputs a + b − c
when the neighboring samples are relatively smooth.

9.3.2 Context Determination

The context model that conditions the current prediction error (the residual) is
indexed using a three-component context vector Q = (q1, q2, q3), whose compo-
nents are

q1 = d − b

q2 = b − c (9.10)

q3 = c − a

These differences represent the local gradient that captures the local smoothness
or edge contents that surround the current sample. Because these differences can

9.3 The JPEG-LS Standard 309

potentially take on a wide range of values, the underlying context model is huge,
making the context modeling approach impractical. To solve this problem, parameter
reduction methods are needed.

An effective method is to quantize these differences so that they can be represented
by a limited number of values. The components of Q are quantized using a quantizer
with decision boundaries −T, · · · ,−1, 0, 1, · · · , T . In JPEG-LS, T = 4. The con-
text size is further reduced by replacing any context vector Q whose first element is
negative by −Q. Therefore, the number of different context states is (2T+1)3+1

2 = 365
in total. The vector Q is then mapped into an integer in [0, 364].

9.3.3 Residual Coding

For any image, the prediction residual has a finite size, α. For a given prediction x̂ ,
the residual ε is in the range −x̂ ≤ ε < α − x̂ . Since the value x̂ can be generated
by the decoder, the dynamic range of the residual ε can be reduced modulo α and
mapped into a value between −⌊α

2 ⌋ and ⌈α
2 ⌉ − 1.

It can be shown that the error residuals follow a two-sided geometric distribution
(TSGD). As a result, they are coded using adaptively selected codes based on Golomb
codes, which are optimal for sequences with geometric distributions [12].

9.3.4 Near-Lossless Mode

The JPEG-LS standard also offers a near-lossless mode, in which the reconstructed
samples deviate from the original by no more than an amount δ. The main lossless
JPEG-LS mode can be considered a special case of the near-lossless mode with δ = 0.
Near-lossless compression is achieved using quantization: residuals are quantized
using a uniform quantizer having intervals of length 2δ+ 1. The quantized values of
ε are given by

Q(ε) = sign(ε)
⌊ |ε| + δ

2δ + 1

⌋
(9.11)

Since δ can take on only a small number of integer values, the division operation can
be implemented efficiently using lookup tables. In near-lossless mode, the prediction
and context determination step described previously are based on the quantized
values only.

9.4 Bi-level Image Compression Standards

As more and more documents are handled in electronic form, efficient methods
for compressing bi-level images (those with only 1-bit, black-and-white pixels) are
sometimes called for. A familiar example is fax images. Algorithms that take advan-
tage of the binary nature of the image data often perform better than generic image
compression algorithms. Earlier facsimile standards, such as G3 and G4, use simple

310 9 Image Compression Standards

models of the structure of bi-level images. Each scanline in the image is treated as a
run of black-and-white pixels. However, considering the neighboring pixels and the
nature of data to be coded allows much more efficient algorithms to be constructed.
This section examines the JBIG standard and its successor, JBIG2, as well as the
underlying motivations and principles for these two standards.

9.4.1 The JBIG Standard

JBIG is the coding standard recommended by the Joint Bi-level Image Processing
Group for binary images. This lossless compression standard is used primarily to
code scanned images of printed or handwritten text, computer-generated text, and
facsimile transmissions. It offers progressive encoding and decoding capability, in
the sense that the resulting bitstream contains a set of progressively higher resolution
images. This standard can also be used to code grayscale and color images by coding
each bitplane independently, but this is not the main objective.

The JBIG compression standard has three separate modes of operation: pro-
gressive, progressive-compatible sequential, and single-progression sequential. The
progressive-compatible sequential mode uses a bitstream compatible with the pro-
gressive mode. The only difference is that the data is divided into strips in this mode.

The single-progression sequential mode has only a single lowest resolution layer.
Therefore, an entire image can be coded without any reference to other higher-
resolution layers. Both these modes can be viewed as special cases of the progressive
mode. Therefore, our discussion covers only the progressive mode.

The JBIG encoder can be decomposed into two components:
• Resolution-reduction and differential-layer encoder
• Lowest resolution layer encoder.
The input image goes through a sequence of resolution-reduction and differential-
layer encoders. Each is equivalent in functionality, except that their input images
have different resolutions. Some implementations of the JBIG standard may choose
to recursively use one such physical encoder. The lowest resolution image is coded
using the lowest resolution-layer encoder. The design of this encoder is somewhat
simpler than that of the resolution-reduction and differential-layer encoders, since
the resolution-reduction and deterministic-prediction operations are not needed.

9.4.2 The JBIG2 Standard

While the JBIG standard offers both lossless and progressive (lossy to lossless)
coding abilities, the lossy image produced by this standard has significantly lower
quality than the original, because the lossy image contains at most only one-quarter
of the number of pixels in the original image. By contrast, the JBIG2 standard is
explicitly designed for lossy, lossless, and lossy to lossless image compression. The
design goal for JBIG2 aims not only at providing superior lossless compression

9.4 Bi-level Image Compression Standards 311

performance over existing standards but also at incorporating lossy compression at
a much higher compression ratio, with as little visible degradation as possible.

A unique feature of JBIG2 is that it is both quality progressive and content
progressive. By quality progressive, we mean that the bitstream behaves similarly to
that of the JBIG standard, in which the image quality progresses from lower to higher
(or possibly lossless) quality. On the other hand, content progressive allows different
types of image data to be added progressively. The JBIG2 encoder decomposes the
input bi-level image into regions of different attributes and codes each separately,
using different coding methods.

As in other image compression standards, only the JBIG2 bitstream, and thus
the decoder, is explicitly defined. As a result, any encoder that produces the correct
bitstream is “compliant,” regardless of the actions it actually takes. Another feature
of JBIG2 that sets it apart from other image compression standards is that it is able to
represent multiple pages of a document in a single file, enabling it to exploit interpage
similarities.

For example, if a character appears on one page, it is likely to appear on other
pages as well. Thus, using a dictionary-based technique, this character is coded only
once instead of multiple times for every page on which it appears. This compres-
sion technique is somewhat analogous to video coding, which exploits interframe
redundancy to increase compression efficiency.

JBIG2 offers content progressive coding and superior compression performance
through model-based coding, in which different models are constructed for different
data types in an image, realizing additional coding gain.

Model-Based Coding

The idea behind model-based coding is essentially the same as that of context-based
coding. From the study of the latter, we know we can realize better compression
performance by carefully designing a context template and accurately estimating
the probability distribution for each context. Similarly, if we can separate the image
content into different categories and derive a model specifically for each, we are
much more likely to accurately model the behavior of the data and thus achieve
higher compression ratio.

In the JBIG style of coding, adaptive and model templates capture the structure
within the image. This model is general, in the sense that it applies to all kinds of
data. However, being general implies that it does not explicitly deal with the structural
differences between text and halftone data that comprise nearly all the contents of
bi-level images. JBIG2 takes advantage of this by designing custom models for these
data types.

The JBIG2 specification expects the encoder to first segment the input image into
regions of different data types, in particular, text and halftone regions. Each region
is then coded independently, according to its characteristics.

312 9 Image Compression Standards

Text Region Coding

Each text region is further segmented into pixel blocks containing connected black
pixels. These blocks correspond to characters that make up the content of this region.
Then, instead of coding all pixels of each character, the bitmap of one representative
instance of this character is coded and placed into a dictionary. For any character to
be coded, the algorithm first tries to find a match with the characters in the dictionary.
If one is found, then both a pointer to the corresponding entry in the dictionary and
the position of the character on the page are coded. Otherwise, the pixel block is
coded directly and added to the dictionary. This technique is referred to as pattern
matching and substitution in the JBIG2 specification.

However, for scanned documents, it is unlikely that two instances of the same
character will match pixel by pixel. In this case, JBIG2 allows the option of including
refinement data to reproduce the original character on the page. The refinement
data codes the current character using the pixels in the matching character in the
dictionary. The encoder has the freedom to choose the refinement to be exact or
lossy. This method is called soft pattern matching.

The numeric data, such as the index of matched character in the dictionary and the
position of the characters on the page, are either bitwise or Huffman encoded. Each
bitmap for the characters in the dictionary is coded using JBIG-based techniques.

Halftone-Region Coding

The JBIG2 standard suggests two methods for halftone image coding. The first is
similar to the context-based arithmetic coding used in JBIG. The only difference is
that the new standard allows the context template to include as many as 16 template
pixels, four of which may be adaptive.

The second method is called descreening. This involves converting back to
grayscale and coding the grayscale values. In this method, the bi-level region is
divided into blocks of size mb × nb. For an m × n bi-level region, the result-
ing grayscale image has dimension mg = ⌊(m + (mb − 1))/mb⌋ by ng =
⌊(n+(nb −1))/nb⌋. The grayscale value is then computed to be the sum of the binary
pixel values in the corresponding mb×nb block. The bitplanes of the grayscale image
are coded using context-based arithmetic coding. The grayscale values are used as
indices into a dictionary of halftone bitmap patterns. The decoder can use this value
to index into this dictionary, to reconstruct the original halftone image.

Preprocessing and Postprocessing

JBIG2 allows the use of lossy compression but does not specify a method for doing
so. From the decoder point of view, the decoded bitstream is lossless with respect
to the image encoded by the encoder, although not necessarily with respect to the

9.4 Bi-level Image Compression Standards 313

original image. The encoder may modify the input image in a preprocessing step,
to increase coding efficiency. The preprocessor usually tries to change the original
image to lower the code length in a way that does not generally affect the image’s
appearance. Typically, it tries to remove noisy pixels and smooth out pixel blocks.

Postprocessing, another issue not addressed by the specification, can be especially
useful for halftones, potentially producing more visually pleasing images. It is also
helpful to tune the decoded image to a particular output device, such as a laser printer.

9.5 Exercises

1. You are given a computer cartoon picture and a photograph. If you have a choice
of using either JPEG compression or GIF, which compression would you apply
for these two images? Justify your answer.

2. Suppose we view a decompressed 512×512 JPEG image but use only the color
part of the stored image information, not the luminance part, to decompress.
What does the 512 × 512 color image look like? Assume JPEG is compressed
using a 4:2:0 scheme.

3. An X-ray photo is usually a graylevel image. It often has low contrast and low
graylevel intensities, i.e., all intensity values are in the range of [a, b], where a
and b are positive integers, much less than the maximum intensity value 255 if
it is an 8-bit image. In order to enhance the appearance of this image, a simple
“stretch" operation can be used to convert all original intensity values f0 to f :

f = 255
b − a

· (f0 − a).

For simplicity, assuming f0(i, j) and f (i, j) are 8 × 8 images:
(a) If the DC value for the original image f0 is m, what is the DC value for the

stretched image f ?
(b) If one of the AC values F0(2, 1) for the original image f0 is n, what is the

F(2, 1) value for the stretched image f ?
4. (a) JPEG uses the Discrete Cosine Transform (DCT) for image compression.

i. What is the value of F(0, 0) if the image f (i, j) is as below?
ii. Which AC coefficient |F(u, v)| is the largest for this f (i, j)? Why? Is

this F(u, v) positive or negative? Why?

20 20 20 20 20 20 20 20
20 20 20 20 20 20 20 20
80 80 80 80 80 80 80 80
80 80 80 80 80 80 80 80

140 140 140 140 140 140 140 140
140 140 140 140 140 140 140 140
200 200 200 200 200 200 200 200
200 200 200 200 200 200 200 200

314 9 Image Compression Standards

(b) Show in detail how a three-level hierarchical JPEG will encode the image
above, assuming that

i. The encoder and decoder at all three levels use Lossless JPEG.
ii. Reduction simply averages each 2 × 2 block into a single pixel value.

iii. Expansion duplicates the single pixel value four times.

5. In JPEG, the Discrete Cosine Transform is applied to 8 × 8 blocks in an image.
For now, let’s call it DCT-8. Generally, we can define a DCT-N to be applied to
N × N blocks in an image. DCT-N is defined as:

FN (u, v) =
2C(u)C(v)

N

N−1∑

i=0

N−1∑

j=0

cos
(2i + 1)uπ

2N
cos

(2 j + 1)vπ
2N

f (i, j)

C(ξ) =
{√

2
2 for ξ = 0

1 otherwise

Given f (i, j) as below, show your work for deriving all pixel values of F2(u, v).
(That is, show the result of applying DCT-2 to the image below.)

100 −100 100 −100 100 −100 100 −100
100 −100 100 −100 100 −100 100 −100
100 −100 100 −100 100 −100 100 −100
100 −100 100 −100 100 −100 100 −100
100 −100 100 −100 100 −100 100 −100
100 −100 100 −100 100 −100 100 −100
100 −100 100 −100 100 −100 100 −100
100 −100 100 −100 100 −100 100 −100

6. According to the DCT-N definition above, FN (1) and FN (N − 1) are the AC
coefficients representing the lowest and highest spatial frequencies, respectively.
(a) It is known that F16(1) and F8(1) do not capture the same (lowest) frequency

response in image filtering. Explain why.
(b) Do F16(15) and F8(7) capture the same (highest) frequency response?

7. (a) How many principal modes does JPEG have? What are their names?
(b) In the hierarchical model, explain briefly why we must include an encode/

decode cycle on the coder side before transmitting difference images to the
decode side.

(c) What are the two methods used to decode only part of the information in a
JPEG file, so that the image can be coarsely displayed quickly and iteratively
increased in quality?

8. Could we use wavelet-based compression in ordinary JPEG? How?
9. We decide to create a new image compression standard based on JPEG, for use

with images that will be viewed by an alien species. What part of the JPEG
workflow would we likely have to change?

10. Unlike EZW, EBCOT does not explicitly take advantage of the spatial
relationships of wavelet coefficients. Instead, it uses the PCRD optimization
approach. Discuss the rationale behind this approach.

9.5 Exercises 315

11. Is the JPEG2000 bitstream SNR scalable? If so, explain how it is achieved using
the EBCOT algorithm.

12. Implement transform coding, quantization, and hierarchical coding for the
encoder and decoder of a three-level Hierarchical JPEG. Your code should
include a (minimal) graphical user interface for the purpose of demonstrating
your results. You do not need to implement the entropy (lossless) coding part;
optionally, you may include any publicly available code for it.

References

1. W.B. Pennebaker, J.L. Mitchell, The JPEG Still Image Data Compression Standard (Van
Nostrand Reinhold, New York, 1992)

2. V. Bhaskaran, K. Konstantinides, Image and Video Compression Standards: Algorithms and
Architectures, 2nd edn. (Kluwer Academic Publishers, Boston, 1997)

3. ISO/IEC 15444–1, Information Technology - JPEG 2000 Image Coding System: Core Coding
System. ISO/IEC, (2004)

4. D.S. Taubman, M.W. Marcellin, JPEG2000: Image Compression Fundamentals (Kluwer Aca-
demic Publishers, Standards and Practice, 2002)

5. M. Rabbani, R. Joshi, An Overview of the JPEG 2000 Still Image Compression Standard.
Signal Processing: Image Communication 17, 3–48 (2002)

6. P. Schelkens, A. Skodras, T. Ebrahimi (eds.). The JPEG 2000 Suite. (Wiley, 2009)
7. D. Taubman, High performance scalable image compression with EBCOT. IEEE Trans. Image

Process. 9(7), 1158–1170 (2000)
8. K. Ramachandran, M. Vetterli, Best wavelet packet basis in a rate-distortion sense. IEEE Trans.

Image Process. 2, 160–173 (1993)
9. I. Ueno, F. Ono, T. Yanagiya, T. Kimura, M. Yoshida. Proposal of the Arithmetic Coder for

JPEG2000. ISO/IEC JTC1/SC29/WG1 N1143, (1999)
10. D. Santa-Cruz, R. Grosbois, T. Ebrahimi, JPEG 2000 Performance Evaluation and Assessment.

Signal Process.: Image Commun. 17, 113–130 (2002)
11. M. Weinberger, G. Seroussi, G. Sapiro, The LOCO-I lossless image compression algorithm:

Principles and standardization into JPEG-LS. Technical Report HPL-98-193R1, Hewlett-
Packard Technical Report, (1998)

12. N. Merhav, G. Seroussi, M.J. Weinberger, Optimal prefix codes for sources with two-sided
geometric distributions. IEEE Trans. on Inf. Theory 46(1), 121–135 (2000)

10BasicVideoCompressionTechniques

As discussed in Chap. 7, the volume of uncompressed video data could be extremely
large. Even a modest CIF video with a picture resolution of only 352 × 288, if
uncompressed, would carry more than 35 Mbps. In HDTV, the bitrate could eas-
ily exceed 1 Gbps. This poses challenges and problems for storage and network
communications.

This chapter introduces some basic video compression techniques and illustrates
them in standards H.261 and H.263—two video compression standards aimed mostly
at videoconferencing. The next two chapters further introduce several MPEG video
compression standards and the latest, H.264 and H.265.

Tekalp [1] and Poynton [2] set out the fundamentals of digital video processing.
They provide a good overview of the mathematical foundations of the problems to
be addressed in video. The books by Bhaskaran and Konstantinides [3] and Wang
et al. [4] include good descriptions of early video compression algorithms.

10.1 Introduction toVideo Compression

A video consists of a time-ordered sequence of frames—images. An obvious solution
to video compression would be predictive coding based on previous frames. For
example, suppose we simply created a predictor such that the prediction equals
the previous frame. Then compression proceeds by subtracting images: instead of
subtracting the image from itself (i.e., use a spatial-domain derivative), we subtract
in time order and code the residual error.

And this works. Suppose most of the video is unchanging in time. Then we get a
nice histogram peaked sharply at zero—a great reduction in terms of the entropy of
the original video, just what we wish for.

However, it turns out that at acceptable cost, we can do even better by searching
for just the right parts of the image to subtract from the previous frame. After all, our
naive subtraction scheme will likely work well for a background of office furniture
and sedentary university types, but wouldn’t a football game have players zooming

Z.-N. Li et al., Fundamentals of Multimedia, 317
Texts in Computer Science, DOI: 10.1007/978-3-319-05290-8_10,
© Springer International Publishing Switzerland 2014

http://dx.doi.org/10.1007/978-3-319-05290-8_7

318 10 Basic Video Compression Techniques

around the frame, producing large values when subtracted from the previously static
green playing field?

So in the next section we examine how to do better. The idea of looking for the
football player in the next frame is called motion estimation, and the concept of
shifting pieces of the frame around so as to best subtract away the player is called
motion compensation.

10.2 Video Compression Based onMotion Compensation

The image compression techniques discussed in the previous chapters (e.g., JPEG
and JPEG2000) exploit spatial redundancy, the phenomenon that picture contents
often change relatively slowly across images, making a large suppression of higher
spatial frequency components viable.

A video can be viewed as a sequence of images stacked in the temporal dimension.
Since the frame rate of the video is often relatively high (e.g., ≥15 frames per second)
and the camera parameters (focal length, position, viewing angle, etc.) usually do
not change rapidly between frames, the contents of consecutive frames are usually
similar, unless certain objects in the scene move extremely fast or the scene changes.
In other words, the video has temporal redundancy.

Temporal redundancy is often significant and it is indeed exploited, so that not
every frame of the video needs to be coded independently as a new image. Instead, the
difference between the current frame and other frame(s) in the sequence is coded.
If redundancy between them is great enough, the difference images could consist
mainly of small values and low entropy, which is good for compression.

All modern digital video compression algorithms (including H.264 and H.265)
adopt this Hybrid coding approach, i.e., predicting and compensating for the differ-
ences between video frames to remove the temporal redundancy, and then transform
coding on the residual signal (the differences) to reduce the spatial redundancy.

As we mentioned, although a simplistic way of deriving the difference image is
to subtract one image from the other (pixel by pixel), such an approach is ineffective
in yielding a high compression ratio. Since the main cause of the difference between
frames is camera and/or object motion, these motion generators can be “compen-
sated” by detecting the displacement of corresponding pixels or regions in these
frames and measuring their differences. Video compression algorithms that adopt
this approach are said to be based on motion compensation (MC). The three main
steps of these algorithms are:
1. Motion estimation (motion vector search)
2. Motion compensation-based prediction
3. Derivation of the prediction error—the difference.

For efficiency, each image is divided into macroblocks of size N × N . By default,
N = 16 for luminance images. For chrominance images, N = 8 if 4:2:0 chroma
subsampling is adopted. Motion compensation is not performed at the pixel level,

10.2 Video Compression Based on Motion Compensation 319

Macroblock

N

N

Matched macroblock Search window

(x, y)
(x0, y0)

2p + 1

2p + 1

MV

(x0, y0)(x, y)

(a) (b)

Fig.10.1 Macroblocks and motion vector in video compression: a reference frame; b target frame

nor at the level of video object, as in later video standards (such as MPEG-4). Instead,
it is at the macroblock level.

The current image frame is referred to as the Target frame. A match is sought
between the macroblock under consideration in the Target frame and the most similar
macroblock in previous and/or future frame(s) [referred to as Reference frame(s)].
In that sense, the Target macroblock is predicted from the Reference macroblock(s).

The displacement of the reference macroblock to the target macroblock is called
a motion vector MV. Figure 10.1 shows the case of forward prediction, in which
the Reference frame is taken to be a previous frame. If the Reference frame is a
future frame, it is referred to as backward prediction. The difference of the two
corresponding macroblocks is the prediction error.

For video compression based on motion compensation, after the first frame, only
the motion vectors and difference macroblocks need be coded, since they are suffi-
cient for the decoder to regenerate all macroblocks in subsequent frames.

We will return to the discussion of some common video compression standards
after the following section, in which we discuss search algorithms for motion vectors.

10.3 Search for MotionVectors

The search for motion vectors MV(u, v) as defined above is a matching problem, also
called a correspondence problem [5]. Since MV search is computationally expensive,
it is usually limited to a small immediate neighborhood. Horizontal and vertical
displacements i and j are in the range [−p, p], where p is a positive integer with a
relatively small value. This makes a search window of size (2p + 1)× (2p + 1), as
Fig. 10.1 shows. The center of the macroblock (x0, y0) can be placed at each of the
grid positions in the window.

For convenience, we use the upper left corner (x, y) as the origin of the macroblock
in the Target frame. Let C(x + k, y + l) be pixels in the macroblock in the Target
(current) frame and R(x + i + k, y + j + l) be pixels in the macroblock in the

320 10 Basic Video Compression Techniques

Reference frame, where k and l are indices for pixels in the macroblock and i and j
are the horizontal and vertical displacements, respectively. The difference between
the two macroblocks can then be measured by their Mean Absolute Difference (MAD),
defined as

M AD(i, j) = 1
N 2

N−1∑

k=0

N−1∑

l=0

|C(x + k, y + l) − R(x + i + k, y + j + l)| , (10.1)

where N is the size of the macroblock.
The goal of the search is to find a vector (i, j) as the motion vector MV = (u, v),

such that M AD(i, j) is minimum:

(u, v) = [(i, j) | M AD(i, j) is minimum, i ∈ (−p, p), j ∈ (−p, p)] (10.2)

We used the mean absolute difference in the above discussion. However, this
measure is by no means the only possible choice. In fact, some encoders (e.g.,
H.263) will simply use the Sum of Absolute Difference (SAD). Some other common
error measures, such as the Mean Square Error (MSE), would also be appropriate.

10.3.1 Sequential Search

The simplest method for finding motion vectors is to sequentially search the whole
(2p+ 1)× (2p+ 1) window in the Reference frame (also referred to as full search).
A macroblock centered at each of the positions within the window is compared to
the macroblock in the Target frame, pixel by pixel, and their respective M AD is then
derived using Eq. (10.1). The vector (i, j) that offers the least M AD is designated
the MV(u, v) for the macroblock in the Target frame.

Procedure 10.1 (Motion vector: Sequential search)

BEGIN
min_M AD = L ARG E_NU M B E R; /* Initialization */
for i = −p to p

for j = −p to p
{

cur_M AD = M AD(i, j);
if cur_M AD < min_M AD

{
min_M AD = cur_M AD;
u = i ; /* Get the coordinates for MV. */
v = j ;

}
}

END

10.3 Search for Motion Vectors 321

111

11

1

1

2

2

2 2

2

3

3 3 3

3

(x0 − p, y0 − p () x0 + p, y0 − p)

(x0 − p, y0 + p () x0 + p, y0 + p)

3 3 3

11

2 2 2

(x0, y0)

⎡p/2⎤

MV

Fig. 10.2 2D Logarithmic search for motion vectors

Clearly, the sequential search method is very costly. From Eq. (10.1), each
pixel comparison requires three operations (subtraction, absolute value, addition).
Thus the cost for obtaining a motion vector for a single macroblock is (2p + 1) ·
(2p + 1) · N 2 · 3 ⇒ O(p2 N 2).

As an example, let’s assume the video has a resolution of 720 × 480 and a frame
rate of 30 fps; also, assume p = 15 and N = 16. The number of operations needed
for each motion vector search is thus

(2p + 1)2 · N 2 · 3 = 312 × 162 × 3.

Considering that a single image frame has 720×480
N ·N macroblocks, and 30 frames

each second, the total operations needed per second is

OPS_per_second = (2p + 1)2 · N 2 · 3 · 720 × 480
N · N

· 30

= 312 × 162 × 3 × 720 × 480
16 × 16

× 30 ≈ 29.89 × 109.

This would certainly make real-time encoding of this video difficult.

10.3.2 2D Logarithmic Search

A more efficient version, suboptimal but still usually effective, is called Logarithmic
Search. The procedure for a 2D Logarithmic Search of motion vectors takes several
iterations and is akin to a binary search. As Fig. 10.2 illustrates, only nine locations in
the search window, marked “1,” are initially used as seeds for a MAD-based search.

322 10 Basic Video Compression Techniques

After the one that yields the minimum M AD is located, the center of the new search
region is moved to it, and the stepsize (offset) is reduced to half. In the next iteration,
the nine new locations are marked “2,” and so on.1 For the macroblock centered at
(x0, y0) in the Target frame, the procedure is as follows:

Procedure 10.2 (Motion vector: 2D-Logarithmic search)

BEGIN

offset = ⌈ p
2 ⌉;

Specify nine macroblocks within the search window in the Reference frame,
they are centered at (x0, y0) and separated by offset horizontally and/or vertically;
WHILE last ̸= TRUE

{
Find one of the nine specified macroblocks that yields the minimum M AD;
if offset = 1 then last = TRUE;
offset = ⌈offset/2⌉;
Form a search region with the new offset and new center found;

}
END

Instead of sequentially comparing with (2p + 1)2 macroblocks from the Refer-
ence frame, the 2-D Logarithmic Search will compare with only 9 · (⌈log2 p⌉ + 1)
macroblocks. In fact, it would be 8 · (⌈log2 p⌉ + 1) + 1, since the comparison that
yielded the least M AD from the last iteration can be reused. Therefore, the complex-
ity is dropped to O(log p · N 2). Since p is usually of the same order of magnitude
as N , the saving is substantial compared to O(p2 N 2).

Using the same example as in the previous subsection, the total operations per
second drop to

OPS_per_second =
(
8 · (⌈log2 p⌉ + 1)+ 1

)
· N 2 · 3 · 720 × 480

N · N
· 30

=
(
8 · ⌈log2 15⌉ + 9

)
× 162 × 3 × 720 × 480

16 × 16
× 30

≈ 1.25 × 109.

10.3.3 Hierarchical Search

The search for motion vectors can benefit from a hierarchical (multiresolution)
approach in which initial estimation of the motion vector can be obtained from images

1 The procedure is heuristic. It assumes a general continuity (monotonicity) of image contents—that
they do not change randomly within the search window. Otherwise, the procedure might not find
the best match.

10.3 Search for Motion Vectors 323

Fig. 10.3 A three-level
hierarchical search for motion
vectors

Downsample
by a factor of 2

Downsample
by a factor of 2

Motion

estimation

Motion

estimation

Motion

estimation

Motion vectors

Level 0

Level 1

Level 2

with a significantly reduced resolution. Figure 10.3 depicts a three-level hierarchical
search in which the original image is at level zreo, images at levels one and two are
obtained by downsampling from the previous levels by a factor of two, and the initial
search is conducted at level two. Since the size of the macroblock is smaller and p
can also be proportionally reduced at this level, the number of operations required
is greatly reduced (by a factor of 16 at this level).

The initial estimation of the motion vector is coarse because of the lack of image
detail and resolution. It is then refined level by level toward level zero. Given
the estimated motion vector (uk, vk) at level k, a 3 × 3 neighborhood centered at
(2 ·uk, 2 · vk) at level k − 1 is searched for the refined motion vector. In other words,
the refinement is such that at level k − 1, the motion vector (uk−1, vk−1) satisfies

(2uk − 1 ≤ uk−1 ≤ 2uk + 1, 2vk − 1 ≤ vk−1 ≤ 2vk + 1),

and yields minimum M AD for the macroblock under examination.
Let (xk

0 , yk
0) denote the center of the macroblock at level k in the Target frame.

The procedure for hierarchical motion vector search for the macroblock centered at
(x0

0 , y0
0) in the Target frame can be outlined as follows:

324 10 Basic Video Compression Techniques

Procedure 10.3 (Motion vector: Hierarchical search)

BEGIN
// Get macroblock center position at the lowest resolution level k, e.g., level 2.
xk

0 = x0
0/2k ; yk

0 = y0
0/2k ;

Use Sequential (or 2D Logarithmic) search method to get initial estimated
MV(uk, vk) at level k;
WHILE last ̸= TRUE

{
Find one of the nine macroblocks that yields minimum M AD
at level k − 1 centered at
(2(xk

0+uk)−1 ≤ x ≤ 2(xk
0+uk)+1, 2(yk

0+vk)−1 ≤ y ≤ 2(yk
0+vk)+1);

if k = 1 then last = TRUE;
k = k − 1;
Assign (xk

0 , yk
0) and (uk, vk) with the new center location and motion

vector;
}

END

We will use the same example as in the previous sections to estimate the total
operations needed each second for a three-level hierarchical search. For simplicity,
the overhead for initially generating multiresolution target and reference frames will
not be included, and it will be assumed that Sequential search is used at each level.

The total number of macroblocks processed each second is still 720×480
N ·N × 30.

However, the operations needed for each macroblock are reduced to
[(

2
⌈ p

4

⌉
+ 1

)2
(

N
4

)2

+ 9
(

N
2

)2

+ 9N 2

]

× 3.

Hence,

OPS_per_second =
[(

2
⌈ p

4

⌉
+ 1

)2
(

N
4

)2

+ 9
(

N
2

)2

+ 9N 2

]

×3 × 720 × 480
N · N

× 30

=
[(

9
4

)2

+ 9
4
+ 9

]

× 162 × 3 × 720 × 480
16 × 16

× 30

≈ 0.51 × 109.

Table 10.1 summarizes the comparison of the three motion vector search methods
for a 720 × 480, 30 fps video when p = 15 and 7, respectively.

10.4 H.261 325

Table 10.1 Comparison of computational cost of motion vector search methods according to the
examples

Search method OPS_per_second for 720 × 480 at 30 fps
p = 15 p = 7

Sequential search 29.89 × 109 7.00 × 109

2D logarithmic search 1.25 × 109 0.78 × 109

Three-level hierarchical search 0.51 × 109 0.40 × 109

10.4 H.261

H.261 is an earlier digital video compression standard. Because its principle of
motion compensation–based compression is very much retained in all later video
compression standards, we will start with a detailed discussion of H.261.

The International Telegraph and Telephone Consultative Committee (CCITT) ini-
tiated the development of H.261 in 1988. The final recommendation was adopted by
the ITU (International Telecommunication Union)—Telecommunication standard-
ization sector (ITU-T), formerly CCITT, in 1990 [6].

The standard was designed for videophone, videoconferencing, and other audiovi-
sual services over ISDN telephone lines (see Chap. 15.2.3). Initially, it was intended
to support multiples (from 1 to 5) of 384 kbps (kilobits per second) channels. In the
end, however, the video codec supports bitrates of p ×64 kbps, where p ranges from
1 to 30. Hence the standard was once known as p ∗ 64, pronounced “p star 64”. The
standard requires video encoders delay to be less than 150 ms, so that the video can
be used for real-time, bidirectional video conferencing.

H.261 belongs to the following set of ITU recommendations for visual telephony
systems:
• H.221. Frame structure for an audiovisual channel supporting 64 to 1,920 kbps
• H.230. Frame control signals for audiovisual systems
• H.242. Audiovisual communication protocols
• H.261. Video encoder/decoder for audiovisual services at p × 64 kbps
• H.320. Narrowband audiovisual terminal equipment for p×64 kbps transmission.

Table 10.2 lists the video formats supported by H.261. Chroma subsampling in
H.261 is 4:2:0. Considering the relatively low bitrate in network communications at
the time, support for CCIR 601 QCIF is specified as required, whereas support for
CIF is optional.

Figure 10.4 illustrates a typical H.261 frame sequence. Two types of image frames
are defined: intra-frames (I-frames) and inter-frames (P-frames).

I-frames are treated as independent images. Basically, a transform coding method
similar to JPEG is applied within each I-frame, hence the name “intra”.

P-frames are not independent. They are coded by a forward predictive coding
method in which current macroblocks are predicted from similar macroblocks in

http://dx.doi.org/10.1007/978-3-319-05290-8_15

326 10 Basic Video Compression Techniques

Table 10.2 Video formats supported by H.261

Video Luminance Chrominance Bitrate (Mbps) H.261
format image image (if 30 fps and support

resolution resolution uncompressed)

QCIF 176 × 144 88 × 72 9.1 Required
CIF 352 × 288 176 × 144 36.5 Optional

I P P P P P PI I

Fig. 10.4 H.261 Frame sequence

DCT
Quantization

Entropy coding

For each For each

I-frame

macroblock
Y

Cb

Cr

8 × 8 block

1010010 . . .

Fig. 10.5 I-frame coding

the preceding I- or P-frame, and differences between the macroblocks are coded.
Temporal redundancy removal is hence included in P-frame coding, whereas I-frame
coding performs only spatial redundancy removal. It is important to remember that
prediction from a previous P-frame is allowed (not just from a previous I-frame).

The interval between pairs of I-frames is a variable and is determined by the
encoder. Usually, an ordinary digital video has a couple of I-frames per second.
Motion vectors in H.261 are always measured in units of full pixels and have a
limited range of ±15 pixels—that is, p = 15.

10.4.1 Intra-Frame (I-Frame) Coding

Macroblocks are of size 16×16 pixels for the Y frame of the original image. For Cb
and Cr frames, they correspond to areas of 8 × 8, since 4:2:0 chroma subsampling

10.4 H.261 327

DCT
Quantization

Entropy coding

Target frame

Reference frame Best match

Motion vector

Current macroblock

−

Difference macroblock
16

16 Y
Cb

Cr

01100010 . . .

For each 8 × 8 block

Fig. 10.6 H.261 P-frame coding based on motion compensation

is employed. Hence, a macroblock consists of four Y blocks, one Cb, and one Cr,
8 × 8 blocks.

For each 8×8 block, a DCT transform is applied. As in JPEG (discussed in detail
in Chap. 9), the DCT coefficients go through a quantization stage. Afterwards, they
are zigzag-scanned and eventually entropy-coded (as shown in Fig. 10.5).

10.4.2 Inter-Frame (P-Frame) Predictive Coding

Figure 10.6 shows the H.261 P-frame coding scheme based on motion compensation.
For each macroblock in the Target frame, a motion vector is allocated by one of the
search methods discussed earlier. After the prediction, a difference macroblock is
derived to measure the prediction error. It is also carried in the form of four Y
blocks, one Cb, and one Cr block. Each of these 8 × 8 blocks goes through DCT,
quantization, zigzag scan, and entropy coding. The motion vector is also coded.

Sometimes, a good match cannot be found—the prediction error exceeds a cer-
tain acceptable level. The macroblock itself is then encoded (treated as an intra
macroblock) and in this case is termed a nonmotion compensated macroblock.

P-frame coding encodes the difference macroblock (not the Target macroblock
itself). Since the difference macroblock usually has a much smaller entropy than the
Target macroblock, a large compression ratio is attainable.

In fact, even the motion vector is not directly coded. Instead, the difference, MVD,
between the motion vectors of the preceding macroblock and current macroblock is
sent for entropy coding:

MVD = MVPreceding − MVCurrent (10.3)

http://dx.doi.org/10.1007/978-3-319-05290-8_9

328 10 Basic Video Compression Techniques

10.4.3 Quantization in H.261

The quantization in H.261 does not use 8 × 8 quantization matrices, as in JPEG and
MPEG. Instead, it uses a constant, called step_size, for all DCT coefficients within a
macroblock. According to the need (e.g., bitrate control of the video), step_size can
take on any one of the 31 even values from 2 to 62. One exception, however, is made
for the DC coefficient in intra mode, where a step_size of 8 is always used. If we
use DCT and Q DCT to denote the DCT coefficients before and after quantization,
then for DC coefficients in intra mode,

Q DCT = round
(

DCT
step_si ze

)
= round

(
DCT

8

)
. (10.4)

For all other coefficients:

Q DCT =
⌊

DCT
step_si ze

⌋
=

⌊
DCT

2 × scale

⌋
, (10.5)

where scale is an integer in the range of [1, 31].
The midtread quantizer, discussed in Sect. 8.4.1 typically uses a round operator.

Equation (10.4) uses this type of quantizer. However, Eq. (10.5) uses a floor oper-
ator and, as a result, leaves a center dead-zone (as Fig. 9.8 shows) in its quantization
space, with a larger input range mapped to zero.

10.4.4 H.261 Encoder and Decoder

Figure 10.7 shows a relatively complete picture of how the H.261 encoder and
decoder work. Here, Q and Q−1 stand for quantization and its inverse, respec-
tively. Switching of the intra- and inter-frame modes can be readily implemented by
a multiplexer. To avoid propagation of coding errors,
• An I-frame is usually sent a couple of times in each second of the video.
• As discussed earlier (see DPCM in Sect. 6.3.5), decoded frames (not the original

frames) are used as reference frames in motion estimation.
To illustrate the operational detail of the encoder and decoder, let’s use a scenario

where frames I , P1, and P2 are encoded and then decoded. The data that goes through
the observation points, indicated by the circled numbers in Fig. 10.7, is summarized
in Tables 10.3 and 10.4. We will use I , P1, P2 for the original data, Ĩ , P̃1, P̃2 for the
decoded data (usually a lossy version of the original), and P ′

1, P ′
2 for the predictions

in the Inter-frame mode.
For the encoder, when the Current Frame is an Intra-frame, Point number 1 receives

macroblocks from the I-frame, denoted I in Table 10.3. Each I undergoes DCT,
Quantization, and Entropy Coding steps, and the result is sent to the Output Buffer,
ready to be transmitted.

Meanwhile, the quantized DCT coefficients for I are also sent to Q−1 and IDCT
and hence appear at Point 4 as Ĩ . Combined with a zero input from Point 5, the data
at Point 6 remains as Ĩ and this is stored in Frame Memory, waiting to be used for

http://dx.doi.org/10.1007/978-3-319-05290-8_8
http://dx.doi.org/10.1007/978-3-319-05290-8_9
http://dx.doi.org/10.1007/978-3-319-05290-8_6

10.4 H.261 329

3

2

4

6

5

1

Motion
estimation

IDCT

Frame
memory

Quantization control

DCT

Prediction

Current
Output code

Intra-frame

Inter-frame

Intra-frame

Inter-frame

0

Frame

VLE

MC-based
prediction

Motion vector

Output
buffer

+

−
Q

Q −1

(a)

1

2

3

4

Motion vector

IDCT

Quantization control

Input code

Decoded frame

Intra-frame

Inter-frame

Prediction

0

VLE

Frame
memory

MC-based
prediction

buffer
Input

+

Q −1

(b)

Fig. 10.7 H.261: a encoder; b decoder

Motion Estimation and Motion Compensation-based Prediction for the subsequent
frame P1.

Quantization Control serves as feedback—that is, when the Output Buffer is too
full, the quantization step_size is increased, so as to reduce the size of the coded
data. This is known as an encoding rate control process.

When the subsequent Current Frame P1 arrives at Point 1, the Motion Estimation
process is invoked to find the motion vector for the best matching macroblock in
frame Ĩ for each of the macroblocks in P1. The estimated motion vector is sent to
both Motion Compensation-based Prediction and Variable-Length Encoding (VLE).
The MC-based Prediction yields the best matching macroblock in P1. This is denoted
as P ′

1 appearing at Point 2.

330 10 Basic Video Compression Techniques

Table 10.3 Data flow at the
observation points in H.261
encoder

Current frame Observation point
1 2 3 4 5 6

I I Ĩ 0 Ĩ

P1 P1 P ′
1 D1 D̃1 P ′

1 P̃1

P2 P2 P ′
2 D2 D̃2 P ′

2 P̃2

Table 10.4 Data flow at the
observation points in H.261
decoder

Current frame Observation point
1 2 3 4

I Ĩ 0 Ĩ

P1 D̃1 P ′
1 P ′

1 P̃1

P2 D̃2 P ′
2 P ′

2 P̃2

At Point 3, the “prediction error” is obtained, which is D1 = P1 − P ′
1. Now

D1 undergoes DCT, Quantization, and Entropy Coding, and the result is sent to the
Output Buffer. As before, the DCT coefficients for D1 are also sent to Q−1 and IDCT
and appear at Point 4 as D̃1.

Added to P ′
1 at Point 5, we have P̃1 = P ′

1 + D̃1 at Point 6. This is stored in Frame
Memory, waiting to be used for Motion Estimation and Motion Compensation-based
Prediction for the subsequent frame P2. The steps for encoding P2 are similar to those
for P1, except that P2 will be the Current Frame and P1 becomes the Reference Frame.

For the decoder, the input code for frames will be decoded first by Entropy Decod-
ing, Q−1, and IDCT. For Intra-frame mode, the first decoded frame appears at Point 1
and then Point 4 as Ĩ . It is sent as the first output and at the same time stored in the
Frame Memory.

Subsequently, the input code for Inter-frame P1 is decoded, and prediction error
D̃1 is received at Point 1. Since the motion vector for the current macroblock is
also entropy-decoded and sent to Motion Compensation-based Prediction, the cor-
responding predicted macroblock P ′

1 can be located in frame Ĩ and will appear at
Points 2 and 3. Combined with D̃1, we have P̃1 = P ′

1 + D̃1 at Point 4, and it is sent
out as the decoded frame and also stored in the Frame Memory. Again, the steps for
decoding P2 are similar to those for P1.

10.4.5 A Glance at the H.261Video Bitstream Syntax

Let’s take a brief look at the H.261 video bitstream syntax (see Fig. 10.8). This
consists of a hierarchy of four layers: Picture, Group of Blocks (GOB), Macroblock,
and Block.

10.4 H.261 331

GOB GOB GOBPTypeTRPSC

MB MB

b50b 1bCBP

EOB

GBSC GN

Address Type

H.261 Picture frame

(Run, Level) (Run, Level)

GQuant

MQuant MVD

DC

layer

GOB

Macroblock

layer

layer
Block

Picture

layer

PType

PSC

CBP

GBSC

GQuant

MQuant

GOB

TR

MB

EOB

GN

MVD

Picture Start Code

Picture Type

GOB Start Code

GOB Quantizer

MB Quantizer

Coded Block Pattern

Temporal Reference

Group of Blocks

Group Number

Macroblock

Motion Vector Data

End of Block

. . .

. . .

. . .

. . .

Fig. 10.8 Syntax of H.261 video bitstream

Fig. 10.9 Arrangement
of GOBs in H.261 luminance
images

GOB 0

GOB 1

GOB 2

GOB 0 GOB 1

GOB 2 GOB 3

GOB 4 GOB 5

GOB 6 GOB 7

GOB 8 GOB 9

GOB 10 GOB 11

CIF

QCIF

1. Picture layer. Picture Start Code (PSC) delineates boundaries between pictures.
Temporal Reference (TR) provides a timestamp for the picture. Since temporal
subsampling can sometimes be invoked such that some pictures will not be trans-
mitted, it is important to have TR, to maintain synchronization with audio. Picture
Type (PType) specifies, for example, whether it is a CIF or QCIF picture.

2. GOB layer. H.261 pictures are divided into regions of 11 × 3 macroblocks (i.e.,
regions of 176×48 pixels in luminance images), each of which is called a Group
of Blocks (GOB). Figure 10.9 depicts the arrangement of GOBs in a CIF or QCIF
luminance image. For instance, the CIF image has 2 × 6 GOBs, corresponding
to its image resolution of 352 × 288 pixels.

332 10 Basic Video Compression Techniques

Each GOB has its Start Code (GBSC) and Group number (GN). The GBSC is
unique and can be identified without decoding the entire variable-length code in
the bitstream. In case a network error causes a bit error or the loss of some bits,
H.261 video can be recovered and resynchronized at the next identifiable GOB,
preventing the possible propagation of errors.
GQuant indicates the quantizer to be used in the GOB, unless it is overridden
by any subsequent Macroblock Quantizer (MQuant). GQuant and MQuant are
referred to as scale in Eq. (10.5).

3. Macroblock layer. Each macroblock (MB) has its own Address, indicating its
position within the GOB, quantizer (MQuant), and six 8 × 8 image blocks (4 Y,
1 Cb, 1 Cr). Type denotes whether it is an Intra- or Inter, motion compensated
or nonmotion compensated macroblock. Motion Vector Data (MVD) is obtained
by taking the difference between the motion vectors of the preceding and current
macroblocks. Moreover, since some blocks in the macroblocks match well and
some match poorly in Motion Estimation, a bitmask Coded Block Pattern (CBP)
is used to indicate this information. Only well-matched blocks will have their
coefficients transmitted.

4. Block layer. For each 8 × 8 block, the bitstream starts with DC value, followed
by pairs of length of zero-run (Run) and the subsequent nonzero value (Level)
for ACs, and finally the End of Block (EOB) code. The range of “Run” is [0, 63].
“Level” reflects quantized values—its range is [−127, 127], and Level ̸= 0.

10.5 H.263

H.263 is an improved video coding standard [7] for videoconferencing and other
audiovisual services transmitted on Public Switched Telephone Networks (PSTN).
It aims at low bitrate communications at bitrates of less than 64 kbps. It was adopted
by the ITU-T Study Group 15 in 1995. Similar to H.261, it uses predictive cod-
ing for inter-frames, to reduce temporal redundancy, and transform coding for the
remaining signal, to reduce spatial redundancy (for both intra-frames and difference
macroblocks from inter-frame prediction) [7].

In addition to CIF and QCIF, H.263 supports sub-QCIF, 4CIF, and 16CIF.
Table 10.5 summarizes video formats supported by H.263. If not compressed and
assuming 30 fps, the bitrate for high-resolution videos (e.g., 16CIF) could be very
high (>500 Mbps). For compressed video, the standard defines maximum bitrate per
picture (BPPmaxKb), measured in units of 1,024 bits. In practice, a lower bit rate
for compressed H.263 video can be achieved.

As in H.261, the H.263 standard also supports the notion of group of blocks. The
difference is that GOBs in H.263 do not have a fixed size, and they always start
and end at the left and right borders of the picture. As Fig. 10.10 shows, each QCIF
luminance image consists of 9 GOBs and each GOB has 11 × 1 MBs (176 × 16
pixels), whereas each 4CIF luminance image consists of 18 GOBs and each GOB
has 44 × 2 MBs (704 × 32 pixels).

10.5 H.263 333

Table 10.5 Video formats supported by H.263

Video Luminance Chrominance Bitrate (Mbps) Bitrate (kbps)
format image image (if 30 fps and BPPmaxKb

resolution resolution uncompressed) (compressed)

Sub-QCIF 128 × 96 64 × 48 4.4 64
QCIF 176 × 144 88 × 72 9.1 64
CIF 352 × 288 176 × 144 36.5 256
4CIF 704 × 576 352 × 288 146.0 512
16CIF 1408 × 1152 704 × 576 583.9 1024

GOB 0
GOB 1
GOB 2
GOB 3
GOB 4
GOB 5

GOB 15
GOB 16
GOB 17

GOB 0
GOB 1
GOB 2
GOB 3
GOB 4
GOB 5
GOB 6
GOB 7

QCIF

GOB 8

GOB 0
GOB 1
GOB 2
GOB 3
GOB 4
GOB 5

Sub-QCIF

CIF, 4CIF, and 16CIF

Fig. 10.10 Arrangement of GOBs in H.263 luminance images

10.5.1 Motion Compensation in H.263

The process of motion compensation in H.263 is similar to that of H.261. The motion
vector (MV) is, however, not simply derived from the current macroblock. The hor-
izontal and vertical components of the MV are predicted from the median values of
the horizontal and vertical components, respectively, of MV1, MV2, MV3 from the
“previous”, “above” and “above and right” macroblocks [see Fig. 10.11a]. Namely,
for the macroblock with MV(u, v),

u p = median(u1, u2, u3),

vp = median(v1, v2, v3). (10.6)

Instead of coding the MV(u, v) itself, the error vector (δu, δv) is coded, where
δu = u − u p and δv = v − vp. As shown in Fig. 10.11b, when the current MB is at
the border of the picture or GOB, either (0, 0) or MV1 is used as the motion vector
for the out of-bound MB(s).

334 10 Basic Video Compression Techniques

MV1
MV2
MV3

MV

Border

MV2 MV3

MV1 MV

MV2 MV3

MV1

MV2

MV1(0, 0)

MV1 MV1 (0, 0)

VMVMVM

Current motion vector
Previous motion vector
Above motion vector
Above and right motion vector

(a)

(b)

Fig. 10.11 Prediction of motion vector in H.263: a predicted MVof the current macroblock is the
median of (MV1, MV2, MV3); b special treatment of MVs when the current macroblock is at
border of picture or GOB

a = A

b = (A + B + 1) / 2

c = (A + C + 1) / 2

d = (A + B + C + D + 2) / 4

Half-pixel position
b

dc

a
Full-pixel position

BA

DC

Fig. 10.12 Half-pixel prediction by bilinear interpolation in H.263

To improve the quality of motion compensation—that is, to reduce the prediction
error—H.263 supports half-pixel precision as opposed to full-pixel precision only in
H.261. The default range for both the horizontal and vertical components u and v of
MV(u, v) is now [−16, 15.5].

The pixel values needed at half-pixel positions are generated by a simple bilinear
interpolation method, as shown in Fig. 10.12, where A, B, C, D and a, b, c, d are
pixel values at full-pixel positions and half-pixel positions respectively, and “ / ”
indicates division by truncation (also known as integer division).

10.5.2 Optional H.263 CodingModes

Besides its core coding algorithm, H.263 specifies many negotiable coding options
in its various Annexes. Four of the common options are as follows:
• Unrestricted motion vector mode. The pixels referenced are no longer restricted

to within the boundary of the image. When the motion vector points outside the

10.5 H.263 335

image boundary, the value of the boundary pixel geometrically closest to the ref-
erenced pixel is used. This is beneficial when image content is moving across the
edge of the image, often caused by object and/or camera movements. This mode
also allows an extension of the range of motion vectors. The maximum range of
motion vectors is [−31.5, 31.5], which enables efficient coding of fast-moving
objects in videos.

• Syntax-based arithmetic coding mode. Like H.261, H.263 uses Variable-Length
Coding (VLC) as a default coding method for the DCT coefficients. Variable-length
coding implies that each symbol must be coded into a fixed, integral number of
bits. By employing arithmetic coding, this restriction is removed, and a higher
compression ratio can be achieved. Experiments show bitrate savings of 4 % for
inter-frames and 10 % for intra-frames in this mode.
As in H.261, the syntax of H.263 is structured as a hierarchy of four layers, each
using a combination of fixed- and variable-length code. In the syntax-based arith-
metic coding (SAC) mode, all variable-length coding operations are replaced with
arithmetic coding operations. According to the syntax of each layer, the arithmetic
encoder needs to code a different bitstream from various components. Since each
of these bitstreams has a different distribution, H.263 specifies a model for each
distribution, and the arithmetic coder switches the model on the fly, according to
the syntax.

• Advanced prediction mode. In this mode, the macroblock size for motion com-
pensation is reduced from 16 to 8. Four motion vectors (from each of the 8 × 8
blocks) are generated for each macroblock in the luminance image. Afterwards,
each pixel in the 8 × 8 luminance prediction block takes a weighted sum of three
predicted values based on the motion vector of the current luminance block and
two out of the four motion vectors from the neighboring blocks—that is, one from
the block at the left or right side of the current luminance block and one from the
block above or below. Although sending four motion vectors incurs some addi-
tional overhead, the use of this mode generally yields better prediction and hence
considerable gain in compression.

• PB-frames mode. As shown by MPEG (detailed discussions in Chap. 11), the
introduction of a B-frame, which is predicted bidirectionally from both the previous
frame and the future frame, can often improve the quality of prediction and hence
the compression ratio without sacrificing picture quality. In H.263, a PB-frame
consists of two pictures coded as one unit: one P-frame, predicted from the previous
decoded I-frame or P-frame (or P-frame part of a PB-frame), and one B-frame,
predicted from both the previous decoded I- or P-frame and the P-frame currently
being decoded (Fig. 10.13).
The use of the PB-frames mode is indicated in PTYPE. Since the P- and B-frames
are closely coupled in the PB-frame, the bidirectional motion vectors for the
B-frame need not be independently generated. Instead, they can be temporally
scaled and further enhanced from the forward motion vector of the P-frame [8] so as
to reduce the bitrate overhead for the B-frame. PB-frames mode yields satisfactory
results for videos with moderate motion. Under large motions, PB-frames do not

http://dx.doi.org/10.1007/978-3-319-05290-8_11

336 10 Basic Video Compression Techniques

Fig. 10.13 A PB-frame in
H.263

PB-frame

I or P B P

compress as well as B-frames. An improved mode has been developed in H.263
version 2.

10.5.3 H.263+ and H.263++

The second version of H.263, also known as H.263+ was approved in January 1998
by ITU-T Study Group 16. It is fully backward-compatible with the design of H.263
version 1.

The aim of H.263+ is to broaden the potential applications and offer additional
flexibility in terms of custom source formats, different pixel aspect ratios, and clock
frequencies. H.263+ includes numerous recommendations to improve code effi-
ciency and error resilience [9]. It also provides 12 new negotiable modes, in addition
to the four optional modes in H.263.

Since its development came after the standardization of MPEG-1 and 2, it is
not surprising that it also adopts many aspects of the MPEG standards. Below, we
mention only briefly some of these features and leave their detailed discussion to the
next chapter, where we study the MPEG standards.
• The unrestricted motion vector mode is redefined under H.263+. It uses Reversible

Variable-Length Coding (RVLC) to encode the difference motion vectors. The
RVLC encoder is able to minimize the impact of transmission error by allowing
the decoder to decode from both forward and reverse directions. The range of
motion vectors is extended again to [−256, 256]. Refer to [10,11] for more detailed
discussions on the construction of RVLC.

• A slice structure is used to replace GOB for additional flexibility. A slice can
contain a variable number of macroblocks. The transmission order can be either
sequential or arbitrary, and the shape of a slice is not required to be rectangular.

• H.263+ implements Temporal, SNR, and Spatial scalabilities. Scalability refers to
the ability to handle various constraints, such as display resolution, bandwidth, and

10.5 H.263 337

hardware capabilities. The enhancement layer for Temporal scalability increases
perceptual quality by inserting B-frames between two P-frames.
SNR scalability is achieved by using various quantizers of smaller and smaller
step_size to encode additional enhancement layers into the bitstream. Thus, the
decoder can decide how many enhancement layers to decode according to compu-
tational or network constraints. The concept of Spatial scalability is similar to that
of SNR scalability. In this case, the enhancement layers provide increased spatial
resolution.

• H.263+ supports improved PB-frames mode, in which the two motion vectors of
the B-frame do not have to be derived from the forward motion vector of the P-
frame, as in version 1. Instead, they can be generated independently, as in MPEG-1
and 2.

• Deblocking filters in the coding loop reduce blocking effects. The filter is applied
to the edge boundaries of the four luminance and two chrominance blocks. The
coefficient weights depend on the quantizer step_size for the block. This technique
results in better prediction as well as a reduction in blocking artifacts.
The development of H.263 continued beyond its second version. The third ver-

sion, H.263 v3, also known as H.263++, was initially approved in the Year 2000. A
further developed version was approved in 2005 [7]. H.263++ includes the baseline
coding methods of H.263 and additional recommendations for enhanced reference
picture selection (ERPS), data partition slice (DPS), and additional supplemental
enhancement information.

ERPS mode operates by managing a multiframe buffer for stored frames, enhanc-
ing coding efficiency and error resilience. DPS mode provides additional enhance-
ment to error resilience by separating header and motion vector data from DCT coef-
ficient data in the bitstream and protects the motion vector data by using a reversible
code. The additional supplemental enhancement information provides the ability to
add backward-compatible enhancements to an H.263 bitstream.

Since we will describe in detail the newer standards H.264 and H.265 in Chap. 12,
and many fundamental ideas are quite similar to the latest H.263, we will leave the
rest of the discussions to that chapter.

10.6 Exercises

1. Describe how H.261 deals with temporal and spatial redundancies in video.
2. An H.261 video has the three color channels Y , Cr , Cb. Should MVs be computed

for each channel and then transmitted? Justify your answer. If not, which channel
should be used for motion compensation?

3. Thinking about my large collection of JPEG images (of my family taken in
various locales), I decide to unify them and make them more accessible by
simply combining them into a big H.261-compressed file. My reasoning is that I
can simply use a viewer to step through the file, making a cohesive whole out of

http://dx.doi.org/10.1007/978-3-319-05290-8_12

338 10 Basic Video Compression Techniques

Pixel with intensity value 10

(a) (b)

Other background (unmarked) pixels all have intensity value 100

xt xt

yt yt

Fig. 10.14 2D Logarithmic search for motion vectors: a Reference frame; b Target frame

my collection. Comment on the utility of this idea, in terms of the compression
ratio achievable for the set of images.

4. In block-based video coding, what takes more effort: compression or decom-
pression? Briefly explain why.

5. Work out the following problem of 2D Logarithmic Search for motion vectors
in detail (see Fig. 10.14).
The target (current) frame is a P-frame. The size of macroblocks is 4 × 4. The
motion vector is MV("x,"y), in which "x ∈ [−p, p], "y ∈ [−p, p]. In this
question, assume p ≡ 5.
The macroblock in question (darkened) in the frame has its upper left corner
at (xt , yt). It contains nine dark pixels, each with intensity value 10; the other
seven pixels are part of the background, which has a uniform intensity value of
100. The reference (previous) frame has eight dark pixels.

(a) What is the best "x , "y, and Mean Absolute Error (MAE) for this mac-
roblock?

(b) Show step by step how the 2D Logarithmic Search is performed, include the
locations and passes of the search and all intermediate "x , "y, and MAEs.

6. The logarithmic MV search method is suboptimal, in that it relies on continuity
in the residual frame.

(a) Explain why that assumption is necessary, and offer a justification for it.
(b) Give an example where this assumption fails.
(c) Does the hierarchical search method suffer from suboptimality too?

7. A video sequence is to be encoded using H.263 in PB-mode, having a frame
size of 4CIF, frame rate of 30 fps, and video length of 90 min. The following is
known about the compression parameters: on average, two I-frames are encoded
per second. The video at the required quality has an I-frame average compression

10.6 Exercises 339

ratio of 10:1, an average P-frame compression ratio twice as good as I-frame,
and an average B-frame compression ratio twice as good as P-frame. Assuming
the compression parameters include all necessary headers, calculate the encoded
video size.

8. Assuming a search window of size 2p + 1, what is the complexity of motion
estimation for a QCIF video in the advanced prediction mode of H.263, using

(a) The brute-force (sequential search) method?
(b) The 2D logarithmic method?
(c) The hierarchical method?

9. Discuss how the advanced prediction mode in H.263 achieves better compres-
sion.

10. In H.263 motion estimation, the median of the motion vectors from three
preceding macroblocks (see Fig. 10.11a) is used as a prediction for the cur-
rent macroblock. It can be argued that the median may not necessarily reflect the
best prediction. Describe some possible improvements on the current method.

11. H.263+ allows independent forward MVs for B-frames in a PB-frame. Compared
to H.263 in PB-mode, what are the tradeoffs? What is the point in having PB
joint coding if B-frames have independent motion vectors?

References

1. A.M. Tekalp, Digital video processing (Prentice Hall, Upper Saddle River, 1995)
2. C.A. Poynton, Digital Video and HDTV Algorithms and Interfaces (Morgan Kaufmann, San

Francisco, 2002)
3. V. Bhaskaran, K. Konstantinides, Image and Video Compression Standards: Algorithms and

Architectures, 2nd edn. (Kluwer Academic Publishers, Boston, 1997)
4. Y. Wang, J. Ostermann, Y.Q. Zhang, Video Processing and Communications (Prentice Hall,

Upper Sadle River, 2002)
5. D. Marr, Vision (The MIT Press, San Francisco, 2010)
6. Video codec for audiovisual services at p × 64 kbit/s. ITU-T Recommendation H.261, version

1 (1990) version 2, March (1993)
7. Video coding for low bit rate communication. ITU-T recommendation H.263, version 1 (1995),

Version 2 (1998), version 3 (2000), Revised (2005)
8. B.G. Haskell, A. Puri, A. Netravali, Digital Video: An Introduction to MPEG-2 (Chapman and

Hall, New York, 1996)
9. G. Cote, B. Erol, M. Gallant, H.263+. IEEE Trans. Circuits Syst. Video Technol. 8(7), 849–866

(1998)
10. Y. Takishima, M. Wada, H. Murakami, Reversible variable length codes. IEEE Trans. Commun.

43(2–4), 158–162 (1995)
11. C.W. Tsai, J.L. Wu, On constructing the Huffman-code-based reversible variable-length codes.

IEEE Trans. Commun. 49(9), 1506–1509 (2001)

11MPEGVideoCoding:
MPEG-1,2,4,and7

11.1 Overview

The Moving Picture Experts Group (MPEG) was established in 1988 to create a
standard for delivery of digital video and audio. Membership grew rapidly from about
25 experts in 1988 to a community of hundreds of companies and organizations [1].
It is appropriately recognized that proprietary interests need to be maintained within
the family of MPEG standards. This is accomplished by defining only a compressed
bitstream that implicitly defines the decoder. The compression algorithms, and thus
the encoders, are completely up to the manufacturers.

In this chapter, we will study some of the most important design issues of MPEG-1
and 2, followed by some basics of the later standards, MPEG-4 and 7, which have
very different objectives.

With the emerging new video compression standards such as H.264 and H.265
(to be discussed in Chap. 12), one might view these MPEG standards as old, i.e.,
outdated. This is simply not a concern because: (a) The fundamental technology
of hybrid coding and most important concepts that we will introduce here, such as
motion compensation, DCT-based transform coding, and scalabilities, are used in
all old and new standards. (b) Although the visual-object-based video representation
and compression approach developed in MPEG-4 and 7 has not been commonly used
in current popular standards, it has a great potential to be adopted in the future when
the necessary Computer Vision technology for automatic object detection becomes
more readily available.

11.2 MPEG-1

The MPEG-1 audio/video digital compression standard [2,3] was approved by the
International Organization for Standardization/International Electrotechnical Com-
mission (ISO/IEC) MPEG group in November 1991 for Coding of Moving Pictures

Z.-N. Li et al., Fundamentals of Multimedia, 341
Texts in Computer Science, DOI: 10.1007/978-3-319-05290-8_11,
© Springer International Publishing Switzerland 2014

http://dx.doi.org/10.1007/978-3-319-05290-8_12

342 11 MPEG Video Coding

and Associated Audio for Digital Storage Media at up to about 1.5 Mbit/s [4].
Common digital storage media include compact discs (CDs) and video compact
discs (VCDs). Out of the specified 1.5, 1.2 Mbps is intended for coded video, and
256 kbps(kilobits per second) can be used for stereo audio. This yields a picture
quality comparable to VHS cassettes and a sound quality equal to CD audio.

In general, MPEG-1 adopts the CCIR601 digital TV format, also known as Source
Input Format (SIF). MPEG-1 supports only noninterlaced video. Normally, its picture
resolution is 352 × 240 for NTSC video at 30 fps, or 352 × 288 for PAL video at
25 fps. It uses 4:2:0 chroma subsampling.

The MPEG-1 standard, also referred to as ISO/IEC 11172 [4], has five parts:
11172-1 Systems, 11172-2 Video, 11172-3 Audio, 11172-4 Conformance, and
11172-5 Software. Briefly, Systems takes care of, among many things, dividing out-
put into packets of bitstreams, multiplexing, and synchronization of the video and
audio streams. Conformance (or compliance) specifies the design of tests for veri-
fying whether a bitstream or decoder complies with the standard. Software includes
a complete software implementation of the MPEG-1 standard decoder and a sample
software implementation of an encoder.

As in H.261 and H.263, MPEG-1 employs the technology of Hybrid Coding,
i.e., a combination of interpicture motion predictions and transform coding on resid-
ual errors. We will examine the main features of MPEG-1 video coding and leave
discussions of MPEG audio coding to Chap. 14.

11.2.1 Motion Compensation in MPEG-1

As discussed in the last chapter, motion-compensation-based video encoding in
H.261 works as follows: In motion estimation, each macroblock of the target P-frame
is assigned a best matching macroblock from the previously coded I- or P-frame.
This is called a prediction. The difference between the macroblock and its matching
macroblock is the prediction error, which is sent to DCT and its subsequent encoding
steps.

Since the prediction is from a previous frame, it is called forward prediction. Due
to unexpected movements and occlusions in real scenes, the target macroblock may
not have a good matching entity in the previous frame. Figure 11.1 illustrates that the
macroblock containing part of a ball in the target frame cannot find a good matching
macroblock in the previous frame, because half of the ball was occluded by another
object. However, a match can readily be obtained from the next frame.

MPEG introduces a third frame type—B-frames—and their accompanying
bidirectional motion compensation. Figure 11.2 illustrates the motion-compensation-
based B-frame coding idea. In addition to the forward prediction, a backward pre-
diction is also performed, in which the matching macroblock is obtained from a
future I- or P-frame in the video sequence. Consequently, each macroblock from a
B-frame will specify up to two motion vectors, one from the forward and one from
the backward prediction.

http://dx.doi.org/10.1007/978-3-319-05290-8_14

11.2 MPEG-1 343

Previous frame Next frameTarget frame

Fig. 11.1 The need for bidirectional search

Target frame

DCT
Quantization

Entropy coding

−

Future reference framePrevious reference frame

Motion vectors

%

Difference macroblock
Y

Cb

Cr

0011101…

For each 8 × 8 block

Fig. 11.2 B-frame coding based on bidirectional motion compensation

If matching in both directions is successful, two motion vectors will be sent, and
the two corresponding matching macroblocks are averaged (indicated by “%” in the
figure) before comparing to the target macroblock for generating the prediction error.
If an acceptable match can be found in only one of the reference frames, only one
motion vector and its corresponding macroblock will be used from either the forward
or backward prediction.

Figure 11.3 illustrates a possible sequence of video frames. The actual frame
pattern is determined at encoding time and is specified in the video’s header. MPEG
uses M to indicate the interval between a P-frame and its preceding I- or P-frame,
and N to indicate the interval between two consecutive I-frames. In Fig. 11.3, M =
3, N = 9. A special case is M = 1, when no B-frame is used.

344 11 MPEG Video Coding

I
Coding and
transmission order

Time

Display order I

II B P

P P

P B B B B B

B B B B B B

Fig. 11.3 MPEG frame sequence

Since the MPEG encoder and decoder cannot work for any macroblock from a
B-frame without its succeeding P- or I-frame, the actual coding and transmission
order (shown at the bottom of Fig. 11.3) is different from the display order of the video
(shown above). The inevitable delay and need for buffering become an important
issue in real-time network transmission, especially in streaming MPEG video.

11.2.2 Other Major Differences fromH.261

Beside introducing bidirectional motion compensation (the B-frames), MPEG-1 also
differs from H.261 in the following aspects:
• Source formats H.261 supports only CIF (352 × 288) and QCIF (176 × 144)

source formats. MPEG-1 supports SIF (352×240 for NTSC, 352×288 for PAL).
It also allows specification of other formats, as long as the constrained parameter
set (CPS), shown in Table 11.1, is satisfied.

• Slices Instead of GOBs, as in H.261, an MPEG-1 picture can be divided into one
or more slices (Fig. 11.4), which are more flexible than GOBs. They may contain
variable numbers of macroblocks in a single picture and may also start and end
anywhere, as long as they fill the whole picture. Each slice is coded independently.
For example, the slices can have different scale factors in the quantizer. This
provides additional flexibility in bitrate control.
Moreover, the slice concept is important for error recovery, because each slice
has a unique slice_start_code. A slice in MPEG is similar to the GOB in H.261
(and H.263): it is the lowest level in the MPEG layer hierarchy that can be fully
recovered without decoding the entire set of variable-length codes in the bitstream.

• Quantization MPEG-1 quantization uses different quantization tables for its intra-
and intercoding (Tables 11.2 and 11.3). The quantizer numbers for intracoding
(Table 11.2) vary within a macroblock. This is different from H.261, where all
quantizer numbers for AC coefficients are constant within a macroblock.

11.2 MPEG-1 345

Table 11.1 The MPEG-1
constrained parameter
set

Parameter Value

Horizontal size of picture ≤768
Vertical size of picture ≤576
Number of macroblocks/picture ≤396
Number of macroblocks/second ≤9, 900
Frame rate ≤30 fps
Bitrate ≤1, 856 kbps

Fig. 11.4 Slices in an
MPEG-1 picture

Table 11.2 Default
quantization table (Q1) for
intracoding

8 16 19 22 26 27 29 34
16 16 22 24 27 29 34 37
19 22 26 27 29 34 34 38
22 22 26 27 29 34 37 40
22 26 27 29 32 35 40 48
26 27 29 32 35 40 48 58
26 27 29 34 38 46 56 69
27 29 35 38 46 56 69 83

Table 11.3 Default
quantization table (Q2) for
intercoding

16 16 16 16 16 16 16 16
16 16 16 16 16 16 16 16
16 16 16 16 16 16 16 16
16 16 16 16 16 16 16 16
16 16 16 16 16 16 16 16
16 16 16 16 16 16 16 16
16 16 16 16 16 16 16 16
16 16 16 16 16 16 16 16

346 11 MPEG Video Coding

The step_si ze[i, j] value is now determined by the product of Q[i, j] and scale,
where Q1 or Q2 is one of the above quantization tables and scale is an integer in
the range [1, 31]. Using DCT and Q DCT to denote the DCT coefficients before
and after quantization, for DCT coefficients in intramode,

QDCT[i, j] = round
(

8 × DCT [i, j]
step_si ze[i, j]

)
= round

(
8 × DCT [i, j]

Q1[i, j] × scale

)
,

(11.1)
and for DCT coefficients in intermode,

QDCT[i, j] =
⌊

8 × DCT [i, j]
step_si ze[i, j]

⌋
=

⌊
8 × DCT [i, j]

Q2[i, j] × scale

⌋
, (11.2)

where Q1 and Q2 refer to Tables 11.2 and 11.3, respectively.
Again, a round operator is typically used in Eq. (11.1) and hence leaves no dead
zone, whereas a floor operator is used in Eq. (11.2), leaving a center dead zone
in its quantization space.

• To increase precision of the motion-compensation-based predictions and hence
reduce prediction errors, MPEG-1 allows motion vectors to be of subpixel precision
(1/2 pixel). The technique of bilinear interpolation discussed in Sect. 10.5.1 for
H.263 can be used to generate the needed values at half-pixel locations.

• MPEG-1 supports larger gaps between I- and P-frames and consequently a much
larger motion-vector search range. Compared to the maximum range of ±15 pix-
els for motion vectors in H.261, MPEG-1 supports a range of [−512, 511.5] for
half-pixel precision and [−1,024, 1,023] for full-pixel precision motion vectors.
However, due to the practical limitation in its picture resolution, such a large
maximum range might never be used.

• The MPEG-1 bitstream allows random access. This is accomplished by the Group
of Pictures (GOP) layer, in which each GOP is time-coded. In addition, the first
frame in any GOP is an I-frame, which eliminates the need to reference other
frames. Thus, the GOP layer allows the decoder to seek a particular position
within the bitstream and start decoding from there.
Table 11.4 lists typical sizes (in kilobytes) for all types of MPEG-1 frames. It can be

seen that the typical size of compressed P-frames is significantly smaller than that of
I-frames, because interframe compression exploits temporal redundancy. Notably, B-
frames are even smaller than P-frames, due partially to the advantage of bidirectional
prediction. It is also because B-frames are often given the lowest priority in terms of
preservation of quality; hence, a higher compression ratio can be assigned.

11.2.3 MPEG-1Video Bitstream

Figure 11.5 depicts the six hierarchical layers for the bitstream of an MPEG-1 video.
1. Sequence layer A video sequence consists of one or more groups of pictures

(GOPs). It always starts with a sequence header. The header contains information
about the picture, such as horizontal_size and vertical_size, pixel_aspect_ratio,
frame_rate, bit_rate, buffer_size, quantization_matrix, and so on. Optional
sequence headers between GOPs can indicate parameter changes.

http://dx.doi.org/10.1007/978-3-319-05290-8_10

11.2 MPEG-1 347

Table 11.4 Typical compression performance of MPEG-1 frames

Type Size (kB) Compression

I 18 7:1
P 6 20:1
B 2.5 50:1
Average 4.8 27:1

Macroblock Macroblock MacroblockSlice

Macroblock Block 0 Block 1 Block 2 Block 3 Block 4 Block 5

end_of_blockVLC run VLC runDC coefficient

Picture Picture Picture Picture

(if intra macroblock)

Video sequence

GOPGOPGOP end code
Sequence

layer

layer

layer

layer

layer

layer
Sequence

Group of picture

Picture

Slice

Macroblock

Block

header

ecilSecilSecilSecilSPicture
header

header

Sequence
header

GOP
header

Differential

. . .

. . .

. . .

. . .

. . .

Fig. 11.5 Layers of MPEG-1 video bitstream

2. GOPs layer A GOP contains one or more pictures, one of which must be an
I-picture. The GOP header contains information such as time_code to indicate
hour-minute-second-frame from the start of the sequence.

3. Picture layer The three common MPEG-1 picture types are I-picture (intra-
coding), P-picture (predictive coding), and B-picture (Bidirectional predictive
coding), as discussed above. There is also an uncommon type, D-picture (DC
coded), in which only DC coefficients are retained. MPEG-1 does not allow mix-
ing D-pictures with other types, which makes D-pictures impractical.

4. Slice layer As mentioned earlier, MPEG-1 introduced the slice notion for bitrate
control and for recovery and synchronization after lost or corrupted bits. Slices

348 11 MPEG Video Coding

may have variable numbers of macroblocks in a single picture. The length and
position of each slice are specified in the header.

5. Macroblock layer Each macroblock consists of four Y blocks, one Cb block,
and one Cr block. All blocks are 8 × 8.

6. Block layer If the blocks are intracoded, the differential DC coefficient (DPCM
of DCs, as in JPEG) is sent first, followed by variable-length codes (VLC), for
AC coefficients. Otherwise, DC and AC coefficients are both coded using the
variable-length codes.

Mitchell et al. [5] provide detailed information on the headers in various MPEG-1
layers.

11.3 MPEG-2

Development of the MPEG-2 standard started in 1990. Unlike MPEG-1, which is
basically a standard for storing and playing video on the CD of a single computer at
a low bitrate (1.5 Mbps), MPEG-2 [6] is for higher quality video at a bitrate of more
than 4 Mbps. It was initially developed as a standard for digital broadcast TV.

In the late 1980s, Advanced TV (ATV) was envisioned, to broadcast HDTV via
terrestrial networks. During the development of MPEG-2, digital ATV finally took
precedence over various early attempts at analog solutions to HDTV. MPEG-2 has
managed to meet the compression and bitrate requirements of digital TV/HDTV
and in fact supersedes a separate standard, MPEG-3, initially thought necessary
for HDTV.

The MPEG-2 audio/video compression standard, also referred to as ISO/IEC
13818 [7], was approved by the ISO/IEC Moving Picture Experts Group in Novem-
ber 1994. Similar to MPEG-1, it has Parts for Systems, Video, Audio, Conformance,
and Software, plus other aspects. Part 2, the video compression part of the standard,
ISO/IEC 13818-2 is also known as H.262 in ITU-T (International Telecommuni-
cation Union-Telecommunications). MPEG-2 has gained wide acceptance beyond
broadcasting digital TV over terrestrial, satellite, or cable networks. Among various
applications such as Interactive TV, it was also adopted for digital video discs or
digital versatile discs (DVDs).

MPEG-2 defined seven profiles aimed at different applications (e.g., low-delay
videoconferencing, scalable video, HDTV). The profiles are Simple, Main, SNR
scalable, Spatially scalable, High, 4:2:2, and Multiview (where two views would
refer to stereoscopic video). Within each profile, up to four levels are defined. As
Table 11.5 shows, not all profiles have four levels. For example, the Simple profile
has only the Main level; whereas the High profile does not have the Low level.

Table 11.6 lists the four levels in the Main profile, with the maximum amount of
data and targeted applications. For example, the High level supports a high picture
resolution of 1,920 × 1,152, a maximum frame rate of 60 fps, maximum pixel rate
of 62.7 × 106 per second, and a maximum data rate after coding of 80 Mbps. The

11.3 MPEG-2 349

Table 11.5 Profiles and Levels in MPEG-2

Level Simple
profile

Main
profile

SNR
scalable
profile

Spatially
scalable
profile

High
profile

4:2:2
profile

Multiview
profile

High * * *
High 1440 * * * *
Main * * * * * *
Low * * *

Table 11.6 Four levels in the main profile of MPEG-2

Level Maximum
resolution

Maximum
fps

Maximum
pixels/sec

Maximum
coded data
rate (Mbps)

Application

High 1,920×1,152 60 62.7×106 80 Film production
High 1440 1,440×1,152 60 47.0×106 60 Consumer HDTV
Main 720 × 576 30 10.4×106 15 Studio TV
Low 352 × 288 30 3.0×106 4 Consumer tape

equivalent

Low level is targeted at SIF video; hence, it provides backward compatibility with
MPEG-1. The Main level is for CCIR601 video, whereas High 1440 and High levels
are aimed at European HDTV and North American HDTV, respectively.

The DVD video specification allows only four display resolutions: for example,
at 29.97 fps, interlaced, 720 × 480, 704 × 480, 352 × 480, and 352 × 240. Hence,
the DVD video standard uses only a restricted form of the MPEG-2 Main profile at
the Main and Low levels.

11.3.1 Supporting InterlacedVideo

MPEG-1 supports only noninterlaced (progressive) video. Since MPEG-2 is adopted
by digital broadcast TV, it must also support interlaced video, because this is one of
the options for digital broadcast TV and HDTV.

As mentioned earlier, in interlaced video each frame consists of two fields, referred
to as the top-field and the bottom-field. In a frame-picture, all scanlines from both
fields are interleaved to form a single frame. This is then divided into 16 × 16
macroblocks and coded using motion compensation. On the other hand, if each field
is treated as a separate picture, then it is called field picture. As Fig. 11.6a shows,
each frame-picture can be split into two field pictures. The figure shows 16 scanlines
from a frame-picture on the left, as opposed to 8 scanlines in each of the two field
portions of a field picture on the right.

350 11 MPEG Video Coding

. . .

PI or P

Bottom-field

Top-field

B

(a)

(b)

Fig. 11.6 Field pictures and field prediction for field pictures in MPEG-2: a frame-picture versus
field pictures; b field prediction for field pictures

We see that, in terms of display area on the monitor/TV, each 16-column×16-row
macroblock in the field picture corresponds to a 16 × 32 block area in the frame
picture, whereas each 16 × 16 macroblock in the frame picture corresponds to
a 16 × 8 block area in the field picture. As shown below, this observation will
become an important factor in developing different modes of predictions for motion-
compensation-based video coding.

Five Modes of Predictions

MPEG-2 defines frame prediction and field prediction as well as five different pre-
diction modes, suitable for a wide range of applications where the requirement for
the accuracy and speed of motion compensation vary.
1. Frame prediction for frame-pictures. This is identical to MPEG-1 motion-

compensation-based prediction methods in both P-frames and B-frames. Frame

11.3 MPEG-2 351

prediction works well for videos containing only slow and moderate object and
camera motions.

2. Field prediction for field pictures. (See Fig. 11.6b) This mode uses a macroblock
size of 16×16 from field pictures. For P-field pictures (the rightmost ones shown
in the figure), predictions are made from the two most recently encoded fields.
Macroblocks in the top-field picture are forward-predicted from the top-field or
bottom-field pictures of the preceding I- or P-frame. Macroblocks in the bottom-
field picture are predicted from the top-field picture of the same frame or the
bottom-field picture of the preceding I- or P-frame.
For B-field pictures, both forward and backward predictions are made from field
pictures of preceding and succeeding I- or P-frames. No regulation requires that
field “parity” be maintained—that is, the top-field and bottom-field pictures can
be predicted from either the top or bottom fields of the reference pictures.

3. Field prediction for frame-pictures. This mode treats the top-field and bottom-
field of a frame-picture separately. Accordingly, each 16 × 16 macroblock from
the target frame-picture is split into two 16×8 parts, each coming from one field.
Field prediction is carried out for these 16 × 8 parts in a manner similar to that
shown in Fig. 11.6b. Besides the smaller block size, the only difference is that
the bottom-field will not be predicted from the top-field of the same frame, since
we are dealing with frame-pictures now.
For example, for P-frame-pictures, the bottom 16×8 part will instead be predicted
from either field from the preceding I- or P-frame. Two motion vectors are thus
generated for each 16 × 16 macroblock in the P-frame-picture. Similarly, up to
four motion vectors can be generated for each macroblock in the B-frame-picture.

4. 16 × 8 MC for field pictures. Each 16 × 16 macroblock from the target field
picture is now split into top and bottom 16 × 8 halves—that is, the first eight
rows and the next eight rows. Field prediction is performed on each half. As a
result, two motion vectors will be generated for each 16 × 16 macroblock in the
P-field picture and up to four motion vectors for each macroblock in the B-field
picture. This mode is good for finer motion compensation when motion is rapid
and irregular.

5. Dual-prime for P-pictures. This is the only mode that can be used for either
frame-pictures or field pictures. At first, field prediction from each previous field
with the same parity (top or bottom) is made. Each motion vector MV is then
used to derive a calculated motion vector CV in the field with the opposite parity,
taking into account the temporal scaling and vertical shift between lines in the
top and bottom fields. In this way, the pair MV and CV yields two preliminary
predictions for each macroblock. Their prediction errors are averaged and used as
the final prediction error. This mode is aimed at mimicking B-picture prediction
for P-pictures without adopting backward prediction (and hence less encoding
delay).

352 11 MPEG Video Coding

(a) (b)

Fig.11.7 a Zigzag (progressive) and b alternate (interlaced) scans of DCT coefficients for videos
in MPEG-2

Alternate Scan and Field_DCT

Alternate Scan and Field_DCT are techniques aimed at improving the effectiveness
of DCT on prediction errors. They are applicable only to frame-pictures in interlaced
videos.

After frame prediction in frame-pictures, the prediction error is sent to DCT, where
each block is of size 8 × 8. Due to the nature of interlaced video, the consecutive
rows in these blocks are from different fields; hence, there is less correlation between
them than between the alternate rows. This suggests that the DCT coefficients at low
vertical spatial frequencies tend to have reduced magnitudes, compared to the ones
in noninterlaced video.

Based on the above analysis, an alternate scan is introduced. It may be applied on a
picture-by-picture basis in MPEG-2 as an alternative to a zigzag scan. As Fig. 11.7a
indicates, zigzag scan assumes that in noninterlaced video, the DCT coefficients
at the upper left corner of the block often have larger magnitudes. Alternate scan
(Fig. 11.7b) recognizes that in interlaced video, the vertically higher spatial frequency
components may have larger magnitudes and thus allows them to be scanned earlier
in the sequence. Experiments have shown [6] that alternate scan can improve the
PSNR by up to 0.3 dB over zigzag scan and is most effective for videos with fast
motion.

In MPEG-2, Field_DCT can address the same issue. Before applying DCT, rows
in the macroblock of frame-pictures can be reordered, so that the first eight rows are
from the top-field and the last eight are from the bottom-field. This restores the higher
spatial redundancy (and correlation) between consecutive rows. The reordering will
be reversed after the IDCT. Field_DCT is not applicable to chrominance images,
where each macroblock has only 8 × 8 pixels.

11.3 MPEG-2 353

11.3.2 MPEG-2 Scalabilities

As in JPEG2000, scalability is also an important issue for MPEG-2. Since MPEG-2
is designed for a variety of applications, including digital TV and HDTV, the video
will often be transmitted over networks with very different characteristics. Therefore
it is necessary to have a single-coded bitstream that is scalable to various bitrates.

MPEG-2 scalable coding is also known as layered coding, in which a base layer
and one or more enhancement layers can be defined. The base layer can be indepen-
dently encoded, transmitted, and decoded, to obtain basic video quality. The encoding
and decoding of the enhancement layer, however, depends on the base layer or the
previous enhancement layer. Often, only one enhancement layer is employed, which
is called two-layer scalable coding.

Scalable coding is suitable for MPEG-2 video transmitted over networks with
following characteristics.
• Very different bitrates If the link speed is slow, only the bitstream from the base

layer will be sent. Otherwise, bitstreams from one or more enhancement layers
will also be sent, to achieve improved video quality.

• Variable-bitrate (VBR) channels When the bitrate of the channel deteriorates,
bitstreams from fewer or no enhancement layers will be transmitted, and vice
versa.

• Noisy connections The base layer can be better protected or sent via channels
known to be less noisy.
Moreover, scalable coding is ideal for progressive transmission: bitstreams from

the base layer are sent first, to give users a fast and basic view of the video, followed
by gradually increased data and improved quality. This can be useful for delivering
compatible digital TV (ATV) and HDTV.

MPEG-2 supports the following scalabilities:
• SNR scalability The enhancement layer provides higher SNR.
• Spatial scalability The enhancement layer provides higher spatial resolution.
• Temporal scalability The enhancement layer facilitates higher frame rate.
• Hybrid scalability This combines any two of the above three scalabilities.
• Data partitioning Quantized DCT coefficients are split into partitions.

SNR Scalability

Figure 11.8 illustrates how SNR scalability works in the MPEG-2 encoder and
decoder.

The MPEG-2 SNR scalable encoder generates output bitstreamsBits_base and
Bits_enhance at two layers. At the base layer, a coarse quantization of the
DCT coefficients is employed, which results in fewer bits and a relatively low-
quality video. After variable-length coding, the bitstream is called Bits_base.
The coarsely quantized DCT coefficients are then inversely quantized (Q−1) and
fed to the enhancement layer, to be compared with the original DCT coefficient.

354 11 MPEG Video Coding

IDCT

Frame
memory

Motion
estimation

IDCT

Frame
memoryPrediction

DCT

SNR enhancement encoder

Base encoder

VLC

Bits_base

MC-based
prediction

frame
Current

Bits_enhance

VLD

VLD

Base decoder

SNR enhancement decoder

Motion vectors

prediction
MC-based

Output_high

Bits_enhance

Bits_base

Motion vectors

Output_base

VLC+

+

+

+

+

+

−

−
Q

Q −1

Q −1

Q

Q −1

Q −1

(a)

(b)

Fig. 11.8 MPEG-2 SNR scalability: a encoder; b decoder

Their difference is finely quantized to generate a DCT coefficient refinement, which,
after variable-length coding, becomes the bitstream called Bits_enhance. The
inversely quantized coarse and refined DCT coefficients are added back, and after
inverse DCT (IDCT), they are used for motion-compensated prediction for the next

11.3 MPEG-2 355

frame. Since the enhancement/refinement over the base layer improves the signal-
to-noise-ratio, this type of scalability is called SNR scalability.

If, for some reason (e.g., the breakdown of some network channel), Bits_
enhance from the enhancement layer cannot be obtained, the above scalable
scheme can still work using Bits_base only. In that case, the input from the
inverse quantizer (Q−1) of the enhancement layer simply has to be treated as zero.

The decoder (Fig. 11.8b) operates in reverse order to the encoder. Both Bits_
base and Bits_enhance are variable-length decoded (VLD) and inversely quan-
tized (Q−1) before they are added together to restore the DCT coefficients. The
remaining steps are the same as in any motion-compensation-based video decoder.
If both bitstreams (Bits_base and Bits_enhance) are used, the output video
is Output_high with enhanced quality. If only Bits_base is used, the output
video Output_base is of basic quality.

Spatial Scalability

The base and enhancement layers for MPEG-2 spatial scalability are not as tightly
coupled as in SNR scalability; hence, this type of scalability is somewhat less com-
plicated. We will not show the details of both encoder and decoder, as we did above,
but will explain only the encoding process, using high-level diagrams.

The base layer is designed to generate a bitstream of reduced-resolution pictures.
Combining them with the enhancement layer produces pictures at the original reso-
lution. As Fig. 11.9a shows, the original video data is spatially decimated by a factor
of 2 and sent to the base layer encoder. After the normal coding steps of motion com-
pensation, DCT on prediction errors, quantization, and entropy coding, the output
bitstream is Bits_base.

As Fig. 11.9b indicates, the predicted macroblock from the base layer is now
spatially interpolated to get to resolution 16 × 16. This is then combined with the
normal, temporally predicted macroblock from the enhancement layer itself, to form
the prediction macroblock for the purpose of motion compensation in this layered
coding. The spatial interpolation here adopts bilinear interpolation, as discussed
before.

The combination of macroblocks uses a simple weight table, where the value
of the weight w is in the range of [0, 1.0]. If w = 0, no consideration is given to
the predicted macroblock from the base layer. If w = 1, the prediction is entirely
from the base layer. Normally, both predicted macroblocks are linearly combined,
using the weights w and 1 −w, respectively. To achieve minimum prediction errors,
MPEG-2 encoders have an analyzer to choose different w values from the weight
table on a macroblock basis.

Temporal Scalability

Temporally scalable coding has both the base and enhancement layers of video at a
reduced temporal rate (frame rate). The reduced frame rates for the layers are often

356 11 MPEG Video Coding

Fig. 11.9 Encoder for
MPEG-2 Spatial scalability: a
block diagram; b combining
temporal and spatial
predictions for encoding at
enhancement layer

Spatial
interpolatordecimator

Spatial

Spatial

encoder
enhancement layer

Bits_enhance

Bits_base

Current
frame

encoder
base layer

Spatial

Example weight table

1.0
0.5
. . .
0

+

Interpolated MB

Predicted MB

from base layer

from enhancement

Spatial
interpolation

from base layer

Predicted MB

layer

16 × 16

16 × 16

16 × 16

8 × 8

w

w

1 − w

(a)

(b)

the same; however, they could also be different. Pictures from the base layer and
enhancement layer(s) have the same spatial resolution as in the input video. When
combined, they restore the video to its original temporal rate.

Figure 11.10 illustrates the MPEG-2 implementation of temporal scalability. The
input video is temporally demultiplexed into two pieces, each carrying half the orig-
inal frame rate. As before, the base layer encoder carries out the normal single-
layer coding procedures for its own input video and yields the output bitstream
Bits_base.

The prediction of matching macroblocks at the enhancement layer can be obtained
in two ways [6]: Interlayer motion-compensated prediction or combined motion-
compensated prediction and interlayer motion-compensated prediction.
• Interlayer motion-compensated prediction (Fig. 11.10b) The macroblocks of

B-frames for motion compensation at the enhancement layer are predicted from
the preceding and succeeding frames (either I-, P-, or B-) at the base layer, so as
to exploit the possible interlayer redundancy in motion compensation.

11.3 MPEG-2 357

Fig. 11.10 Encoder for
MPEG-2 temporal scalability:
a block diagram; b interlayer
motion-compensated
prediction; c combined
motion-compensated
prediction and interlayer
motion-compensated
prediction

encoder

Bits_enhance

demultiplexer
Temporal

frame
Current

Temporal
enhancement layer

Bits_base

encoder

Temporal
base layer

Base layer

enhancement layer
Temporal

B

. . .

B

Base layer

enhancement layer
Temporal

P

. . .

B

B B

I B B P

B B

I B B P

(a)

(b)

(c)

• Combined motion-compensation prediction and interlayer motion-
compensation prediction (Fig. 11.10c) This further combines the advantages of
the ordinary forward prediction and the above interlayer prediction. Macroblocks
of B-frames at the enhancement layer are forward-predicted from the preceding
frame at its own layer and “backward”-predicted from the preceding (or, alterna-
tively, succeeding) frame at the base layer. At the first frame, the P-frame at the
enhancement layer adopts only forward prediction from the I-frame at the base
layer.

Hybrid Scalability

Any two of the above three scalabilities can be combined to form hybrid scalability.
These combinations are:
• Spatial and temporal hybrid scalability
• SNR and spatial hybrid scalability

358 11 MPEG Video Coding

• SNR and temporal hybrid scalability
Usually, a three-layer hybrid coder will be adopted, consisting of base layer,

enhancement layer 1, and enhancement layer 2.
For example, for Spatial and temporal hybrid scalability, the base layer and

enhancement layer 1 will provide spatial scalability, and enhancement layers 1 and 2
will provide temporal scalability, in which enhancement layer 1 is effectively serving
as a base layer.

For the encoder, the incoming video data is first temporally demultiplexed into
two streams: one to enhancement layer 2; the other to enhancement layer 1 and the
base layer (after further spatial decimation for the base layer).

The encoder generates three output bitstreams: (a) Bits_base from the base
layer, (b) spatially enhanced Bits_enhance1 from enhancement layer 1, and
(c) spatially and temporally enhancedBits_enhance2 from enhancement layer 2.

The implementations of the other two hybrid scalabilities are similar and are left
as exercises.

Data Partitioning

The compressed video stream is divided into two partitions. The base partition con-
tains lower-frequency DCT coefficients, and the enhancement partition contains
high-frequency DCT coefficients. Although the partitions are sometimes also referred
to as layers (base layer and enhancement layer), strictly speaking, data partitioning
does not conduct the same type of layered coding, since a single stream of video
data is simply divided up and does not depend further on the base partition in gen-
erating the enhancement partition. Nevertheless, data partitioning can be useful for
transmission over noisy channels and for progressive transmission.

11.3.3 Other Major Differences fromMPEG-1

• Better resilience to bit errors. Since MPEG-2 video will often be transmitted
on various networks, some of them noisy and unreliable, bit errors are inevitable.
To cope with this, MPEG-2 systems have two types of streams: Program and
Transport. The Program stream is similar to the Systems stream in MPEG-1;
hence, it also facilitates backward compatibility with MPEG-1.
The Transport stream aims at providing error resilience and the ability to include
multiple programs with independent time bases in a single stream, for asynchro-
nous multiplexing and network transmission. Instead of using long, variable-length
packets, as in MPEG-1 and in the MPEG-2 Program stream, it uses fixed-length
(188-byte) packets. It also has a new header syntax, for better error checking and
correction.

• Support of 4:2:2 and 4:4:4 chroma subsampling. In addition to 4:2:0 chroma
subsampling, as in H.261 and MPEG-1, MPEG-2 also allows 4:2:2 and 4:4:4, to
increase color quality. As discussed in Chap. 5, each chrominance picture in 4:2:2

http://dx.doi.org/10.1007/978-3-319-05290-8_5

11.3 MPEG-2 359

Table 11.7 Possible nonlinear scale in MPEG-2

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
scalei 1 2 3 4 5 6 7 8 10 12 14 16 18 20 22 24
i 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
scalei 28 32 36 40 44 48 52 56 64 72 80 88 96 104 112

is horizontally subsampled by a factor of 2, whereas 4:4:4 is a special case, where
no chroma subsampling actually takes place.

• Nonlinear quantization. Quantization in MPEG-2 is similar to that in MPEG-1.
Its step_size is also determined by the product of Q[i, j] and scale, where Q is one
of the default quantization tables for intra- or inter- coding. Two types of scales
are allowed. For the first, scale is the same as in MPEG-1, in which it is an integer
in the range of [1, 31] and scalei = i . For the second type, however, a nonlinear
relationship exists—that is, scalei ̸≡ i . The i th scale value can be looked up in
Table 11.7.

• More restricted slice structure. MPEG-1 allows slices to cross macroblock row
boundaries. As a result, an entire picture can be a single slice. MPEG-2 slices must
start and end in the same macroblock row. In other words, the left edge of a picture
always starts a new slice, and the longest slice in MPEG-2 can have only one row
of macroblocks.

• More flexible video formats. According to the standard, MPEG-2 picture sizes
can be as large as 16 k × 16 k pixels. In reality, MPEG-2 is used mainly to support
various picture resolutions as defined by DVD, ATV, and HDTV.
Similar to H.261, H.263, and MPEG-1, MPEG-2 specifies only its bitstream syn-

tax and the decoder. This leaves much room for future improvement, especially on
the encoder side. The MPEG-2 video-stream syntax is more complex than that of
MPEG-1, and good references for it can be found in [6,7].

11.4 MPEG-4

11.4.1 Overview of MPEG-4

MPEG-1 and -2 employ frame-based coding techniques, in which each rectangular
video frame is divided into macroblocks and then blocks for compression. This is
also known as block-based coding. Their main concern is high compression ratio and
satisfactory quality of video under such compression techniques. MPEG-4 had a very
different emphasis [8]. Besides compression, it pays great attention to user interactiv-
ity. This allows a larger number of users to create and communicate their multimedia
presentations and applications on new infrastructures, such as the Internet, the World
Wide Web (WWW), and mobile/wireless networks. MPEG-4 departs from its pre-

360 11 MPEG Video Coding

Manipulation

VOP 3

VOP 2

VOP 1

VOP

Encoder Decoder
Content−based

Scene Segmentation

Fig. 11.11 Composition and manipulation of MPEG-4 videos (VOP = Video object plane)

decessors in adopting a new object-based coding approach—media objects are now
entities for MPEG-4 coding. Media objects (also known as audio and visual objects)
can be either natural or synthetic; that is to say, they may be captured by a video
camera or created by computer programs.

Object-based coding not only has the potential of offering higher compression
ratio but is also beneficial for digital video composition, manipulation, indexing,
and retrieval. Figure 11.11 illustrates how MPEG-4 videos can be composed and
manipulated by simple operations such as insertion/deletion, translation/rotation,
scaling, and so on, on the visual objects.

MPEG-4 (version 1) was finalized in October 1998 and became an international
standard in early 1999, referred to as ISO/IEC 14496 [9]. An improved version (ver-
sion 2) was finalized in December 1999 and acquired International Standard status in
2000. Similar to the previous MPEG standards, its first five parts are Systems, Video,
Audio, Conformance, and Software. This chapter will discuss the video compression
issues in MPEG-4 Part 2 (formally ISO/IEC 14496-2).1

Originally targeted at low-bitrate communication (4.8–64 kbps for mobile appli-
cations and up to 2 Mbps for other applications), the bitrate for MPEG-4 video now
covers a large range, between 5 kbps and 10 Mbps.

As the Reference Models in Fig. 11.12a shows, an MPEG-1 system simply deliv-
ers audio and video data from its storage and does not allow any user interactivity.
MPEG-2 added an Interaction component (indicated by dashed lines in Fig. 11.12a)
and thus permits limited user interactions in applications such as networked video and
Interactive TV. MPEG-4 (Fig. 11.12b) is an entirely new standard for (a) composing

1 MPEG-4 Part 10 which is identical to ITU-T H.264 AVC will be discussed in Chap. 12.

http://dx.doi.org/10.1007/978-3-319-05290-8_12

11.4 MPEG-4 361

Fig. 11.12 Comparison of
interactivity in MPEG
standards: a reference models
in MPEG-1 and 2 (interaction
in dashed lines supported
only by MPEG-2); b
MPEG-4 reference model

D
e
m
u
l
t
i
p
l
e
x

S
o
u
r
c
e

D
e
l
i
v
e
r
y

Video

Audio

Interaction

Audio

Animation

Text

Interaction

BIFS

Video

C
o
m
p
o
s
i
t
i
o
n

P
r
e
s
e
n
t
a
t
i
o
n

S
o
u
r
c
e

D
e
l
i
v
e
r
y

D
e
m
u
l
t
i
p
l
e
x

(a)

(b)

media objects to create desirable audiovisual scenes, (b) multiplexing and synchro-
nizing the bitstreams for these media data entities so that they can be transmitted
with guaranteed Quality of Service (QoS), and (c) interacting with the audiovisual
scene at the receiving end. MPEG-4 provides a toolbox of advanced coding modules
and algorithms for audio and video compression.

MPEG-4 defines BInary Format for Scenes (BIFS) [10] that facilitates the com-
position of media objects into a scene. BIFS is often represented by a scene graph,
in which the nodes describe audiovisual primitives and their attributes and the graph
structure enables a description of spatial and temporal relationships of objects in the
scene. BIFS is an enhancement of Virtual Reality Modeling Language (VRML). In
particular, it emphasizes timing and synchronization of objects, which were lacking
in the original VRML design. In addition to BIFS, MPEG-4 (version 2) provides a
programming environment, MPEG-J [11], in which Java applications (called MPE-
Glets) can access Java packages and APIs so as to enhance end users’ interactivity.

The hierarchical structure of MPEG-4 visual bitstreams is very different from
that of MPEG-1 and 2 in that it is very much video-object-oriented. Figure 11.13
illustrates five levels of the hierarchical description of a scene in MPEG-4 visual

362 11 MPEG Video Coding

Video-object Sequence (VS)

Video Object (VO)

Video Object Layer (VOL)

Video Object Plane (VOP)

Group of VOPs (GOV)

Fig.11.13 Video-object-oriented hierarchical description of a scene in MPEG-4 visual bitstreams

bitstreams. In general, each Video-object Sequence (VS) will have one or more Video
Objects (VOs), each VO will have one or more Video Object Layers (VOLs), and so
on. Syntactically, all five levels have a unique start code in the bitstream, to enable
random access.
1. Video-object Sequence (VS). VS delivers the complete MPEG-4 visual scene,

which may contain 2D or 3D natural or synthetic objects.
2. Video Object (VO). VO is a particular object in the scene, which can be of

arbitrary (nonrectangular) shape, corresponding to an object or background of
the scene.

3. Video Object Layer (VOL). VOL facilitates a way to support (multilayered)
scalable coding. A VO can have multiple VOLs under scalable coding or a single
VOL under nonscalable coding. As a special case, MPEG-4 also supports a special
type of VOL with a shorter header. This provides bitstream compatibility with
the baseline H.263 [12].

4. Group of Video Object Planes (GOV). GOV groups video object planes. It is
an optional level.

5. Video Object Plane (VOP). A VOP is a snapshot of a VO at a particular moment,
reflecting the VO’s shape, texture, and motion parameters at that instant. In gen-
eral, a VOP is an image of arbitrary shape. A degenerate case in MPEG-4 video
coding occurs when the entire rectangular video frame is treated as a VOP. In this
case, it is equivalent to MPEG-1 and 2. MPEG-4 allows overlapped VOPs—that
is, a VOP can partially occlude another VOP in a scene.

11.4.2 Video Object-Based Coding inMPEG-4

MPEG-4 encodes/decodes each VOP separately (instead of considering the whole
frame). Hence, its video-object-based coding is also known as VOP-based coding.
Our discussion will start with coding for natural objects (more details can be found
in [13,14]). Section 11.4.3 describes synthetic object coding.

11.4 MPEG-4 363

VOP-Based CodingVersus Frame-Based Coding

MPEG-1 and 2 do not support the VOP concept; hence, their coding method is
referred to as frame-based. Since each frame is divided into many macroblocks
from which motion-compensation-based coding is conducted, it is also known as
block-based coding. Figure 11.14a shows three frames from a video sequence with
a vehicle moving toward the left and a pedestrian walking in the opposite direction.
Figure 11.14b shows the typical block-based coding in which the motion vector
(MV) is obtained for one of the macroblocks.

MPEG-1 and 2 video coding are concerned only with compression ratio and do not
consider the existence of visual objects. Therefore, the motion vectors generated may
be inconsistent with object-level motion and would not be useful for object-based
video analysis and indexing.

Figure 11.14c illustrates a possible example in which both potential matches yield
small prediction errors. If Potential Match 2 yields a (slightly) smaller prediction
error than Potential Match 1, MV2 will be chosen as the motion vector for the
macroblock in the block-based coding approach, although only MV1 is consistent
with the vehicle’s direction of motion.

Object-based coding in MPEG-4 is aimed at solving this problem, in addition to
improving compression. Figure 11.14d shows that each VOP is of arbitrary shape
and will ideally obtain a unique motion vector consistent with the object’s motion.

MPEG-4 VOP-based coding also employs the motion compensation technique.
An Intraframe-coded VOP is called an I-VOP. Interframe-coded VOPs are called P-
VOPs if only forward prediction is employed or B-VOPs if bidirectional predictions
are employed. The new difficulty here is that the VOPs may have arbitrary shapes.
Therefore, in addition to their texture, their shape information must now be coded.

It is worth noting that texture here actually refers to the visual content, that is, the
graylevel and chroma values of the pixels in the VOP. MPEG-1 and 2 do not code
shape information, since all frames are rectangular, but they do code the values of
the pixels in the frame. In MPEG-1 and 2, this coding was not explicitly referred
to as texture coding. The term “texture” comes from computer graphics and shows
how this discipline has entered the video coding world with MPEG-4.

Below, we start with a discussion of motion-compensation-based coding for VOPs,
followed by introductions to texture coding, shape coding, static texture coding,
sprite coding, and global motion compensation.

Motion Compensation

This section addresses issues of VOP-based motion compensation in MPEG-4. Since
I-VOP coding is relatively straightforward, our discussions will concentrate on cod-
ing for P-VOP and/or B-VOP unless I-VOP is explicitly mentioned.

As before, motion-compensation-based VOP coding in MPEG-4 again involves
three steps: motion estimation, motion-compensation-based prediction, and coding
of the prediction error. To facilitate motion compensation, each VOP is divided

364 11 MPEG Video Coding

Previous frame

Previous frame

VOP2

VOP1

motions

VOP2VOP1

Current frame

(d)

(b)

(a)

Current frame
Potential Match 1

Potential Match 2
MV2

MV1(c)

Next frame

coding
Block motion

estimation
Block-based

Object (VOP)

MPEG-4

MPEG-1 and 2

Object
based coding

MV

Fig.11.14 Comparison between block-based coding and object-based coding: a a video sequence;
b MPEG-1 and 2 block-based coding; c two potential matches in MPEG-1 and 2; d object-based
coding in MPEG-4

into many macroblocks, as in previous frame-based methods. Macroblocks are by
default 16×16 in luminance images and 8×8 in chrominance images and are treated
specially when they straddle the boundary of an arbitrarily shaped VOP.

MPEG-4 defines a rectangular bounding box for each VOP. Its left and top bounds
are the left and top bounds of the VOP, which in turn specify the shifted origin for the
VOP from the original (0, 0) for the video frame in the absolute (frame) coordinate
system (see Fig. 11.15). Both horizontal and vertical dimensions of the bounding
box must be multiples of 16 in the luminance image. Therefore, the box is usually
slightly larger than a conventional bounding box.

11.4 MPEG-4 365

Boundary macroblock

Interior macroblock

(0, 0)

VOP

of the VOP
Bounding box

Video frame

Shift

Fig. 11.15 Bounding box and boundary macroblocks of VOP

Horizontal
Repetitive
Padding

Vertical
Repetitive
Padding

Padding
Extended

Fig. 11.16 A sequence of paddings for reference VOPs in MPEG-4

Macroblocks entirely within the VOP are referred to as interior macroblocks. As
is apparent from Fig. 11.15, many of the macroblocks straddle the boundary of the
VOP and are called boundary macroblocks.

Motion compensation for interior macroblocks is carried out in the same manner
as in MPEG-1 and 2. However, boundary macroblocks could be difficult to match
in motion estimation, since VOPs often have arbitrary (nonrectangular) shape, and
their shape may change from one instant in the video to another. To help match every
pixel in the target VOP and meet the mandatory requirement of rectangular blocks
in transform coding (e.g., DCT), a preprocessing step of padding is applied to the
reference VOPs prior to motion estimation.

Only pixels within the VOP of the current (target) VOP are considered for match-
ing in motion compensation, and padding takes place only in the reference VOPs.

For quality, some better extrapolation method than padding could have been devel-
oped. Padding was adopted in MPEG-4 largely due to its simplicity and speed.

The first two steps of motion compensation are: padding, and motion vector
coding.

Padding. For all boundary macroblocks in the reference VOP, horizontal repet-
itive padding is invoked first, followed by vertical repetitive padding (Fig. 11.16).
Afterward, for all exterior macroblocks that are outside of the VOP but adjacent to
one or more boundary macroblocks, extended padding is applied.

The horizontal repetitive padding algorithm examines each row in the boundary
macroblocks in the reference VOP. Each boundary pixel is replicated to the left and/or

366 11 MPEG Video Coding

(a) (b) (c)

45 52 55 60

24 84 05

40 50 80 90

60 60

50 50 50

60 60 60 60

45 52 55 60

24 84 05

40 50

70 70

56 56 0908

51

51

54

54

55

55

55

55

60

60

60

60

60 60

50 50 50

60 60 60 60

45 52 55 60

24 84 05

40 50

70 70

56 56 0908

60 70

Fig. 11.17 An example of repetitive padding in a boundary macroblock of a reference VOP:
a original pixels within the VOP; b after horizontal repetitive padding; c followed by vertical
repetitive padding

right to fill in the values for the interval of pixels outside the VOP in the macroblock.
If the interval is bounded by two boundary pixels, their average is adopted.

Algorithm 11.1 (Horizontal Repetitive Padding).
begin

for all rows in Boundary macroblocks in the Reference VOP
if ∃ (boundary pixel) in the row

for all interval outside of VOP
if interval is bounded by only one boundary pixel b

assign the value of b to all pixels in interval
else // interval is bounded by two boundary pixels b1 and b2

assign the value of (b1 + b2)/2 to all pixels in interval
end

The subsequent vertical repetitive padding algorithm works similarly. It examines
each column, and the newly padded pixels by the preceding horizontal padding
process are treated as pixels inside the VOP for the purpose of this vertical padding.

Example 11.1

Figure 11.17 illustrates an example of repetitive padding in a boundary macroblock
of a reference VOP. Figure 11.17a shows the luminance (or chrominance) intensity
values of pixels in the VOP, with the VOP’s boundary shown as darkened lines. For
simplicity, the macroblock’s resolution is reduced to 6 × 6 in this example, although
its actual macroblock size is 16 × 16 in luminance images and 8 × 8 in chrominance
images.
1. Horizontal repetitive padding (Fig. 11.17b)

Row 0 The rightmost pixel of the VOP is the only boundary pixel. Its intensity
value, 60, is used repetitively as the value of the pixels outside the VOP.
Row 1 Similarly, the rightmost pixel of the VOP is the only boundary pixel. Its
intensity value, 50, is used repetitively as the pixel value outside of the VOP.

11.4 MPEG-4 367

Rows 2 and 3 No horizontal padding, since no boundary pixels exist.
Row 4 There exist two intervals outside the VOP, each bounded by a single
boundary pixel. Their intensity values, 60 and 70, are used as the pixel values
of the two intervals, respectively.
Row 5 A single interval outside the VOP is bounded by a pair of boundary pixels
of the VOP. The average of their intensity values, (50 + 80)/2 = 65, is used
repetitively as the value of the pixels between them.

2. Vertical repetitive padding (Fig. 11.17c)
Column 0 A single interval is bounded by a pair of boundary pixels of the VOP.
One is 42 in the VOP; the other is 60, which just arose from horizontal padding.
The average of their intensity values, (42 + 60)/2 = 51, is repetitively used as
the value of the pixels between them.
Columns 1, 2, 3, 4 and 5 These columns are padded similarly to Column 0.

Extended Padding. Macroblocks entirely outside the VOP are exterior mac-
roblocks. Exterior macroblocks immediately next to boundary macroblocks are filled
by replicating the values of the border pixels of the boundary macroblock. We note
that boundary macroblocks are by now fully padded, so all their horizontal and ver-
tical border pixels have defined values. If an exterior macroblock has more than one
boundary macroblock as its immediate neighbor, the boundary macroblock to use
for extended padding follows a priority list: left, top, right, and bottom.

Later versions of MPEG-4 allow some average values of these macroblocks to be
used. This extended padding process can be repeated to fill in all exterior macroblocks
within the rectangular bounding box of the VOP.

Motion Vector Coding. Each macroblock from the target VOP will find a best
matching macroblock from the reference VOP through the following motion esti-
mation procedure:

Let C(x + k, y + l) be pixels of the macroblock in the target VOP, and R(x + i +
k, y + j + l) be pixels of the macroblock in the reference VOP. Similar to MAD in
Eq. (10.1), a Sum of Absolute Difference (SAD) for measuring the difference between
the two macroblocks can be defined as

S AD(i, j) =
N−1∑

k=0

N−1∑

l=0

|C(x + k, y + l) − R(x + i + k, y + j + l)|

· Map(x + k, y + l)

where N is the size of the macroblock. Map(p, q) = 1 when C(p, q) is a pixel
within the target VOP; otherwise, Map(p, q) = 0. The vector (i, j) that yields the
minimum SAD is adopted as the motion vector MV(u, v):

(u, v) = { (i, j) | S AD(i, j) is minimum, i ∈ [−p, p], j ∈ [−p, p] } (11.3)

where p is the maximal allowable magnitude for u and v.
For motion compensation, the motion vector MV is coded. As in H.263 (see

Fig. 11.11), the motion vector of the target macroblock is not simply taken as the
MV. Instead, MV is predicted from three neighboring macroblocks. The prediction
error for the motion vector is then variable-length coded.

http://dx.doi.org/10.1007/978-3-319-05290-8_10

368 11 MPEG Video Coding

Following are some of the advanced motion compensation techniques adopted
similar to the ones in H.263 (see Sect. 10.5).
• Four motion vectors (each from an 8 × 8 block) can be generated for each mac-

roblock in the luminance component of a VOP.
• Motion vectors can have subpixel precision. At half-pixel precision, the range of

motion vectors is [−2,048, 2,047]. MPEG-4 also allows quarter-pixel precision
in the luminance component of a VOP.

• Unrestricted motion vectors are allowed: MV can point beyond the boundaries of
the reference VOP. When a pixel outside the VOP is referenced, its value is still
defined, due to padding.

Texture Coding

Texture refers to gray level (or chroma) variations and/or patterns in the VOP. Texture
coding in MPEG-4 can be based either on DCT or shape-Adaptive DCT (SA-DCT).

Texture Coding Based on DCT. In I-VOP, the gray (or chroma) values of the
pixels in each macroblock of the VOP are directly coded, using the DCT followed by
VLC, which is similar to what is done in JPEG for still pictures. P-VOP and B-VOP
use motion-compensation-based coding; hence, it is the prediction error that is sent to
DCT and VLC. The following discussion will be focused on motion-compensation-
based texture coding for P-VOP and B-VOP.

Coding for Interior macroblocks, each 16 × 16 in the luminance VOP and 8 × 8
in the chrominance VOP, is similar to the conventional motion-compensation-based
coding in H.261, H.263, and MPEG-1 and 2. Prediction errors from the six 8 × 8
blocks of each macroblock are obtained after the conventional motion estimation
step. These are sent to a DCT routine to obtain six 8 × 8 blocks of DCT coefficients.

For boundary macroblocks, areas outside the VOP in the reference VOP are padded
using repetitive padding, as described above. After motion compensation, texture
prediction errors within the target VOP are obtained. For portions of the boundary
macroblocks in the target VOP outside the VOP, zeros are padded to the block
sent to DCT, since ideally, prediction errors would be near zero inside the VOP.
Whereas repetitive padding and extended padding were for better matching in motion
compensation, this additional zero padding is for better DCT results in texture coding.

The quantization step_si ze for the DC component is 8. For the AC coefficients,
one of the following two methods can be employed:
• The H.263 method, in which all coefficients receive the same quantizer controlled

by a single parameter, and different macroblocks can have different quantizers.
• The MPEG-2 method, in which DCT coefficients in the same macroblock can have

different quantizers and are further controlled by the step_si ze parameter.

Shape-Adaptive DCT (SA-DCT)-Based Coding for Boundary Macroblocks
SA-DCT [15] is another texture coding method for boundary macroblocks. Due to
its effectiveness, SA-DCT has been adopted for coding boundary macroblocks in
MPEG-4 version 2.

http://dx.doi.org/10.1007/978-3-319-05290-8_10

11.4 MPEG-4 369

DCT-6
DCT-5
DCT-4
DCT-2
DCT-1

D
C

T
-2

D
C

T
-3

D
C

T
-5

D
C

T
-3

D
C

T
-4

D
C

T
-1

vyy

vv

u

xx x

x

(a)

(d) (e)

(b) (c)

Fig.11.18 Texture coding for boundary macroblocks using the shape-adaptive DCT (SA-DCT). a
f (x, y), b f ′(x, y), c f ′(x, v), d f ′′(x, v), e G(u, v)

1D DCT-N is a variation of the 1D DCT described earlier [Eqs. (8.19) and (8.20)],
in that N elements are used in the transform instead of a fixed N = 8 (For short, we
will denote the 1D DCT-N transform by DCT-N in this section).

Equations (11.4) and (11.5) describe the DCT-N transform and its inverse,
IDCT-N.

1D Discrete Cosine Transform-N (DCT-N)

F(u) =
√

2
N

C(u)
N−1∑

i=0

cos
(2i + 1)uπ

2N
f (i) (11.4)

1D Inverse Discrete Cosine Transform-N (IDCT-N)

f̃ (i) =
N−1∑

u=0

√
2
N

C(u) cos
(2i + 1)uπ

2N
F(u) (11.5)

where i = 0, 1, . . . , N − 1, u = 0, 1, . . . , N − 1, and

C(u) =
{ √

2
2 if u = 0,
1 otherwise

SA-DCT is a 2D DCT and is computed as a separable 2D transform in two itera-
tions of DCT-N. Figure 11.18 illustrates the process of texture coding for boundary
macroblocks using SA-DCT. The transform is applied to each of the 8 × 8 blocks in
the boundary macroblock.

http://dx.doi.org/10.1007/978-3-319-05290-8_8
http://dx.doi.org/10.1007/978-3-319-05290-8_8

370 11 MPEG Video Coding

Figure 11.18a shows one of the 8 × 8 blocks of a boundary macroblock, where
pixels inside the macroblock, denoted f (x, y), are shown in gray. The gray pixels
are first shifted upward to obtain f ′(x, y), as Fig. 11.18b shows. In the first iteration,
DCT-N is applied to each column of f ′(x, y), with N determined by the number of
gray pixels in the column. Hence, we use DCT-2, DCT-3, DCT-5, and so on. The
resulting DCT-N coefficients are denoted by F ′(x, v), as Fig. 11.18c shows, where
the dark dots indicate the DC coefficients of the DCT-Ns. The elements of F ′(x, v)
are then shifted to the left to obtain F ′′(x, v) in Fig. 11.18d.

In the second iteration, DCT-N is applied to each row of F ′′(x, v) to obtain G(u, v)
(Fig. 11.18e), in which the single dark dot indicates the DC coefficient G(0, 0) of
the 2D SA-DCT.

Some coding considerations:
• The total number of DCT coefficients in G(u, v) is equal to the number of gray

pixels inside the 8×8 block of the boundary macroblock, which is less than 8×8.
Hence, the method is shape adaptive and is more efficient to compute.

• At decoding time, since the array elements must be shifted back properly after each
iteration of IDCT-Ns, a binary mask of the original shape is required to decode the
texture information coded by SA-DCT. The binary mask is the same as the binary
alpha map described below.

Shape Coding

Unlike in MPEG-1 and 2, MPEG-4 must code the shape of the VOP, since shape is
one of the intrinsic features of visual objects.

MPEG-4 supports two types of shape information: binary and grayscale. Binary
shape information can be in the form of a binary map (also known as a binary alpha
map) that is of the same size as the VOP’s rectangular bounding box. A value of
1 (opaque) or 0 (transparent) in the bitmap indicates whether the pixel is inside or
outside the VOP. Alternatively, the grayscale shape information actually refers to the
shape’s transparency, with gray values ranging from 0 (transparent) to 255 (opaque).

Binary Shape Coding. To encode the binary alpha map more efficiently, the map
is divided into 16 × 16 blocks, also known as Binary Alpha Blocks (BAB). If a BAB
is entirely opaque or transparent, it is easy to code, and no special technique of shape
coding is necessary. It is the boundary BABs that contain the contour and hence the
shape information for the VOP. They are the subject of binary shape coding.

Various contour-based and bitmap-based (or area-based) algorithms have been
studied and compared for coding boundary BABs. Two of the finalists were both
bitmap-based. One was the Modified Modified READ (MMR) algorithm, which
was also an optional enhancement in the fax Group 3 (G3) standard [16] and the
mandatory compression method in the Group 4 (G4) standard [17]. The other finalist
was Context-based Arithmetic Encoding (CAE), which was initially developed for
JBIG [18]. CAE was finally chosen as the binary shape-coding method for MPEG-4
because of its simplicity and compression efficiency.

11.4 MPEG-4 371

Fig. 11.19 Contexts in CAE
for binary shape coding in
MPEG-4. ⃝ indicates the
current pixel, and digits
indicate the other pixels in the
neighborhood: a intra-CAE; b
inter-CAE Corresponding

 positions

Current frameReference frameCurrent frame

4

06

8

7 5

9 8 7

6 5 4 3 2

1 0

3 2 1

(a) (b)

MMR is basically a series of simplifications of the Relative Element Address
Designate (READ) algorithm. The basic idea behind the READ algorithm is to
code the current line relative to the pixel locations in the previously coded line. The
algorithm starts by identifying five pixel locations in the previous and current lines:
• a0: the last pixel value known to both the encoder and decoder
• a1: the transition pixel to the right of a0
• a2: the second transition pixel to the right of a0
• b1: the first transition pixel whose color is opposite to a0 in the previously coded

line
• b2: the first transition pixel to the right of b1 on the previously coded line

READ works by examining the relative positions of these pixels. At any time,
both the encoder and decoder know the position of a0, b1, and b2, while the positions
a1 and a2 are known only in the encoder.

Three coding modes are used:
• If the run lengths on the previous and the current lines are similar, the distance

between a1 and b1 should be much smaller than the distance between a0 and a1.
Thus, the vertical mode encodes the current run length as a1 − b1.

• If the previous line has no similar run length, the current run length is coded using
one-dimensional run-length coding. This is called the horizontal mode.

• If a0 ≤ b1 < b2 < a1, we can simply transmit a codeword indicating it is in pass
mode and advance a0 to the position under b2, and continue the coding process.
Some simplifications can be made to the READ algorithm for practical imple-

mentation. For example, if ∥a1 − b1∥ < 3, then it is enough to indicate that we can
apply the vertical mode. Also, to prevent error propagation, a k-factor is defined,
such that every k lines must contain at least one line coded using conventional run-
length coding. These modifications constitute the Modified READ algorithm used in
the G3 standard. The Modified Modified READ (MMR) algorithm simply removes
the restrictions imposed by the k-factor.

For Context-based Arithmetic Encoding, Fig. 11.19 illustrates the “context” for a
pixel in the boundary BAB. In intra-CAE mode, when only the target alpha map is
involved (Fig. 11.19a), ten neighboring pixels (numbered from 0 to 9) in the same
alpha map form the context. The ten binary numbers associated with these pixels
can offer up to 210 = 1,024 possible contexts.

372 11 MPEG Video Coding

Now, it is apparent that certain contexts (e.g., all 1s or all 0s) appear more fre-
quently than others. With some prior statistics, a probability table can be built to
indicate the probability of occurrence for each of the 1,024 contexts.

Recall that Arithmetic Coding (Chap. 7) is capable of encoding a sequence of
probabilistic symbols with a single number. Now, each pixel can look up the table
to find a probability value for its context. CAE simply scans the 16 × 16 pixels in
each BAB sequentially and applies Arithmetic coding to eventually derive a single
floating-point number for the BAB.

Inter-CAE mode is a natural extension of intra-CAE: it involves both the target and
reference alpha maps. For each boundary macroblock in the target frame, a process of
motion estimation (in integer precision) and compensation is invoked first to locate
the matching macroblock in the reference frame. This establishes the corresponding
positions for each pixel in the boundary BAB.

Figure 11.19b shows the context of each pixel includes four neighboring pixels
from the target alpha map and five pixels from the reference alpha map. According
to its context, each pixel in the boundary BAB is assigned one of the 29 = 512
probabilities. Afterward, the CAE algorithm is applied.

The 16×16 binary map originally contains 256 bits of information. Compressing
it to a single floating number achieves a substantial saving.

The above CAE method is lossless! The MPEG-4 group also examined some
simple lossy versions of the above shape-coding method. For example, the binary
alpha map can be simply subsampled by a factor of 2 or 4 before arithmetic coding.
The tradeoff is, of course, the deterioration of the shape.

Grayscale Shape Coding. The term grayscale shape coding in MPEG-4 could
be misleading, because the true shape information is coded in the binary alpha map.
Grayscale here is used to describe the transparency of the shape, not the texture!

In addition to the bitplanes for RGB frame buffers, raster graphics uses extra
bitplanes for an alpha map, which can be used to describe the transparency of the
graphical object. When the alpha map has more than one bitplane, multiple levels
of transparency can be introduced—for example, 0 for transparent, 255 for opaque,
and any number in between for various degrees of intermediate transparency. The
term grayscale is used for transparency coding in MPEG-4 simply because the trans-
parency number happens to be in the range of 0 to 255—the same as conventional
8-bit grayscale intensities.

Grayscale shape coding in MPEG-4 employs the same technique as in the texture
coding described above. It uses the alpha map and block-based motion compensation
and encodes prediction errors by DCT. The boundary macroblocks need padding, as
before, since not all pixels are in the VOP.

Coding of the transparency information (grayscale shape coding) is lossy, as
opposed to coding of the binary shape information, which is by default lossless.

http://dx.doi.org/10.1007/978-3-319-05290-8_7

11.4 MPEG-4 373

Static Texture Coding

MPEG-4 uses wavelet coding for the texture of static objects. This is particularly
applicable when the texture is used for mapping onto 3D surfaces.

As introduced in Chap. 8, wavelet coding can recursively decompose an image
into subbands of multiple frequencies. The Embedded Zerotree Wavelet (EZW)
algorithm [19] provides a compact representation by exploiting the potentially large
number of insignificant coefficients in the subbands.

The coding of subbands in MPEG-4 static texture coding is conducted as follows:
• The subbands with the lowest frequency are coded using DPCM. Prediction of

each coefficient is based on three neighbors.
• Coding of other subbands is based on a multiscale zerotree wavelet coding method.

The multiscale zerotree has a parent–child relation (PCR) tree for each coeffi-
cient in the lowest frequency subband. As a result, the location information of all
coefficients is better tracked.

In addition to the original magnitude of the coefficients, the degree of quantization
affects the data rate. If the magnitude of a coefficient is zero after quantization, it is
considered insignificant. At first, a large quantizer is used; only the most significant
coefficients are selected and subsequently coded using arithmetic coding. The differ-
ence between the quantized and the original coefficients is kept in residual subbands,
which will be coded in the next iteration in which a smaller quantizer is employed.
The process can continue for additional iterations; hence, it is very scalable.

Sprite Coding

Video photography often involves camera movements such as pan, tilt, zoom in/out,
and so on. Often, the main objective is to track and examine foreground (moving)
objects. Under these circumstances, the background can be treated as a static image.
This creates a new VO type, the sprite—a graphic image that can freely move around
within a larger graphic image or set of images.

To separate the foreground object from the background, we introduce the notion of
a sprite panorama—a still image that describes the static background over a sequence
of video frames. It can be generated using image “stitching” and warping techniques
[20]. The large sprite panoramic image can be encoded and sent to the decoder only
once, at the beginning of the video sequence. When the decoder receives separately
coded foreground objects and parameters describing the camera movements thus far,
it can efficiently reconstruct the scene.

Figure 11.20a shows a sprite that is a panoramic image stitched from a sequence
of video frames. By combining the sprite background with the piper in the bluescreen
image (Fig. 11.20b), the new video scene (Fig. 11.20c) can readily be decoded with
the aid of the sprite code and the additional pan/tilt and zoom parameters. Clearly,
foreground objects can either be from the original video scene or newly created to
realize flexible object-based composition of MPEG-4 videos.

http://dx.doi.org/10.1007/978-3-319-05290-8_8

374 11 MPEG Video Coding

(a)

(b)
(c)

Fig.11.20 Sprite coding: a the sprite panoramic image of the background; b the foreground object
(in this case, a piper) in a bluescreen image; c the composed video scene. Piper image courtesy of
Simon Fraser University Pipe Band

Global Motion Compensation

Common camera motions, such as pan, tilt, rotation, and zoom (so-called global
motions, since they apply to every block), often cause rapid content change between
successive video frames. Traditional block-based motion compensation would result
in a large number of significant motion vectors. Also, these types of camera motions
cannot all be described using the translational motion model employed by block-
based motion compensation. Global motion compensation (GMC) is designed to
solve this problem. There are four major components:
• Global motion estimation. Global motion estimation computes the motion of the

current image with respect to the sprite. By “global” is meant overall change due
to camera change—zooming in, panning to the side, and so on. It is computed
by minimizing the sum of square differences between the sprite S and the global
motion-compensated image I ′.

E =
N∑

i=1

(S(xi , yi) − I ′(x ′
i , y′

i))
2. (11.6)

The idea here is that if the background (possibly stitched) image is a sprite S(xi , yi),
we expect the new frame to consist mainly of the same background, altered by these

11.4 MPEG-4 375

global camera motions. To further constrain the global motion estimation problem,
the motion over the whole image is parameterized by a perspective motion model
using eight parameters, defined as

x ′
i =

a0 + a1xi + a2 yi

a6xi + a7 yi + 1
,

y′
i =

a3 + a4xi + a5 yi

a6xi + a7 yi + 1
. (11.7)

This resulting constrained minimization problem can be solved using a gradient-
descent based method [21].

• Warping and blending. Once the motion parameters are computed, the back-
ground images are warped to align with respect to the sprite. The coordinates of
the warped image are computed using Eq. (11.7). Afterward, the warped image is
blended into the current sprite to produce the new sprite. This can be done using
simple averaging or some form of weighted averaging.

• Motion trajectory coding. Instead of directly transmitting the motion parame-
ters, we encode only the displacements of reference points. This is called trajectory
coding [21]. Points at the corners of the VOP bounding box are used as reference
points, and their corresponding points in the sprite are calculated. The differ-
ence between these two entities is coded and transmitted as differential motion
vectors.

• Choice of local motion compensation (LMC) or GMC. Finally, a decision has
to be made whether to use GMC or LMC. For this purpose, we can apply GMC
to the moving background and LMC to the foreground. Heuristically (and with
much detail skipped), if S ADG MC < S ADL MC , then use GMC to generate the
predicted reference VOP. Otherwise, use LMC as before.

11.4.3 Synthetic Object Coding inMPEG-4

The number of objects in videos that are created by computer graphics and anima-
tion software is increasing. These are denoted synthetic objects and can often be
presented together with natural objects and scenes in games, TV ads and programs,
and animation or feature films.

In this section, we briefly discuss 2D mesh-based and 3D model-based coding and
animation methods for synthetic objects. Beek, Petajan, and Ostermann [22] provide
a more detailed survey of this subject.

2DMesh Object Coding

A 2D mesh is a tessellation (or partition) of a 2D planar region using polygonal
patches. The vertices of the polygons are referred to as nodes of the mesh. The most

376 11 MPEG Video Coding

Mesh
geometry

coding

Mesh data
memory

Mesh
motion
coding

Variable
length
coding

Mesh data
Encoded

mesh data

dxn, dyn

exn, eyn

xn, yn, tm

Fig. 11.21 2D Mesh object plane (MOP) encoding process

(a) (b) (c) (d)

Fig. 11.22 Four types of uniform meshes: a type 0; b type 1; c type 2; d type3

popular meshes are triangular meshes, where all polygons are triangles. The MPEG-
4 standard makes use of two types of 2D mesh: uniform mesh and Delaunay mesh
[23]. Both are triangular meshes that can be used to model natural video objects as
well as synthetic animated objects.

Since the triangulation structure (the edges between nodes) is known and can be
readily regenerated by the decoder, it is not coded explicitly in the bitstream. Hence,
2D mesh object coding is compact. All coordinate values of the mesh are coded in
half-pixel precision.

Each 2D mesh is treated as a mesh object plane (MOP). Figure 11.21 illustrates
the encoding process for 2D MOPs. Coding can be divided into geometry coding
and motion coding. As shown, the input data is the x and y coordinates of all the
nodes and the triangles (tm) in the mesh. The output data is the displacements (dxn ,
dyn) and the prediction errors of the motion (exn , eyn), both of which are explained
below.

2D Mesh Geometry Coding. MPEG-4 allows four types of uniform meshes with
different triangulation structures. Figure 11.22 shows such meshes with 4 × 5 mesh
nodes. Each uniform mesh can be specified by five parameters: the first two specify
the number of nodes in each row and column, respectively; the next two specify the
horizontal and vertical size of each rectangle (containing two triangles), respectively;
and the last specifies the type of the uniform mesh.

Uniform meshes are simple and are especially good for representing 2D rectan-
gular objects (e.g., the entire video frame). When used for objects of arbitrary shape,

11.4 MPEG-4 377

they are applied to (overlaid on) the bounding boxes of the VOPs, which incurs some
inefficiency.

A Delaunay mesh is a better object-based mesh representation for arbitrary-shaped
2D objects.

Definition 1: If D is a Delaunay triangulation, then any of its triangles tn =
(Pi , Pj , Pk) ∈ D satisfies the property that the circumcircle of tn does not contain
in its interior any other node point Pl .

A Delaunay mesh for a video object can be obtained in the following steps:
1. Select boundary nodes of the mesh. A polygon is used to approximate the

boundary of the object. The polygon vertices are the boundary nodes of the
Delaunay mesh. A possible heuristic is to select boundary points with high
curvatures as boundary nodes.

2. Choose interior nodes. Feature points within the object’s boundary such as
edge points or corners, can be chosen as interior nodes for the mesh.

3. Perform Delaunay triangulation. A constrained Delaunay triangulation is
performed on the boundary and interior nodes, with the polygonal boundary used
as a constraint. The triangulation will use line segments connecting consecutive
boundary nodes as edges and form triangles only within the boundary.

Constrained Delaunay Triangulation. Interior edges are first added to form new
triangles. The algorithm will examine each interior edge to make sure it is locally
Delaunay. Given two triangles (Pi , Pj , Pk) and (Pj , Pk, Pl) sharing an edge
jk, if (Pi , Pj , Pk) contains Pl or (Pj , Pk, Pl) contains Pi in the interior of its
circumcircle, then jk is not locally Delaunay and will be replaced by a new edge il.

If Pl falls exactly on the circumcircle of (Pi , Pj , Pk) (and accordingly, Pi also
falls exactly on the circumcircle of (Pj , Pk, Pl)), then jk will be viewed as locally
Delaunay only if Pi or Pl has the largest x coordinate among the four nodes.

Figure 11.23a, b shows the set of Delaunay mesh nodes and the result of the
constrained Delaunay triangulation. If the total number of nodes is N , and N =
Nb + Ni where Nb and Ni denote the number of boundary nodes and interior nodes,
respectively, then the total number of triangles in the Delaunay mesh is Nb+2Ni −2.
In the above figure, this sum is 8 + 2 × 6 − 2 = 18.

Unlike a uniform mesh, the node locations in a Delaunay mesh are irregular;
hence, they must be coded. By convention in MPEG-4, the location (x0, y0) of
the top left boundary node2 is coded first, followed by the other boundary points
counterclockwise (see Fig. 11.23a) or clockwise. Afterwards, the locations of the
interior nodes are coded in any order.

Except for the first location (x0, y0), all subsequent coordinates are coded
differentially—that is, for n ≥ 1,

dxn = xn − xn−1, dyn = yn − yn−1, (11.8)

2 The top left boundary node is defined as the one that has the minimum x + y coordinate value. If
more than one boundary node has the same x + y, the one with the minimum y is chosen.

378 11 MPEG Video Coding

Fig. 11.23 Delaunay mesh: a
boundary nodes (P0 to P7)
and interior nodes (P8 to
P13); b triangular mesh
obtained by constrained
Delaunay triangulation

P0

P8

P9

P1

P2
P3

P4

P5

P6
P7

P13

P12
P11

P10

P0

P8

P9

P1

P2
P3

P4

P5

P6
P7

P13

P12
P11

P10

(a)

(b)

and afterwards, dxn , dyn are variable-length coded.

2D Mesh Motion Coding. The motion of each MOP triangle in either a uniform
or Delaunay mesh is described by the motion vectors of its three vertex nodes. A
new mesh structure can be created only in the intraframe, and its triangular topology
will not alter in the subsequent interframes. This enforces one-to-one mapping in 2D
mesh motion estimation.

For any MOP triangle (Pi , Pj , Pk), if the motion vectors for Pi and Pj are known
to be MVi and MVj, then a prediction Predk will be made for the motion vector of
Pk , rounded to a half-pixel precision:

Predk = 0.5 · (MVi + MVj). (11.9)

The prediction error ek is coded as

ek = MVk − Predk. (11.10)

Once the three motion vectors of the first MOP triangle t0 are coded, at least one
neighboring MOP triangle will share an edge with t0, and the motion vector for its
third vertex node can be coded, and so on.

The estimation of motion vectors will start at the initial triangle t0, which is the
triangle that contains the top left boundary node and the boundary node next to it,
clockwise. Motion vectors for all other nodes in the MOP are coded differentially,

11.4 MPEG-4 379

Fig. 11.24 A breadth-first
order of MOP triangles
for 2D mesh motion coding t0

t8

t9
t1

t2

t3
t4

t5

t6

t7

t13

t12

t11

t10

t16

t14

t15

t17

according to Eq. (11.10). A breadth-first order is established for traversing the MOP
triangles in the 2D mesh motion coding process.

Figure 11.24 shows how a spanning tree can be generated to obtain the breadth-
first order of the triangles. As shown, the initial triangle t0 has two neighboring
triangles t1 and t2, which are not visited yet. They become child nodes of t0 in the
spanning tree.

Triangles t1 and t2, in turn, have their unvisited neighboring triangles (and hence
child nodes) t3, t4, and t5, t6, respectively. The traverse order so far is t0, t1, t2, t3, t4,
t5, in a breadth-first fashion. One level down the spanning tree, t3 has only one child
node t7, since the other neighbor t1 is already visited; t4 has only one child node t8;
and so on.

2D Object Animation. The above mesh motion coding established a one-to-one
mapping between the mesh triangles in the reference MOP and the target MOP. It
generated motion vectors for all node points in the 2D mesh. Mesh-based texture
mapping is now used to generate the texture for the new animated surface by warping
[20] the texture of each triangle in the reference MOP onto the corresponding triangle
in the target MOP. This facilitates the animation of 2D synthetic video objects.

For triangular meshes, a common mapping function for the warping is the affine
transform, since it maps a line to a line and can guarantee that a triangle is mapped
to a triangle. It will be shown below that given the six vertices of the two matching
triangles, the parameters for the affine transform can be obtained, so that the transform
can be applied to all points within the target triangle for texture mapping.

Given a point P = (x, y) on a 2D plane, a linear transform can be specified, such
that

[x ′ y′] = [x y]
[

a11 a12
a21 a22

]
(11.11)

A transform T is linear if T (αX + βY) = αT (X) + βT (Y), where α and β

are scalars. The above linear transform is suitable for geometric operations such as
rotation and scaling but not for translation, since addition of a constant vector is not
possible.

Definition 2: A transform A is an affine transform if and only if there exists a vector
C and a linear transform T such that A(X) = T (X)+ C.

380 11 MPEG Video Coding

If the point (x, y) is represented as [x, y, 1] in the homogeneous coordinate system
commonly used in graphics [24], then an affine transform that transforms [x, y, 1]
to [x ′, y′, 1] is defined as:

[x ′ y′ 1] = [x y 1]

⎡

⎣
a11 a12 0
a21 a22 0
a31 a32 1

⎤

⎦. (11.12)

It realizes the following mapping:

x ′ = a11x + a21 y + a31 (11.13)

y′ = a12x + a22 y + a32 (11.14)

and has at most 6 degrees of freedom represented by the parameters a11, a21, a31,
a12, a22, and a32.

The following 3 × 3 matrices are the affine transforms for translating by (Tx , Ty),
rotating counterclockwise by θ , and scaling by factors Sx and Sy :

⎡

⎣
1 0 0
0 1 0
Tx Ty 1

⎤

⎦,

⎡

⎣
cos θ sin θ 0

− sin θ cos θ 0
0 0 1

⎤

⎦,

⎡

⎣
Sx 0 0
0 Sy 0
0 0 1

⎤

⎦

The following are the affine transforms for a shear along the x-axis and y-axis,
respectively: ⎡

⎣
1 0 0

Hx 1 0
0 0 1

⎤

⎦,

⎡

⎣
1 Hy 0
0 1 0
0 0 1

⎤

⎦

where Hx and Hy are constants determining the degree of shear.
The above simple affine transforms can be combined (by matrix multiplications)

to yield composite affine transforms—for example, for a translation followed by a
rotation, or a shear followed by other transforms.

It can be proven (see Exercise 11.6) that any composite transform thus generated
will have exactly the same matrix form and will have at most 6 degrees of freedom,
specified by a11, a21, a31, a12, a22, a32.

If the triangle in the target MOP is

(P0,P1,P2) = ((x0, y0), (x1, y1), (x2, y2))

and the matching triangle in the reference MOP is

(P′
0,P′

1,P′
2) = ((x ′

0, y′
0), (x

′
1, y′

1), (x
′
2, y′

2)),

then the mapping between the two triangles can be uniquely defined by the following:
⎡

⎣
x ′

0 y′
0 1

x ′
1 y′

1 1
x ′

2 y′
2 1

⎤

⎦ =

⎡

⎣
x0 y0 1
x1 y1 1
x2 y2 1

⎤

⎦

⎡

⎣
a11 a12 0
a21 a22 0
a31 a32 1

⎤

⎦ (11.15)

Equation (11.15) contains six linear equations (three for x ′s and three for y′s)
required to resolve the six unknown coefficients a11, a21, a31, a12, a22, a32. Let
Eq. (11.15) be stated as X′ = XA. Then it is known that A = X−1X′, with inverse

11.4 MPEG-4 381

Fig.11.25 Mesh-based texture mapping for 2D object animation. a the original mesh; b the mesh
after an affine transform

matrix given by X−1 = ad j (X)/det (X), where ad j (X) is the adjoint of X and
det (X) is the determinant. Therefore,

⎡

⎣
a11 a12 0
a21 a22 0
a31 a32 1

⎤

⎦ =

⎡

⎣
x0 y0 1
x1 y1 1
x2 y2 1

⎤

⎦
−1

⎡

⎢⎣
x ′

0 y′
0 1

x ′
1 y′

1 1

x ′
2 y′

2 1

⎤

⎥⎦

= 1
det (X)

⎡

⎣
y1 − y2 y2 − y0 y0 − y1
x2 − x1 x0 − x2 x1 − x0

x1 y2 − x2 y1 x2 y0 − x0 y2 x0 y1 − x1 y0

⎤

⎦

⎡

⎢⎣
x ′

0 y′
0 1

x ′
1 y′

1 1

x ′
2 y′

2 1

⎤

⎥⎦ (11.16)

where det (X) = x0(y1 − y2) − y0(x1 − x2)+ (x1 y2 − x2 y1).
Since the three vertices of the mesh triangle are never colinear points, it is ensured

that X is not singular—that is, det (X) ̸= 0. Therefore Eq. (11.16) always has a unique
solution.

The above affine transform is piecewise—that is, each triangle can have its own
affine transform. It works well only when the object is mildly deformed during the
animation sequence. Figure 11.25a shows a Delaunay mesh with a simple word
mapped onto it. Figure 11.25b shows the warped word in a subsequent MOP in the
animated sequence after an affine transform.

3DModel-Based Coding

Because of the frequent appearances of human faces and bodies in videos,
MPEG-4 has defined special 3D models for face objects and body objects. Some
of the potential applications for these new video objects include teleconferencing,
human–computer interfaces, games, and e-commerce. In the past, 3D wireframe
models and their animations have been studied for 3D object animation [25].
MPEG-4 goes beyond wireframes, so that the surfaces of the face or body objects
can be shaded or texture-mapped.

Face Object Coding and Animation. Face models for individual faces could
either be created manually or generated automatically through computer vision and

382 11 MPEG Video Coding

(a) (b)

Fig.11.26 Feature points for face definition parameters (FDPs) (Feature points for teeth and tongue
are not shown) a front view; b side view

pattern recognition techniques. However, the former is cumbersome and nevertheless
inadequate, and the latter has yet to be achieved reliably.

MPEG-4 has adopted a generic default face model, developed by the Virtual
Reality Modeling Language (VRML) Consortium [26]. Face Animation Parameters
(FAPs) can be specified to achieve desirable animations—deviations from the original
“neutral” face. In addition, Face Definition Parameters (FDPs) can be specified to
better describe individual faces. Figure 11.26 shows the feature points for FDPs.
Feature points that can be affected by animation (FAPs) are shown as solid circles;
and those that are not affected are shown as empty circles.

Sixty-eight FAPs are defined [22]: FAP 1 is for visemes and FAP 2 for facial
expressions. Visemes code highly realistic lip motions by modeling the speaker’s
current mouth position. All other FAPs are for possible movements of head, jaw, lip,
eyelid, eyeball, eyebrow, pupil, chin, cheek, tongue, nose, ear, and so on.

For example, expressions include neutral, joy, sadness, anger, fear, disgust and
surprise. Each is expressed by a set of features—sadness for example, by slightly
closed eyes, relaxed mouth, and upward-bent inner eyebrows. FAPs for move-
ment include head_pitch, head_yaw, head_roll, open_jaw, thrust_jaw, shift_jaw,
push_bottom_lip, push_top_lip, and so on.

For compression, the FAPs are coded using predictive coding. Predictions for FAPs
in the target frame are made based on FAPs in the previous frame, and prediction
errors are then coded using arithmetic coding. DCT can also be employed to improve
the compression ratio, although it is considered more computationally expensive.
FAPs are also quantized, with different quantization step sizes employed to explore
the fact that certain FAPs (e.g., open_jaw) need less precision than others (e.g.,
push_top_lip).

Body Object Coding and Animation. MPEG-4 Version 2 introduced body
objects, which are a natural extension to face objects.

11.4 MPEG-4 383

Working with the Humanoid Animation (H-Anim) Group in the VRML Consor-
tium, MPEG adopted a generic virtual human body with default posture. The default
is standing, with feet pointing to the front, arms at the sides, with palms facing
inward. There are 296 Body Animation Parameters (BAPs). When applied to any
MPEG-4-compliant generic body, they will produce the same animation.

A large number of BAPs describe joint angles connecting different body parts,
including the spine, shoulder, clavicle, elbow, wrist, finger, hip, knee, ankle, and toe.
This yields 186 degrees of freedom to the body, 25 to each hand alone. Furthermore,
some body movements can be specified in multiple levels of detail. For example,
five different levels, supporting 9, 24, 42, 60, and 72 degrees of freedom can be used
for the spine, depending on the complexity of the animation.

For specific bodies, Body Definition Parameters (BDPs) can be specified for body
dimensions, body surface geometry, and, optionally, texture. Body surface geometry
uses a 3D polygon mesh representation, consisting of a set of polygonal planar sur-
faces in 3D space [24]. The 3D mesh representation is popular in computer graphics
for surface modeling. Coupled with texture mapping, it can deliver good (photore-
alistic) renderings.

The coding of BAPs is similar to that of FAPs: quantization and predictive coding
are used, and the prediction errors are further compressed by arithmetic coding.

11.4.4 MPEG-4 Parts, Profiles and Levels

So far, MPEG-4 has over 28 Parts [9], and more are still being developed. It not
only specified Visual in Part 2 and Audio in Part 3, but also specialized subjects
such as Graphics, Animation, Music, Scene description, Object descriptor, Delivery
Multimedia Integration Framework (DMIF), Streaming, and Intellectual Property
Management and Protection (IPMP) in various Parts. MPEG-4 Part 10 is about
Advanced Video Coding (AVC) which is identical to ITU-T H.264 AVC.

MPEG-4 Part 2 defined more than 20 visual Profiles, e.g., Simple, Advanced
Simple, Core, Main, Simple Studio, etc. The commonly used ones are: Simple Profile
(SP) and Advanced Simple Profile (ASP). The latter is adopted by several popular
video coding software such as DivX, Nero Digital, and Quicktime 6. The Open-
source software Xvid supports both SP and ASP.

To target for various applications, MPEG-4 Part 2 also defined multiple Levels in
each profile, e.g., L0 to L3 for SP, and L0 to L5 for ASP. In general, the lower Levels
in these profiles support low-bitrate video formats (CIF, QCIF) and applications such
as videoconferencing on the web; whereas the higher Levels support higher quality
videos.

384 11 MPEG Video Coding

11.5 MPEG-7

As more and more multimedia content becomes an integral part of various applica-
tions, effective and efficient retrieval becomes a primary concern. In October 1996,
the MPEG group therefore took on the development of another major standard,
MPEG-7, following on MPEG-1, 2, and 4.

One common ground between MPEG-4 and MPEG-7 is the focus on audiovisual
objects. The main objective of MPEG-7 [27–29] is to serve the need of audiovisual
content-based retrieval (or audiovisual object retrieval) in applications such as digital
libraries. Nevertheless, it is certainly not limited to retrieval—it is applicable to
any multimedia applications involving the generation (content creation) and usage
(content consumption) of multimedia data. Unlike MPEG-1, -2 and -4, it is not “yet
another” standard for video coding.

MPEG-7 became an international standard in September 2001. Its formal name is
Multimedia Content Description Interface, documented in ISO/IEC 15938 [30]. The
standard’s first seven Parts are Systems, Description Definition Language, Visual,
Audio, Multimedia Description Schemes, Reference Software, and Conformance
and Testing. Since 2002, there are further developments in Parts 8 to 12, mostly
focusing on various profiles and query format.

MPEG-7 supports a variety of multimedia applications. Its data may include still
pictures, graphics, 3D models, audio, speech, video, and composition information
(how to combine these elements). These MPEG-7 data elements can be represented
in textual or binary format, or both. Part 1 (Systems) specifies the syntax of Binary
format for MPEG-7 (BiM) data. Part 2 (Description Definition Language) specifies
the syntax of the textual format which adopts XML Schema as its language of
choice. A bidirectional lossless mapping is defined between the textual and binary
representations.

Figure 11.27 illustrates some possible applications that will benefit from MPEG-7.
As shown, features are extracted and used to instantiate MPEG-7 descriptions. They
are then coded by the MPEG-7 encoder and sent to the storage and transmission
media. Various search and query engines issue search and browsing requests, which
constitute the pull activities of the Internet, whereas the agents filter out numerous
materials pushed onto the terminal—users and/or computer systems and applications
that consume the data.

For multimedia content description, MPEG-7 has developed Descriptors (D),
Description Schemes (DS), and a Description Definition Language (DDL). Following
are some of the important terms:
• Feature. A characteristic of the data
• Descriptor (D). A definition (syntax and semantics) of the feature
• Description Scheme (DS). Specification of the structure and relationship between

Ds and DSs (see [31])
• Description. A set of instantiated Ds and DSs that describes the structural and

conceptual information of the content, storage and usage of the content, and so on
• Description Definition Language (DDL). Syntactic rules to express and combine

DSs and Ds (see [32])

11.5 MPEG-7 385

Storage and transmission media

Filter
agents

Pull Push

MPEG-7
descriptions

Coded
descriptions

MPEG-7
encoder

Search/query
engines

Feature extraction
(manual/automatic)

Content
creator

(MM data)

Content
creator

(MM data)

Content consumer
(user and MM Systems and Applicatons)

Ds

DSs

DDL

Fig. 11.27 Possible applications using MPEG-7

It is made clear [30] that the scope of MPEG-7 is to standardize the Ds, DSs
and DDL for descriptions. The mechanism and process of producing and consuming
the descriptions are beyond the scope of MPEG-7. These are left open for industry
innovation and competition and, more importantly, for the arrival of ever-improving
new technologies.

Similar to the Simulation Model (SM) in MPEG-1 video, the Test Model (TM)
in MPEG-2 video, and the Verification Models (VMs) in MPEG-4 (video, audio,
SNHC, and systems), MPEG-7 names its working model the Experimentation Model
(XM)—an alphabetical pun! XM provides descriptions of various tools for evaluating
the Ds, DSs and DDL, so that experiments and verifications can be conducted and
compared by multiple independent parties all over the world. The first set of such
experiments is called the core experiments.

11.5.1 Descriptor (D)

MPEG-7 descriptors are designed to describe both low-level features, such as color,
texture, shape, and motion, and high-level features of semantic objects, such as events
and abstract concepts. As mentioned above, methods and processes for automatic
and even semiautomatic feature extraction are not part of the standard. Despite the
efforts and progress in the fields of image and video processing, computer vision,
and pattern recognition, automatic and reliable feature extraction is not expected in
the near future, especially at the high level.

The descriptors are chosen based on a comparison of their performance, efficiency,
and size. Low-level visual descriptors for basic visual features [33] include

386 11 MPEG Video Coding

• Color
– Color space. (a) RGB, (b) YCbCr, (c) HSV (hue, saturation, value) [24],

(d) HMMD (HueMaxMinDiff) [34], (e) 3D color space derivable by a 3 × 3
matrix from RGB, (f) monochrome

– Color quantization. (a) Linear, (b) nonlinear, (c) lookup tables
– Dominant colors. A small number of representative colors in each region or

image. These are useful for image retrieval based on color similarity
– Scalable color. A color histogram in HSV color space. It is encoded by a Haar

transform and hence is scalable
– Color layout. Spatial distribution of colors for color-layout-based retrieval
– Color structure. The frequency of a color structuring element describes both

the color content and its structure in the image. The color structure element is
composed of several image samples in a local neighborhood that have the same
color

– Group of Frames/ Group of Pictures (GoF/GoP) color. Similar to the scalable
color, except this is applied to a video segment or a group of still images. An
aggregated color histogram is obtained by the application of average, median,
or intersection operations to the respective bins of all color histograms in the
GoF/GoP and is then sent to the Haar transform

• Texture
– Homogeneous texture. Uses orientation and scale-tuned Gabor filters [35]

that quantitatively represent regions of homogeneous texture. The advantage
of Gabor filters is that they provide simultaneous optimal resolution in both
space and spatial frequency domains [36]. Also, they are bandpass filters that
conform to the human visual profile. A filter bank consisting of 30 Gabor fil-
ters, at five different scales and six different directions for each scale, is used to
extract the texture descriptor

– Texture browsing. Describes the regularity, coarseness, and directionality of
edges used to represent and browse homogeneous textures. Again, Gabor filters
are used

– Edge histogram. Represents the spatial distribution of four directional (0◦, 45◦,
90◦, 135◦) edges and one nondirectional edge. Images are divided into small
subimages, and an edge histogram with five bins is generated for each subimage

• Shape
– Region-based shape. A set of Angular Radial Transform (ART) [28] coeffi-

cients is used to describe an object’s shape. An object can consist of one or
more regions, with possibly some holes in the object. ART transform is a 2D
complex transform defined in terms of polar coordinates on a unit disc. ART
basis functions are separable along the angular and radial dimensions. Thirty-six
basic functions, 12 angular, and 3 radial, are used to extract the shape descriptor

– Contour-based shape. Uses a curvature scale space (CSS) representation [37]
that is invariant to scale and rotation, and robust to nonrigid motion and partial
occlusion of the shape

– 3D shape. Describes 3D mesh models and shape index [38]. The histogram of
the shape indices over the entire mesh is used as the descriptor

11.5 MPEG-7 387

Fig. 11.28 Camera motions:
pan, tilt, roll, dolly, track, and
boom (Camera has an
effective focal length of f . It
is shown initially at the
origin, pointing to the
direction of z-axis)

O

Dolly

x

y

z

Boom

Pan

Tilt

f
Zoom

Roll

Track

• Motion
– Camera motion. Fixed, pan, tilt, roll, dolly, track, boom (See Fig. 11.28

and [39])
– Object motion trajectory. A list of keypoints (x, y, z, t). Optional interpolation

functions are used to specify the acceleration along the path (See [39])
– Parametric object motion. The basic model is the 2D affine model for transla-

tion, rotation, scaling, shear, and the combination of these. A planar perspective
model and quadratic model can be used for perspective distortion and more
complex movements

– Motion activity. Provides descriptions such as the intensity, pace, mood, and
so on, of the video—for example, “scoring in a hockey game” or “interviewing
a person”

• Localization
– Region locator. Specifies the localization of regions in images with a box or a

polygon
– Spatiotemporal locator. Describes spatiotemporal regions in video sequences.

Uses one or more sets of descriptors of regions and their motions
• Others

– Face recognition. A normalized face image is represented as a 1D vector, then
projected onto a set of 49 basis vectors, representing all possible face vectors.

11.5.2 Description Scheme (DS)

This section provides a brief overview of MPEG-7 Description Schemes (DSs) in
the areas of Basic elements, Content management, Content description, Navigation
and access, Content organization, and User interaction.

388 11 MPEG Video Coding

• Basic elements
– Datatypes and mathematical structures. Vectors, matrices, histograms, and

so on
– Constructs. Links media files and localizing segments, regions, and so on
– Schema tools. Includes root elements (starting elements of MPEG-7 XML docu-

ments and descriptions), top-level elements (organizing DSs for specific content-
oriented descriptions), and package tools (grouping related DS components of
a description into packages)

• Content Management
– Media Description. Involves a single DS, the MediaInformation DS, composed

of a MediaIdentification D and one or more Media Profile Ds that contain infor-
mation such as coding method, transcoding hints, storage and delivery formats,
and so on

– Creation and Production Description. Includes information about creation
(title, creators, creation location, date, etc.), classification (genre, language,
parental guidance, etc.), and related materials

– Content Usage Description. Various DSs to provide information about usage
rights, usage record, availability, and finance (cost of production, income from
content use)

• Content Description
– Structural Description. A Segment DS describes structural aspects of the con-

tent. A segment is a section of an audiovisual object. The relationship among
segments is often represented as a segment tree. When the relationship is not
purely hierarchical, a segment graph is used
The Segment DS can be implemented as a class object. It has five subclasses:
Audiovisual segment DS, Audio segment DS, Still region DS, Moving region
DS, and Video segment DS. The subclass DSs can recursively have their own
subclasses
A Still region DS, for example, can be used to describe an image in terms of
its creation (title, creator, date), usage (copyright), media (file format), textual
annotation, color histogram, and possibly texture descriptors, and so on. The
initial region (image, in this case) can be further decomposed into several regions,
which can in turn have their own DSs.
Figure 11.29 shows a Video segment for a marine rescue mission, in which a
person was lowered onto a boat from a helicopter. Three moving regions are
inside the Video segment. A segment graph can be constructed to include such
structural descriptions as composition of the video frame (helicopter, person,
boat) spatial relationship and motion (above, on, close-to, move-toward, etc.) of
the regions

– Conceptual Description. This involves higher level (nonstructural) description
of the content, such as Event DS for basketball game or Lakers ballgame, Object
DS for John or person, State DS for semantic properties at a given time or
location, and Concept DS for abstract notations such as “freedom” or “mystery.”
As for Segment DSs, the concept DSs can also be organized in a tree or graph

11.5 MPEG-7 389

Fig. 11.29 MPEG-7 video segment

• Navigation and access
– Summaries. These provide a video summary for quick browsing and navigation

of the content, usually by presenting only the keyframes. The following DSs are
supported: Summarization DS, HierarchicalSummary DS, HighlightLevel DS,
SequentialSummary DS. Hierarchical summaries provide a keyframe hierarchy
of multiple levels, whereas sequential summaries often provide a slide show or
audiovisual skim, possibly with synchronized audio and text
Figure 11.30 illustrates a summary for a video of a “dragon-boat” parade and
race in a park. The summary is organized in a three-level hierarchy. Each video
segment at each level is depicted by a keyframe of thumbnail size

– Partitions and Decompositions. This refers to view partitions and decomposi-
tions. The View partitions (specified by View DSs) describe different space and
frequency views of the audiovisual data, such as a spatial view (this could be
a spatial segment of an image), temporal view (as in a temporal segment of a
video), frequency view (as in a wavelet subband of an image), or resolution view
(as in a thumbnail image), and so on. The View decompositions DSs specify dif-
ferent tree or graph decompositions for organizing the views of the audiovisual
data, such as a SpaceTree DS (a quad-tree image decomposition)

– Variations of the Content. A Variation DS specifies a variation from the original
data in image resolution, frame rate, color reduction, compression, and so on. It
can be used by servers to adapt audiovisual data delivery to network and terminal
characteristics for a given Quality of Service (QoS)

• Content Organization
– Collections. The CollectionStructure DS groups audiovisual contents into clus-

ters. It specifies common properties of the cluster elements and relationships
among the clusters

– Models. Model DSs include a Probability model DS, Analytic model DS, and
Classifier DS that extract the models and statistics of the attributes and features
of the collections

390 11 MPEG Video Coding

Fig. 11.30 A video summary

• User Interaction
– UserPreference. DSs describe user preferences in the consumption of audiovi-

sual contents, such as content types, browsing modes, privacy characteristics,
and whether preferences can be altered by an agent that analyzes user behavior.

11.5.3 Description Definition Language (DDL)

MPEG-7 adopted the XML Schema Language initially developed by the WWW Con-
sortium (W3C) as its Description Definition Language (DDL). Since XML Schema
Language was not designed specifically for audiovisual contents, some extensions
are made to it. Without the details, the MPEG-7 DDL has the following components:
• XML Schema structure components

– The Schema—the wrapper around definitions and declarations
– Primary structural components, such as simple and complex type definitions,

and attribute and element declarations
– Secondary structural components, such as attribute group definitions, identity-

constraint definitions, group definitions, and notation declarations
– “Helper” components, such as annotations, particles, and wildcards

• XML Schema datatype components
– Primitive and derived data types
– Mechanisms for the user to derive new data types
– Type checking better than XML 1.0

• MPEG-7 Extensions
– Array and matrix data types
– Multiple media types, including audio, video, and audiovisual presentations
– Enumerated data types for MimeType, CountryCode, RegionCode,
CurrencyCode, and CharacterSetCode

– Intellectual Property Management and Protection (IPMP) for Ds and DSs

11.6 Exercises 391

11.6 Exercises

1. As we know, MPEG video compression uses I-, P-, and B-frames. However,
the earlier H.261 standard does not use B-frames. Describe a situation in which
video compression would not be as effective without B-frames (Your answer
should be different from the one in Fig. 11.1).

2. The MPEG-1 standard introduced B-frames, and the motion-vector search range
has accordingly been increased from [−15, 15] in H.261 to [−512, 511.5]. Why
was this necessary? Calculate the number of B-frames between consecutive
P-frames that would justify this increase.

3. B-frames provide obvious coding advantages, such as increase in SNR at low
bitrates and bandwidth savings. What are some of the disadvantages of B-frames?

4. Redraw Fig. 11.8 of the MPEG-2 two-layer SNR scalability encoder and decoder
to include a second enhancement layer.

5. Draw block diagrams for an MPEG-2 encoder and decoder for (a) SNR and
spatial hybrid scalability, (b) SNR and temporal hybrid scalability.

6. Why are not B-frames used as reference frames for motion compensation?
Suppose there is a mode where any frame type can be specified as a reference
frame. Discuss the tradeoffs of using reference B-frames instead of P-frames in
a video sequence (i.e., eliminating P-frames completely).

7. Write a program to implement the SNR scalability in MPEG-2. Your program
should be able to work on any macroblock using any quantization step_sizes
and should output both Bits_base and Bits_enhance bitstreams. The
variable-length coding step can be omitted.

8. MPEG-4 motion compensation is supposed to be VOP-based. At the end, the
VOP is still divided into macroblocks (interior macroblock, boundary mac-
roblock, etc.) for motion compensation.
(a) What are the potential problems of the current implementation? How can

they be improved?
(b) Can there be true VOP-based motion compensation? How would it compare

to the current implementation?
9. MPEG-1, 2, and 4 are all known as decoder standards. The compression algo-

rithms, hence the details of the encoder, are left open for future improvement and
development. For MPEG-4, the major issue of video object segmentation—how
to obtain the VOPs—is left unspecified.
(a) Propose some of your own approaches to video object segmentation.
(b) What are the potential problems of your approach?

10. Motion vectors can have subpixel precision. In particular, MPEG-4 allows
quarter-pixel precision in the luminance VOPs. Describe an algorithm that will
realize this precision.

11. As a programming project, compute the SA-DCT for the following 8 × 8 block:

392 11 MPEG Video Coding

0 0 0 0 16 0 0 0
4 0 8 16 32 16 8 0
4 0 16 32 64 32 16 0
0 0 32 64 128 64 32 0
4 0 0 32 64 32 0 0
0 16 0 0 32 0 0 0
0 0 0 0 16 0 0 0
0 0 0 0 0 0 0 0

12. What is the computational cost of SA-DCT, compared to ordinary DCT? Assume
the video object is a 4 × 4 square in the middle of an 8 × 8 block.

13. Affine transforms can be combined to yield a composite affine transform. Prove
that the composite transform will have exactly the same form of matrix (with
[0 0 1]T as the last column) and at most 6 degrees of freedom, specified by the
parameters a11, a21, a31, a12, a22, a32.

14. Mesh-based motion coding works relatively well for 2D animation and face
animation. What are the main problems when it is applied to body animation?

15. What is the major motivation behind the development of MPEG-7? Give three
examples of real-world applications that may benefit from MPEG-7.

16. Two of the main shape descriptors in MPEG-7 are “region-based” and “contour-
based.” There are, of course, numerous ways of describing the shape of regions
and contours.
(a) What would be your favorite shape descriptor?
(b) How would it compare to ART and CSS in MPEG-7?

References

1. L. Chiariglione, The development of an integrated audiovisual coding standard: MPEG. Proc.
IEEE 83, 151–157 (1995)

2. D.J. Le Gall, MPEG: a video compression standard for multimedia applications. Commun.
ACM 34(4), 46–58 (1991)

3. R. Schafer, T. Sikora, Digital video coding standards and their role in video communications.
Proc. IEEE 83(6), 907–924 (1995)

4. Information technology—Coding of moving pictures and associted audio for digital storage
media at up to about 1.5 Mbit/s. Int. Standard: ISO/IEC 11172, Parts 1–5 (1992)

5. J.L. Mitchell, W.B. Pennebaker, C.E. Fogg, D.J. LeGall, MPEG Video Compression Standard.
(Chapman & Hall, New York, 1996)

6. B.G. Haskell, A. Puri, A. Netravali, Digital Video: an Introduction to MPEG-2. (Chapman &
Hall, New York, 1996)

7. Information technology—Generic coding of moving pictures and associated audio information.
Int. Standard: ISO/IEC 13818, Parts 1–11 (2004)

8. T. Sikora, The MPEG-4 video standard verification model. IEEE Trans. Circuits Syst. Video
Technol. (Special issue on MPEG-4) 7(1), 19–31 (1997)

References 393

9. Information technology—Generic coding of audio-visual objects. Int. Standard: ISO/IEC
14496, Parts 1–28 (2012)

10. A. Puri, T. Chen (eds.), Multimedia Systems, Standards, and Networks (Marcel Dekker, New
York, 2000)

11. G. Fernando et al., Java in MPEG-4 (MPEG-J), in Multimedia, Systems, Standards, and Net-
works, ed. by A. Puri, T. Chen (Marcel Dekker, New York, 2000), pp. 449–460

12. Video Coding for Low Bit Rate Communication, ITU-T Recommendation H.263, Version 1,
1995, Version 2, 1998, Version 3, 2000, Revised 2005

13. A. Puri et al., MPEG-4 natural video coding—Part I, in Multimedia, Systems, Standards, and
Networks, ed. by A. Puri, T. Chen (Marcel Dekker, New York, 2000), pp. 205–244

14. T. Ebrahimi, F. Dufaux, Y. Nakaya, MPEG-4 natural video coding - Part II, in Multimedia,
Systems, Standards, and Networks, ed. by A. Puri, T. Chen (Marcel Dekker, New York, 2000),
pp. 245–269

15. P. Kauff, et al. Functional coding of video using a shape-adaptive DCT algorithm and an object-
based motion prediction toolbox. IEEE Trans. Circuits Syst. Video Technol. (Special issue on
MPEG-4) 7(1), 181–196 (1997)

16. Standardization of Group 3 facsimile apparatus for document transmission. ITU-T
Recommendation T.4, 1980

17. Facsimile coding schemes and coding control functions for Group 4 facsimile apparatus. ITU-T
Recommendation T.6, 1984

18. Information technology—Coded representation of picture and audio information—progressive
bi-Level image compression. Int. Standard: ISO/IEC 11544, also ITU-T Recommendation T.82,
1992

19. J.M. Shapiro, Embedded image coding using zerotrees of wavelet coefficients. IEEE Trans.
Signal Process. 41(12), 3445–3462 (1993)

20. G. Wolberg, Digital Image Warping (Computer Society Press, Los Alamitos, CA, 1990)
21. M.C. Lee, et al. A layered video object coding system using sprite and affine motion model.

IEEE Trans. Circuits Syst. Video Technol. 7(1), 130–145 (1997)
22. P. van Beek, MPEG-4 synthetic video, in Multimedia, Systems, Standards, and Networks, ed.

by A. Puri, T. Chen (Marcel Dekker, New York, 2000), pp. 299–330
23. A.M. Tekalp, P. van Beek, C. Toklu, B. Gunsel, 2D mesh-based visual object representation

for interactive synthetic/natural digital video. Proc. IEEE 86, 1029–1051 (1998)
24. John F. Hughes, Andries van Dam, Morgan McGuire, David F. Sklar, James D. Foley, Steven

K. Feiner, K. Akeley, Computer Graphics: Principles and Practice, 3rd ed. (Addison-Wesley,
Upper Saddle River, 2013)

25. A. Watt, M. Watt, Advanced Animation and Rendering Techniques. (Addison-Wesley, Upper
Saddle River, 1992)

26. Information technology—The Virtual Reality Modeling Language—Part 1: Functional speci-
fication and UTF-8 encoding. Int. Standard: ISO/IEC 14772–1 (1997)

27. S.F. Chang, T. Sikora, A. Puri, Overview of the MPEG-7 standard. IEEE Trans. Circuits Syst.
Video Technol. (Special issue on MPEG-7) 11(6), 688–695 (2001)

28. B.S. Manjunath, P. Salembier, T. Sikora (eds.), Introduction to MPEG-7: Multimedia Content
Description Interface. (Wiley, Chichester, 2002)

29. H.G. Kim, N. Moreau, T. Sikora, MPEG-7 Audio and Beyond: Audio Content Indexing and
Retrieval. (Wiley, New York, 2005)

30. Information technology—Multimedia content description interface. Int. Standard: ISO/IEC
15938, Parts 1–12 (2008)

31. P. Salembier, J. R. Smith, MPEG-7 multimedia description schemes. IEEE Trans. Circuits Syst.
Video Technol. 11(6), 748–759 (2001)

32. J. Hunter, F. Nack, An overview of the MPEG-7 description definition language (DDL) pro-
posals. Signal Process. Image Commun. 16(1–2), 271–293 (2001)

394 11 MPEG Video Coding

33. T. Sikora, The MPEG-7 visual standard for content description—an overview. IEEE Trans.
Circuits Syst. Video Technol. (Special issue on MPEG-7) 11(6), 696–702 (2001)

34. B.S. Manjunath, J.-R. Ohm, V.V. Vasudevan, A. Yamada, Color and texture descriptors. IEEE
Trans. Circuits Syst. Video Technol. 11, 703–715 (2001)

35. B.S. Manjunath, G.M. Haley, W.Y. Ma, in Multiband Techniques for Texture Classification and
Segmentation, ed. by A. Bovik, Handbook of Image and Video Processing (Academic Press,
San Diego, 2000), pp. 367–381

36. T.P. Weldon, W.E. Higgins, D.F. Dunn, Efficient Gabor filter design for texture segmentation.
Pattern Recogn 29(12), 2005-2015 (1996)

37. F. Mokhtarian, A.K. Mackworth, A theory of multiscale, curvature-based shape representation
for planar curves. IEEE Trans. Pattern Anal. Mach. Intell. 14(8), 789–805 (1992)

38. J.J. Koenderink, A.J. van Doorn, Surface shape and curvature scales. Image Vision Comput.
10, 557–565 (1992)

39. S. Jeannin et al., Motion descriptor for content-based video representation. Signal Process.
Image Commun. 16(1–2), 59–85 (2000)

12NewVideoCodingStandards:
H.264 andH.265

12.1 H.264

The Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG (Video Coding
Experts Group) developed the H.264 video compression standard. It was formerly
known by its working title “H.26L.” The final draft of the first version of H.264 was
completed in May 2003 [1].

H.264 is also known as MPEG-4 Part 10, AVC (Advanced Video Coding) [2–4].
It is often referred to as the H.264/AVC (or H.264/MPEG-4 AVC) video coding
standard.

H.264/AVC provides a higher video coding efficiency, up to 50 % better compres-
sion than MPEG-2 and up to 30 % better than H.263+ and MPEG-4 Advanced Sim-
ple Profile, while maintaining the same quality of the compressed video. It covers a
broad range of applications, from high bitrate to very low bitrate. The vastly improved
H.264 core features, together with new coding tools offer significant improvement
in compression ratio, error resiliency, and subjective quality over existing ITU-T
and MPEG standards. It has since become the default standard for various applica-
tions, e.g., the Blu-ray discs, HDTV broadcasts, streaming video on the Internet, web
software such as Flash and Silverlight, and apps on mobile and portable devices.

Similar to previous video compression standards, H.264 specifies a block-based,
hybrid coding scheme that supports motion compensation and transform coding.
Again, each picture can be separated into macroblocks (16×16 blocks), and arbitrary-
sized slices can group multiple macroblocks into self-contained units. The basic
H.264/AVC encoder is shown in Fig. 12.1.
Main features of H.264/AVC are:
• Integer transform in 4 × 4 blocks. Low complexity, no drifting.
• Variable block-size motion compensation, from 16 × 16 to 4 × 4 in luma images.
• Quarter-pixel accuracy in motion vectors, accomplished by interpolations.
• Multiple reference picture motion compensation. More than just P or B frames for

motion estimation.
• Directional spatial prediction for intra frames.

Z.-N. Li et al., Fundamentals of Multimedia, 395
Texts in Computer Science, DOI: 10.1007/978-3-319-05290-8_12,
© Springer International Publishing Switzerland 2014

396 12 NewVideo Coding Standards:H.264 and H.265

Transform
Integer

Inv. Integer
Transform

Scaling &
Quantization

Inv. Quant.

Filter

Motion
Estimation

Motion
Compensation

Prediction
Intra−frame

Coding
Entropy

Output
Code

Motion Vectors

Control Data

Control
Coder

_

Deblocking

Divided into

+

Video Frame
Input

Scaling &

16×16 macroblocks

Fig. 12.1 Basic encoder for H.264/AVC

• In-loop deblocking filtering.
• Context-Adaptive Variable Length Coding (CAVLC) and Context-Adaptive Binary

Arithmetic Coding (CABAC).
• More robust to data errors and data losses, more flexible in synchronization and

switching of video streams produced by different decoders.
The decoder has the following five major blocks:
• Entropy decoding
• Inverse quantization and transform of residual pixels
• Motion compensation or intra-prediction
• Reconstruction
• In-loop deblocking filter on reconstructed pixels.

12.1.1 Motion Compensation

Similar to MPEG-2 and H.263, H.264 employs the technology of hybrid coding, i.e.,
a combination of inter-picture motion predictions and intra-picture spatial prediction,
and transform coding on residual errors.

Variable Block-Size Motion Compensation

As before, inter-frame motion estimation in H.264 is also block-based. By default,
the macroblocks are of the size 16 × 16. A macroblock can also be divided into four
8 × 8 partitions. While conducting motion estimation, each macroblock or each of

12.1 H.264 397

4×4

4×4
8 8×4 ×4

16×8 16×8

8×8
4×8

4×8

8×16
16×16

8×16

8×8 Types:

M Types:
8×8

8×8

8×8

8×8

4×4

4×4

Fig. 12.2 Segmentation of the macroblock for motion estimation in H.264. Top Segmentation of
the macroblock. Bottom Segmentation of the 8 × 8 partition

the partitions can be further segmented into smaller partitions as shown in Fig. 12.2.
The top four options are from the 16 × 16 macroblock (the so-called M Types), and
the bottom four options are from each of the 8 × 8 partitions (the so-called 8 × 8
Types).

Quarter-Pixel Precision

The accuracy of motion compensation is of quarter-pixel precision in luma images.
Fig. 12.3 illustrates how the pixel values at half-pixel and quarter-pixel positions can
be derived by interpolation. In order to derive the pixel values at half-pixel positions
labeled b and h, the intermediate values b1 and h1 are first derived by applying the
six-tap filters as below.

b1 = E − 5F + 20G + 20H − 5I + J

h1 = A − 5C + 20G + 20M − 5R + T .

The values of b and h are then obtained by the following, clipped to the range
0–255.

b = (b1 + 16) ≫ 5

h = (h1 + 16) ≫ 5.

The special symbol “≫” in above formulas indicates a right-shift. For example,
b = (b1 + 16) ≫ 5 is equivalent to b = round(b1/25) = round(b1/32). However,
the shift operation is much more efficient compared to a round function call.

The middle pixel ‘j’ is obtained by

j1 = aa1 − 5bb1 + 20h1 + 20m1 − 5cc1 + dd1,

398 12 NewVideo Coding Standards:H.264 and H.265

A

bb dccaa d

B

C D

E F G H I J

K L M N P Q

R S

T U

a b c

d e f g

h i j k m

n p q r

s

Fig. 12.3 Interpolation for fractional samples in H.264. Upper-case letters indicate pixels on the
image grid. Lower-case letters indicate pixels at half-pixel and quarter-pixel positions

where the intermediate values aa1, bb1, m1, cc1, and dd1 are derived in a similar
manner as h1. Then, the value of j is obtained by the following, clipped to the range
of 0 to 255.

j = (j1 + 512) ≫ 10.

The pixel values at quarter-pixel positions labeled a, c, d, n, f , i , k, and q are
obtained by averaging the values of the two nearest pixels at integer and half-pixel
positions. For example,

a = (G + b + 1) ≫ 1.

Finally, the pixel values at quarter-pixel positions labeled e, g, p, and r are obtained
by averaging the values of the two nearest pixels at half-pixel positions in the diagonal
direction. For example,

e = (b + h + 1) ≫ 1.

12.1 H.264 399

Additional Options in Group of Pictures

As shown in Fig. 11.3, in previous MPEG standards, the Group of Pictures (GOP)
starts and ends with I-frames. In between it has P-frames and B-frames. Either an
I-frame or P-frame can be used as Reference frame. Macroblocks in P-frames are
predicted by forward prediction, and macroblocks in B-frames are predicted by a
combination of forward prediction and backward prediction. H.264 will continue
supporting this “classic” GOP structure. In addition, it will support the following
GOP structures.

No B-frames
The prediction of macroblocks in B-frames incurs more delay and requires more
storage for the necessary I- and P-frames because of the bidirectional prediction. In
this option, only I- and P-frames are allowed. Although the compression efficiency
is relatively low, it is more suitable for certain applications, e.g., videoconferencing
where minimal delay is more desirable. This is compatible with the goals of the
Baseline Profile or Constrained Baseline Profile of H.264.

Multiple reference frames
In order to find the best match for each macroblock in P-frames, H.264 allows up to
N reference frames. Figure 12.4 illustrates an example where N = 4. The reference
frame for P1 is I0, the reference frames for P2 are I0 and P1, . . . For P4, the reference
frames are I0, P1, P2, and P3. While this improves the compression efficiency, it
requires much more computation in motion estimation at the encoder. Moreover, it
requires a larger buffer to store up to N frames at the encoder and decoder.

Hierarchical prediction structure
Hierarchical prediction structures are also allowed under H.264’s flexible prediction
options. For example, we can have a GOP that starts and ends with I0 and I12. In
between there are 11 consecutive B-frames, B1 to B11. First, B6 is predicted using I0
and I12 as references. Next, B3 is predicted using I0 and B6, and B9 is predicted using
B6 and I12 as references. At last, B1 and B2 are predicted using I0 and B3, B4 and
B5 are predicted using B3 and B6, and so on. This hierarchical structure can be seen
as having layers. For this example, Layer 0: I0, I12; Layer 1: B6; Layer 2: B3, B9;
Layer 3: B1, B2, B4, B5, B7, B8, B10, B11. Usually, increasingly larger quantization
parameters will be associated with higher layers to control the compression efficiency.
This is shown to be more efficient than the IBBP. . . structure used in previous video
coding standards for temporal prediction.

12.1.2 Integer Transform

As in previous video coding standards, H.264 employs Transform coding after dif-
ference macroblocks are obtained. One of the most important features in H.264/AVC
is the use of an Integer Transform.

The Discrete Cosine Transform (DCT) in previous video coding standards is
known to cause prediction shift because of floating point calculation and rounding

http://dx.doi.org/10.1007/978-3-319-05290-8_11

400 12 NewVideo Coding Standards:H.264 and H.265

I0 P 1 P 4P 2 P 3

Fig. 12.4 An illustration of multi-reference frames

errors in the transform and inverse transform. It is also slow due to many floating
point multiplications. H.264 allows 4 × 4 blocks and various predictions; even intra
coding relies on spatial prediction followed by transform coding. Hence, it is very
sensitive to prediction shift. For example, a 4 × 4 block may be predicted from a
neighboring intra block, and the neighboring block may itself be predicted from
another neighboring block, and so on. As a result, the prediction shift could be
accumulated, causing a large error.

Given the powerful and accurate P- and I- prediction schemes in H.264, it is
recognized that the spatial correlation in residual pixels is typically very low. Hence,
a simple integer-precision 4 × 4 DCT is sufficient to compact the energy. The
integer arithmetic allows exact inverse transform on all processors and eliminates
encoder/decoder mismatch problems in previous transform-based codecs. H.264 also
provides a quantization scheme with nonlinear step-sizes to obtain accurate rate con-
trol at both the high and low ends of the quantization scale.

The 4 × 4 transforms in H.264 approximate the DCT and IDCT. They involve
only integer, 16-bit arithmetic operations. They can be implemented very efficiently.

As discussed in Chap. 8, the 2D DCT is separable: it can be realized by two
consecutive 1D transforms, i.e., in the vertical direction first and then the horizontal
direction. This can be implemented by two matrix multiplications: F = T × f × TT ,
where f is the input data, F is the transformed data, and T is the so-called DCT-
matrix. The DCT-matrix is orthonormal, i.e., all the rows are orthogonal, and they
all have norm 1.

The 4 × 4 DCT-matrix T4 can be written as:

T4 =

⎡

⎢⎢⎣

a a a a
b c −c −b
a −a −a a
c −b b −c

⎤

⎥⎥⎦

where a = 1/2, b =
√

1
2 cos π

8 , and c =
√

1
2 cos 3π

8 .

http://dx.doi.org/10.1007/978-3-319-05290-8_8

12.1 H.264 401

To derive a scaled 4 × 4 integer transform that approximates T4, we can simply
scale the entries of T4 up and round them to nearest integers [5]:

H = round(α · T4). (12.1)

When α = 26, we have

H =

⎡

⎢⎢⎣

13 13 13 13
17 7 −7 −17
13 −13 −13 13

7 −17 17 −7

⎤

⎥⎥⎦

Similar to T4, this matrix has some nice properties: all its rows are orthogonal; they
also have the same norm, because 4×132 = 2×(172+72). However, this matrix has
a dynamic range gain of 52 (i.e., 4×13). Since it is used twice in F = H× f ×HT in
order to transform the columns and then the rows of f , the total gain is 522 = 2704.
Because log2 2704 ≈ 11.4, it would require 12 more bits for coefficients in F than
the number of bits required for data in the original f . This would make the 16-bit
arithmetic insufficient, and would require 32-bit arithmetic.

Hence, it is proposed in [5] that α = 2.5 in Eq. 12.1. This yields

H =

⎡

⎢⎢⎣

1 1 1 1
2 1 −1 −2
1 −1 −1 1
1 −2 2 −1

⎤

⎥⎥⎦ (12.2)

This new matrix H is still orthogonal, although its rows no longer have the same
norm. To restore the orthonormal property, we could simply derive the following

matrix H̄ by dividing all row entries in H by
√∑

j H2
i j , where Hi j , is the j th entry

of the i th row in H. However, this would no longer be an integer transform.

H̄ =

⎡

⎢⎢⎣

1/2 1/2 1/2 1/2
2/

√
10 1/

√
10 −1/

√
10 −2/

√
10

1/2 −1/2 −1/2 1/2
1/

√
10 −2/

√
10 2/

√
10 −1/

√
10

⎤

⎥⎥⎦

In the H.264 implementation, this normalization issue is postponed. It is merged
into the quantization process in the next step, since we can simply adjust the val-
ues in the quantization matrix to achieve both the objectives of quantization and
normalization.

Because H is orthogonal, we could have used HT as the inverse transform H−1,
as long as the normalization issue is taken care of. Again, since we can also resolve
this issue later at the de-quantization step, we simply introduce an ad hoc inverse
transform Hinv to use:

Hinv =

⎡

⎢⎢⎣

1 1 1 1/2
1 1/2 −1 −1
1 −1/2 −1 1
1 −1 1 −1/2

⎤

⎥⎥⎦ (12.3)

402 12 NewVideo Coding Standards:H.264 and H.265

Hinv is basically HT , but with the second and fourth columns scaled down by 1/2.
This is because the dynamic range of the input data to Hinv is larger than that of H.
Hence, a further scaling down is applied to the columns that would otherwise have
a higher dynamic range gain.

H.264 also supports the 8×8 integer transform H8×8. It is as in Eq. 12.4. We will
use H, the 4 × 4 version, in our discussions unless otherwise noted.

H8×8 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

8 8 8 8 8 8 8 8
12 10 6 3 −3 −6 −10 −12

8 4 −4 −8 −8 −4 4 8
10 −3 −12 −6 6 12 3 −10

8 −8 −8 8 8 −8 −8 8
6 −12 3 10 −10 −3 12 −6
4 −8 8 −4 −4 8 −8 4
3 −6 10 −12 12 −10 6 −3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(12.4)

12.1.3 Quantization and Scaling

As in previous video compression standards, quantization is used after the transform.
Instead of designing simple quantization matrices, H.264 has a more sophisticated
design [5] that accomplishes both tasks of the quantization and scaling (normaliza-
tion) of H.

Integer Transform and Quantization

Let f be the 4 × 4 input matrix, and F̂ the transformed and then quantized output.
The forward integer transform, scaling and quantization are implemented according
to:

F̂ = round
[
(H × f × HT) · Mf/215

]
. (12.5)

Here, ‘×’ denotes matrix multiplication, while ‘·’ denotes element-by-element
multiplication. H is the same as in Eq. 12.2. Mf is the 4 × 4 quantization matrix
derived from m which is a 6 × 3 matrix (see Table 12.1). Q P is the quantizaton
parameter.

For 0 ≤ Q P < 6, we have

Mf =

⎡

⎢⎢⎣

m(Q P, 0) m(Q P, 2) m(Q P, 0) m(Q P, 2)
m(Q P, 2) m(Q P, 1) m(Q P, 2) m(Q P, 1)
m(Q P, 0) m(Q P, 2) m(Q P, 0) m(Q P, 2)
m(Q P, 2) m(Q P, 1) m(Q P, 2) m(Q P, 1)

⎤

⎥⎥⎦ (12.6)

For Q P ≥ 6, each element m(Q P, k) is replaced by m(Q P%6, k)/2⌊Q P/6⌋.

12.1 H.264 403

Table 12.1 The matrix
m—used to generate Mf

QP Positions in Mf Positions in Mf Remaining
(0, 0), (0, 2) (1, 1), (1, 3) Mf positions
(2, 0), (2, 2) (3, 1), (3, 3)

0 13107 5243 8066
1 11916 4660 7490
2 10082 4194 6554
3 9362 3647 5825
4 8192 3355 5243
5 7282 2893 4559

Table 12.2 The matrix
v—used to generate Vi

QP Positions in Vi Positions in Vi Remaining
(0, 0), (0, 2) (1, 1), (1, 3) Vi positions
(2, 0), (2, 2) (3, 1), (3, 3)

0 10 16 13
1 11 18 14
2 13 20 16
3 14 23 18
4 16 25 20
5 18 29 23

The quantization is followed by another scaling step, which can be implemented
by a right-shift “≫15”.

Inverse Integer Transform and De-quantization

Let f̃ be the de-quantized and then inversely transformed result. The scaling,
de-quantization, and inverse integer transform are implemented according to:

f̃ = round
[
(Hinv × (F̂ · Vi) × Hinv

T)/26
]
. (12.7)

Hinv is the same as in Eq. 12.3. Vi is the 4 × 4 de-quantization matrix derived
from v which is a 6 × 3 matrix (see Table 12.2). For 0 ≤ Q P < 6, we have

Vi =

⎡

⎢⎢⎣

v(Q P, 0) v(Q P, 2) v(Q P, 0) v(Q P, 2)
v(Q P, 2) v(Q P, 1) v(Q P, 2) v(Q P, 1)
v(Q P, 0) v(Q P, 2) v(Q P, 0) v(Q P, 2)
v(Q P, 2) v(Q P, 1) v(Q P, 2) v(Q P, 1)

⎤

⎥⎥⎦ (12.8)

For Q P ≥ 6, each element v(Q P, k) is replaced by v(Q P%6, k) · 2⌊Q P/6⌋.
The de-quantization is also followed by another scaling step, which can be imple-

mented by a right-shift “≫6.”

404 12 NewVideo Coding Standards:H.264 and H.265

12.1.4 Examples of H.264 Integer Transform and Quantization

This section shows some examples of the H.264 integer transform and quantization
and their inverse using various quantization parameters Q Ps. The input data is a
4 × 4 matrix f with arbitrary values, the transformed and then quantized coefficients
are in F̂. Mf and Vi are the quantization and de-quantization matrices, and f̃ is the
de-quantized and then inversely transformed output. For comparison, we will also
show the compression loss ϵ = f − f̃ .

In order to improve the rate-distortion performance, H.264 adopts the dead-zone
quantization (also known as midtread as discussed in Chap. 8). It can be described
as a function that turns a real number x to an integer Z , as follows:

Z = ⌊x + b⌋,
where x is the scaled value as discussed in the last section. By default, b = 0.5,
the above function is then equivalent to the round function as specified in Eq. (12.5)
or (12.7). To minimize the quantization error, H.264 actually adopts adaptive quan-
tization in which the width of the dead-zone can be controlled by b. For example,
b = 1/3 for intra-coding and b = 1/6 for inter-coding. For simplicity, in the follow-
ing examples, we just use b = 0.5.

Figure 12.5a shows the result when Q P = 0. This is the option that offers the
least possible compression loss. The values of Mf and Vi are determined according
to Eqs. (12.6) and (12.8). Since there is no scale-down of F values in the quantization
step, the reconstructed f̃ is exactly the same as f , i.e., f̃ = f .

Figure 12.5b shows the result when Q P = 6. As expected, compared to corre-
sponding matrix entries for Q P = 0, the values in Mf are reduced in half, and the
values in Vi are about twice. The quantization factor is now approximately 1.25 (i.e.,
equivalent to qstep ≈ 1.25). As a result, f̃ ̸= f . The slight loss can be observed in ϵ.

Similarly, when Q P = 18 the result is in Fig. 12.5c. The values in Mf and the
values in Vi are further decreased or increased, respectively, by a factor of 4 compared
to those for Q P = 6. The quantization factor is approximately 5 (i.e., equivalent to
qstep ≈ 5). The loss shown in ϵ is more significant now.

Perhaps a more interesting result is shown in Fig. 12.5d when Q P = 30. The
quantization factor is now approximately 20 (i.e., equivalent to qstep ≈ 20). Except
the larger quantized DC value in F̂ that remains nonzero, all the AC coefficients
become zero. As a result, the reconstructed f̃ has 80 in all entries. The compression
loss in ϵ is no longer acceptable.

12.1.5 Intra Coding

H.264 exploits much more spatial prediction than in previous video standards such
as MPEG-2 and H.263+. Intra-coded macroblocks are predicted using some of the
neighboring reconstructed pixels (using either intra- or inter-coded reconstructed
pixels).

http://dx.doi.org/10.1007/978-3-319-05290-8_8

12.1 H.264 405

72 82 85 79
74 75 86 82
84 73 78 80
77 81 76 84

f

13107 8066 13107 8066
8066 5243 8066 5243

13107 8066 13107 8066
8066 5243 8066 5243

Mf

507 -12 -2 2
0 -7 -14 5
2 0 -8 -11

-1 8 4 3

F̂

10 13 10 13
13 16 13 16
10 13 10 13
13 16 13 16

Vi

72 82 85 79
74 75 86 82
84 73 78 80
77 81 76 84

f̃

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

= f − f̃

72 82 85 79
74 75 86 82
84 73 78 80
77 81 76 84

f

6554 4033 6554 4033
4033 2622 4033 2622
6554 4033 6554 4033
4033 2622 4033 2622

Mf

254 -6 -1 1
0 -4 -7 3
1 0 -4 -6
0 4 2 1

F̂

20 26 20 26
26 32 26 32
20 26 20 26
26 32 26 32

Vi

72 82 85 79
74 75 86 82
84 74 78 80
77 82 76 84

f̃

0 0 0 0
0 0 0 0
0 -1 0 0
0 -1 0 0

= f − f̃

72 82 85 79
74 75 86 82
84 73 78 80
77 81 76 84

f

1638 1008 1638 1008
1008 655 1008 655
1638 1008 1638 1008
1008 655 1008 655

Mf

63 -2 0 0
0 -1 -2 1
0 0 -1 -1
0 1 0 0

F̂

80 104 80 104
104 128 104 128
80 104 80 104

104 128 104 128

Vi

70 81 86 78
73 73 85 83
82 75 77 82
77 79 74 85

f̃

2 1 -1 1
1 2 1 -1
2 -2 1 -2
0 2 2 -1

= f − f̃

72 82 85 79
74 75 86 82
84 73 78 80
77 81 76 84

f

410 252 410 252
252 164 252 164
410 252 410 252
252 164 252 164

Mf

16 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

F̂

320 416 320 416
416 512 416 512
320 416 320 416
416 512 416 512

Vi

80 80 80 80
80 80 80 80
80 80 80 80
80 80 80 80

f̃

-8 2 5 -1
-6 -5 6 2
4 -7 -2 0

-3 1 -4 4

= f − f̃

(a)

(b)

(c)

(d)

Fig. 12.5 Examples of H.264 integer transform and quantization with various QPs: a QP=0; b
QP=6; c QP=18; d QP=30

406 12 NewVideo Coding Standards:H.264 and H.265

C D E F G HA BM

I

K

L

J
1

4
5

6

7

8

0

3

(a) (b)

Fig. 12.6 H.264 intra frame prediction. a Intra_4 × 4 prediction using neighboring samples A to
M. b Eight directions for intra_4 × 4 predictions

L

Mode 4: Diagonal Down−Right

K

Mode 0: Vertical

Mode 5: Vertical−Right

C DB

I

K

L

J 8 neighbors

A to D, I to L

Average of

Mode 2: DC

A B C D

Mode 1: Horizontal

J

K

L

I
A

J

I

A B C DM

Mode 3: Diagonal Down−Left

Fig. 12.7 The first six of nine intra_4 × 4 prediction modes in H.264 intra frame prediction

Similar to the variable block sizes in inter-picture motion compensation, different
intra prediction block sizes (4 × 4 or 16 × 16) can be chosen for each intra-coded
macroblock. As shown in Fig. 12.6, there are nine prediction modes for the 4 × 4
blocks in Intra_4 × 4. Figure 12.7 further illustrates six of them.

Prediction modes 0, 1, 3, and 4 are fairly straightforward. For example, in Mode
0, the value of pixel A will be used as the predicted value for all pixels in the first
column (i.e., the column below A), the value of pixel B will be used as the predicted
value for all pixels in the second column, etc. Mode 2 (DC) is a special mode in
which the average of the eight previously coded neighbors (A to D and I to L) is used
as the predicted value for all pixels in the 4 × 4 block.

Mode 5 (Vertical-Right), Mode 6 (Horizontal-Down), Mode 7 (Vertical-Left),
and Mode 8 (Horizontal-Up) are similar. As shown in Fig. 12.7, the direction of the
prediction in Mode 5 is down and to the right at the ratio of 2:1 (i.e., 2 pixels down
and 1 pixel to the right, or approximately 26.6 degrees to the right). This works well

12.1 H.264 407

for the pixels at the second and fourth rows. For example, if the row and column
indices of the 4 × 4 block are in the range 0..3, then the prediction value for pixels at
[1, 1] and [3, 2] will be the value of A. However, the pixels at the first and third rows
will not be able to use a single value from any of the previously coded neighbors.
Instead, it must be extrapolated from two of them. For example, the prediction value
for pixels at [0, 0] and [2, 1] will be a proportional combination of the values of M
and A.

For each prediction mode, the predicted value and the actual value will be com-
pared to produce the prediction error. The mode that produces the least prediction
error will be chosen as the prediction mode for the block. The prediction errors
(residuals) are then sent to transform coding where the 4 × 4 integer transform is
employed. Each 4 × 4 block in a macroblock may have a different prediction mode.
The sophisticated intra-prediction is powerful as it drastically reduces the amount of
data to be transmitted when temporal prediction fails.

There are only four prediction modes for the 16×16 blocks in Intra_16×16. Mode
0 (Vertical), Mode 1 (Horizontal) and Mode 2 (DC) are very similar to Intra_4 × 4
above except the larger block size. For Mode 3 (Plane) which is unique to 16 × 16
blocks, a plane (linear) function is fitted to the upper and left samples in the 16 × 16
block as the prediction.

In summary, the following four modes are specified for intra coding:
• Intra_4 × 4 for luma macroblocks
• Intra_16 × 16 for luma macroblocks
• Intra coding for chroma macroblocks—it uses the same four prediction modes as

in Intra_16 × 16 luma. The prediction block size is 8 × 8 for 4:2:0, 8 × 16 for
4:2:2, and 16 × 16 for 4:4:4 chroma sampling.

• I_PCM (Pulse Code Modulation)—bypass the spatial prediction and transform
coding, and directly send the PCM coded (fixed-length) luma and chroma pixel
values. It is invoked in rare cases when other prediction modes failed to produce
any data compression/reduction.

12.1.6 In-Loop Deblocking Filtering

One of the prominent deficiencies of the block-based coding methods is the genera-
tion of unwanted visible block structures. Pixels at the block boundaries are usually
reconstructed less accurately: they tend to look like the interior pixels in the same
block, hence the artificial appearance of blocks.

H.264 specifies a signal-adaptive deblocking filter in which a set of filters is
applied on the 4 × 4 block edges. Filter length, strength, and type (deblock-
ing/smoothing) vary, depending on the macroblock coding parameters (intra- or
inter-coded, reference-frame differences, coefficients coded, etc.) and spatial activ-
ity (edge detection), so that blocking artifacts are eliminated without distorting visual
features. The H.264 deblocking filter is important in increasing the subjective quality
of the videos.

408 12 NewVideo Coding Standards:H.264 and H.265

Block Boundary

p
1

p
3

q0
q2q1

q3

p
0

p
2

Fig. 12.8 Deblocking of a 1-D edge on the block boundary

As shown in Fig. 12.1, in H.264 the deblocking filtering takes place in the loop,
after the inverse transform in the encoder, before the decoded block data are fed to
Motion Estimation.

Figure 12.8 depicts a simplified 1-D edge, where the height of the pixels p0, q0,
etc., indicates their value. The function of deblocking filtering is basically smoothing
of the block edges. For example, a “four-tap filtering” will take some weighted
average of the values of p1, p0, q0, and q1 to generate new p0 or q0.

Apparently, real edges across the block boundary will need to be protected from
the deblocking filtering. The deblocking filtering on p0 and q0 will be applied only
if all the following criteria are met:

|p0 − q0| < α(Q P),

|p0 − p1| < β(Q P),

|q0 − q1| < β(Q P),

where α and β are thresholds, and they are functions of the quantization parameter
Q P as defined in the standard. They are lower when Q P is smaller. This is because
when Q P is small, a relatively significant difference, e.g., |p0 − q0| is likely caused
by a real edge.

In addition to p0 and q0, the deblocking filtering on p1 or q1 will be applied if

|p0 − p2| < β(Q P) or |q0 − q2| < β(Q P)

12.1 H.264 409

Table 12.3 The 0th order
Exp-Golomb codewords
(EG0)

Unsigned N Signed N Codeword

0 0 1
1 1 010
2 −1 011
3 2 00100
4 −2 00101
5 3 00110
6 −3 00111
7 4 0001000
8 −4 0001001
… … …

12.1.7 Entropy Coding

H.264 has developed a set of sophisticated entropy coding methods. When entropy_
coding_mode = 0, a simple Exponential-Golomb (Exp-Golomb) code is used for
header data, motion vectors, and other nonresidual data, while the more complex
Context-Adaptive Variable Length Coding (CAVLC) is used for quantized residual
coefficients. When entropy_coding_mode = 1, Context-Adaptive Binary Arithmetic
Coding (CABAC) is used (see Sect. 12.1.9).

Simple Exp-Golomb code

The simple Exponential-Golomb (Exp-Golomb) code that is used for header data,
etc., is the so-called 0th order Exp-Golomb code (EG0). It is a binary code, and it
consists of three parts:

[Prefix] [1] [Suffix]
The prefix is a sequence of l zeros. Given an unsigned (positive) number N to be

coded, l = ⌊log2(N +1)⌋. The Suffix S is the binary number N +1−2l represented
in l bits.

As shown in Table 12.3, if an unsigned N = 4, then l = ⌊log2(4 + 1)⌋ = 2, the
Prefix is 00; the Suffix S is the binary number S = 4 + 1 − 22 = 1 represented in 2
bits, i.e., 01. Hence, the Exp-Golomb code for N = 4 is 00101.

To decode the Exp-Golomb codeword EG0 for unsigned N , the following steps
can be followed:
1. Read in the sequence of consecutive zeros, l = number_of_zeros.
2. Skip the next ‘1’.
3. Read in the next l bits and assign to S.
4. N = S − 1 + 2l .

The unsigned numbers are used to indicate, e.g., macroblock type, reference frame
index, etc. For signed numbers, e.g., motion vector difference, they will simply be

410 12 NewVideo Coding Standards:H.264 and H.265

Table 12.4 First- and
second-order Exp-Golomb
codewords (EG1 and EG2)

Unsigned N EG1 Codeword EG2 Codeword

0 10 100
1 11 101
2 0100 110
3 0101 111
4 0110 01000
5 0111 01001
6 001000 01010
7 001001 01011
8 001010 01100
9 001011 01101
10 001100 01110
11 001101 01111
12 001110 0010000
13 001111 0010001
14 00010000 0010010
15 00010001 0010011
· · · · · · · · ·

squeezed in to produce a new set of table entries as listed in the second column
(Table 12.3).

kth Order Exp-Golomb Code

In general, the Exp-Golomb code can have a higher order, i.e., the kth order EGk .
Similarly, it is a binary code and consists of three parts: [Prefix] [1] [Suffix]. The
Prefix is a sequence of l zeros. Given an unsigned (positive) number N to be coded,
l = ⌊log2(N/2k +1)⌋. The Suffix S is the binary number N +2k(1−2l) represented
in l + k bits.

For example, the EG1 code for N = 4 is 0110. It is because l = ⌊log2(4/21+1)⌋
= 1, the prefix is 0; the suffix is the binary representation of 4 + 21(1 − 21) = 2, in
l + k = 1 + 1 = 2 bits it is 10. Table 12.4 provides some examples of the first- and
second-order Exp-Golomb codes for non-negative numbers.

To decode the kth order Exp-Golomb codeword EGk for unsigned N , the follow-
ing steps can be followed:
1. Read in the sequence of consecutive zeros, l = number_of_zeros.
2. Skip the next ‘1’.
3. Read in the next l + k bits and assign to S.
4. N = S − 2k(1 − 2l).

12.1 H.264 411

00

0 0

0

0

0

0

0

0

3

1 1

0 −1

−2

Fig. 12.9 Example: A 4 × 4 block of data for CAVLC encoder

12.1.8 Context-AdaptiveVariable Length Coding (CAVLC)

Previous video coding standards such as MPEG-2 and H.263 use fixed VLC. In
CAVLC [6,7], multiple VLC tables are predefined for each data type (zero-runs,
levels, etc.), and predefined rules predict the optimal VLC table based on the context,
e.g., previously decoded neighboring blocks.

It is known that the matrices (by default 4×4) that contain the quantized frequency
coefficients of the residual data are typically sparse, i.e., contain many zeros. Even
when they are nonzero, the quantized coefficients for higher frequencies are often
+1 or −1 (the so-called “trailing_1s”). CAVLC exploits these characteristics by
carefully extracting the following parameters from the current block data:
• Total number of nonzero coefficients (TotalCoeff) and number of trailing ±1s

(Trailing_1s).
• Signs of the Trailing_1s.
• Level (sign and magnitude) of the other nonzero coefficients (not Trailing_1s).
• Total number of zeros before the last nonzero coefficient.
• Run of zeros (zeros_left and run_before) before each nonzero coefficient.

Figure 12.9 shows an example of a 4×4 block of the residual data after transform
and quantization. After the zigzag scan, the 1-D sequence is: 0 3 0 −2 1 0 −1
1 0 0 0 0 0 0 0 0. Table 12.5 gives details of the CAVLC code generated. The
nonzero coefficients are processed in reverse order, i.e., the last one indexed by ‘4’
(Trailing_1[4]) is examined first, and so forth.

We will briefly explain the code generation process for the above example.
• A code 0000100 is generated for TotalCoeffs = 5, Trailing_1s = 3. These are looked

up from “Table 9–5—coeff_token mapping to TotalCoeff and TrailingOnes” in the
H.264 standard (2003). It is observed that, in general, the numbers of nonzero coef-
ficients in the neighboring blocks are similar, hence the code for coeff_token is
context-adaptive. For each pair of TotalCoeffs and Trailing_1s, its code can be
assigned one of the four possible values depending on the numbers of nonzero
coefficients in the blocks above and to the left of the current block. If the neigh-
boring blocks have a small number of nonzeros, then a code assignment favoring

412 12 NewVideo Coding Standards:H.264 and H.265

Table 12.5 CAVLC code generation for data from Fig. 12.9

Data Value Code

coeff_token TotalCoeffs = 5, Trailing_1s = 3 0000100
Trailing_1 [4] Sign + 0
Trailing_1 [3] Sign − 1
Trailing_1 [2] Sign + 0
Level [1] −2 (SuffixLength = 0) 0001 (prefix)
Level [0] 3 (SuffixLength = 1) 001 (prefix) 0 (suffix)
Total zeros 3 111
run_before [4] zeros_left = 3, run_before = 0 11
run_before [3] zeros_left = 3, run_before = 1 10
run_before [2] zeros_left = 2, run_before = 0 1
run_before [1] zeros_left = 2, run_before = 1 01
run_before [0] zeros_left = 1, run_before = 1 No code required

the small TotalCoeffs in the current block will be used (i.e., small TotalCoeffs
are assigned very short codes and large TotalCoeffs are assigned particularly long
codes), and vice versa. In this example, it is assumed that the number of nonzero
coefficients in the two neighboring blocks is less than 2.

• Sign ‘+’ is assigned the code 0, and ‘−’ the code 1.
• The choice of the VLC code for Level is again context-adaptive, it depends on

the magnitudes of the recently coded Levels. In reverse order, the first nonzero
coefficient is −2. Initially, SuffixLength = 0, so the code for −2 is 0001 (prefix).
Afterwards, SuffixLength is increased by 1, hence the next nonzero 3 gets the code
001 (prefix) 0 (suffix). The magnitude of levels tends to increase (when examined
in reverse order), so the SuffixLength is increased adaptively to accommodate
larger magnitudes. For further details, the readers are referred to [4,6,7].

• The total number of zeros is 3. It gets the code 111.
• The last five rows in Table 12.5 record the information for the runs of zeros in the

current block. For example, for the last nonzero coefficient ‘1’, 3 zeros are in front
of it, and no zero is immediately in front of it. The code 11 is looked up from
Tables 9–10 in the H.264 standard. To illustrate, we extracted part of it below as
Table 12.6. This should also explain the codes in the next three rows, 10, 1, and
01. Come down to the last row, only one zero is left for the only (last) nonzero
coefficient, the encoder and decoder can unambiguously determine it, so no code
for run_before is needed.
For this example, the resulting sequence of the code is 0000100 0 1 0 0001 001 0

111 11 10 1 01. Based on it, the decoder is able to reproduce the block data.

12.1 H.264 413

Table 12.6 Code for various
run_before run_before zeros_left

1 2 3 4 5 6 > 6

0 1 1 11 11 11 11 111
1 0 01 10 10 10 000 110
2 — 00 01 01 011 001 101
3 — — 00 001 010 011 100
4 — — — 000 001 010 011
5 — — — — 000 101 010
…

12.1.9 Context-Adaptive Binary Arithmetic Coding (CABAC)

The VLC-based entropy coding methods (including CAVLC) are inefficient in deal-
ing with symbols with a probability greater than 0.5, because usually a minimum
of 1 bit has to be assigned to each symbol, which could be much larger than its self
information measured by log2

1
pi

, where pi is the symbol’s probability. For better
coding efficiency in H.264 Main and High profiles, Context-Adaptive Binary Arith-
metic Coding (CABAC) [8] is used for some data and quantized residual coefficients
when entropy_coding_mode = 1.
As shown in Fig. 12.10, CABAC has three major components:
• Binarization. All nonbinary data are converted to binary bit (bin) strings first

since CABAC uses Binary Arithmetic Coding. Five schemes can be used for the
binarization: (a) Unary (U)—for N ≥ 0, it is N 1s followed by a terminating 0. For
example, it is 111110 for 5. (b) Truncated Unary (TU)—similar to U, but without
the terminating 0. (c) kth order Exp-Golomb code. (d) The concatenation of (a)
and (c). (e) Fixed-Length binary scheme.

• Context Modeling. This step deals with the context model selection and access.
The Regular Coding Mode is for most symbols, e.g., macroblock type, mvd, infor-
mation about prediction modes, information about slice and macroblock control,
and residual data. Various “context models” are built to store the conditional prob-
abilities for the bins of the binarized symbol to be 1 or 0. The probability models
are derived from the statistics of the context, i.e., recently coded symbols and bins.
The Bypass coding mode uses no context model; it is used to speed up the coding
process.

• Binary Arithmetic Coding. For efficiency, a binary arithmetic coding method is
developed [8]. Below is a brief description of Binary Arithmetic Coding in H.264.
As shown in Chap. 7, arithmetic coding involves recursive subdivisions of the cur-
rent range. The numerous multiplications involved there is its main disadvantage
in terms of the computational cost when compared with other entropy coding
methods. Binary arithmetic coding only involves two symbols, so the number of
multiplications is greatly reduced.
In the binary case, we name the two symbols LPS (Least Probable Symbol) and
MPS (Most Probable Symbol), the range as R, the lower bound of R as L . (Note:

http://dx.doi.org/10.1007/978-3-319-05290-8_7

414 12 NewVideo Coding Standards:H.264 and H.265

Bin value

Engine
Coding
Engine

Regular Bin Bypass Bin
Coding

Binary
Arithmetic

Modeling

Binarization

Coding

Context

Regular Bin Bypass Bin

Bin value for
Context model

Update

Coded Bitstream

Input Symbol

Context model

Fig. 12.10 Block diagram of CABAC in H.264

LPS is the upper interval and MPS is the lower interval in R.) If the probability
of the LPS is PL P S , then PM P S = 1 − PL P S , and the following procedure can be
employed for the generation of the next range given the new symbol S:

PROCEDURE Calculating Ranges in Binary Arithmetic Coding
BEGIN

If S is MPS

R = R × (1 − PL P S);

Else // S is LPS.

L = L + R × (1 − PL P S);

R = R × PL P S ;

END

However, the multiplication in R × PL P S would be computational expensive.
Various “multiplication-free” binary arithmetic coding schemes have been
developed, for example, the Q-coder for binary images, its improved QM-coder,
and the MQ-coder adopted in JPEG2000. The H.264 binary arithmetic coding

12.1 H.264 415

CABAC
MBAFF

Field Coding

Weighted
predictionFMO

Motion−compensated
prediction

CAVLC

Intra−prediction

In−loop deblocking

I and P slices B slices

Main

per sample
9 or 10 bits

format
4:2:2

4:4:4 format

coding
Color plane

per sample
11 to 14 bits

Lossless
High pred coding

Data partitioning

Extended

Baseline

SP & SI slices

ASO

slices
Redundant

High 4:2:2 High 4:4:4

High 10

QP for Cr/Cb

transform &
intra prediction

Quantizer scale
matrices

8 × 8

Fig. 12.11 H.264 profiles

method developed by Marpe et al. [8] is the so-called M-coder (Modulo Coder).
Here, the multiplication in R × PL P S is replaced by a table look-up. In the Regular
Bin Coding mode, the table has 4×64 pre-calculated product values to allow four
different values for R and 64 values for pL P S . (The Bypass Bin Coding mode
assumes a uniform probability model, i.e., PM P S ≈ PL P S in order to simplify and
speed up the process.)
Apparently, due to the limited size of the look-up table, the precision of the product
values is limited. These multiplication-free methods are hence known as perform-
ing Reduced-precision Arithmetic Coding. Previous study shows that the impact
of the reduced-precision on the code length is minimal.
The implementation of CABAC has a tremendous amount of details. Readers are

referred to [8] for detailed discussions.

12.1.10 H.264 Profiles

As before, a number of profiles are provided to suit the needs of various applications
ranging from mobile devices to broadcast HDTV. Figure 12.11 provides an overview
of the H.264 profiles [4,9].

Baseline Profile

The Baseline profile of H.264 is intended for real-time conversational applications,
such as videoconferencing. It contains all the core coding tools of H.264 discussed
above and the following additional error-resilience tools, to allow for error-prone
carriers such as IP and wireless networks:
• Arbitrary slice order (ASO). The decoding order of slices within a picture may

not follow monotonic increasing order. This allows decoding of out-of-order pack-
ets in a packet-switched network, thus reducing latency.

• Flexible macroblock order (FMO). Macroblocks can be decoded in any order,
such as checkerboard patterns, not just raster scan order. This is useful on
error-prone networks, so that loss of a slice results in loss of macroblocks scattered

416 12 NewVideo Coding Standards:H.264 and H.265

in the picture, which can easily be masked from human eyes. This feature can also
help reduce jitter and latency, as the decoder may decide not to wait for late slices
and still be able to produce acceptable pictures.

• Redundant slices. Redundant copies of the slices can be decoded, to further
improve error resilience.

Main Profile

The main profile defined by H.264 represents non-low-delay applications such as
standard definition (SD) digital broadcast TV and stored-medium. The main profile
contains all Baseline profile features (except ASO, FMO, and redundant slices) plus
the following non-low-delay and higher complexity features, for maximum com-
pression efficiency:
• B slices. The bi-prediction mode in H.264 has been made more flexible than in

existing standards. Bi-predicted pictures can also be used as reference frames.
Two reference frames for each macroblock can be in any temporal direction, as
long as they are available in the reference frame buffer. Hence, in addition to the
normal forward + backward bi-prediction, it is legal to have backward + backward
or forward + forward prediction as well.

• Context-Adaptive Binary Arithmetic Coding (CABAC). This coding mode
replaces VLC-based entropy coding with binary arithmetic coding that uses a
different adaptive statistics model for different data types and contexts.

• Weighted Prediction. Global weights (multiplier and an offset) for modifying the
motion-compensated prediction samples can be specified for each slice, to predict
lighting changes and other global effects, such as fading.

Extended Profile

The eXtended profile (or profile X) is designed for the new video streaming appli-
cations. This profile allows non-low-delay features, bitstream switching features,
and also more error-resilience tools. It includes all Baseline profile features plus the
following:
• B slices.
• Weighted prediction.
• Slice data partitioning. This partitions slice data with different importance into

separate sequences (header information, residual information) so that more impor-
tant data can be transmitted on more reliable channels.

• SP (Switching P) and SI (Switching I) slice types. These are slices that con-
tain special temporal prediction modes, to allow efficient switching of bitstreams
produced by different decoders. They also facilitate fast forward/backward, and
random access.

12.1 H.264 417

High Profiles

H.264/AVC also has four high profiles for applications that demand higher video
qualities, i.e., High Definition (HD).
• High Profile This profile is adopted by the Blu-ray Disc format and DVB HDTV

broadcast. It supports 8 × 8 integer transform for the parts of the pictures that
do not have much detail, and 4 × 4 integer transform for the parts that do have
details. It also allows 8 × 8 Intra prediction for better coding efficiency especially
for higher resolution videos. It provides adjustable quantizer scale matrices, and
separate quantizer parameters for Cb and Cr. It also supports monochrome video
(4:0:0).

• High 10 Profile Supports 9 or 10 bits per sample.
• High 4:2:2 Profile Supports 4:2:2 chroma subsampling.
• High 4:4:4 Predictive Profile It supports up to 4:4:4 chroma sampling, up to 14

bits per sample, coding of separate color planes, and efficient lossless predictive
coding.

12.1.11 H.264 Scalable Video Coding

The Scalable Video Coding (SVC) extension of the H.264/AVC standard was
approved in 2007 [10]. It provides the bitstream scalability which is especially impor-
tant for multimedia data transmission through various networks that may have very
different bandwidths.

Similar to MPEG-2 and MPEG-4, H.264/AVC SVC provides temporal scalability,
spatial scalability, quality scalability, and their possible combinations. Compared
to previous standards, the coding efficiency is greatly improved. Other functions
such as bit rate and power adaptation, and graceful degradation in lossy network
transmissions are also provided.

We covered the issues of temporal scalability, spatial scalability, quality (SNR)
scalability, and their possible combinations in sufficient details under MPEG-2 in
Chap. 11. Since the fundamental concepts and approaches are very similar, we will
not discuss this topic in detail in this chapter. For more information about H264/AVC
SVC, readers are referred to [10] and Annex G extension of the H.264/AVC standard.

12.1.12 H.264MultiviewVideo Coding

Multiview Video Coding (MVC) is an emerging issue. It has potential applications
in some new areas such as Free Viewpoint Video (FVV) where users can specify
their preferred views. Merkle et al. [11] described some possible MVC prediction
structures. Figure 12.12 shows a small example in which there are only four views.
The two most important features are:
• Interview Prediction Since there is apparent redundancy among the multiple

views, the IPPP structure, for example, can be employed for the so-called Key

http://dx.doi.org/10.1007/978-3-319-05290-8_11

418 12 NewVideo Coding Standards:H.264 and H.265

II

View 0:

View 1:

View 2:

View 3:

PP

PP

PP

B3

B3

B3

B 3

1 B2B2 B3 BB 3 B3 B3

B1 B2B2 B3 B3 B3 B3

B1 B2B2 B3 B3 B3 B3

B 1 B2B2 B 3 B 3 B3 B3

Fig. 12.12 H.264 MVC prediction structure

Pictures (the first and ninth pictures in each view in the figure). This Interview
Prediction structure can of course be extended to other structures, e.g.,IBBP. This
would be even more beneficial when many more views are involved.

• Hierarchical B Pictures For temporal prediction in each view, a hierarchy of
B picture, e.g., B1, B2, B3, similar to the ones discussed in Sect. 12.1.1 can be
employed. It is made feasible because H.264/AVC is more flexible in supporting
various prediction schemes at picture/sequence level. As discussed earlier, increas-
ingly larger quantization parameters can usually be applied down the hierarchy to
control the compression efficiency.

12.2 H.265

HEVC (High Efficiency Video Coding) [12,13] was the latest standard jointly devel-
oped by the Joint Collaborative Team on Video Coding (JCT-VC) from the groups of
ITU-T VCEG (Video Coding Experts Group) and ISO/IEC MPEG. The final draft of
the standard was produced in January 2013. In ISO/IEC, HEVC became MPEG-H

12.2 H.265 419

Part 2 (ISO/IEC 23008-2). It is also known as ITU-T Recommendation H.265 [14],
which is the term we will use in this book.

The development of this new standard was largely motivated by two factors:
(a) The need to further improve coding efficiency due to ever increasing video reso-
lution (e.g., up to 8k × 4k in UHDTV). (b) The need to speed up the more complex
coding/decoding methods by exploiting the increasingly available parallel process-
ing devices and algorithms. The initial goal was a further 50 % reduction of the
size of the compressed video (with the same visual quality) from H.264, and it was
reported that this goal was exceeded. With their superior compression performance
over MPEG-2, H.264 and H.265 are currently the leading candidates to carry a whole
range of video contents on many potential applications.

At this point, the default format for color video in H.265 is YCbCr. In main
profiles, chroma subsampling is 4:2:0.

Main features of H.265 are:
• Variable block-size motion compensation, from 4×4 up to 64×64 in luma images.

The macroblock structure is replaced by a quadtree structure of coding blocks at
various levels and sizes.

• Exploration of parallel processing.
• Integer transform in various sizes, from 4 × 4, 8 × 8, 16 × 16 to 32 × 32.
• Improved interpolation methods for the quarter-pixel accuracy in motion vectors.
• Expanded directional spatial prediction (33 angular directions) for intra coding.
• The potential use of DST (Discrete Sine Transform) in luma intra coding.
• In-loop filters including deblocking-filtering and SAO (Sample Adaptive Offset).
• Only CABAC (Context-Adaptive Binary Arithmetic Coding) will be used, i.e., no

more CAVLC.

12.2.1 Motion Compensation

As in previous video coding standards, H.265 still uses the technology of hybrid
coding, i.e., a combination of inter/intra predictions and 2D transform coding on
residual errors.

Variable block sizes are used in inter/intra predictions as in H.264. However, more
partitions of the prediction and transform blocks are encouraged in order to reduce
the prediction errors. Unlike previous video coding standards, H.265 does not use the
simple and fixed structure of macroblocks. Instead, a quadtree hierarchy of various
blocks is introduced as below for its efficiency.
• CTB and CTU (Coding Tree Block and Coding Tree Unit): CTB is the largest

block, the root in the quadtree hierarchy. The size of the luma CTB is N × N ,
where N can be 16, 32, or 64. The chroma CTB is half-size, i.e., N/2 × N/2. A
CTU consists of 1 luma CTB and 2 chroma CTBs.

• CB and CU (Coding Block and Coding Unit): The CTB consists of CBs organized
in the quadtree structure. CB is a square block that can be as small as 8 × 8 in
luma and 4 × 4 in chroma images. The CBs in a CTB are traversed and coded in
Z-order. One luma CB and two chroma CBs form a CU.

420 12 NewVideo Coding Standards:H.264 and H.265

(a) (b)

Fig.12.13 Partitioning of a CTB. a The CTB and its partitioning (solid lines CB boundaries, dotted
line TB boundaries). b The corresponding quadtree

• PB and PU (Prediction Block and Prediction Unit): A CB can be further split into
PBs for the purpose of prediction. The prediction mode for a CU can be intra-
picture (spatial) or inter-picture (temporal). For the intra prediction, the sizes of
CB and PB are usually the same; except when the CB is 8 × 8, a split into four
PBs is allowed so that each PB may have a different prediction mode. For the inter
prediction, a luma or chroma CB can be split into one, two, or four PBs, i.e., the
PBs may not be square albeit always rectangular. The PU contains the luma and
chroma PBs and their prediction syntax.

• TB and TU (Transform Block and Transform Unit): A CB can be further split into
TBs for the purpose of transform coding of residual errors. This is represented in
the same quadtree structure, hence it is very efficient. The range of the TB size is
32×32 down to 4×4. In H.265, the TBs are allowed to span across PB boundaries
in inter-predicted CUs in order to gain higher coding efficiency. A TU consists of
TBs from luma and chroma images.
Figure 12.13 illustrates an example in which a CTB is partitioned into CBs and

then further into TBs in a quadtree structure. In this example, the original CTB is
64 × 64 and the smallest TB is 4 × 4.

Slices andTiles

As in H.264, H.265 supports Slices of any length consisting of a sequence of CTUs
(Fig. 12.14a). They can be I-slices, P-slices, or B-slices.

In addition to the slices, the concept of Tile is introduced to facilitate parallel
processing amongst multiple Tiles. A tile is a rectangular structure consisting of
CTUs (Fig. 12.14b); it may also contain multiple slices.

An additional feature is the inclusion of the Wavefront Parallel Processing (WPP)
technology. Basically, rows of CTUs can be processed in parallel, in multiple threads
in the wavefront manner shown in (Fig. 12.14c).

For the time being, the standard does not allow the mixed use of both Tiles and
Wavefronts.

12.2 H.265 421

CTU CTU

CTU

CTU

CTU CTU

CTU

CTU

CTU CTU

CTU

CTU

CTU

CTU

CTU

CTU CTU

CTU

CTU

Slice 2

Slice 1

Slice N UTC UTC UTCUTC UTC

CTU

CTU

CTU CTU

CTU

CTU CTU

CTU CTU CTU

UTC UTC UTC

. . .

. . .

Thread 3

Thread 4

Thread 1

Thread 2
. . .

. . .

. . .

Tile M

Tile 1 Tile 2

CTU CTU CTU

UTC UTC UTC UTC

CTU CTU

UTC UTC

CTU CTU

UTC UTCCTU

UTC UTC

CTU

CTU

UTC UTC

CTU

(a)

(c)(b)

Fig. 12.14 Slices, tiles, and wavefront parallel processing (WPP) in H.265. a Slices, b Tiles, c
Wavefronts

Quarter-Pixel Precision in Luma Images

In inter-picture prediction for luma images, the precision for motion vectors is again
at quarter-pixel as in H.264. The values at subpixel positions are derived through
interpolations. As shown in Table 12.7, an eight-tap filter hfilter is used for half-
pixel positions (e.g., position b in Fig. 12.15), and a seven-tap filter qfilter is used
for quarter-pixel positions (e.g., positions a and c in Fig. 12.15).

As shown below, all values at subpixel positions are derived through separable
filtering steps vertically and horizontally. This is different from H.264 which uses
six-tap filtering to get the values at half-pixel positions, and then averaging to obtain
the values at quarter-pixel positions.

The values at positions a, b, and c can be derived using the following:

ai, j =
3∑

t=−3

Ai, j+t · qfilter[t], (12.9)

bi, j =
4∑

t=−3

Ai, j+t · hfilter[t], (12.10)

422 12 NewVideo Coding Standards:H.264 and H.265

ai,j bi,j ci,j

di,j

ei,j ki,jji,j

ii,jhi,jgi,j

mi,j

ni,j pi,j qi,jfi,j

Ai,j−1 Ai,j Ai,j+1 Ai,j+2

Ai+1,j

Ai−1,j

ai+1,j

ai−1,j

Ai+2,j ai+2,j

bi−1,j ci−1,j

bi+1,j ci +1,j

bi+2,j ci+2,j

Fig.12.15 Interpolation for fractional samples in H.265. Lower-case letters (ai, j , bi, j , etc.) indicate
pixels at quarter-pixel and half-pixel positions. Ai, j , Ai, j+1, etc. indicate pixels on the image grid.
(To save space, Ai, j−2, Ai, j+3, etc., are not drawn in the figure, although they will be used in the
calculation)

Table 12.7 Filters for
sample interpolations in
Luma images in H.265

Filter Number Array index
of taps −3 −2 −1 0 1 2 3 4

hfilter 8 −1 4 −11 40 40 −11 4 −1
qfilter 7 −1 4 −10 58 17 −5 1

ci, j =
4∑

t=−2

Ai, j+t · qfilter[1 − t]. (12.11)

Numerically,

ai, j = − Ai, j−3 + 4 · Ai, j−2 − 10 · Ai, j−1 + 58 · Ai, j + 17 · Ai, j+1 − 5 · Ai, j+2 + Ai, j+3,

bi, j = − Ai, j−3 + 4 · Ai, j−2 − 11 · Ai, j−1 + 40 · Ai, j + 40 · Ai, j+1 − 11 · Ai, j+2

+ 4 · Ai, j+3 − Ai, j+4,

ci, j = Ai, j−2 − 5 · Ai, j−1 + 17 · Ai, j + 58 · Ai, j+1 − 10 · Ai, j+2 + 4 · Ai, j+3 − Ai, j+4.

12.2 H.265 423

The actual implementation involves a right-shift by (B − 8) bits after the above
calculations, where B ≥ 8 is the number of bits per image sample.

It should be obvious that the eight-tap hfilter is symmetric, so it works well for the
half-pixel positions which are in the middle of pixels that are on the image grid. The
seven-tap qfilter is asymmetric, well-suited for the quarter-pixel positions which are
not in the middle. The subtly different treatment of a and c in Eqs. (12.9) and (12.11)
reflects the nature of this asymmetric operation. Basically, qfilter[1 − t] is a flipped
version of qfilter[t]. For example, ai, j is closest to Ai. j , and it will draw the most
from Ai, j with the weight 58; whereas ai, j will draw the most from Ai, j+1 with the
weight 58.

Similarly, the values at positions d, e, and f can be derived using the following:

di, j =
3∑

t=−3

Ai+t, j · qfilter[t], (12.12)

ei, j =
4∑

t=−3

Ai+t, j · hfilter[t], (12.13)

fi, j =
4∑

t=−2

Ai+t, j · qfilter[1 − t]. (12.14)

The other subpixel samples can be obtained from the vertically nearby a, b, or c
pixels as below. To enable 16-bit operations, a right shift of six bits is introduced.

gi, j =
(3∑

t=−3

ai+t, j · qfilter[t]
)

≫ 6,

ji, j =
(4∑

t=−3

ai+t, j · hfilter[t]
)

≫ 6,

ni, j =
(4∑

t=−2

ai+t, j · qfilter[1 − t]
)

≫ 6,

hi, j =
(3∑

t=−3

bi+t, j · qfilter[t]
)

≫ 6,

ki, j =
(4∑

t=−3

bi+t, j · hfilter[t]
)

≫ 6,

pi, j =
(4∑

t=−2

bi+t, j · qfilter[1 − t]
)

≫ 6,

424 12 NewVideo Coding Standards:H.264 and H.265

ii, j =
(3∑

t=−3

ci+t, j · qfilter[t]
)

≫ 6,

mi, j =
(4∑

t=−3

ci+t, j · hfilter[t]
)

≫ 6,

qi, j =
(4∑

t=−2

ci+t, j · qfilter[1 − t]
)

≫ 6.

12.2.2 Integer Transform

As in H.264, transform coding is applied to the prediction error residuals. The
2-D transform is accomplished by applying a 1-D transform in the vertical and
then horizontal direction. This is implemented by two matrix multiplications:
F = H × f × HT , where f is the input residual data and F is the transformed
data. H is the Integer Transform matrix that approximates the DCT-matrix.

Transform block sizes of 4 × 4, 8 × 8, 16 × 16, and 32 × 32 are supported. Only
one Integer Transform Matrix, i.e., H32×32 is specified in H.265. The other matrices
for smaller TBs are subsampled versions of H32×32. For example, H16×16 shown
below is for the 16 × 16 TBs.

H16×16 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64
90 87 80 70 57 43 25 9 −9 −25 −43 −57 −70 −80 −87 −90
89 75 50 18 −18 −50 −75 −89 −89 −75 −50 −18 18 50 75 89
87 57 9 −43 −80 −90 −70 −25 25 70 90 80 43 −9 −57 −87
83 36 −36 −83 −83 −36 36 83 83 36 −36 −83 −83 −36 36 83
80 9 −70 −87 −25 57 90 43 −43 −90 −57 25 87 70 −9 −80
75 −18 −89 −50 50 89 18 −75 −75 18 89 50 −50 −89 −18 75
70 −43 −87 9 90 25 −80 −57 57 80 −25 −90 −9 87 43 −70
64 −64 −64 64 64 −64 −64 64 64 −64 −64 64 64 −64 −64 64
57 −80 −25 90 −9 −87 43 70 −70 −43 87 9 −90 25 80 −57
50 −89 18 75 −75 −18 89 −50 −50 89 −18 −75 75 18 −89 50
43 −90 57 25 −87 70 9 −80 80 −9 −70 87 −25 −57 90 −43
36 −83 83 −36 −36 83 −83 36 36 −83 83 −36 −36 83 −83 36
25 −70 90 −80 43 9 −57 87 −87 57 −9 −43 80 −90 70 −25
18 −50 75 −89 89 −75 50 −18 −18 50 −75 89 −89 75 −50 18
9 −25 43 −57 70 −80 87 −90 90 −87 80 −70 57 −43 25 −9

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(12.15)

H8×8 can be obtained by using the first 8 entries of Rows 0, 2, 4, 6, ... of H16×16.
For H4×4, use the first 4 entries of Rows 0, 4, 8, and 12.

H4×4 =

⎡

⎢⎢⎣

64 64 64 64
83 36 −36 −83
64 −64 −64 64
36 −83 83 −36

⎤

⎥⎥⎦ (12.16)

Compared to Eq. (12.2), the entries in H4×4 clearly have much larger magnitudes.
In order to use 16-bit arithmetic and 16-bit memory, the dynamic range of the inter-
mediate results from the first matrix multiplication must be reduced by introducing
a 7-bit right shift and 16-bit clipping operation.

12.2 H.265 425

12.2.3 Quantization and Scaling

Unlike the H matrix in H.264 (Eq. 12.2), the numbers in the H.265 integer transform
matrices, e.g., Eq. (12.15), are proportionally very close to the actual values of the
DCT basis functions. Hence, the ad hoc scaling factors as built in Tables 12.1 and
12.2 are no longer needed.

For quantization, the quantization matrix and the same parameter QP as in H.264
are employed. The range of QP is [0, 51]. Similarly, the quantization step size doubles
when the QP value is increased by 6.

12.2.4 Intra Coding

As in H.264, spatial predictions are used in intra coding in H.265. The neighboring
boundary samples from the blocks at the top and/or left of the current block are used
for the predictions. The prediction errors are then sent for transform coding. The
transform block (TB) size ranges from 4 × 4 to 32 × 32 in Intra coding in H.265.
Because of (a) the potentially much larger TB size, and (b) the effort to reduce
prediction errors, the possible number of prediction modes is increased from 9 in
H.264 to 35 in H.265. As shown in Fig. 12.16a, Mode 2 to Mode 34 are Intra_angular
prediction modes. Note, the angle difference between modes is deliberately made
uneven, e.g., to make it denser near horizontal or vertical directions. Most of the
samples that are needed for angular predictions will be at subpixel positions. Bilinear
interpolation of the two nearest pixels at integer positions is employed, and the
precision is up to 1/32 pixel.

The two special prediction modes are Mode 0: Intra_Planar and Mode 1: Intra_DC.
They are similar as in H.264. In Intra_DC, the average of the reference samples is
used as the prediction. In Intra_planar, different from H.264, all four corners are used
for the planar prediction, i.e., two plane predictions will be made and the average of
their values will be adopted.

12.2.5 Discrete Sine Transform

In Intra_4 × 4, for luma residual blocks, HEVC introduced an alternative transform
based on one of the variants of the Discrete Sine Transform (DST) (the so-called
DST-VII) [15]. It is because the intra predictions are based on the neighboring bound-
ary samples on the top or at the left of the block. The prediction error tends to increase
for the nodes in the block that are farther away from the top or left neighboring sam-
ples. In general, DST is found to cope with this situation better than DCT at the
transform coding step.
The integer matrix for DST can be described by:

HDST[i, j] = round
(

128 × 2√
2N + 1

sin
(2i − 1) jπ

2N + 1

)
, (12.17)

426 12 NewVideo Coding Standards:H.264 and H.265

Example: Directional mode 30

Current PB

Boundary
samples from
decoded PBs

0: Planar

1: DC

10

13

16

20

2829
31

32

15

18
19

26
30

5
6
7
8

22
24

17

14

12

33
34

2
3

4

21
2327 25

9

11

(a) (b)

Fig. 12.16 H.265 intra prediction. a Modes and intra prediction directions, b Intra prediction for
an 8 × 8 block

where i = 1, .., N and j = 1, .., N are the row and column indices, and the block
size is N × N .

When N = 4, the following HDST is obtained:

HDST =

⎡

⎢⎢⎣

29 55 74 84
74 74 0 −74
84 −29 −74 55
55 −84 74 −29

⎤

⎥⎥⎦ (12.18)

Saxena and Fernandes [16,17] further studied the benefit of combining DCT and
DST, i.e., allowing either DCT or DST in one of the two 1-D transforms, because
DST and DCT are shown to win in either the vertical and/or horizontal direction(s)
for certain prediction modes. Although there are over 30 different intra prediction
directions in H.265, they classify the prediction modes into:
• Category 1—the samples for prediction are either all from the left neighbors of

the current block (Fig. 12.17a), or all from the top neighbors of the current block
(Fig. 12.17b).

• Category 2—the samples for prediction are from both the top and left neighbors
of the current block (Fig. 12.17c, d).

• DC—a special prediction mode in which the average of a fixed set of neighboring
samples is used.
Table 12.8 shows some of their recommendations.

12.2 H.265 427

(a) (b) (c) (d)

Fig.12.17 Intra prediction directions in H.265. a Category 1, predictions from left neighbors only,
b Category 1, predictions from top neighbors only, c and d Category 2, predictions from both top
and left neighbors

Table 12.8 Combining DCT and DST for intra coding

Intra prediction Neighboring Vertical (column) Horizontal (row)
Category samples used transform transform

Category 1 from left only DCT DST
Category 1 from top only DST DCT
Category 2 from both top and left DST DST
DC special (from a fixed set) DCT DCT

12.2.6 In-Loop Filtering

Similar to H.264, in-loop filtering processes are applied in order to remove the
blocky artifacts. In addition to Deblocking Filtering, H.265 also introduces a Sample
Adaptive Offset (SAO) process.

Deblocking Filtering

Instead of applying deblocking filtering to 4×4 blocks as in H.264, it is applied only
to edges that are on the 8 × 8 image grid. This reduces the computation complexity,
and it is especially good for parallel processing since the chance of cascading changes
at nearby samples is greatly reduced. The visual quality is still good, partly due to
the SAO process described below.

The deblocking filtering is applied first to the vertical edges, then to the horizontal
edges in the picture, thus enabling parallel processing. Alternatively, it can be applied
CTB by CTB.

Sample Adaptive Offset (SAO)

The SAO process can be invoked optionally after the deblocking filtering. Basically,
an offset value is added to each sample based on certain conditions described below.

428 12 NewVideo Coding Standards:H.264 and H.265

n0 n0 n0

n1

n1 n1 n1

n0 p p p p

(a) (b) (c) (d)

Fig. 12.18 Neighboring samples considered in SAO edge offset mode

Two modes are defined for applying the SAO: Band offset mode and Edge
offset mode.

In the Band offset mode, the range of the sample amplitudes is split into 32 bands.
A band offset can be added to the sample values in four of the consecutive bands
simultaneously. This helps to reduce the “banding artifacts" in smooth areas.

In the Edge offset mode, the gradient (edge) information is analyzed first.
Figure 12.18 depicts the four possible gradient (edge) directions: (a) horizontal, (b)
vertical, and (c, d) diagonals. A positive or negative offset, or zero offset can be
added to the sample p based on the following:
• Positive: p is a local minimum (p < n0 & p < n1), or p is an edge pixel

(p < n0 & p = n1 or p = n0 & p < n1).
• Negative: p is a local maximum (p > n0 & p > n1), or p is an edge pixel

(p > n0 & p = n1 or p = n0 & p > n1).
• Zero: None of the above.

12.2.7 Entropy Coding

H.265 only uses CABAC in entropy coding, i.e., CAVLC is no longer used. Because
of the newly introduced coding tree and transform tree structure, the tree depth
now becomes an important part of the context modeling in addition to the spatially
neighboring context in H.264/AVC. As a result, the number of contexts is reduced,
and the entropy coding efficiency is further improved.

Unlike previous video standards, three simple scanning methods are defined to
read in the transform coefficients, i.e., Diagonal up-right, Horizontal, and Vertical.
The goal is still to maximize the length of zero-runs. The scanning always takes place
in 4×4 subblocks regardless of the TB size. The diagonal up-right scan is used for all
inter-predicted blocks and for intra-predicted blocks that are 16×16 or 32 ×32. For
intra-predicted blocks that are 4 × 4 or 8 × 8, the following are used: Horizontal—
for prediction directions close to vertical, Vertical—for prediction directions close
to horizontal, Diagonal up-right—for the other prediction directions.

There are many improvements as how to code the nonzero transform coefficients
efficiently [12,14]. Also, one of the goals of the new implementation of CABAC in
H.265 is to simplify its context representations so its throughput can be increased.
For details readers are referred to [18] which provides an excellent reference.

12.2 H.265 429

Table 12.9 Sample video formats supported in the H.265 main profile

Level(s) Max Luma picture Max Luma picture Frame Main tier max
width × height size (samples) rate (fps) bitrate (Mb/s)

1 176 × 144 36864 15 0.128
2 352 × 288 122880 30 1.5
2.1 640 × 360 245760 30 3.0
3 960 × 540 552960 30 6.0
3.1 1280 × 720 983040 30 10
4 / 4.1 2048 × 1080 2228224 30 / 60 12 / 20
5 / 5.1 / 5.2 4096 × 2160 8912896 30 / 60 / 120 25 / 40 / 60
6 / 6.1 / 6.2 8192 × 4320 35651584 30 / 60 / 120 60 / 120 / 240

12.2.8 Special CodingModes

Three special coding modes are defined in H.265. They can be applied at the CU or
TU level.
• I_PCM As in H.264, the prediction, transform coding, quantization, and entropy

coding steps are bypassed. The PCM-coded (fixed-length) samples are sent
directly. It is invoked when other prediction modes failed to produce any data
reduction.

• Lossless The residual errors from inter- or intra-predictions are sent to entropy
coding directly, thus to avoid any lossy steps, especially the quantization after
transform coding.

• Transform skipping Only the transform step is bypassed. This works for certain
data (e.g., computer-generated images or graphics). It can only be applied to 4×4
TBs.

12.2.9 H.265 Profiles

At this point, only three profiles are defined: Main profile, Main 10 profile, and Main
Still Picture profile, although more and higher profiles are expected in the future.

The default format for color is YCbCr. In all main profiles, chroma subsampling
is 4:2:0. Each sample has 8 bits, except in Main 10, which has 10 bits.

As an example, some of the video formats that are supported at various levels in the
Main profile are listed in Table 12.9. As shown, the total number of levels proposed
is 13. It covers very low resolution videos, e.g., QCIF (176 × 144) at Level 1, as
well as very high resolution videos, e.g., UHDTV (8,192 × 4,320) at Levels 6, 6.1,
and 6.2.

In calculating the Max Luma Picture Size, the width and height are rounded up
to the nearest multiples of 64 (as an implementation requirement). For example,
176 × 144 becomes 192 × 192 = 36, 864.

430 12 NewVideo Coding Standards:H.264 and H.265

Table 12.10 Average bitrate reductions under equal PSNR

Video Compression
Method

H.264/MPEG-4
AVC HP (%)

MPEG-4 ASP (%) MPEG-2/H.262
MP (%)

H.265 MP 35.4 63.7 70.8
H.264/MPEG-4 AVC HP - 44.5 55.4
MPEG-4 ASP - - 19.7

As shown, the current HDTV is at Levels 4 and 4.1 for Frame Rates of 30 and 60
fps. The maximum bitrates of the compressed video at the so-called Main Tier are
12 Mbits/sec and 20 Mbits/sec, respectively. At the High Tier, they can be as much
as 2.5 times higher. The UHDTV videos at Level 5 and above will demand much
higher bitrates which remain as a challenge for all aspects of multimedia including
storage, data transmission and display devices.

12.3 Comparisons of Video Coding Efficiency

When comparing the coding efficiency of different video compression methods, a
common practice is to compare the bitrates of the coded video bitstreams at the same
quality. The video quality assessment approaches can be objective or subjective: the
former is done automatically by computers and the latter requires human judgment.

12.3.1 Objective Assessment

The most common criterion used for the objective assessment is peak signal-to-noise
ratio (PSNR). As defined in Sect. 8.3. For images it is:

P SN R = 10 log10
I 2
max

M SE
, (12.19)

where Imax is the maximum intensity value, e.g., 255 for 8-bit images, and M SE is
the Mean Squared Error between the original image I and the compressed image Ĩ .
For videos, the PSNR is usually the average of the PSNRs of the images in the video
sequence.

Ohm et al. [19] reported many of their experimental results. As an example,
Table 12.10 lists the average bitrate reductions when different video compression
methods are compared at the same PSNR, in this case in the range 32–42 dB.
The test data are entertainment videos which are generally of higher quality and
have higher resolutions. The notations are: MP—Main Profile, HP—High Profile,
ASP—Advanced Simple Profile. For example, when H.265 MP is compared with
H264/MPEG-4 AVC HP, a saving of 35.4 % is realized.

http://dx.doi.org/10.1007/978-3-319-05290-8_8

12.3 Comparisons of Video Coding Efficiency 431

12.3.2 Subjective Assessment

The main advantage of PSNR is that it is easy to calculate. However, it does not
necessarily reflect the quality as perceived by humans, i.e., visual quality. An obvious
example would be to add (or subtract) a small and fixed amount to the intensity values
of all the pixels in the picture. Visually (subjectively), we may not notice any quality
change. On the other hand, the PSNR will certainly be affected.

The methodology of subjective assessment of television pictures is specified in
ITU-R Recommendation BT.500. Its latest version is BT.500-13 [20] revised in 2012.

In Ohm et al.’s experiment [19], the original and compressed video clips are
shown in succession to the human subjects (the so-called double stimulus method).
The subjects are asked to grade the videos by their quality, 0–lowest, 10–highest. The
Mean Opinion Score (MOS), which is the arithmetic mean of their scores, is used as
the measure for the subjective quality of different video compression methods.

It is reported that when compared with H.264/MPEG-4 AVC HP, at approximately
the same subjective quality, for the nine test videos for entertainment applications, the
average bitrate reductions by H.265 MP range from 29.8 to 66.6 %, with an average
of 49.3 %. This is very close to the original goal of 50 % reduction.

Video Quality Assessment (VQA) is an active research area. The main efforts are
to find better metrics than the simple measures such as PSNR, so the assessments
can be conducted objectively (by computers) and their results will be comparable to
those of human subjects. Wang et al. [21] presented the Structural Similarity (SSIM)
index that captures some simple image structural information (e.g., luminance and
contrast). It has become very popular in image and video quality assessments. Peng
et al. [22] presented a brief survey of VQA and a good metric based on a novel
spacetime texture representation.

12.4 Exercises

1. Integer Transforms are used in H.264 and H.265.

(a) What is the relationship between the DCT and Integer Transform?

(b) What are the main advantages of using Integer Transform instead of DCT?

2. H.264 and H.265 use quarter-pixel precision in motion compensation.

(a) What is the main reason that subpixel (in this case quarter-pixel) precision is
advocated?

(b) How do H.264 and H.265 differ in obtaining at quarter-pixel positions?

3. From Eq. 12.15, derive H8×8 for the Integer Transform in H.265.

4. H.264 and H.265 support in-loop deblocking filtering.

(a) Why is deblocking a good idea? What are its disadvantages?

432 12 NewVideo Coding Standards:H.264 and H.265

(b) What are the main differences in its H.264 and H.265 implementations?

(c) Beside the deblocking filtering, what does H.265 do to improve the visual
quality?

5. Name at least three features in H.265 that facilitate parallel processing.

6. Give at least three reasons to argue that PSNR is not necessarily a good metric
for video quality assessment.

7. P-frame coding in H.264 uses Integer Transform. For this exercise, assume:

F(u, v) = H · f (i, j) · H T , where H =

⎡

⎢⎢⎣

1 1 1 1
2 1 −1 −2
1 −1 −1 1
1 −2 2 −1

⎤

⎥⎥⎦.

(a) What are the two advantages of using Integer Transform?
(b) Assume the Target Frame below is a P-frame. For simplicity, assume the

size of macroblock is 4×4. For the macroblock shown in the Target Frame:

(i) What should be the Motion Vector?

(ii) What are the values of f (i, j) in this case?

(iii) Show all values of F(u, v).

20 40 60 80 100 120 140 155 110 132 154 176 − − − −
30 50 70 90 110 130 150 165 120 142 164 186 − − − −
40 60 80 100 120 140 160 175 130 152 174 196 − − − −
50 70 90 110 130 150 170 185 140 162 184 206 − − − −
60 80 100 120 140 160 180 195 − − − − − − − −
70 90 110 130 150 170 190 205 − − − − − − − −
80 100 120 140 160 180 200 215 − − − − − − − −
85 105 125 145 165 185 205 220 − − − − − − − −

Reference Frame Target Frame

8. Write a program for the kth Order Exp-Golomb encoder and decoder.
(a) What is the EG0 codeword for unsigned N = 110? (b) Given an EG0
code 000000011010011, what is the decoded unsigned N? (c) What is the EG3
codeword for unsigned N = 110?

9. Write a program to implement video compression with motion compensation,
transform coding, and quantization for a simplified H.26* encoder and decoder.

• Use 4:2:0 for chroma subsampling.
• Choose a video frame sequence (I-, P-, B-frames) similar to MPEG-1, 2. No

interlacing.
• For I-frames, implement the H.264 Intra_4 × 4 predictive coding.
• For P- and B-frames, use only 8 × 8 for motion estimation. Use logarithmic

search for motion vectors. Afterwards, use the 4 × 4 Integer Transform as in
H.264.

12.4 Exercises 433

• Use the quantization and scaling matrices as specified in Eqs. 12.5 and 12.7.
Control and show the effect of various levels of compression and quantization
losses.

• Do not implement the entropy coding part. Optionally, you may include any
publicly available code for this.

10. Write a program to verify the results in Table 12.8. For example, to show that
DST will produce shorter code than DCT for Category 2 directional predictions.

References

1. T. Wiegand, G.J. Sullivan, G. Bjøntegaard, A. Luthra, Overview of the H.264/AVC video coding
standard. IEEE Trans. Circ. Syst. Video Technol. 13(7), 560–576 (2003)

2. ITU-T H.264—ISO/IEC 14496–10. Advanced video coding for generic audio-visual services.
ITU-T and ISO/IEC (2009)

3. ISO/IEC 14496, Part 10. Information Technology: Coding of Audio-Visual Objects (Part 10:
Advanced Video Coding). ISO/IEC (2012)

4. I.E. Richardson, The H.264 Advanced Video Compression Standard, 2nd edn. (Wiley, 2010)
5. H.S. Malvar et al., Low-complexity transform and quantization in H.264/AVC. IEEE Trans.

Circ. Syst. Video Technol. 13(7), 598–603 (2003)
6. G. Bjontegaard, K. Lillevold, Context-Adaptive VLC Coding of Coefficients. JVT document

JVT-C028 (2002)
7. I.E. Richardson, H.264 and MPEG-4 Video Compression. (Wiley, 2003)
8. D. Marpe, H. Schwarz, T. Wiegand, Context-based adaptive binary arithmetic coding in

the H.264/AVC video compression standard. IEEE Trans. Circ. Syst. Video Technol. 13(7),
620–636 (2003)

9. D. Marpe, T. Wiegand, The H.264/MPEG4 advanced video coding standard and its applications.
IEEE Commun. Mag. 44(8), 134–143 (2006)

10. H. Schwarz et al., Overview of scalable video coding extension of the H.264/AVC standard.
IEEE Trans. Circ. Syst. Video Technol. 17(9), 1103–1120 (2007)

11. P. Merkle et al., Efficient prediction structures for multiview video coding. IEEE Trans. Circ.
Syst. Video Technol. 17(11), 1461–1473 (2007)

12. G.J. Sullivan et al., Overview of the high efficiency video coding (HEVC) standard. IEEE
Trans. Circ. Syst. Video Technol. 22(12), 1649–1668 (2012)

13. J.R. Ohm, G.J. Sullivan, High efficiency video coding: the next frontier in video compression.
IEEE Signal Process. Mag. 30(1), 152–158 (2013)

14. ITU-T H.265—ISO/IEC 23008–2. H.265: high efficiency video coding. ITU-T and ISO/IEC
(2013)

15. R.K. Chivukula, Y.A. Reznik, Fast computing of discrete cosine and sine transforms of types VI
and VII. Proc. SPIE (Applications of digital image processing XXXIV) 8135, 813505 (2011)

16. A. Saxena, F.C. Fernandes, Mode dependent DCT/DST for intra prediction in block-based
image/video coding. IEEE Int. Conf. Image Process. pp. 1685–1688 (2011)

17. A. Saxena, F.C. Fernandes, DCT/DST based transform coding for intra prediction in
image/video coding. IEEE Trans. Image Process. 22(10), 3974–3981 (2013)

18. V. Sze, M. Budagavi, High throughput CABAC entropy coding in HEVC. IEEE Trans. Circ.
Syst. Video Technol. 22(12), 1778–1791 (2012)

434 12 NewVideo Coding Standards:H.264 and H.265

19. J.R. Ohm et al., Comparison of the coding efficiency of video coding standards: including high
efficiency video coding (HEVC). IEEE Trans. Circ. Syst. Video Technol. 22(12), 1669–1684
(2012)

20. ITU-R Rec. BT.500-13. Methodology for the subjective assessment of the quality of television
pictures. ITU-R (2012)

21. Z. Wang et al., Image quality assessment: from error visibility to structural similarity. IEEE
Trans. Image Process. 13(4), 600–612 (2004)

22. P. Peng, K. Cannons, Z.N. Li, in ACM MM’13: Proceedings of the ACM International Confer-
ence on Multimedia. Efficient video quality assessment based on spacetime texture represen-
tation (2013)

13BasicAudioCompressionTechniques

Compression of audio information is somewhat special in multimedia systems. Some
of the techniques used are familiar, while others are new. In this chapter, we take a look
at basic audio compression techniques applied to speech compression, setting out a
general introduction to a large topic with a long history. More extensive information
can be found in the References section at the end of the chapter.

In Chap. 14, we consider the set of tools developed for general audio compression
under the aegis of the Motion Picture Experts Group (MPEG). Since this is generally
of high interest to readers focusing on multimedia, we treat that subject in greater
detail.

To begin with, let us recall some of the issues covered in Chap. 6 on digital audio
in multimedia, such as the µ-law for companding audio signals. This is usually
combined with a simple technique that exploits the temporal redundancy present in
audio signals. We saw in Chap. 10, on video compression, that differences in signals
between the present and a past time could very effectively reduce the size of signal
values and, importantly, concentrate the histogram of pixel values (differences, now)
into a much smaller range. The result of reducing the variance of values is that the
entropy is greatly reduced, and subsequent Huffman coding can produce a greatly
compressed bitstream.

The same applies here. Recall from Chap. 6 that quantized sampled output is
called Pulse Code Modulation, or PCM. The differences version is called DPCM,
and the adaptive version is called ADPCM. Variants that take into account speech
properties follow from these.

In this chapter, we look at ADPCM, Vocoders, and more general Speech Com-
pression: LPC, CELP, MBE, and MELP.

Z.-N. Li et al., Fundamentals of Multimedia, 435
Texts in Computer Science, DOI: 10.1007/978-3-319-05290-8_13,
© Springer International Publishing Switzerland 2014

http://dx.doi.org/10.1007/978-3-319-05290-8_14
http://dx.doi.org/10.1007/978-3-319-05290-8_6
http://dx.doi.org/10.1007/978-3-319-05290-8_10
http://dx.doi.org/10.1007/978-3-319-05290-8_6

436 13 Basic Audio Compression Techniques

Fig. 13.1 Waveform of the
word “audio:” a speech
sample, linear PCM at 8 kHz
and 16 bits per sample;
b speech sample, restored
from G.721-compressed
audio at 4 bits per sample;
c difference signal between
(a) and (b)

Time

−1.0

−0.5

0.0

0.5

1.0

Time

−1.0

−0.5

0.0

0.5

1.0

Time

0 2000 4000 6000 8000

0 2000 4000 6000 8000

0 2000 4000 6000 8000
−1.0

−0.5

0.0

0.5

1.0

(a)

(b)

(c)

13.1 ADPCM in Speech Coding

13.1.1 ADPCM

ADPCM forms the heart of the ITU’s speech compression standards G.721, G.723,
G.726, G.727, G.728, and G.729. The differences among these standards involve the
bitrate and some details of the algorithm. The default input is µ-law-coded PCM 16-
bit samples. Speech performance for ADPCM is such that the perceived quality of
speech at 32 kbps (kilobits per second) is only slightly poorer than with the standard
64 kbps PCM transmission and is better than DPCM.

Figure 13.1 shows a 1 s speech sample of a voice speaking the word “audio.” In
Fig. 13.1a, the audio signal is stored as linear PCM (as opposed to the default µ-law
PCM) recorded at 8,000 samples per second, with 16 bits per sample. After compres-
sion with ADPCM using ITU standard G.721, the signal appears as in Fig. 13.1b.

13.1 ADPCM in Speech Coding 437

Fig. 13.2 G.726 quantizer

Input

O
ut

pu
t

−10

−5

10

−10 −5 100 5

0

5

Figure 13.1c shows the difference between the actual and reconstructed, compressed
signals. Although differences are apparent electronically between the two, the com-
pressed and original signals are perceptually very similar.

13.2 G.726 ADPCM,G.727-9

ITU G.726 provides another version of G.711, including companding, at a lower
bitrate. G.726 can encode 13- or 14-bit PCM samples or 8-bitµ-law or A-law encoded
data into 2, 3, 4, or 5-bit codewords. It can be used in speech transmission over digital
networks.

The G.726 standard works by adapting a fixed quantizer in a simple way. The
different sizes of codewords used amount to bitrates of 16, 24, 32, or 40 kbps. The
standard defines a multiplier constant α that will change for every difference value
en , depending on the current scale of signals. Define a scaled difference signal fn as
follows:

en = sn − ŝn

fn = en/α (13.1)

where ŝn is the predicted signal value. fn is then fed into the quantizer for quanti-
zation. The quantizer is displayed in Fig. 13.2. Here, the input value is defined as a
ratio of a difference with the factor α.

By changing the value of α, the quantizer can adapt to change in the range of the
difference signal. The quantizer is a nonuniform midtread quantizer, so it includes
the value zero. The quantizer is backward adaptive.

A backward-adaptive quantizer works in principle by noticing if too many values
are quantized to values far from zero (which would happen if the quantizer step size
in f were too small) or if too many values fell close to zero too much of the time
(which would happen if the quantizer step size were too large).

In fact, an algorithm due to Jayant [1] allows us to adapt a backward quan-
tizer step size after receiving just one output! The Jayant quantizer simply expands the
step size if the quantized input is in the outer levels of the quantizer and reduces
the step size if the input is near zero.

438 13 Basic Audio Compression Techniques

Suppose we have a uniform quantizer, so that every range to which we compare
input values is of size ". For example, for a 3-bit quantizer, there are k = 0 . . . 7
levels. For 3-bit G.726, only seven levels are used, grouped around zero.

The Jayant quantizer assigns multiplier values Mk to each level, with values
smaller than one for levels near zero and values larger than one for outer levels. The
multiplier multiplies the step size for the next signal value. That way, outer values
enlarge the step size and are likely to bring the next quantized value back to the
middle of the available levels. Quantized values near the middle reduce the step size
and are likely to bring the next quantized value closer to the outer levels.

So, for signal fn , the quantizer step size " is changed according to the quantized
value k, for the previous signal value fn−1, by the simple formula

" ← Mk". (13.2)

Since the quantized version of the signal is driving the change, this is indeed a
backward-adaptive quantizer.

In G.726, how α is allowed to change depends on whether the audio signal is
actually speech or is likely data that is simply using a voice band. In the former case,
sample-to-sample differences can fluctuate a great deal, whereas in the latter case
of data transmission, this is less true. To adjust to either situation, the factor α is
adjusted using a formula with two pieces.

G.726 works as a backward-adaptive Jayant quantizer by using fixed quantizer
steps based on the logarithm of the input difference signal, en divided by α. The
divisor α is written in terms of its logarithm:

β ≡ log2 α. (13.3)

Since we wish to distinguish between situations when difference values are usually
small, and when they are large, α is divided into a so-called locked part, αL , and
an unlocked part, αU . The idea is that the locked part is a scale factor for small
difference values and changes slowly, whereas the unlocked part adapts quickly to
larger differences. These correspond to log quantities βL and βU .

The logarithm value is written as a sum of two pieces,

β = AβU + (1 − A)βL (13.4)

where A changes so that it is about one for speech, and about zero for voice-band
data. It is calculated based on the variance of the signal, keeping track of several past
signal values.

The “unlocked” part adapts via the equation

αU ← MkαU

βU ← log2 Mk + βU (13.5)

where Mk is a Jayant multiplier for the kth level. The locked part is slightly modified
from the unlocked part, via

βL ← (1 − B)βL + BβU (13.6)

where B is a small number, say 2−6.

13.2 G.726 ADPCM,G.727-9 439

The G.726 predictor is complicated: it uses a linear combination of six
quantized differences and two reconstructed signal values from the previous six
signal values fn .

ITU standards G.728 and G.729 use Code Excited Linear Prediction (CELP),
discussed in Sect. 13.3.5.

13.3 Vocoders

The coders (encoding/decoding algorithms) we have studied so far could have been
applied to any signals, not just speech. Vocoders are specifically voice coders.

Vocoders are concerned with modeling speech, so that the salient features are
captured in as few bits as possible. They use either a model of the speech waveform
in time (Linear Predictive Coding (LPC) vocoding), or else break down the signal into
frequency components and model these (channel vocoders and formant vocoders).

Incidentally, we likely all know that vocoder simulation of the voice is not won-
derful yet—when the library calls you with your overdue notification, the automated
voice is strangely lacking in zest.

13.3.1 Phase Insensitivity

Recall from Sect. 8.5 that we can break down a signal into its constituent frequencies
by analyzing it using some variant of Fourier analysis. In principle, we can also
reconstitute the signal from the frequency coefficients developed that way. But it turns
out that a complete reconstituting of speech waveform is unnecessary, perceptually:
all that is needed is for the amount of energy at any time to be about right, and the
signal will sound about right.

“Phase” is a shift in the time argument, inside a function of time. Suppose we
strike a piano key and generate a roughly sinusoidal sound cos(ωt), with ω = 2π f
where f is the frequency. If we wait sufficient time to generate a phase shift π/2 and
then strike another key, with sound cos(2ωt + π/2), we generate a waveform like
the solid line in Fig. 13.3. This waveform is the sum cos(ωt)+ cos(2ωt + π/2).

If we did not wait before striking the second note (1/4 ms, in Fig. 13.3), our
waveform would be cos(ωt) + cos(2ωt). But perceptually, the two notes would
sound the same, even though in actuality they would be shifted in phase.

Hence, if we can get the energy spectrum right—where we hear loudness and
quiet—then we do not really have to worry about the exact waveform.

13.3.2 Channel Vocoder

Subband filtering is the process of applying a bank of band-pass filters to the analog
signal, thus actually carrying out the frequency decomposition indicated in a Fourier

http://dx.doi.org/10.1007/978-3-319-05290-8_8

440 13 Basic Audio Compression Techniques

Time (msec)
0.0 0.5 1.0 1.5 2.0 2.5 3.0

−2

−1

2

0

1

Fig. 13.3 The solid line shows the superposition of two cosines, with a phase shift. The dashed
line shows the same with no phase shift. The wave is very different, yet the sound is the same,
perceptually

Low-frequency
 filter

Mid-frequency
 filter

High-frequency
 filter

Noise
generator

 Pulse
generator

Low-frequency
 filter

Mid-frequency
 filter

High-frequency
 filter

Multiplex, transmit,
demultiplex

From 2nd analysis filter

From 3rd analysis filter

From 1st analysis filter

Pitch period

Voiced/unvoiced
 decision

Analysis filters Synthesis filters

. .
 .

. .
 .

. .
 .

Pitch

Fig. 13.4 Channel vocoder

analysis. Subband coding is the process of making use of the information derived
from this filtering to achieve better compression.

For example, an older ITU recommendation, G.722, uses subband filtering of
analog signals into just two bands: voice frequencies in 50 to 3.5 kHz and 3.5 to
7 kHz. Then the set of two signals is transmitted at 48 kbps for the low frequencies,
where we can hear discrepancies well, and at only 16 kbps for the high frequencies.

Vocoders can operate at low bitrates, just 1–2 kbps. To do so, a channel vocoder
first applies a filter bank to separate out the different frequency components, as
in Fig. 13.4. However, as we saw above, only the energy is important, so first the
waveform is “rectified” to its absolute value. The filter bank derives relative power
levels for each frequency range. A subband coder would not rectify the signal and
would use wider frequency bands.

13.3 Vocoders 441

A channel vocoder also analyzes the signal to determine the general pitch of the
speech—low (bass), or high (tenor)—and also the excitation of the speech. Speech
excitation is mainly concerned with whether a sound is voiced or unvoiced. A sound is
unvoiced if its signal simply looks like noise: the sounds s and f are unvoiced. Sounds
such as the vowels a, e, and o are voiced, and their waveform looks periodic. The o
at the end of the word “audio” in Fig. 13.1 is fairly periodic. During a vowel sound,
air is forced through the vocal cords in a stream of regular, short puffs, occurring at
the rate of 75–150 pulses per second for men and 150–250 per second for women.

Consonants can be voiced or unvoiced. For the nasal sounds of the letters m and
n, the vocal cords vibrate, and air is exhaled through the nose rather than the mouth.
These consonants are therefore voiced. The sounds b, d, and g, in which the mouth
starts closed but then opens to the following vowel over a transition lasting a few
milliseconds, are also voiced. The energy of voiced consonants is greater than that
of unvoiced consonants but less than that of vowel sounds. Examples of unvoiced
consonants include the sounds sh, th, and h when used at the front of a word.

A channel vocoder applies a vocal-tract transfer model to generate a vector of
excitation parameters that describe a model of the sound. The vocoder also guesses
whether the sound is voiced or unvoiced and, for voiced sounds, estimates the period
(i.e., the sound’s pitch). Figure 13.4 shows that the decoder also applies a vocal-tract
model.

Because voiced sounds can be approximated by sinusoids, a periodic pulse gener-
ator recreates voiced sounds. Since unvoiced sounds are noise-like, a pseudo-noise
generator is applied, and all values are scaled by the energy estimates given by the
band-pass filter set. A channel vocoder can achieve an intelligible but synthetic voice
using 2,400 bps.

13.3.3 FormantVocoder

It turns out that not all frequencies present in speech are equally represented. Instead,
only certain frequencies show up strongly, and others are weak. This is a direct
consequence of how speech sounds are formed, by resonance in only a few chambers
of the mouth, throat, and nose. The important frequency peaks are called formants [2].

Figure 13.5 shows how this appears: only a few, usually just four or so, peaks of
energy at certain frequencies are present. The peak locations however change in time,
as speech continues. For example, two different vowel sounds would activate different
sets of formants—this reflects the different vocal-tract configurations necessary to
form each vowel. Usually, a small segment of speech is analyzed, say 10–40 ms, and
formants are found. A Formant Vocoder works by encoding only the most important
frequencies. Formant vocoders can produce reasonably intelligible speech at only
1,000 bps.

13.3.4 Linear Predictive Coding (LPC)

LPC vocoders extract salient features of speech directly from the waveform rather
than transforming the signal to the frequency domain. LPC coding uses a time-

442 13 Basic Audio Compression Techniques

Fig. 13.5 Formants are the
salient frequency components
present in a sample of speech.
Here, the solid line shows
frequencies present in the first
40 ms of the speech sample in
Fig. 6.16. The dashed line
shows that while similar
frequencies are still present
1 s later, they have shifted

Frequency (8,000/32 Hz)

ab
s

(C
oe

ff
ic

ie
nt

)

10 13 16 19 22 25 28 310 2 4 6 8

varying model of vocal-tract sound generated from a given excitation. What is trans-
mitted is a set of parameters modeling the shape and excitation of the vocal tract, not
actual signals or differences.

Since what is sent is an analysis of the sound rather than sound itself, the bitrate
using LPC can be small. This is like using a simple descriptor such as MIDI to
generate music: we send just the description parameters and let the sound generator
do its best to create appropriate music. The difference is that as well as pitch, duration,
and loudness variables, here we also send vocal-tract excitation parameters.

After a block of digitized samples, called a segment or frame, is analyzed, the
speech signal generated by the output vocal-tract model is calculated as a function of
the current speech output plus a second term linear in previous model coefficients.
This is how “linear” in the coder’s name arises. The model is adaptive—the encoder
side sends a new set of coefficients for each new segment.

The typical number of sets of previous coefficients used is N = 10 (the “model
order” is 10), and such an LPC-10 [3] system typically uses a rate of 2.4 kbps.
The model coefficients ai act as predictor coefficients, multiplying previous speech
output sample values.

LPC starts by deciding whether the current segment is voiced or unvoiced. For
unvoiced speech, a wide-band noise generator is used to create sample values f (n)
that act as input to the vocal-tract simulator. For voiced speech, a pulse-train generator
creates values f (n). Model parameters ai are calculated by using a least-squares set
of equations that minimize the difference between the actual speech and the speech
generated by the vocal-tract model, excited by the noise or pulse-train generators
that capture speech parameters.

If the output values generated are denoted s(n), then for input values f (n), the
output depends on p previous output sample values, via

s(n) =
p∑

i=1

ai s(n − i)+ G f (n). (13.7)

Here, G is known as the gain factor. Note that the coefficients ai act as values in
a linear predictor model. The pseudo-noise generator and pulse generator are as
discussed above and depicted in Fig. 13.4 in regard to the channel vocoder.

http://dx.doi.org/10.1007/978-3-319-05290-8_6

13.3 Vocoders 443

The speech encoder works in a blockwise fashion. The input digital speech signal
is analyzed in some small, fixed-length segments, called speech frames. For the LPC
speech coder, the frame length is usually selected as 22.5 ms, which corresponds
to 180 samples for 8 kHz sampled digital speech. The speech encoder analyzes the
speech frames to obtain the parameters such as LP coefficients ai , i = 1 . . . p, gain
G, pitch P , and voiced/unvoiced decision U/V.

To calculate LP coefficients, we can solve the following minimization problem
for a j :

min E{[s(n) −
p∑

j=1

a j s(n − j)]2}. (13.8)

By taking the derivative of ai and setting it to zero, we get a set of p equations:

E{[s(n) −
p∑

j=1

a j s(n − j)]s(n − i)} = 0, i = 1 . . . p (13.9)

Letting φ(i, j) = E{s(n − i)s(n − j)}, we have
⎡

⎢⎢⎢⎣

φ(1, 1) φ(1, 2) · · · φ(1, p)
φ(2, 1) φ(2, 2) · · · φ(2, p)

...
...

. . .
...

φ(p, 1) φ(p, 2) · · · φ(p, p)

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

a1
a2
...

ap

⎤

⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎣

φ(0, 1)
φ(0, 2)

...

φ(0, p)

⎤

⎥⎥⎥⎦
(13.10)

The autocorrelation method is often used to calculate LP coefficients, where

φ(i, j) =
N−1∑

n=p

sw(n − i)sw(n − j)/
N−1∑

n=p

s2
w(n) i = 0 . . . p, j = 1 . . . p (13.11)

sw(n) = s(n + m)w(n) is the windowed speech frame starting from time m. Since
φ(i, j) is determined only by |i − j |, we define φ(i, j) = R(|i − j |). Since we also
have R(0) ≥ 0, the matrix {φ(i, j)} is positive symmetric, and thus a fast scheme to
calculate the LP coefficients is as follows:

Procedure 13.1 (LPC Coefficients).

E(0) = R(0), i = 1

while i ≤ p
ki = [R(i)− ∑i−1

j=1 ai−1
j R(i − j)]/E(i − 1)

ai
i = ki

for j = 1 to i − 1
ai

j = ai−1
j − ki ai−1

i− j

E(i) = (1 − k2
i)E(i − 1)

i ← i + 1
for j = 1 to p

a j = a p
j

444 13 Basic Audio Compression Techniques

After getting the LP coefficients, gain G can be calculated as:

G = E{[s(n) −
p∑

j=1

a j s(n − j)]2}

= E{[s(n) −
p∑

j=1

a j s(n − j)]s(n)} (13.12)

= φ(0, 0) −
p∑

j=1

a jφ(0, j)

For the autocorrelation scheme, G = R(0)−∑p
j=1 a j R(j). Order-10 LP analysis

is found to be enough for speech coding applications.
The pitch P of the current speech frame can be extracted by the correlation method

by finding the index of the peak of

v(i) =
N−1+m∑

n=m

s(n)s(n − i)
/

[
N−1+m∑

n=m

s2(n)
N−1+m∑

n=m

s2(n − i)]1/2

i ∈ [Pmin, Pmax]. (13.13)

The searching range [Pmin, Pmax] is often selected as [12, 140] for 8 kHz sampling
speech. Denote P as the peak lag. Ifv(P) is less than some given threshold, the current
frame is classified as an unvoiced frame and will be reconstructed in the receiving
end by stimulating with a white-noise sequence. Otherwise, the frame is determined
as voiced and stimulated with a periodic waveform at the reconstruction stage. In
practical LPC speech coders, the pitch estimation and U/V decision procedure are
usually based on a dynamic programming scheme, so as to correct the often occurring
errors of pitch doubling or halving in the single frame scheme.

In LPC-10, each segment is 180 samples, or 22.5 ms at 8 kHz. The speech para-
meters transmitted are the coefficients ak ; G, the gain factor; a voiced/unvoiced flag
(1 bit); and the pitch period if the speech is voiced.

13.3.5 Code Excited Linear Prediction (CELP)

CELP, Code Excited Linear Prediction (sometimes Codebook Excited), is a more
complex family of coders that attempts to mitigate the lack of quality of the simple
LPC model by using a more complex description of the excitation. An entire set
(a codebook) of excitation vectors is matched to the actual speech, and the index
of the best match is sent to the receiver. This complexity increases the bitrate to
4,800–9,600 bps, typically.

In CELP, since all speech segments make use of the same set of templates from the
template codebook, the resulting speech is perceived as much more natural than the
two-mode excitation scheme in the LPC-10 coder. The quality achieved is considered
sufficient for audio conferencing.

13.3 Vocoders 445

In CELP coders two kinds of prediction, Long Time Prediction (LTP) and
Short-Time Prediction (STP), are used to eliminate the redundancy in speech sig-
nals. STP is an analysis of samples—it attempts to predict the next sample from
several previous ones. Here, redundancy is due to the fact that usually one sample
will not change drastically from the next. LTP is based on the idea that in a segment
of speech, or perhaps from segment to segment, especially for voiced sounds, a basic
periodicity or pitch will cause a waveform that more or less repeats. We can reduce
this redundancy by finding the pitch.

For concreteness, suppose we sample at 8,000 samples per second and use a 10 ms
frame, containing 80 samples. Then we can roughly expect a pitch that corresponds
to an approximately repeating pattern every 12–140 samples or so. (Notice that the
pitch may actually be longer than the chosen frame size.)

STP is based on a short-time LPC analysis, discussed in the last section. It is
“short-time” in that the prediction involves only a few samples, not a whole frame
or several frames. STP is also based on minimizing the residue error over the whole
speech frame, but it captures the correlation over just a short range of samples (10
for order-10 LPC).

After STP, we can subtract signal minus prediction to arrive at a differential coding
situation. However, even in a set of errors e(n), the basic pitch of the sequence may
still remain. This is estimated by means of LTP. That is, LTP is used to further
eliminate the periodic redundancy inherent in the voiced speech signals. Essentially,
STP captures the formant structure of the short-term speech spectrum, while LTP
recovers the long-term correlation in the speech signal that represents the periodicity
in speech.

Thus there are always two stages—and the order is in fact usually STP followed
by LTP, since we always start off assuming zero error and then remove the pitch
component. (If we use a closed-loop scheme, STP usually is done first). LTP proceeds
using whole frames—or, more often, subframes equal to one quarter of a frame.
Figure 13.6 shows these two stages.

LTP is often implemented as adaptive codebook searching. The “codeword” in
the adaptive codebook is a shifted speech residue segment indexed by the lag τ

corresponding to the current speech frame or subframe. The idea is to look in a
codebook of waveforms to find one that matches the current subframe. We generally
look in the codebook using a normalized subframe of speech, so as well as a speech
segment match, we also obtain a scaling value (the gain). The gain corresponding to
the codeword is denoted as g0.

There are two types of codeword searching: open-loop and closed-loop. Open-
loop adaptive codebook searching tries to minimize the long-term prediction error
but not the perceptual weighted reconstructed speech error,

E(τ) =
L−1∑

n=0

[s(n) − g0s(n − τ)]2 (13.14)

446 13 Basic Audio Compression Techniques

W(z)/ A(z)

×

Adaptive
codebook

−

STP

Weighted
speech s (n)

Original speech s(n)

Ga

Gs

W(z)
LTP

Stochastic
codebook

+×
Weighted
synthesized
speech ŝw

w

(n)

Weighted
error ew(n)

. .
 .

. .
 .

Fig. 13.6 CELP analysis model with adaptive and stochastic codebooks

By setting the partial derivative of g0 to zero, ∂ E(τ)/∂g0 = 0, we get

g0 =
∑L−1

n=0 s(n)s(n − τ)
∑L−1

n=0 s2(n − τ)
(13.15)

and hence a minimum summed-error value

Emin(τ) =
L−1∑

n=0

s2(n) − [∑L−1
n=0 s(n)s(n − τ)]2
∑L−1

n=0 s2(n − τ)
. (13.16)

Notice that the sample s(n − τ) could be in the previous frame.
Now, to obtain the optimum adaptive codebook index τ, we can carry out a search

exclusively in a small range determined by the pitch period. More often, CELP
coders use a closed-loop search. Rather than simply considering sum of squares,
speech is reconstructed, with perceptual error minimized via an adaptive codebook
search. So in a closed-loop, adaptive codebook search, the best candidate in the
adaptive codebook is selected to minimize the distortion of locally reconstructed
speech. Parameters are found by minimizing a measure (usually the mean square) of
the difference between the original and the reconstructed speech. Since this means
that we are simultaneously incorporating synthesis as well as analysis of the speech
segment, this method is also called analysis-by-synthesis, or A-B-S.

The residue signal after STP based on LPC analysis and LTP based on adaptive
codeword searching is like white noise and is encoded by codeword matching in the
stochastic (random or probabilistic) codebook. This kind of sequential optimization

13.3 Vocoders 447

of the adaptive codeword and stochastic codeword methods is used because jointly
optimizing the adaptive and stochastic codewords is often too complex to meet real-
time demands.

The decoding direction is just the reverse of the above process and works by
combining the contribution from the two types of excitations.

DOD 4.8 Kbps CELP (FS1016)∗

DOD 4.8 kbps CELP [4] is an early CELP coder adopted as a U.S. federal standard
to update the 2.4 kbps LPC-10e (FS1015) vocoder. This vocoder is now a basic
benchmark to test other low-bitrate vocoders. FS1016 uses an 8 kHz sampling rate
and 30 ms frame size. Each frame is further split into four 7.5 ms subframes. In
FS1016, STP is based on an open-loop order-10 LPC analysis.

To improve coding efficiency, a fairly sophisticated type of transform coding is
carried out. Then, quantization and compression are done in terms of the transform
coefficients.

First, in this field it is common to use the z-transform. Here, z is a complex
number and represents a kind of complex “frequency.” If z = e−2π i/N , then the
discrete z-transform reduces to a discrete Fourier transform. The z-transform makes
Fourier transforms look like polynomials. Now we can write the error in a prediction
equation

e(n) = s(n) −
p∑

i=1

ai s(n − i) (13.17)

in the z domain as
E(z) = A(z)S(z) (13.18)

where E(z) is the z-transform of the error and S(z) is the transform of the signal.
The term A(z) is the transfer function in the z domain, and equals

A(z) = 1 −
p∑

i=1

ai z−i (13.19)

with the same coefficients ai as appear in Eq. (13.7). How speech is reconstructed,
then, is via

S(z) = E(z)/A(z) (13.20)

with the estimated error. For this reason, A(z) is usually stated in terms of 1/A(z).
The idea of going to the z-transform domain is to convert the LP coefficients to

Line Spectrum Pair (LSP) coefficients, which are given in this domain. The reason
is that the LSP space has several good properties with respect to quantization. LSP
representation has become standard and has been applied to nearly all the recent LPC-
based speech coders, such as G.723.1, G.729, and MELP. To get LSP coefficients,
we construct two polynomials

P(z) = A(z)+ z−(p+1)A(z−1)

Q(z) = A(z) − z−(p+1)A(z−1) (13.21)

448 13 Basic Audio Compression Techniques

where p is the order of the LPC analysis and A(z) is the transform function of the LP
filter, with z the transform domain variable. The z-transform is just like the Fourier
transform but with a complex “frequency.”

The roots of these two polynomials are spaced around the unit circle in the z plane
and have mirror symmetry with respect to the x axis. Assume p is even and denote the
phase angles of the roots of P(z) and Q(z) above the x axis as θ1 < θ2 < . . . < θp/2
and ϕ1 < ϕ2 < . . . < ϕp/2, respectively. Then the vector {cos(θ1), cos(ϕ1), cos(θ2),
cos(ϕ1) . . . cos(θp/2), cos(ϕp/2)} is the LSP coefficient vector, and vector {θ1 , ϕ1,
θ2, ϕ1 …, θp/2, ϕp/2} is usually called Line Spectrum Frequency, or LSF. Based on
the relationship A(z) = [P(z)+ Q(z)]/2, we can reconstruct the LP coefficients at
the decoder end from the LSP or LSF coefficients.

Adaptive codebook searching in FS1016 is via a closed-loop search based on
perceptually weighted errors. As opposed to considering just the mean squared error,
here errors are weighted so as to take human perception into account. In terms of the
z-transform, it is found that the following multiplier does a good job:

W (z) = A(z)
A(z/γ)

= 1 − ∑p
i=1 ai z−i

1 − ∑p
i=1 aiγ i z−i

0 < γ < 1 (13.22)

with a constant parameter γ .
The adaptive codebook has 256 codewords for 128 integer delays and 128 non-

integer delays (with half-sample interval, for better resolution), the former ranging
from 20 to 147. To reduce searching complexity, even subframes are searched in an
interval relative to the previous odd subframe, and the difference is coded with 6
bits. The gain is nonuniformly scalar coded between −1 and 2 with 5 bits.

Stochastic codebook search is applied for each of the four subframes. The stochas-
tic codebook of FS1016 is generated by clipping a unit variance Gaussian distribution
random sequence to within a threshold of absolute value 1.2 and quantizing to three
values −1, 0, and 1. The stochastic codebook has 512 codewords. The codewords
are overlapped, and each is shifted by 2 with respect to the previous codeword. This
kind of stochastic design is called an Algebraic Codebook. It has many variations
and is widely applied in recent CELP coders.

Denoting the excitation vector as v(i), the periodic component obtained in the first
stage is v(0). v(1) is the stochastic component search result in the second stage. In
closed-loop searching, the reconstructed speech can be represented as:

ŝ = ŝ0 + (u + v(i))H (13.23)

where u is equal to zero at the first stage and v(0) at the second stage, and ŝ0 is
the zero response of the LPC reconstructing filter. Matrix H is the truncated LPC
reconstructing filter unit impulse-response matrix

H =

⎡

⎢⎢⎢⎢⎢⎣

h0 h1 h2 · · · hL−1
0 h0 h1 · · · hL−2
0 0 h0 · · · hL−3
...

...
...
. . .

...

0 0 0 0 h0

⎤

⎥⎥⎥⎥⎥⎦
(13.24)

13.3 Vocoders 449

where L is the length of the subframe (this simply represents a convolution).
Similarly, defining W as the unit response matrix of the perceptual weighting filter,
the perceptually weighted error of reconstructed speech is:

e = (s − ŝ)W = e0 − v(i)H W (13.25)

where e0 = (s−ŝ0)W −u H W . The codebook searching process is to find a codeword
y(i) in the codebook and corresponding a(i) such that v(i) = a(i)y(i) and eeT is
minimized. To make the problem tractable, adaptive and stochastic codebooks are
searched sequentially. Denoting a quantized version by ã(i) = Q[â(i)], then the
criterion of codeword searching in the adaptive codebook or stochastic codebook is
to minimize eeT over all y(i) in terms of an expression in ã(i), e0, and y(i).

The decoder of the CELP codec is a reverse process of the encoder. Because of
the unsymmetrical complexity property of vector quantization, the complexity in the
decoder side is usually much lower.

G.723.1∗

G723.1 [5] is an ITU standard aimed at multimedia communication. It has been
incorporated into H.324 for audio encoding in videoconference applications. G.723.1
is a dual-rate CELP-type speech coder that can work at bitrates of 5.3 and 6.3 kbps.

G.723.1 uses many techniques similar to FS1016, discussed in the last section.
The input speech is again 8 kHz, sampled in 16-bit linear PCM format. The speech
frame size is also 30 msec and is further divided into four equal-sized subframes.
Order-10 LPC coefficients are estimated in each subframe. LP coefficients are further
converted to LSP vectors and quantized by predictive splitting VQ. LP coefficients
are also used to form the perceptually weighted filter.

G.723.1 first uses an open-loop pitch estimator to get a coarse pitch estimation
in a time interval of every two subframes. Closed-loop pitch searching is done in
every speech subframe by searching the data in a range of the open-loop pitch.
After LP filtering and removing the harmonic components by LTP, the stochastic
residue is quantized by Multipulse Maximum Likelihood Quantization (MP-MLQ)
for the 5.3 kbps coder or Algebraic-Code-Excited Linear Prediction (ACELP) for
the 6.3 kbps coder, which has a slightly higher speech quality. These two modes can
be switched at any boundary of the 30 ms speech frames.

In MP-MLQ, the contribution of the stochastic component is represented as a
sequence of pulses

v(n) =
M∑

i=1

giδ(n − mi) (13.26)

where M is the number of pulses and gi is gain of the pulse at position mi . The
closed-loop search is done by minimizing

e(n) = r(n) −
M∑

i=1

gi h(n − mi) (13.27)

450 13 Basic Audio Compression Techniques

where r(n) is the speech component after perceptual weighting and eliminating the
zero-response component and periodic component contributions. Based on methods
similar to those presented in the last section, we can sequentially optimize the gain
and position for each pulse. Say we first assume there is only one pulse and find the
best gain and position. After removing the contribution from this pulse, we can get
the next optimal pulse based on the same method. This process is done recursively
until we get all M pulses.

The stochastic codebook structure for the ACELP model is different from FS1016.
The following table shows the ACELP excitation codebook:

Sign Positions
±1 0, 8, 16, 24, 32, 40, 48, 56
±1 2, 10, 18, 26, 34, 42, 50, 58
±1 4, 12, 20, 28, 36, 44, 52, 60
±1 6, 14, 22, 30, 38, 46, 54, 62

(13.28)

There are only four pulses. Each can be in eight positions, coded by three bits
each. Also, the sign of the pulse takes one bit, and another bit is to shift all possible
positions to odd. Thus, the index of a codeword has 17 bits. Because of the special
structure of the algebraic codebook, a fast algorithm exists for efficient codeword
searching.

Besides the CELP coder we discussed above, there are many other CELP-type
codecs, developed mainly for wireless communication systems. The basic concepts
of these coders are similar, except for different implementation details on parameter
analysis and codebook structuring.

Some examples include the 12.2 kbps GSM Enhanced Full Rate (EFR) algebraic
CELP codec [6] and IS-641EFR [7], designed for the North American digital cellular
IS-136 TDMA system. G.728 [8] is a low-delay CELP speech coder. G.729 [9] is
another CELP based ITU standard aimed at toll-quality speech communications.

G.729 is a Conjugate-Structure Algebraic-Code-Excited-Linear-Prediction (CS-
ACELP) codec. G.729 uses a 10 ms speech analysis frame and thus has lower delay
than G.723.1, which uses a 30 ms speech frame. G.729 also has some inherent
protection schemes to deal with packet loss in applications such as VoIP.

13.3.6 Hybrid ExcitationVocoders∗

Hybrid Excitation Vocoders are another large class of speech coders. They are dif-
ferent from CELP, in which the excitation is represented as the contributions of
the adaptive and stochastic codewords. Instead, hybrid excitation coders use model-
based methods to introduce multimodel excitation.

Multiband Excitation (MBE)

The Multiband Excitation (MBE) [10] vocoder was developed by MIT’s Lincoln
Laboratory. The 4.15 kbps IMBE codec [11] has become the standard for IMMSAT.

13.3 Vocoders 451

MBE is also a blockwise codec, in which a speech analysis is done in a speech
frame unit of about 20–30 ms. In the analysis part of the MBE coder, a spectrum
analysis such as FFT is first applied for the windowed speech in the current frame.
The short-time speech spectrum is further divided into different spectrum bands. The
bandwidth is usually an integer times the basic frequency that equals the inverse of
the pitch. Each band is described as “voiced” or “unvoiced.”

The parameters of the MBE coder thus include the spectrum envelope, pitch,
unvoiced/voiced (U/V) decisions for different bands. Based on different bitrate
demands, the phase of the spectrum can be parameterized or discarded. In the speech
decoding process, voiced bands and unvoiced bands are synthesized by different
schemes and combined to generate the final output.

MBE utilizes the analysis-by-synthesis scheme in parameter estimation. Parame-
ters such as basic frequency, spectrum envelope, and subband U/V decisions are
all done via closed-loop searching. The criteria of the closed-loop optimization are
based on minimizing the perceptually weighted reconstructed speech error, which
can be represented in the frequency domain as:

ε = 1
2π

∫ +π

−π
G(ω)|Sw(ω) − Swr (ω)|dω (13.29)

where Sw(ω) and Swr (ω) are the original speech short-time spectrum and recon-
structed speech short-time spectrum, and G(ω) is the spectrum of the perceptual
weighting filter.

Similar to the closed-loop searching scheme in CELP, a sequential optimization
method is used to make the problem tractable. In the first step, all bands are assumed
voiced bands, and the spectrum envelope and basic frequency are estimated. Rewrit-
ing the spectrum error with the all-voiced assumption, we have

ε̌ =
M∑

m=−M

[1
2π

∫ βm

αm

G(ω)|Sw(ω) − Am Ewr (ω)|2dω] (13.30)

in which M is band number in [0,π], Am is the spectrum envelope of band m, Ewr (ω)

is the short-time window spectrum, and αm = (m − 1
2)ω0, βm = (m + 1

2)ω0. Setting
∂ε̌/∂ Am = 0, we get

Am =
∫ βm
αm

G(ω)Sw(ω)E∗
wr (ω)dω

∫ βm
αm

G(ω)|Ewr (ω)|2dω
(13.31)

The basic frequency is obtained at the same time by searching over a frequency
interval to minimize ε̌. Based on the estimated spectrum envelope, an adaptive thresh-
olding scheme tests the matching degree for each band. We label a band as voiced if
there is a good matching; otherwise, we declare the band as unvoiced and re-estimate
the envelope for the unvoiced band as:

Am =
∫ βm
αm

G(ω)|Sw(ω)|dω
∫ βm
αm

G(ω)dω
. (13.32)

452 13 Basic Audio Compression Techniques

The decoder uses separate methods to synthesize unvoiced and voiced speech,
based on the unvoiced and voiced bands. The two types of reconstructed components
are then combined to generate synthesized speech. The final step is overlapping the
sum of the synthesized speech in each frame to get the final output.

Multiband Excitation Linear Predictive (MELP)

The Multiband Excitation Linear Predictive (MELP) speech codec is a new U.S.
federal standard to replace the old LPC-10 (FS1015) standard, with the application
focus on low-bitrate safety communications. At 2.4 kbps, MELP [12] has comparable
speech quality to the 4.8 kbps DOD-CELP (FS1016) and good robustness in a noisy
environment.

MELP is also based on LPC analysis. Different from the hard-decision voiced/
unvoiced model adopted in LPC-10, MELP uses a multiband soft-decision model
for the excitation signal. The LP residue is band-passed, and a voicing strength
parameter is estimated for each band. The decoder can reconstruct the excitation
signal by combining the periodic pulses and white noises, based on the voicing
strength in each band. Speech can be then reconstructed by passing the excitation
through the LPC synthesis filter.

Different from MBE, MELP divides the excitation into five fixed bands of 0–500,
500–1000, 1000–2000, 2000–3000, and 3000–4000 Hz. It estimates a voice degree
parameter in each band based on the normalized correlation function of the speech
signal and the smoothed, rectified signal in the non-DC band. Let sk(n) denote the
speech signal in band k, and uk(n) denote the DC-removed smoothed rectified signal
of sk(n). The correlation function is defined as

Rx (P) =
∑N−1

n=0 x(n)x(n + P)

[∑N−1
n=0 x2(n)

∑N−1
n=0 x2(n + P)]1/2

(13.33)

where P is the pitch of the current frame, and N is the frame length. Then the voicing
strength for band k is defined as max(Rsk (P), Ruk (P)).

To further remove the buzziness of traditional LPC-10 speech coders for the voiced
speech segment, MELP adopts a jittery voiced state to simulate the marginal voiced
speech segments. The jittery state is indicated by an aperiodic flag. If the aperiodic
flag is set in the analysis end, the receiver adds a random shifting component to
the periodic pulse excitation. The shifting can be as big as P/4. The jittery state is
determined by the peakiness of the full-wave rectified LP residue e(n),

peakiness = [1
N

∑N−1
n=0 e(n)2]1/2

1
N

∑N−1
n=0 |e(n)|

. (13.34)

If peakiness is greater than some threshold, the speech frame is determined as jittered.
To better reconstruct the short-time spectrum of the speech signal, the spectrum of

the residue signal is not assumed to be flat, as it is in the LPC-10 speech coder. After
normalizing the LP residue signal, MELP preserves the magnitudes corresponding
to the first min(10, P/4) basic frequency harmonics. Basic frequency is the inverse

13.3 Vocoders 453

of the pitch period. The higher harmonics are discarded and assumed to be unity
spectrum.

The 10-d magnitude vector is quantized by 8-bit vector quantization, using a
perceptual weighted distance measure. Similar to most modern LPC quantization
schemes, MELP also converts LPC parameters to LSF and uses four-stage vector
quantization. The bits allocated for the four stages are 7, 6, 6, and 6, respectively.
Apart from integral pitch estimation similar to LPC-10, MELP applies a fractional
pitch refinement procedure to improve the accuracy of pitch estimation.

In the speech reconstruction process, MELP does not use a periodic pulse to
represent the periodic excitation signal but uses a dispersed waveform. To disperse
the pulses, a finite impulse-response (FIR) filter is applied to the pulses. MELP also
applies a perceptual weighting filter postfilter to the reconstructed speech so as to
suppress the quantization noise and improve the subject’s speech quality.

13.4 Exercises

1. In Sect. 13.3.1 we discuss phase insensitivity. Explain the meaning of the term
“phase” in regard to individual frequency components in a composite signal.

2. Input a speech segment, using C or MATLAB, and verify that formants indeed
exist—that any speech segment has only a few important frequencies. Also,
verify that formants change as the interval of speech being examined changes.
A simple approach to coding a frequency analyzer is to reuse the DCT coding
ideas we have previously considered in Sect. 8.5. In one dimension, the DCT
transform reads

F(u) =
√

2
N

C(u)
N−1∑

i=0

cos
(2i + 1)uπ

2N
f (i) (13.35)

where i, u = 0, 1, . . . , N − 1, and the constants C(u) are given by:

C(u) =
{√

2
2 if u = 0

1 otherwise
(13.36)

If we use the speech sample in Fig. 6.16, then taking the one-dimensional DCT
of the first, or last, 40 ms (i.e., 32 samples), we arrive at the absolute frequency
components as in Fig. 13.5.

3. Write code to read a WAV file. You will need the following set of definitions: a
WAV file begins with a 44-byte header, in unsigned byte format. Some important
parameter information is coded as follows:

4. Write a program to add fade in and fade-out effects to sound clips (in WAV
format). Specifications for the fades are as follows: The algorithm assumes a
linear envelope; the fade-in duration is from 0 to 20 % of the data samples; the
fade-out duration is from 80 to 100 % of the data samples. If you like, you can
make your code able to handle both mono and stereo WAV files. If necessary,
impose a limit on the size of the input file, say 16 mb.

http://dx.doi.org/10.1007/978-3-319-05290-8_8
http://dx.doi.org/10.1007/978-3-319-05290-8_6

454 13 Basic Audio Compression Techniques

Byte[22 … 23] Number of channels
Byte[24 … 27] Sampling rate
Byte[34 … 35] Sampling bits
Byte[40 … 43] Data length

5. In the text, we study an adaptive quantization scheme for ADPCM. We can also
use an adaptive prediction scheme. We consider the case of one tap prediction,
ŝ(n) = a · s(n − 1). Show how to estimate the parameter a in an open-loop
method. Estimate the SNR gain you can get, compared to the direct PCM method
based on a uniform quantization scheme.

6. Linear prediction analysis can be used to estimate the shape of the envelope of
the short-time spectrum. Given ten LP coefficients a1, . . . , a10, how do we get
the formant position and bandwidth?

7. Download and implement a CELP coder (see the textbook web site). Try out
this speech coder on your own recorded sounds.

8. In quantizing LSP vectors in G.723.1, splitting vector quantization is used: if
the dimensionality of LSP is 10, we can split the vector into three subvectors of
length 3, 3, and 4 each and use vector quantization for the subvectors separately.
Compare the codebook space complexity with and without split vector quan-
tization. Give the codebook searching time complexity improvement by using
splitting vector quantization.

9. Discuss the advantage of using an algebraic codebook in CELP coding.
10. The LPC-10 speech coder’s quality deteriorates rapidly with strong background

noise. Discuss why MELP works better in the same noisy conditions.
11. Give a simple time domain method for pitch estimation based on the autocorre-

lation function. What problem will this simple scheme have when based on one
speech frame? If we have three speech frames, including a previous frame and
a future frame, how can we improve the estimation result?

12. On the receiver side, speech is usually generated based on two frames’ parameters
instead of one, to avoid abrupt transitions. Give two possible methods to obtain
smooth transitions. Use the LPC codec to illustrate your idea.

References

1. N.S. Jayant, P. Noll, Digital Coding of Waveforms (Prentice-Hall, Upper Saddle River, 1984)
2. J.C. Bellamy, Digital Telephony (Wiley, Hoboken, 2000)
3. T.E. Tremain, The government standard linear predictive coding algorithm: LPC-10. Speech

Technol. 1(2), 40–49 (1982)
4. J.P. Campbell Jr., T.E. Tremain, V.C. Welch, in Advances in Speech Coding, The DOD 4.8 kbps

Standard (Proposed Federal Standard 1016), (Kluwer Academic Publishers, Boston, 1991)
5. Dual rate speech coder for multimedia communications transmitting at 5.3 and 6.3 kbit/s.

ITU-T recommendation G.723.1 (1996), http://www.itu.int/rec/T-REC-G.723.1/e
6. GSM enhanced full rate (EFR) speech transcoding (GSM 06.60). European Telecommunica-

tions Standards Institute v.8.0.1 (1999)

http://www.itu.int/rec/T-REC-G.723.1/e

References 455

7. TDMA Cellular/PCS radio interface-enhanced full rate speech codec standard. TIA/EIA/IS-
641-A (1998), http://engineers.ihs.com/document/abstract/OVXADAAAAAAAAAAA

8. Coding of speech at 16 kbit/s using low-delay code excited linear programming. ITU-T
Recommendation G.728 (1992), http://www.itu.int/rec/T-REC-G.728/e

9. Coding of speech at 8 kbit/s using conjugate-structure algebraic-code-excited linear-prediction
(CS-ACELP). ITU-T Recommendation G.729 (1996), http://www.itu.int/rec/T-REC-G.729/e

10. D.W. Griffin, J.S. Lim, Multi-band excitation vocoder. IEEE Trans. ASSP 36(8), 1223–1235
(1988)

11. M.S. Brandstein, P.A. Monta, J.C. Hardwick, J.S. Lim, A real-time implementation of the
improved MBE speech coder. Int. Conf. on Acoustics, Speech, and Signal Proc. (1990),
pp. 5–8

12. T.P. Barnwellm III, A.V. McCree, Mixed excitation LPC vocoder model for low bit rate speech
coding. IEEE Trans. Speech Audio Proc. 3(4), 242–250 (1995)

http://engineers.ihs.com/document/abstract/OVXADAAAAAAAAAAA
http://www.itu.int/rec/T-REC-G.728/e
http://www.itu.int/rec/T-REC-G.729/e

14MPEGAudioCompression

Have you ever attended a dance and found that for quite some time afterward you
couldn’t hear much? You were dealing with a type of temporal masking!

Have you ever noticed that the person on the sound board at a dance basically
cannot hear high frequencies anymore? Since many technicians have such hearing
damage, some compensate by increasing the volume levels of the high frequencies,
so they can hear them. If your hearing is not damaged, you experience this music
mix as too piercing.

Moreover, if a very loud tone is produced, you also notice it is impossible to hear
any sound nearby in the frequency spectrum—the band’s singing may be drowned out
by the lead guitar. If you’ve noticed this, you have experienced frequency masking!

MPEG audio uses this kind of perception phenomenon by simply giving up on
the tones that cannot be heard anyway. Using a curve of human hearing perceptual
sensitivity, an MPEG audio codec makes decisions on when and to what degree
frequency masking and temporal masking make some components of the music
inaudible. It then controls the quantization process so that these components do not
influence the output.

So far, in the previous chapter, we have concentrated on telephony applications—
usually, LPC and CELP are tuned to speech parameters. In contrast, in this chapter, we
consider compression methods applicable to general audio, such as music or perhaps
broadcast digital TV. Instead of modeling speech, the method used is a waveform
coding approach—one that attempts to make the decompressed amplitude-versus-
time waveform as much as possible like the input signal.

A main technique used in evaluating audio content for possible compression makes
use of a psychoacoustic model of hearing. The kind of coding carried out, then, is
generally referred to as perceptual coding.

In this chapter, we look at how such considerations impact MPEG audio com-
pression standards and examine in some detail at the following topics:
• Psychoacoustics
• MPEG-1 Audio Compression
• Later MPEG audio developments: MPEG-2, 4, 7, and beyond.

Z.-N. Li et al., Fundamentals of Multimedia, 457
Texts in Computer Science, DOI: 10.1007/978-3-319-05290-8_14,
© Springer International Publishing Switzerland 2014

458 14 MPEG Audio Compression

14.1 Psychoacoustics

Recall that the range of human hearing is about 20 Hz to about 20 kHz. Sounds
at higher frequencies are ultrasonic. However, the frequency range of the voice is
typically only from about 500 Hz to 4 kHz. The dynamic range, the ratio of the
maximum sound amplitude to the quietest sound humans can hear, is on the order of
about 120 dB.

Recall that the decibel unit represents ratios of intensity on a logarithmic scale.
The reference point for 0 dB is the threshold of human hearing—the quietest sound
we can hear, measured at 1 kHz. Technically, this is a sound that creates a barely
audible sound intensity of 10−12 Watt per square meter. Our range of magnitude
perception is thus incredibly wide: the level at which the sensation of sound begins
to give way to the sensation of pain is about 1 Watt/m2, so we can perceive a ratio
of 1012!

The range of hearing actually depends on frequency. At a frequency of 2 kHz, the
ear can readily respond to sound that is about 96 dB more powerful than the smallest
perceivable sound at that frequency, or in other words a power ratio of 232. Table 6.1
lists some of the common sound levels in decibels.

14.1.1 Equal-Loudness Relations

Suppose we play two pure tones, sinusoidal sound waves, with the same amplitude
but different frequencies. Typically, one may sound louder than the other. The reason
is that the ear does not hear low or high frequencies as well as it does frequencies
in the middle range. In particular, at normal sound volume levels, the ear is most
sensitive to frequencies between 1 and 5 kHz.

Fletcher-Munson Curves

The Fletcher-Munson equal-loudness curves display the relationship between per-
ceived loudness (in phons) for a given stimulus sound volume (Sound Pressure Level,
in dB), as a function of frequency. Figure 14.1 shows the ear’s perception of equal
loudness. The abscissa—the x axis—(shown in a semi-log plot) is frequency, in kHz.
The ordinate axis is sound pressure level—the actual intensity (i.e., loudness) of the
tone generated in an experiment. The curves show the loudness with which such
tones are perceived by humans. The bottom curve shows what level of pure tone
stimulus is required to produce the perception of a 10 dB sound.

All the curves are arranged so that the perceived loudness level gives the same
loudness as for that loudness level of a pure tone at 1 kHz. Thus, the loudness level
at the 1 kHz point is always equal to the dB level on the ordinate axis. The bottom
curve, for example, is for 10 phons. All the tones on this curve will be perceived as
loud as a 10 dB, 1,000 Hz tone. The figure shows more accurate curves, developed
by Robinson and Dadson [1], than the Fletcher and Munson originals [2].

http://dx.doi.org/10.1007/978-3-319-05290-8_6

14.1 Psychoacoustics 459

Fig. 14.1 Fletcher–Munson
equal loudness response
curves for the human ear
(remeasured by Robinson and
Dadson)

0.1 1.0 10.0

0

20

40

60

80

100

120

 Robinson−Dadson Equal Loudness
 Response Curves for the Human Ear

Frequency (kHz)

So
un

d
Pr

es
su

re
 L

ev
el

 (d
B

)

10

20

30

40

50

60

70

80

90

Loudness (phons)

The idea is that a tone is produced at a certain frequency and measured loudness
level, then a human rates the loudness as it is perceived. On the lowest curve shown,
each pure tone between 20 Hz and 15 kHz would have to be produced at the volume
level given by the ordinate for it to be perceived at a 10 dB loudness level [1]. The
next curve shows what the magnitude would have to be for pure tones to each be
perceived as being at 20 dB, and so on. The top curve is for perception at 90 dB.

For example, at 5,000 Hz, we perceive a tone to have a loudness level of 10 phons
when the source is actually only 5 dB. Notice that at the dip at 4 kHz, we perceive
the sound as being about 10 dB, when in fact the stimulation is only about 2 dB. To
perceive the same effective 10 dB at 10 kHz, we would have to produce an absolute
magnitude of 20 dB. The ear is clearly more sensitive in the range 2–5 kHz and not
nearly as sensitive in the range 6 kHz and above.

At the lower frequencies, if the source is at level 10 dB, a 1 kHz tone would also
sound at 10 dB; however, a lower, 100 Hz tone must be at a level 30 dB—20 dB
higher than the 1 kHz tone! So we are not very sensitive to the lower frequencies.
The explanation of this phenomenon is that the ear canal amplifies frequencies from
2.5 to 4 kHz.

Note that as the overall loudness increases, the curves flatten somewhat. We are
approximately equally sensitive to low frequencies of a few hundred Hz if the sound
level is loud enough. And we perceive most low frequencies better than high ones
at high volume levels. Hence, at the dance, loud music sounds better than quiet
music, because then we can actually hear low frequencies and not just high ones. (A
“loudness” switch on some sound systems simply boosts the low frequencies as well
as some high ones.) However, above 90 dB, people begin to become uncomfortable.
A typical city subway operates at about 100 dB.

460 14 MPEG Audio Compression

Fig. 14.2 Threshold of
human hearing, for pure tones

102 103 104
−10

0

10

20

30

40

50

60

Hz
dB

14.1.2 FrequencyMasking

How does one tone interfere with another? At what level does one frequency drown
out another? This question is answered by masking curves. Also, masking answers
the question of how much noise we can tolerate before we cannot hear the actual
music. Lossy audio data compression methods, such as MPEG Audio or Dolby
Digital (AC-3) encoding, which is popular in movies, remove some sounds that are
masked anyway, thus reducing the total amount of information.

The general situation in regard to masking is as follows:
• A lower tone can effectively mask (make us unable to hear) a higher tone.
• The reverse is not true. A higher tone does not mask a lower tone well. Tones can

in fact mask lower frequency sounds, but not as effectively as they mask higher
frequency ones.

• The greater the power in the masking tone, the wider its influence—the broader
the range of frequencies it can mask.

• As a consequence, if two tones are widely separated in frequency, little masking
occurs.

Threshold of Hearing

Figure 14.2 shows a plot of the threshold of human hearing, for pure tones. To
determine such a plot, a particular frequency tone is generated, say 1 kHz. Its volume
is reduced to zero in a quiet room or using headphones, then turned up until the sound
is just barely audible. Data points are generated for all audible frequencies in the
same way.

The point of the threshold of hearing curve is that if a sound is above the dB level
shown—say it is above 2 dB for a 6 kHz tone—then the sound is audible. Otherwise,
we cannot hear it. Turning up the 6 kHz tone so that it equals or surpasses the curve
means we can then distinguish the sound.

14.1 Psychoacoustics 461

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
−10

0

10

20

30

40

50

60

70

Frequency (kHz)

dB
Audible tone

Inaudible tone

Fig. 14.3 Effect on threshold of human hearing for a 1 kHz maskingtone

An approximate formula exists for this curve, as follows [3]:

Threshold(f) = 3.64(f/1000)−0.8 − 6.5e−0.6(f/1000−3.3)2 + 10−3(f/1000)4

(14.1)
The threshold units are dB. Since the dB unit is a ratio, we do have to choose which
frequency will be pinned to the origin, (0, 0). In Eq. (14.1), this frequency is 2,000 Hz:
Threshold(f) = 0 at f = 2 kHz.

FrequencyMasking Curves

Frequency masking is studied by playing a particular pure tone, say 1 kHz again,
at a loud volume and determining how this tone affects our ability to hear tones at
nearby frequencies. To do so, we would generate a 1 kHz masking tone at a fixed
sound level of 60 dB, then raise the level of a nearby tone, say 1.1 kHz, until it is just
audible. The threshold in Fig. 14.3 plots this audible level.

It is important to realize that this masking diagram holds only for a single masking
tone: the plot changes if other masking tones are used. Figure 14.4 shows how this
looks: the higher the frequency of the masking tone, the broader a range of influence
it has.

If, for example, we play a 6 kHz tone in the presence of a 4 kHz masking tone, the
masking tone has raised the threshold curve much higher. Therefore, at its neighbor
frequency of 6 kHz, we must now surpass 30 dB to distinguish the 6 kHz tone.

The practical point is that if a signal can be decomposed into frequencies, then
for frequencies that will be partially masked, only the audible part will be used to
set quantization noise thresholds.

462 14 MPEG Audio Compression

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
−10

0

10

20

30

40

50

60

70

Frequency (kHz)

dB
1 4 8

Fig. 14.4 Effect of masking tones at three different frequencies

Critical Bands

The human hearing range naturally divides into critical bands, with the property that
the human auditory system cannot resolve sounds better than within about one critical
band when other sounds are present. Hearing has a limited, frequency-dependent
resolution. According to [4], “In a complex tone, the critical bandwidth corresponds
to the smallest frequency difference between two partials such that each can still be
heard separately. …the critical bandwidth represents the ear’s resolving power for
simultaneous tones or partials.”

At the low-frequency end, a critical band is less than 100 Hz wide, while for high
frequencies, the width can be greater than 4 kHz. This indeed is yet another kind of
perceptual nonuniformity.

Experiments indicate that the critical bandwidth remains approximately constant
in width for masking frequencies below about 500 Hz—this width is about 100 Hz.
However, for frequencies above 500 Hz, the critical bandwidth increases approxi-
mately linearly with frequency.

Generally, the audio frequency range for hearing can be partitioned into about 24
critical bands (25 are typically used for coding applications), as Table 14.1 shows.

Notwithstanding the general definition of a critical band, it turns out that our
hearing apparatus actually is somewhat tuned to certain critical bands. Since hearing
depends on physical structures in the inner ear, the frequencies at which these struc-
tures best resonate is important. Frequency masking is a result of the ear structures
becoming “saturated” at the masking frequency and nearby frequencies.

Hence, the ear operates something like a set of bandpass filters, where each allows
a limited range of frequencies through and blocks all others. Experiments that indi-
cate this property are based on the observation that a constant-volume sound will
seem louder if it spans the boundary between two critical bands than it would were
it contained entirely within one critical band [5]. In effect, the ear is not very dis-
criminating within a critical band, because of masking.

14.1 Psychoacoustics 463

Table 14.1 Critical bands and their bandwidths

Band # Lower bound (Hz) Center (Hz) Upper bound (Hz) Bandwidth (Hz)

1 – 50 100 –
2 100 150 200 100
3 200 250 300 100
4 300 350 400 100
5 400 450 510 110
6 510 570 630 120
7 630 700 770 140
8 770 840 920 150
9 920 1000 1080 160
10 1080 1170 1270 190
11 1270 1370 1480 210
12 1480 1600 1720 240
13 1720 1850 2000 280
14 2000 2150 2320 320
15 2320 2500 2700 380
16 2700 2900 3150 450
17 3150 3400 3700 550
18 3700 4000 4400 700
19 4400 4800 5300 900
20 5300 5800 6400 1100
21 6400 7000 7700 1300
22 7700 8500 9500 1800
23 9500 10500 12000 2500
24 12000 13500 15500 3500
25 15500 18775 22050 6550

Bark Unit

Since the range of frequencies affected by masking is broader for higher frequencies,
it is useful to define a new frequency unit such that, in terms of this new unit, each of
the masking curves (the parts of Fig. 14.4 above the threshold in quiet) have about
the same width.

The new unit defined is called the Bark, named after Heinrich Barkhausen (1881–
1956), an early sound scientist. One Bark unit corresponds to the width of one critical
band, for any masking frequency [6,7]. Figure 14.5 displays critical bands, with the
frequency (the abscissa or x-axis) given in Bark units.

The conversion between a frequency f and its corresponding critical-band number
b, expressed in Bark units, is as follows:

Critical band number(Bark) =
{

f/100, for f < 500
9 + 4 log2(f/1000), for f ≥ 500

(14.2)

464 14 MPEG Audio Compression

250 Hz

0

20

40

60
zHk8zHk1zH005 4 kHz2 kHz

Critical band number (Bark)

dB

250 2015105

80

Fig. 14.5 Effect of masking tones, expressed in Bark units

In terms of this new frequency measure, the critical-band number b equals 5 when
f = 500 Hz. At double that frequency, for a masking frequency of 1 kHz, the Bark
value goes up to 9. Another formula used for the Bark scale is as follows:

b = 13.0 arctan(0.76 f)+ 3.5 arctan(f 2/56.25) (14.3)

where f is in kHz and b is in Barks. The inverse equation gives the frequency (in
kHz) corresponding to a particular Bark value b:

f = [(exp(0.219 × b)/352)+ 0.1] × b − 0.032 × exp[−0.15 × (b − 5)2] (14.4)

Frequencies forming the boundaries between two critical bands are given by integer
Bark values. The critical bandwidth (d f) for a given center frequency f can also be
approximated by the following [8]:

d f = 25 + 75 × [1 + 1.4(f 2)]0.69 (14.5)

where f is in kHz and d f is in Hz.
The idea of the Bark unit is to define a more perceptually uniform unit of frequency,

in that every critical band’s width is roughly equal in terms of Barks.

14.1.3 Temporal Masking

Recall that after the dance it takes quite a while for our hearing to return to normal.
Generally, any loud tone causes the hearing receptors in the inner ear (little hairlike
structures called cilia) to become saturated, and they require time to recover. (Many
other perceptual systems behave in this temporally slow fashion—for example, the
receptors in the eye have this same kind of “capacitance” effect.)

To quantify this type of behavior, we can measure the time sensitivity of hearing
by another masking experiment. Suppose we again play a masking tone at 1 kHz
with a volume level of 60 dB, and a nearby tone at, say, 1.1 kHz with a volume level
of 40 dB. Since the nearby test tone is masked, it cannot be heard. However, once
the masking tone is turned off, we can again hear the 1.1 kHz tone, but only after
a small amount of time. The experiment proceeds by stopping the test tone slightly
after the masking tone is turned off, say 10 ms later.

14.1 Psychoacoustics 465

Fig. 14.6 The louder the test
tone, the shorter the amount
of time required before the
test tone is audible once the
masking tone is removed

100

Delay time (ms)

dB

Test tone

Mask tone

60

40

20

1000100−5

Fig. 14.7 Effect of temporal
masking depends on both
time and closeness in
frequency

0
0.01

0.02
0.03 0

4
6

8−20

0

20

40

60

Frequency (kHz)

L
ou

dn
es

s
L

ev
el

 (d
B

) Tones below surface
are inaudible

Time (sec)

The delay time is adjusted to the minimum amount of time such that the test
tone can just be distinguished. In general, the louder the test tone, the less time it
takes for our hearing to get over hearing the masking tone. Figure 14.6 shows this
effect: it may take up to as much as 500 ms for us to discern a quiet test tone after a
60 dB masking tone has been played. Of course, this plot would change for different
masking tone frequencies.

Test tones with frequencies near the masking tone are, of course, the most masked.
Therefore, for a given masking tone, we have a two-dimensional temporal masking
situation, as in Fig. 14.7. The closer the frequency to the masking tone and the
closer in time to when the masking tone is stopped, the greater likelihood that a test
tone cannot be heard. The figure shows the combined effect of both frequency and
temporal masking.

The phenomenon of saturation also depends on just how long the masking tone
has been applied. Figure 14.8 shows that for a masking tone played longer (200 ms)
than another (100 ms), it takes longer before a test tone can be heard.

As well as being able to mask other signals that occur just after it sounds (post-
masking), a particular signal can even mask sounds played just before the stronger
signal (pre-masking). Premasking has a much shorter effective interval (2–5 ms) in
which it is operative than does postmasking (usually 50–200 ms).

MPEG audio compression takes advantage of these considerations in basically
constructing a large, multidimensional lookup table. It uses this to transmit frequency
components that are masked by frequency masking or temporal masking or both,
using fewer bits.

466 14 MPEG Audio Compression

Fig. 14.8 Effect of temporal
masking also depends on the
length of time the masking
tone is applied. Solid curve
masking tone played for
200 ms; dashed curve
masking tone played for
100 ms 10

dB

60

40

20

Delay time (ms)
1000 505

14.2 MPEG Audio

MPEG Audio [9,10] proceeds by first applying a filter bank to the input, to break the
input into its frequency components. In parallel, it applies a psychoacoustic model
to the data, and this model is used in a bit allocation block. Then the number of bits
allocated is used to quantize the information from the filter bank. The overall result
is that quantization provides the compression, and bits are allocated where they are
most needed to lower the quantization noise below an audible level.

14.2.1 MPEG Layers

MP3 is a popular audio compression standard. The ‘3’ stands for Layer 3, and “MP”
stands for the MPEG standard. Recall that we looked at MPEG video compression
in Chap. 11. However, the MPEG standard actually delineates three different aspects
of multimedia: audio, video, and systems. MP3 forms part of the audio component
of this first phase of MPEG. It was released in 1992 and resulted in the international
standard ISO/IEC 11172-3, published in 1993.

MPEG audio sets out three downward-compatible layers of audio compression,
each able to understand the lower layers. Each offers more complexity in the psy-
choacoustic model applied and correspondingly better compression for a given level
of audio quality. However, an increase in complexity, and concomitantly in compres-
sion effectiveness, is accompanied by extra delay.

Layers 1 to 3 in MPEG Audio are compatible, because all layers include the same
file header information.

Layer 1 quality can be quite good, provided a comparatively high bitrate is
available. While outdated by Layers 2 and 3, Layer 1 formed the basis for MPEG
Audio. It is still largely supported, e.g., audio in packages in Ubuntu linux. Layer 2
has more complexity and was proposed for use in digital audio broadcasting. Layer 3
(MP3) is most complex and was originally aimed at audio transmission over ISDN
lines. Each of the layers also uses a different frequency transform.

Most of the complexity increase is at the encoder rather than at the decoder side,
and this accounts for the popularity of MP3 players. Layer 1 incorporates the simplest
psychoacoustic model, and Layer 3 uses the most complex. The objective is a good

http://dx.doi.org/10.1007/978-3-319-05290-8_11

14.2 MPEG Audio 467

tradeoff between quality and bitrate. “Quality” is defined in terms of listening test
scores (the psychologists hold sway here), where a quality measure is defined by:
• 5.0 = “Transparent”—undetectable difference from original signal; equivalent to

CD-quality audio at 14- to 16-bit PCM
• 4.0 = Perceptible difference, but not annoying
• 3.0 = Slightly annoying
• 2.0 = Annoying
• 1.0 = Very annoying.

(Now that’s scientific!) At 64 kbps (kilobits per second) per channel, Layer 2
scores between 2.1 and 2.6, and Layer 3 scores between 3.6 and 3.8. So Layer 3
provides a substantial improvement but is still not perfect by any means.

14.2.2 MPEG Audio Strategy

Compression is certainly called for, since even audio can take fairly substantial
bandwidth: CD audio is sampled at 44.1 kHz and 16 bits/channel, so for two channels
needs a bitrate of about 1.4 Mbps. MPEG-1 aims at about 1.5 Mbps overall, with
1.2 Mbps for video and 256 kbps for audio. For the audio part, this amounts to a
target reduction in size of about 5.5 to 1 (6 to 1 for sampling at 48 kHz).

The MPEG approach to compression relies on quantization, of course, but also
recognizes that the human auditory system is not accurate within the width of a
critical band, both in terms of perceived loudness and audibility of a test frequency.
The encoder employs a bank of filters that act to first analyze the frequency (spectral)
components of the audio signal by calculating a frequency transform of a window of
signal values. The bank of filters decomposes the signal into subbands. Layer 1 and
Layer 2 codecs use a quadrature-mirror filter bank, while the Layer 3 codec adds a
DCT. For the psychoacoustic model, a Fourier transform is used.

Then frequency masking can be brought to bear by using a psychoacoustic model
to estimate the just noticeable noise level. In its quantization and coding stage, the
encoder balances the masking behavior and the available number of bits by discarding
inaudible frequencies and scaling quantization according to the sound level left over,
above masking levels.

A sophisticated model would take into account the actual width of the critical
bands centered at different frequencies. Within a critical band, our auditory system
cannot finely resolve neighboring frequencies and instead tends to blur them. As
mentioned earlier, audible frequencies are usually divided into 25 main critical bands,
inspired by the auditory critical bands.

However, in keeping with design simplicity, the model adopts a uniform width for
all frequency analysis filters, using 32 overlapping subbands [9,11]. This means that
at lower frequencies, each of the frequency analysis “subbands” covers the width
of several critical bands of the auditory system, whereas at higher frequencies this
is not so, since a critical band’s width is less than 100 Hz at the low end and more
than 4 kHz at the high end. For each frequency band, the sound level above the

468 14 MPEG Audio Compression

masking level dictates how many bits must be assigned to code signal values so that
quantization noise is kept below the masking level and hence cannot be heard.

In Layer 1, the psychoacoustic model uses only frequency masking. Bitrates range
from 32 kbps (mono) to 448 kbps (stereo). Near-CD stereo quality is possible with a
bitrate of 256–384 kbps. Layer 2 uses some temporal masking by accumulating more
samples and examining temporal masking between the current block of samples and
the ones just before and just after. Bitrates can be 32–192 kbps (mono) and 64–
384 kbps (stereo). Stereo CD-audio quality requires a bitrate of about 192–256 kbps.

However, temporal masking is less important for compression than frequency
masking, which is why it is sometimes disregarded entirely in lower complexity
coders. Layer 3 is directed toward lower bitrate applications and uses a more sophis-
ticated subband analysis, with nonuniform subband widths. It also adds nonuniform
quantization and entropy coding. Bitrates are standardized at 32–320 kbps.

14.2.3 MPEG Audio Compression Algorithm

Basic Algorithm

Figure 14.9 shows the basic MPEG audio compression algorithm. It proceeds by
dividing the input into 32 frequency subbands, via a filter bank. This is a linear oper-
ation that takes as its input a set of 32 PCM samples, sampled in time, and produces
as its output 32 frequency coefficients. If the sampling rate is fs , say fs = 48 ksps
(kilosamples per second; i.e., 48 kHz), then by the Nyquist theorem, the maximum
frequency mapped will be fs/2. Thus, the mapped bandwidth is divided into 32
equal-width segments, each of width fs/64 (these segments overlap somewhat).

In the Layer 1 encoder, the sets of 32 PCM values are first assembled into a set
of 12 groups of 32 s. Hence, the coder has an inherent time lag, equal to the time
to accumulate 384 (i.e., 12 × 32) samples. For example, if sampling proceeds at
32 kbps, then a time duration of 12 ms is required since each set of 32 samples is
transmitted each millisecond. These sets of 12 samples, each of size 32, are called
segments. The point of assembling them is to examine 12 sets of values at once in
each of the 32 subbands, after frequency analysis has been carried out, and then base
quantization on just a summary figure for all 12 values.

The delay is actually somewhat longer than that required to accumulate 384 sam-
ples, since header information is also required. As well, ancillary data, such as mul-
tilingual data and surround-sound data, is allowed. Higher layers also allow more
than 384 samples to be analyzed, so the format of the subband-samples (SBS) is also
added, with a resulting frame of data, as in Fig. 14.10. The header contains a syn-
chronization code (twelve 1s — 111111111111), the sampling rate used, the bitrate,
and stereo information. And as mentioned the frame format also contains room for
so-called “ancillary” (extra) information. (In fact, an MPEG-1 audio decoder can at
least partially decode an MPEG-2 audio bitstream, since the file header begins with
an MPEG-1 header and places the MPEG-2 datastream into the MPEG-1 Ancillary
Data location.)

14.2 MPEG Audio 469

What to drop
Audio
(PCM)
input

Psychoacoustic
modeling

Bit allocation,
quantizing and

coding

Bitstream
formatting

Time to
frequency

transformation

Encoded
bitstream

Frequency
to time

transformation

Bitstream
unpacking

Frequency
sample

reconstruction

Decoded
PCM audio

Encoded
bitstream

(a)

(b)

Fig. 14.9 a Basic MPEG Audio encoder; and b decoder

Fig. 14.10 Example MPEG
Audio frame Header Ancillary dataSBS format SBS

MPEG Audio is set up to be able to handle stereo or mono channels, of course. A
special joint-stereo mode produces a single stream by taking into account the redun-
dancy between the two channels in stereo. This is the audio version of a composite
video signal. It can also deal with dual-monophonic—two channels coded inde-
pendently. This is useful for parallel treatment of audio—for example, two speech
streams, one in English and one in Spanish.

Consider the 32×12 segment as a 32×12 matrix. The next stage of the algorithm
is concerned with scale, so that proper quantization levels can be set. For each of the
32 subbands, the maximum amplitude of the 12 samples in that row of the array is
found, which is the scaling factor for that subband. This maximum is then passed
to the bit allocation block of the algorithm, along with the SBS (subband samples).
The key point of the bit allocation block is to determine how to apportion the total
number of code bits available for the quantization of subband signals to minimize
the audibility of the quantization noise.

As we know, the psychoacoustic model is fairly complex—more than just a set of
simple lookup tables (and in fact this model is not standardized in the specification—
it forms part of the “art” content of an audio encoder and is one major reason all
encoders are not the same). In Layer 1, a decision step is included to decide whether
each frequency band is basically like a tone or like noise. From that decision and the
scaling factor, a masking threshold is calculated for each band and compared with
the threshold of hearing.

470 14 MPEG Audio Compression

12
samples

Each subband filter produces 1 sample out
for every 32 samples in

Audio (PCM)
samples In

Subband filter 0

Subband filter 1

Subband filter 2

Subband filter 31
Layer 1
Frame

Layer 2 and Layer 3
Frame

12
samples

12
samples

12
samples

12
samples

12
samples

12
samples

12
samples

12
samples

12
samples

12
samples

12
samples

. .
 . . .

 .

. .
 .

. .
 .

Fig. 14.11 MPEG Audio frame sizes

The model’s output consists of a set of what are known as signal-to-mask ratios
(SMRs) that flag frequency components with amplitude below the masking level.
The SMR is the ratio of the short-term signal power within each frequency band
to the minimum masking threshold for the subband. The SMR gives the amplitude
resolution needed and therefore also controls the bit allocations that should be given
to the subband. After determination of the SMR, the scaling factors discussed above
are used to set quantization levels such that quantization error itself falls below the
masking level. This ensures that more bits are used in regions where hearing is most
sensitive. In sum, the coder uses fewer bits in critical bands when fewer can be used
without making quantization noise audible.

The scaling factor is first quantized, using 6 bits. The 12 values in each subband
are then quantized. Using 4 bits, the bit allocations for each subband are transmit-
ted, after an iterative bit allocation scheme is used. Finally, the data is transmitted,
with appropriate bit depths for each subband. Altogether, the data consisting of the
quantized scaling factor and the 12 codewords are grouped into a collection known
as the Subband-Sample format.

On the decoder side, the values are de-quantized, and magnitudes of the 32 samples
are re-established. These are passed to a bank of synthesis filters, which reconstitute
a set of 32 PCM samples. Note that the psychoacoustic model is not needed in the
decoder.

Figure 14.11 shows how samples are organized. A Layer 2 or Layer 3 frame
actually accumulates more than 12 samples for each subband: instead of 384 samples,
a frame includes 1,152 samples.

14.2 MPEG Audio 471

Bit Allocation

The bit allocation algorithm (for Layer 1 and Layer 2) works in the following way.
To reiterate, the aim is to ensure that all quantization noise values are below the
masking thresholds. The psychoacoustic model is brought into play for such cases,
to allocate more bits, from the number available, to the subbands where increased
resolution will be most beneficial.

Algorithm 14.1 (Bit Allocation in MPEG Audio Compression (Layers 1 and 2))

1. From the psychoacoustic model, calculate the Signal-to-Mask Ratio (SMR) in
decibels (dBs) for each subband:

SMR = 20 log10
Signal

Minimum_masking_threshold

• This determines the quantization, i.e., the minimum number of bits that is
needed, if available. The amount of a signal above the threshold, i.e., SMR,
is the amount that needs to be coded. Signals that are below the threshold do
not.

2. Calculate Signal-to-(quantization)-Noise Ratio (SNR) for all signals.

• A lookup table provides an estimate of SNR assuming a given number of
quantizer levels.

3. Mask-to-(quantization)-Noise Ratio (MNR) is defined as the difference, in dB
(See Fig. 14.12).

MNR = SNR − SMR

4. Iterate until no bits left to allocate:
• Allocate bits to the subband with the lowest MNR
• Look up new estimate of SNR for the subband allocated more bits, and re-

calculate MNR

Note:
• The masking effect means we can raise the quantization noise floor around a strong

sound because the noise will be masked off anyway. As indicated in Fig. 14.12,
adjusting the number of bits m allocated to a subband can move this floor up and
down.

• To ensure that all the quantization noise values are inaudible, i.e., below the mask-
ing thresholds, so that all MNRs are ≥ 0, a minimum number of bits is needed.
Otherwise, SNR could be too small, causing MNR to be < 0, and the quality of
the compressed audio could be significantly affected.

• If more bits than the minimum are allowed from the budget, allocate them anyway
so as to further increase SNR. For each additional bit, we get 6 dB better SNR.

472 14 MPEG Audio Compression

Sound pressure
level (dB) Masker

Minimum
masking threshold

Neighboring
band

Critical band Neighboring
band

Bits allocated
to critical band

Frequency

m−1
m+1

m

SN
R SM

R
M

N
R

Fig. 14.12 Mask-to-noise ratio and signal-to-mask ratio. A qualitative view of SNR, SMR, and
MNR, with one dominant masker and m bits allocated to a particular critical band

PCM
audio signal

Linear
quantizer

Bitstream
formatting

Filter bank:
32 subbands

1,024-point
FFT

Psychoacoustic
model

Coded audio
signal

Side-information
coding

Fig. 14.13 MPEG-1 Audio Layers 1 and 2

Mask calculations are performed in parallel with subband filtering, as in Fig. 14.13.
The masking curve calculation requires an accurate frequency decomposition of the
input signal, using a Discrete Fourier Transform (DFT). The frequency spectrum is
usually calculated with a 1,024-point Fast Fourier Transform (FFT).

In Layer 1, 16 uniform quantizers are precalculated, and for each subband the
quantizer giving the lowest distortion is chosen. The index of the quantizer is sent
as 4 bits of side information for each subband. The maximum resolution of each
quantizer is 15 bits.

14.2 MPEG Audio 473

Layer 2

Layer 2 of the MPEG-1 Audio codec includes small changes to effect bitrate reduc-
tion and quality improvement, at the price of an increase in complexity. The main
difference in Layer 2 is that three groups of 12 samples are encoded in each frame, and
temporal masking is brought into play, as well as frequency masking. One advantage
is that if the scaling factor is similar for each of the three groups, a single scaling
factor can be used for all three. But using three frames in the filter (before, current,
and next), for a total of 1,152 samples per channel, approximates taking temporal
masking into account.

As well, the psychoacoustic model does better at modeling slowly changing sound
if the time window used is longer. Bit allocation is applied to window lengths of 36
samples instead of 12, and resolution of the quantizers is increased from 15 bits to 16.
To ensure that this greater accuracy does not mean poorer compression, the number
of quantizers to choose from decreases for higher subbands.

Layer 3

Layer 3, or MP3, uses a bitrate similar to Layers 1 and 2 but produces substantially
better audio quality, again at the price of increased complexity.

A filter bank similar to that used in Layer 2 is employed, except that now per-
ceptual critical bands are more closely adhered to by using a set of filters with
nonequal frequencies. This layer also takes into account stereo redundancy. It also
uses a refinement of the Fourier transform: the Modified Discrete Cosine Trans-
form (MDCT) addresses problems the DCT has at boundaries of the window used.
The Discrete Fourier Transform can produce block edge effects. When such data is
quantized and then transformed back to the time domain, the beginning and ending
samples of a block may not be coordinated with the preceding and subsequent blocks,
causing audible periodic noise.

The MDCT shown in Eq. (14.6), removes such effects by overlapping frames by
50 %.

F(u) =
N−1∑

i=0

f (i) cos
[

2π

N

(
i + N/2 + 1

2

)
(u + 1/2)

]
, u = 0, . . . , N/2 − 1

(14.6)
Here the window length is M = N/2 and M is the number of transform coefficients.

The MDCT also gives better frequency resolution for the masking and bit allo-
cation operations. Optionally, the window size can be reduced back to 12 samples
from 36. Even so, since the window is 50 % overlapped, a 12-sample window still
includes an extra six samples. A size-36 window includes an extra 18 points. Since
lower frequencies are more often tonelike rather than noiselike, they need not be
analyzed as carefully, so a mixed mode is also available, with 36-point windows
used for the lowest two frequency subbands and 12-point windows used for the rest.

474 14 MPEG Audio Compression

PCM
audio signal

Filter bank:
32 subbands

1,024-point
FFT

Psychoacoustic
model

M-DCT Nonuniform
quantization

Bitstream
formatting

Huffman
coding

Side-information
coding

Coded audio
signal

Fig. 14.14 MPEG-1 Audio Layer 3

Table 14.2 MP3
compression performance Sound quality Bitrate Mode Compression ratio

Telephony 8 kbps Mono 96:1
Better than 16 kbps Mono 48:1
shortwave
Better than 32 kbps Mono 24:1
AM radio
Similar to 56–64 kbps Stereo 26:1–24:1
FM radio
Near-CD 96 kbps Stereo 16:1
CD 112–128 kbps Stereo 14:1–12:1

As well, instead of assigning scaling factors to uniform-width subbands, MDCT
coefficients are grouped in terms of the auditory system’s actual critical bands, and
scaling factors, called scale factor bands, are calculated from these.

More bits are saved by carrying out entropy (Huffman) coding and making use
of nonuniform quantizers. And, finally, a different bit allocation scheme is used,
with two parts. First, a nested loop is used, with an inner loop that adjusts the shape
of the quantizer, and an outer loop that then evaluates the distortion from that bit
configuration. If the error (“distortion”) is too high, the scale factor band is amplified.
Second, a bit reservoir banks bits from frames that don’t need them and allocates
them to frames that do. Figure 14.14 shows a summary of MPEG Audio Layer 3
coding.

Table 14.2 shows various achievable MP3 compression ratios. In particular,
CD-quality audio is achieved with compression ratios in the range of 12:1 (i.e.,
bitrate of 112 kbps), assuming 16-bit samples at 44.1 kHz, times two for stereo.
Table 14.2 shows typical performance data using MP3 compression.

14.2 MPEG Audio 475

14.2.4 MPEG-2 AAC (Advanced Audio Coding)

The MPEG-2 standard is widely employed, since it is the standard vehicle for DVDs,
and it, too, has an audio component. The MPEG-2 Advanced Audio Coding (AAC)
standard [12] was originally aimed at transparent sound reproduction for theaters. It
can deliver this at 320 kbps for five channels, so that sound can be played from five
directions: left, right, center, left-surround, and right-surround. So-called 5.1 channel
systems also include a low-frequency enhancement (LFE) channel (a “woofer”). On
the other hand, MPEG-2 AAC is also capable of delivering high-quality stereo sound
at bitrates below 128 kbps. It is the audio coding technology for the DVD-Audio
Recordable (DVD-AR) format and is also adopted by XM Radio, one of the two
main satellite radio services in North America. AAC was developed as a further
compression and encoding scheme for digital audio to succeed MP3, and delivers
better sound quality than MP3 for the same bitrate [13]. AAC is currently the default
audio format for YouTube, iPhone and other Apple products plus iTunes, Nintendo,
and PlayStation. It is also supported on Android mobile phones.

MPEG-2 audio can support up to 48 channels, sampling rates between 8 and
96 kHz, and bitrates up to 576 kbps per channel. Like MPEG-1, MPEG-2 supports
three different “profiles,” but with a different purpose. These are the Main, Low
Complexity (LC), and the Scalable Sampling Rate (SSR). The LC profile requires
less computation than the Main profile, but the SSR profile breaks up the signal so
that different bitrates and sampling rates can be used by different decoders.

The three profiles follow mostly the same scheme, with a few modifications. First,
an MDCT transform is carried out, either on a “long” window with 2,048 samples
or a “short” window with 256 samples. The MDCT coefficients are then filtered
by a Temporal Noise Shaping (TNS) tool, with the objective of reducing premasking
effects and better encoding signals with stable pitch. The MDCT coefficients are then
grouped into 49 scale factor bands, approximately equivalent to a good-resolution
version of the human acoustic system’s critical bands. In parallel with the frequency
transform, a psychoacoustic model similar to the one in MPEG-1 is carried out, to
find masking thresholds.

The Low complexity profile is the most widely used AAC profile and is more
efficient than MP3 with a 30 % increase in efficiency in terms of quality versus
bitrate. It offers near-CD quality at very low bitrates such as 80 kbps for mono and
128 kbps for stereo audio input (44.1 kHz sampling frequency). It is mostly used for
music development, vocal recordings, and the like.

The Main profile uses a predictor. Based on the previous two frames, and only
for frequency coefficients up to 16 kHz, MPEG-2 subtracts a prediction from the
frequency coefficients, provided this step will indeed reduce distortion. Quantization
for the Main profile is governed by two rules: keep distortion below the masking
threshold, and keep the average number of bits used per frame controlled, using a bit
reservoir. Quantization also uses scaling factors, used to amplify some of the scale
factor bands and nonuniform quantization. MPEG-2 AAC also uses entropy coding
for both scale factors and frequency coefficients.

476 14 MPEG Audio Compression

For implementation, a nested loop is used for bit allocation. The inner loop adapts
the nonlinear quantizer, then applies entropy coding to the quantized data. If the bit
limit is reached for the current frame, the quantizer step size is increased to use fewer
bits. The outer loop decides whether for each scale factor band the distortion is below
the masking threshold. If a band is too distorted, it is amplified to increase the SNR
of that band, at the price of using more bits.

In the SSR profile, a Polyphase Quadrature Filter (PQF) bank is used. The mean-
ing of this phrase is that the signal is first split into four frequency bands of equal
width, then an MDCT is applied. The point of the first step is that the decoder can
decide to ignore one of the four frequency parts if the bitrate must be reduced.

14.2.5 MPEG-4 Audio

MPEG-4 AAC is another audio compression standard under ISO/IEC 14496. MPEG-
4 audio integrates several different audio components into one standard: speech
compression, perceptually based coders, text-to-speech, 3D localization of sound,
and MIDI. MPEG-4 can be classified into MPEG-4 Scalable Lossless Coding (HD
AAC) [14] and MPEG-4 (HE AAC) [14]. While MPEG-4 HD (High Definition)
AAC is used for lossless high quality audio compression for High Definition videos
etc., MPEG-4 HE (High Efficiency) AAC is an extension of the Low complexity
MPEG-2 AAC profile used for low bit rate applications such as streaming audio.
MPEG-4 HE AAC has two versions: HE AAC v1, which uses only Spectral Band
Replication (SBR, enhancing audio at low bitrates) and HE AAC v2, which uses SBR
and Parametric Stereo (PS, enhancing efficiency of low bandwidth input). MPEG-4
HE AAC is alo used for the digital radio standards DAB+, developed by the standards
group WorldDMB (Digital Multimedia Broadcasting) in 2006, and in Digital Radio
Mondiale, a consortium of national radio stations aimed at making better use of the
bands currently used for AM broadcasting, including shortwave.

Perceptual Coders

One change in AAC in MPEG-4 is to incorporate a Perceptual Noise Substitution
module, which looks at scale factor bands above 4 kHz and includes a decision as
to whether they are noiselike or tonelike. A noiselike scale factor band itself is not
transmitted; instead, just its energy is transmitted, and the frequency coefficient is
set to zero. The decoder then inserts noise with that energy.

Another modification is to include a Bit-Sliced Arithmetic Coding (BSAC) module.
This is an algorithm for increasing bitrate scalability, by allowing the decoder side to
be able to decode a 64 kbps stream using only a 16 kbps baseline output (and steps of
1 kbps from that minimum). MPEG-4 audio also includes a second perceptual audio
coder, a vector-quantization method entitled Transform-domain Weighted Interleave
Vector Quantization (TwinVQ). This is aimed at low bitrates and allows the decoder
to discard portions of the bitstream to implement both adjustable bitrate and sampling

14.2 MPEG Audio 477

rate. The basic strategy of MPEG-4 audio is to allow decoders to apply as many or
as few audio tools as bandwidth allows.

Structured Coders

To have a low bitrate delivery option, MPEG-4 takes what is termed a Syn-
thetic/Natural Hybrid Coding (SNHC) approach. The objective is to integrate both
“natural” multimedia sequences, both video and audio, with those arising syntheti-
cally. In audio, the latter are termed structured audio. The idea is that for low bitrate
operation, we can simply send a pointer to the audio model we are working with and
then send audio model parameters.

In video, such a model-based approach might involve sending face-animation data
rather than natural video frames of faces. In audio, we could send the information
that English is being modeled, then send codes for the basesounds (phonemes) of
English, along with other assembler-like codes specifying duration and pitch.

MPEG-4 takes a toolbox approach and allows specification of many such models.
For example, Text-To-Speech (TTS) is an ultra-low bitrate method and actually works,
provided we need not care what the speaker actually sounds like. Assuming we went
on to derive Face-Animation Parameters from such low bitrate information, we arrive
directly at a very low bitrate videoconferencing system. Another “tool” in structured
audio is called Structured Audio Orchestra Language (SAOL, pronounced “sail”),
which allows simple specification of sound synthesis, including special effects such
as reverberation.

Overall, structured audio takes advantage of redundancies in music to greatly
compress sound descriptions.

14.3 Other Audio Codecs

14.3.1 OggVorbis

Ogg Vorbis [15] is an open-source audio compression format, part of the Vorbis
project headed by Chris Montgomery of the Xiph.org foundation, which started in
1993. It was designed to replace existing patented audio compression formats by
incorporating a variable bit rate (VBR) codec similar to MP3 with file sizes smaller
compared to those of MP3 for the same bitrate and quality. It is targeted primarily at
the MP3 standard, being more efficient even at low bit rates and with better quality
audio at higher bitrates. Ogg Vorbis also uses a form of MDCT, specifically a forward
adaptive codec. One of the major advantages of the Ogg Vorbis standard is its ability
to be wrapped in other media containers, the most popular being Matroska and
WebM. Ogg Vorbis is supported by many media players such as VLC, Mplayer,
Audacity audio editing software, and most Linux distributions as well. It has limited
native support in Windows and Mac OS but the Vorbis team have decoders available

478 14 MPEG Audio Compression

Table 14.3 Comparison of MP3, MPEG-4 AAC, and Ogg vorbis

MP3 MPEG-4 AAC Ogg vorbis
File exten-
sion

.mp3 .aac, .mp4, .3gp .ogg

Original
name

MPEG-1 Audio
Layer 3

Advanced Audio
Coding

Ogg

Developer CCETT, IRT, Fraunhofer IIS, AT&T
Bell Labs,

Xiph.org Foundation

Fraunhofer Society Dolby, Sony Corp., and
Nokia

Released 1994 1997 v1.0 frozen May
2000

Algorithm lossy compression lossy compression lossy comrpession
Quality Lower quality than

AAC and Ogg
Better quality at same
bit rate as MP3

Better quality and
smaller file
size than MP3 at
same bit rates

Used in Default standard for
audio files

iTunes raised its
popularity

Open-source
platform

for various applications. Ogg Vorbis is gaining popularity with the gaming industry:
Ubisoft uses the Ogg Vorbis format for its most recent game releases. Many popular
browsers such as Firefox, Chrome, and Opera have native support for Ogg Vorbis.
Table 14.3 compares the MP3, AAC and Ogg vorbis standards.

Table 14.4 summarizes the target bitrate range and main features of other modern
general audio codecs. They include many similarities to MPEG-2 audio codecs.
Dolby Digital (AC-3) dates from 1992; it was devised to code multichannel digital
audio for 35 mm movie film, placed alongside the optical analog audio channel. It
is also used in HDTV audio and DVD-Video. AC-3 is a perceptual coder with 256
sample block length. The maximum bitrate for compressed 5.1 channel surround
sound audio for 35 mm film is 320 kbps (5.1 is one front left channel, one right front,
one center channel, two surround channels, and a subwoofer). AC-3’s predecessor,
Dolby AC-2, was a transform-based codec.

Dolby Digital Plus (E-AC-3, or “Enhanced” AC-3) supports 13.1 channels. It is
based on AC-3, with a low-loss and low-complexity conversion from E-AC-3 to
AC-3. DTS (or Coherent Acoustics) is a digital surround system aimed at theaters;
it forms part of the Blue Ray audio standard. WMA is a proprietary audio coder
developed by Microsoft. MPEG SAOC [16], published in 2010, stands for “Spatial
Audio Object Coding.” It extends “MPEG Surround,” which allows the addition of
additional multichannel side-information to core stereo data. MPEG SAOC processes
“object signals” instead of channel signals, with not a great deal of extra bandwidth
for the side-information. SAOC is aimed at such innovative usages as Interactive
Remix, Karaoke, gaming, and mobile conferencing over headphones,

14.3 Other Audio Codecs 479

Table 14.4 Comparison of audio coding systems

Codec Bitrate kbps/channel Complexity Main application

Dolby AC-2 128–192 Low (encoder/decoder) Point-to-point,
cable

Dolby AC-3 32–640 Low (decoder) HDTV, cable,
DVD

Dolby Digital
(Enhanced AC-3) 32–6144 Low (decoder) HDTV, cable,

DVD
DTS: Digital Surround 8–512 Low (for lossless audio

extension)
DVD,
entertainment,
professional

WMA: Windows Media
Audio

128–768 Low (low-bit-rate
streaming)

Many
applications

MPEG SAOC As low as 48 Low
(decoder/rendering)

Many
applications

14.4 MPEG-7 Audio and Beyond

Recall that MPEG-4 is aimed at compression using objects. MPEG-4 audio has
several interesting features, such as 3D localization of sound, integration of MIDI,
text-to-speech, different codecs for different bitrates, and use of the sophisticated
MPEG-4 AAC codec. However, newer MPEG standards are also aimed at “search”:
how can we find objects, assuming that multimedia is indeed coded in terms of
objects?

MPEG-7 aims to describe a structured model of audio [17], so as to promote
ease of search for audio objects. Officially called a method for Multimedia Content
Description Interface, MPEG-7 provides a means of standardizing metadata for
audiovisual multimedia sequences. MPEG-7 is meant to represent information about
multimedia information.

The objective, in terms of audio, is to facilitate the representation and search for
sound content, perhaps through the tune or other descriptors. Therefore, researchers
are laboring to develop descriptors that efficiently describe, and can help find, specific
audio in files. These might require human or automatic content analysis and might
be aimed not just at low-level structures, such as melody, but at actually grasping
information regarding structural and semantic content [18].

An example application supported by MPEG-7 is automatic speech recognition
(ASR). Language understanding is also an objective for MPEG-7 “content”. In theory,
MPEG-7 would allow searching on spoken and visual events: “Find me the part where
Hamlet says, ‘To be or not to be.’” However, the objective of delineating a complete,
structured audio model for MPEG-7 is by no means complete.

Nevertheless, low-level features are important. Useful summaries of such work
[19,20] describe sets of such descriptors.

480 14 MPEG Audio Compression

Further standards in the MPEG sequence are mostly not aimed at further audio
compression standardization. For example, MPEG-DASH (Dynamic Adaptive
Streaming over HTTP) is aimed at streaming of multimedia using existing HTTP
resources such as servers and content distribution networks, but is meant to be inde-
pendent of specific video or audio codecs. We will examine it in more details in
Chap. 16.

14.5 Further Exploration

Good reviews of MPEG Audio are contained in the articles [9,10]. A comprehensive
explication of natural audio coding in MPEG-4 appears in [21]. Structured audio is
introduced in [22], and exhaustive articles on natural, synthetic, and SNHC audio in
MPEG-4 appear in [23] and [24].

14.6 Exercises

1. (a) What is the threshold of quiet, according to Eq. (14.1), at 1,000 Hz? (Recall
that this equation uses 2 kHz as the reference for the 0 dB level.)

(b) Take the derivative of Eq. (14.1) and set it equal to zero, to determine the
frequency at which the curve is minimum. What frequency are we most
sensitive to? Hint: One has to solve this numerically.

2. Loudness versus amplitude. Which is louder: a 1,000 Hz sound at 60 dB or a
100 Hz sound at 60 dB?

3. For the (newer versions of the) Fletcher-Munson curves, in Fig. 14.1, the way
this data is actually observed is by setting the y-axis value, the sound pressure
level, and measuring a human’s estimation of the effective perceived loudness.
Given the set of observations, what must we do to turn these into the set of
perceived loudness curves shown in the figure?

4. Two tones are played together. Suppose tone 1 is fixed, but tone 2 has a frequency
that can vary. The critical bandwidth for tone 1 is the frequency range for tone 2
over which we hear beats, and a roughness in the sound. Beats are overtones
at a lower frequency than the two close tones; they arise from the difference in
frequencies of the two tones. The critical bandwidth is bounded by frequencies
beyond which the two tones sound with two distinct pitches.

(a) What would be a rough estimate of the critical bandwidth at 220 Hz?
(b) Explain in words how you would set up an experiment to measure the critical

bandwidth.

http://dx.doi.org/10.1007/978-3-319-05290-8_16

14.6 Exercises 481

5. Search the web to discover what is meant by the following psychoacoustic
phenomena:

(a) Virtual pitch
(b) Auditory scene analysis
(c) Octave-related complex tones
(d) Tri-tone paradox
(e) Inharmonic complex tones.

6. What is the compression ratio of MPEG audio if stereo audio sampled with 16
bits per sample at 48 kHz is reduced to a bitstream of 256 kbps?

7. In MPEG’s polyphase filter bank, if 24 kHz is divided into 32 equal-width
frequency subbands,
(a) What is the size of each subband?
(b) How many critical bands, at worst, does a subband overlap?

8. If the sampling rate fs is 32 ksps, in MPEG Audio Layer 1, what is the width in
frequency of each of the 32 subbands?

9. Given that the level of a masking tone at the 8th band is 60 dB, and 10 ms after
it stops, the masking effect to the 9th band is 25 dB.

(a) What would MP3 do if the original signal at the ninth band is at 40 dB?
(b) What if the original signal is at 20 dB?
(c) How many bits should be allocated to the ninth band in (a) and (b) above?

10. What does MPEG Layer 3 (MP3) audio do differently from Layer 1 to incorpo-
rate temporal masking?

11. Explain MP3 in a few paragraphs, for an audience of consumer-audio-equipment
salespeople.

12. Implement MDCT, just for a single 36-sample signal, and compare the fre-
quency results to those from DCT. For low-frequency sound, which does better
at concentrating the energy in the first few coefficients?

13. Convert a CD-audio cut to MP3. Compare the audio quality of the original and
the compressed version—can you hear the difference? (Many people cannot.)

14. For two stereo channels, we would like to be able to use the fact that the second
channel behaves, usually, in a parallel fashion to the first, and apply information
gleaned from the first channel to compression of the second. Discuss how you
think this might proceed.

References

1. D.W. Robinson, R.S. Dadson, A re-determination of the equal-loudness relations for pure tones.
British Journal of Applied Physics 7, 166–181 (1956)

2. H. Fletcher, W.A. Munson, Loudness, its definition, measurement and calculation. Journal of
the Acoustical Society of America 5, 82–107 (1933)

3. T. Painter, A. Spanias, Perceptual coding of digital audio. Proceedings of the IEEE 88(4),
451–513 (2000)

482 14 MPEG Audio Compression

4. B. Truax, Handbook for Acoustic Ecology, 2nd edn. (Street Publishing, Cambridge, 1999)
5. D. O’Shaughnessy, Speech Communications: Human and Machine. (IEEE Press, New York,

1999)
6. A.J.M. Houtsma, Psychophysics and modern digital audio technology. Philips J. Res. 47, 3–14

(1992)
7. E. Zwicker, U. Tilmann, Psychoacoustics: matching signals to the final receiver. J. Audio Eng.

Soc. 39, 115–126 (1991)
8. D. Lubman, Objective metrics for characterizing automotive interior sound quality. in Inter-

Noise ’92, pp. 1067–1072, 1992
9. D. Pan, A tutorial on MPEG/Audio compression. IEEE Multimedia 2(2), 60–74 (1995)

10. S. Shlien, Guide to MPEG-1 audio standard. IEEE Trans. Broadcast. 40, 206–218 (1994)
11. P. Noll, Mpeg digital audio coding. IEEE Signal Process. Mag. 14(5), 59–81 (1997)
12. International Standard: ISO/IEC 13818-7. Information technology—Generic coding of moving

pictures and associted audio information. in Part 7: Advanced Audio Coding (AAC), 1997
13. K. Brandenburg, MP3 and AAC explained. in 17th International Conference on High Quality

Audio Coding, pp. 1–12 (1999)
14. International Standard: ISO/IEC 14496-3. Information technology—Coding of audio-visual

objects. in Part 3: Audio, 1998
15. Vorbis audio compression, (2013), http://xiph.org/vorbis/
16. J. Engdegård, B. Resch, C. Falch, O. Hellmuth, J. Hilpert, A. Hoelzer, L. Terentiev, J. Breebaart,

J. Koppens, E. Schuijers, W. Oomen, Spatial Audio Object Coding (SAOC)—The Upcoming
MPEG Standard on Parametric Object Based Audi Coding. In Audio Engineering Society 124th
Convention, 2008

17. Information technology—Multimedia content description interface, Part 4: Audio. Interna-
tional Standard: ISO/IEC 15938-4, 2001

18. A.T. Lindsay, S. Srinivasan, J.P.A. Charlesworth, P.N. Garner, W. Kriechbaum, Representation
and linking mechanisms for audio in MPEG-7. Signal Processing: Image Commun. 16, 193–
209 (2000)

19. P. Philippe, Low-level musical descriptors for MPEG-7. Signal Processing: Image Commun.
16, 181–191 (2000)

20. M.I. Mandel, D.P.W. Ellis, Song-level features and support vector machines for music classi-
fication. In: The 6th International Conference on Music Information Retrieval

21. K. Brandenburg, O. Kunz, A. Sugiyama, MPEG-4 natural audio coding. Signal Processing:
Image Commun. 15, 423–444 (2000)

22. E.D. Scheirer, Structured audio and effects processing in the MPEG-4 multimedia standard.
Multimedia Syst. 7, 11–22 (1999)

23. J.D. Johnston, S.R. Quackenbush, J. Herre, B. Grill, in Multimedia Systems, Standards, and
Networks, eds. by A. Puri and T. Chen. Review of MPEG-4 general audio coding, (Marcel
Dekker Inc, New York, 2000), pp. 131–155

24. E.D. Scheirer, Y. Lee, J.-W. Yang, in Multimedia Systems, Standards, and Networks eds. by
A. Puri & T. Chen. Synthetic audio and SNHC audio in MPEG-4, (Marcel Dekker Inc, New
York, 2000), pp. 157–177

http://xiph.org/vorbis/

Part III
Multimedia Communications and

Networking

Multimedia places great demands on networks and systems. Driven by an
insatiable appetite for bandwidth on the Internet, advances in digital media
compression technologies, and accelerating user demand, multimedia communi-
cation and content sharing over the Internet has quickly risen to become a
mainstream ‘‘killer’’ application over the past two decades. As well, we are
witnessing a convergence of conventional telephone networks and television
networks on the global Internet, and numerous new-generation multimedia-based
applications have been developed over the Internet, e.g., Skype and YouTube.

The Internet, however, was not initially designed for multimedia content
distribution and there are significant challenges to be addressed. Multimedia
applications generally start playback before downloads have completed, i.e., in a
streaming mode. In the early time period, research attention was mostly focused on
new streaming protocols, such as the Real-time Transport Protocol (RTP) and its
Control Protocol (RTCP). There was also great effort toward multicast in the
network layer as well as resource reservation protocols for large-scale multimedia
content distribution.

Over the past decade, Content Distribution Networks (CDNs) and Peer-to-Peer
(P2P) media streaming received a substantial amount of attention and were widely
applied for both live and on-demand media streaming. Recently, Web-based HTTP
video streaming allows users to play videos directly from their Web browsers,
rather than having to download and install dedicated software.

Meanwhile, advances in wireless mobile networking and the emergence of sleek
and smart portable devices are driving the revolution further. The dream of
‘‘anywhere and anytime’’ multimedia communication and content sharing has now
become reality.

This Part examines the challenges and solutions for efficient multimedia
communication and content sharing over computer networks, particularly over the
wired Internet and wireless mobile networks. In Chap. 15, we look at the basic
Internet service models and protocols for multimedia communications, and in

http://dx.doi.org/10.1007/978-3-319-05290-8_15

Chap. 16, we go on to consider multimedia content distribution mechanisms.
Chapter 17 further provides a quick introduction to the basics of wireless mobile
networks and issues related to multimedia communication over such networks.

484 Part III Multimedia Communications and Networking

http://dx.doi.org/10.1007/978-3-319-05290-8_16
http://dx.doi.org/10.1007/978-3-319-05290-8_17

15Network Services andProtocols
forMultimedia Communications

Computer communication networks are essential to the modern computing
environment we know and have come to rely upon. Multimedia communications and
networking share all major issues and technologies of computer communication net-
works. Indeed, the evolution of the Internet, particularly in the past two decades, has
been largely driven by the ever-growing demands from numerous conventional and
new generation multimedia applications. As such, multimedia communications and
networking have become a very active area for research and industrial development.

This chapter will start with a review of the common terminologies and techniques
in modern computer communication networks, specifically, the Internet, followed
by an introduction to various network services and protocols for multimedia com-
munications and content sharing, since they are becoming a central part of most
contemporary multimedia systems. We also use Internet telephony as an example to
illustrate the design and implementation of a typical interactive multimedia commu-
nication application.

15.1 Protocol Layers of Computer Communication
Networks

It has long been recognized that network communication is a complex task that
involves multiple levels of protocols [1–3]. Each protocol defines the syntax, seman-
tics, and operations for a specific communication task. A widely used reference
model for such a multilayer protocol architecture was proposed by the International
Organization for Standardization (ISO) in 1984, called Open Systems Interconnec-
tion (OSI), documented by ISO Standard 7498. The OSI Reference Model has the
following networking layers [4]:
1. Physical Layer Defines the electrical and mechanical properties of the physical

interface (e.g., signal level, specifications of the connectors, etc.); also specifies
the functions and procedural sequences performed by circuits of the physical
interface.

Z.-N. Li et al., Fundamentals of Multimedia, 485
Texts in Computer Science, DOI: 10.1007/978-3-319-05290-8_15,
© Springer International Publishing Switzerland 2014

486 15 Network Services and Protocols for Multimedia Communications

2. Data Link Layer Specifies the ways to establish, maintain, and terminate a link,
such as the transmission and synchronization of data frames, error detection and
correction, and access protocol to the Physical layer.

3. Network layer Defines the routing of data from one end to the other across the
network, using circuit switching or packet switching. Provides such services as
addressing, internetworking, error handling, congestion control, and sequencing
of packets.

4. Transport layer Provides end-to-end communication between end systems that
support end-user applications or services. Supports either connection-oriented or
connectionless protocols. Provides error recovery and flow control.

5. Session layer Coordinates the interaction between user applications on different
hosts, manages sessions (connections), such as completion of long file transfers.

6. Presentation layer Deals with the syntax of transmitted data, such as conversion
of different data formats and codes due to different conventions, compression, or
encryption.

7. Application layer Supports various application programs and protocols, such as
File sharing (FTP), remote login (Telnet), Email(SMTP/MIME), Web (HTTP),
network management (SNMP), and so on.
The OSI reference model is instrumental in the development of modern computer

networks. Multimedia systems are generally implemented in the last three layers, but
rely on the services from the underlying layers. The OSI model however has never
been fully implemented; instead, the competing and more practical TCP/IP protocol
suite has become dominating, which is also the core protocols for the transport and
network layers of today’s Internet, respectively. For the data link layer, numerous
Local Area Network (LAN) technologies have been developed and the IEEE 802
family of standards, particularly Ethernet and Wi-Fi, are dominating now.

Figure 15.1 compares the layers in the OSI model and the Internet (with TCP/IP
being the core protocol suite). Figure 15.2 shows a typical home/office network setup
nowadays, which, through an access network (ADSL or cable modem), is connected
to an Internet Service Provider (ISP). The users inside the network are then able to
access diverse multimedia services in the public Internet, and a firewall can protect
them from malicious attacks. In the following sections, we present the details of
different layers that are involved in such a networked system for multimedia com-
munications.

15.2 Local Area Network and Access Networks

For home or office users, the networks of direct use is generally a LAN, which is
restricted to a small geographical area, usually for a relatively small number of
stations. The physical links that connect an end system inside a LAN toward the
external Internet is referred to as the Access Network. It is also known as the “last
mile” for delivering network services.

15.2 Local Area Network and Access Networks 487

Physical

Transport

Application

Internet

Network access
(LLC and MAC)

TCP (connection-oriented)
UDP (connectionless)

IPv4, IPv6, RSVP

X.25, Ethernet, Token ring,
FDDI, PPP/SLIP, etc.

FTP, Telnet, SMTP/MIME
HTTP, SNMP, etc.

10/100Base-T, 1000Base-T,
Fibre Channel, etc.

TCP / IP

Application

Presentation

Session

Network

Data link

Physical

Transport

OSI

Fig. 15.1 Comparison of OSI and TCP/IP protocol architectures and sample protocols

To ISP

Cable/ADSL
modem

Router/Switch Firewall

Ethernet

Wireless
Access
Point

Fig. 15.2 A typical home/office network setup

In this section, we describe the LAN services and representative wired LAN
technologies, in particular, Ethernet. We then describe the typical network access
technologies, including dialup, Digital Subscribe Line (DSL), Cable Networks, and
Fiber-To-The-Home (FTTH), and their support to multimedia services.

15.2.1 LAN Standards

The IEEE 802 committee developed the IEEE 802 reference model for LANs, with
a focus on the lower layers, namely, the Physical and the Data Link layers [5]. In
particular, the Data Link layer’s functionality is enhanced, and the layer has been
divided into two sublayers:

488 15 Network Services and Protocols for Multimedia Communications

• Medium Access Control (MAC) layer This sublayer assembles or disassembles
frames upon transmission or reception, performs addressing and error correction,
and regulates access control to a shared physical medium.

• Logical Link Control (LLC) layer This sublayer performs flow and error control
and MAC-layer addressing. It also acts as an interface to higher layers. LLC is
above MAC in the hierarchy.

Following are some of the important IEEE 802 subcommittees and the areas they
define:
• 802.1 (Higher Layer LAN Protocols) It concerns the overall 802 LAN architec-

ture, the relationship between the 802.X standards and wide area networks (WAN),
as well as the interconnection, security, and management of LANs.

• 802.2 (LLC) The general standard for LLC, which provides a uniform interface
to upper layer protocols, masking the differences of various 802.X MAC layer
implementations.

• 802.3 (Ethernet) It defines the physical layer and the data link layer’s MAC of
the wired Ethernet, in particular the CSMA/CD method.

• 802.11 (Wireless LAN) It defines the medium access method and physical layer
specifications for wireless LAN (WLAN, also known as Wi-Fi).

• 802.16 (Broadband wireless) It defines the access method and physical layer
specifications for broadband wireless networks. One commercialized product is
WiMAX (Worldwide Interoperability for Microwave Access), which targets the
delivery of last mile wireless broadband access as an alternative to cable and DSL.
We next detail the Ethernet technology, which has become the de facto standard

of wired LAN. We will describe wireless LAN technologies in Chap. 17.

15.2.2 Ethernet Technology

Ethernet is a LAN technology initially developed at Xerox PARC in 1970s [6]. It
was inspired by ALOHAnet, an earlier random access network, and the idea was first
documented in a memo by Robert Metcalfe. Ethernet was commercially introduced in
1980 and standardized in 1985 as IEEE 802.3. It soon defeated many other competing
wired LAN technologies and has since become dominating in the market.

The basic Ethernet uses a shared bus. Each Ethernet station is given a 48-bit MAC
address. The MAC addresses are used to specify both the destination and the source
of each data packet, referred to as a frame. Figure 15.3 shows a typical Ethernet frame
structure, which begins with a preamble and a start of frame delimiter, followed by an
Ethernet header featuring source and destination MAC addresses. The middle section
of the frame consists of the payload data including any headers for other protocols
(e.g., IP) carried in the frame. The frame ends with a 32-bit cyclic redundancy check
(CRC, see Chap. 17), which is used to detect data corruption in transit.

To send a frame, the recipient’s Ethernet address is attached to the frame, which
is then broadcast to everyone on the bus. On reception of a transmission, the receiver
uses the destination address to determine whether the transmission is relevant to
the station or should be ignored. Only the designated station will accept the frame,

http://dx.doi.org/10.1007/978-3-319-05290-8_17
http://dx.doi.org/10.1007/978-3-319-05290-8_17

15.2 Local Area Network and Access Networks 489

Preamble
7 bytes

Start of Frame Delimiter
1 bytes

MAC destination
6 bytes

MAC source
6 bytes

Type or Length
2 bytes

Payload Data
46-1500 bytes

CRC
4 bytes

Fig. 15.3 Ethernet frame structure

while others will ignore it. Note that, if two stations send frames simultaneously, a
collision can happen. The problem is solved by Carrier Sense Multiple Access with
Collision Detection (CSMA/CD) in MAC. With CSMA/CD, a station that wishes to
send a frame must first listen to the network (i.e., carrier sensing), wait until there
is no traffic, and then send the frame. Obviously, multiple stations could be waiting
and then send their messages at the same time, causing a collision. During frame
transmission, the station compares the signal received with the one sent. If they are
different, it detects a collision. Once a collision is detected, the station stops sending
the frame, and the frame is retransmitted after a random delay.

For a LAN with multiple stations, often a star topology is used, in which each
station is connected directly to a hub (and recently a switch). The hub is an active
device and acts as a repeater. Every time it receives a signal from one station, it repeats,
so other stations will hear. Logically, this is still a bus, although it is physically a star
network.

The maximum data rate for the early Ethernet is 10 Mbps, using unshielded twisted
pairs. In its long life span, the Ethernet’s physical layer has encompassed coaxial,
twisted pair and fiber optic physical media interfaces and speeds from 10 to 100 Gbps.
Fast Ethernet like 100BASE-TX and later 1000BASE-T run at 100 Mbps and 1 Gbps,
respectively. Recent fiber optic variants of Ethernet offer even higher performance,
electrical isolation and distance (tens of kilometers with some versions).

The link layer has also evolved to meet new bandwidth and market requirements.
In 1989, Ethernet switch was introduced, which works differently from an Ethernet
hub — in a switch, only the header of an incoming packet will be examined before it is
either dropped or forwarded to another segment. This greatly reduces the forwarding
latency and the processing load. The switched Ethernet has since been replacing the
non-switched Ethernet given its bandwidth advantages, the improved isolation of
devices from each other, and the ability to easily mix devices of different speeds.

These different generations of Ethernet technologies largely retain the same net-
work protocol stack and interfaces and are therefore able to inter-connect and inter-
operate. This is also a key reason for Ethernet’s success, as opposed to other ad hoc
or inflexible LAN technologies.

15.2.3 Access Network Technologies

An access network bridges the LAN in a home or office to the external Internet. To
save cost for laying a new network line, an existing network that is already in the
home is often used, in particular, the telephone or cable TV networks. Direct fiber
optics connections have been popular nowadays for new buildings.

490 15 Network Services and Protocols for Multimedia Communications

Dial-Up and Integrated Services Digital Network

Since the Public Switched Telephone Network (PSTN) is widely available in residen-
tial homes and offices, the very earlier Internet accesses are often using the telephone
line to establish a dialed connection to an ISP. Note that the traditional telephone
lines carry analog voice signal only. To transmit digital data, a modem (modulator-
demodulator) is needed between the computer and the telephone jack to modulate
an analog carrier signal to encode digital information, and also demodulate a carrier
signal to decode the transmitted information.

Dial-up requires time to establish a telephone connection (up to several seconds,
depending on the location) and perform configuration for protocol synchronization
before data transfers can take place. In locales with telephone connection charges,
each connection incurs an incremental cost. If the calls are time-metered, the duration
of the connection incurs costs, too.

Modern dial-up modems typically have a maximum theoretical transfer speed of
56 kbps (kilobits per second) (using the V.90 or V.92 protocol), although in most
cases 40–50 kbps is the norm. The connections usually have a latency as high as
300 ms or even more. Factors such as phone line noise as well as the quality of the
modem itself play a large part in determining the connection speeds and delays. The
low speed and relatively high delay make dial-up generally unsuitable for multimedia
applications.

To overcome these limits, in the 1980s, the International Telecommunication
Union (ITU) started to develop the Integrated Service Digital Network (ISDN) to
meet the needs of various digital services in which digital data, voice, and sometimes
video (e.g., in videoconferencing) can be transmitted [7].

The earlier Narrowband ISDN (N-ISDN) typically provides a maximum of
128 kbps in both upstream and downstream directions. This relatively slow data rate,
albeit higher than dial-up, can hardly provide quality multimedia services. The ITU-
T has subsequently developed Broadband ISDN (B-ISDN). Two types of interfaces
were available to users, depending on the data and subscription rates:
• Basic Rate Interface (BRI) provides two bearer channels (B-channels) for carry-

ing data content, each at 64 kbps, and one data channel (D-channel) for signaling
at 16 kbps. The total of 144 kbps (64×2+16) is multiplexed and transmitted over
a 192 kbps link.

• Primary Rate Interface (PRI) provides 23 B-channels and one D-channel, all
at 64 kbps, in North America and Japan; 30 B-channels and two D-channels, all
at 64 kbps, in Europe. The 23B and 1D fit in an industrial standard T1 carrier
nicely, because T1 has 24 time slots and a data rate of 24 slots × 64 kbps/slot ≈
1,544 kbps; whereas the 30B and 2D fit in a standard E1 carrier, which has 32
time slots (30 of them available for user channels) and a data rate of 32 × 64 =
2,048 kbps.

15.2 Local Area Network and Access Networks 491

Table 15.1 Maximum
distances for DSL using
Twisted-Pair Copper Wires

Data rate (Mbps) Wire size (mm) Distance (km)

1.544 0.5 5.5
1.544 0.4 4.6
6.1 0.5 3.7
6.1 0.4 2.7

Digital Subscriber Line

DSL is the telephone industry’s newer answer to the last mile challenge, which again
makes use of existing telephone’s twisted-pair wires to transmit modulated digital
data signal [8]. Unlike traditional dial-up modems, which modulate bits into signals
in the 300–3400 Hz baseband (voice service), DSL modems modulate frequencies
from 4000 to 1 MHz (and as high as 4 MHz), using Quadrature Amplitude Modu-
lation (QAM). DSL employs highly complex digital signal processing algorithms
to overcome the inherent limitations of the existing twisted pair wires. Till the late
1990s, the cost of such processors remained prohibitively high, but the later advances
in the chip design and manufacturing have made them affordable.

One important technology is Discrete Multi-Tone (DMT), which, for better trans-
mission in potentially noisy channels (either downstream or upstream), sends test
signals to all subchannels first. It then calculates the signal-to-noise ratio (SNR),
to dynamically determine the amount of data to be sent in each subchannel. The
higher the SNR, the more data sent. Theoretically, 256 downstream subchannels,
each capable of carrying over 60 kbps, will generate a data rate of more than 15
Mbps. In reality, DMT delivers 1.5–9 Mbps under the current implementation.

DSL uses FDM (Frequency Division Multiplexing) to multiplex three channels:
• The high-speed (1.5–9 Mbps) downstream channel at the high end of the spectrum.
• A medium speed (16–640 kbps) duplex channel.
• A voice channel for telephone calls at the low end (0–4 kHz) of the spectrum.

The three channels can themselves be further divided into 4 kHz subchannels (e.g.,
256 subchannels for the downstream channel). The multiplexing scheme among these
subchannels is also FDM. Because signals (especially the higher-frequency signals
near or at 1 MHz) attenuate quickly on twisted-pair lines, and noise increases with
line length, even with DMT, the SNR will drop to an unacceptable level after a certain
distance. DSL thus has the distance limitations shown in Table 15.1 when using only
ordinary twisted-pair copper wires.

Table 15.2 shows the evolution of various digital subscriber lines (xDSL). HDSL
was an effort to deliver the T1 (or E1) data rate within a low bandwidth (196 kHz).
However, it requires two twisted pairs for 1.544 Mbps or three twisted pairs for
2.048 Mbps. SDSL provides the same service as HDSL on a single twisted-pair line.
VDSL is a standard that is still actively evolving and forms the future of xDSL. To
date, ADSL (Asymmetrical DSL) is most widely used, which adopts a higher data
rate downstream (from network to subscriber) and lower data rate upstream (from

492 15 Network Services and Protocols for Multimedia Communications

Table 15.2 Different types
of Digital Subscriber
Lines

Name Meaning Data rate Mode

HDSL High data rate 1.544 Mbps Duplex
digital subscriber line or 2.048 Mbps

SDSL Single line 1.544 Mbps Duplex
digital subscriber line or 2.048 Mbps

ADSL Asymmetric 1.5 to 9 Mbps Down
digital subscriber line 16–640 kbps up

VDSL Very high data rate 13 to 52 Mbps Down
digital subscriber line 1.5–2.3 Mbps up

subscriber to network). This asymmetric downstream and upstream bandwidth share
well matches the traffic patterns of traditional client/server-based applications, e.g.,
the Web, but can have problems with such modern applications as BitTorrent peer-
to-peer file sharing or two-way interactive voice or video conversation.

Hybrid Fiber-Coaxial Cable Networks

Besides telephone lines, another network access that is readily available in many
homes is the Cable TV network. In such a network, optical fibers connect the core
network with Optical Network Units (ONUs) in the neighborhood, each of which
typically serves a few hundred homes through shared coaxial cables.

A cable modem can be used to provides bi-directional data communication via
radio frequency channels on this Hybrid Fiber-Coaxial (HFC) network. Conform-
ing to the Ethernet standard (with some modifications), it bridges Ethernet frames
between the home LAN and the cable network. Technically, it modulates data to
transmit it over the cable network, and demodulates data from the cable network to
receive it.

Traditionally, analog cable TV was allocated a frequency range of 50–500 MHz,
divided into 6 MHz channels for NTSC TV in North America and 8 MHz channels
in Europe. For HFC cable networks, the downstream is allocated a frequency range
of 450–750 MHz, and the upstream is allocated a range of 5–42 MHz. For the down-
stream, a cable modem acts as a tuner to capture the QAM modulated digital stream.
The upstream uses Quadrature Phase-Shift Keying (QPSK) [2] modulation, which
is more robust in the noisy and congested frequency spectrum.

The peak connection speed of a cable modem can be up to 30 Mbps, which is faster
than most DSL accesses that are up to 10 Mbps. VDSL can match this performance,
though has not been widely offered by ISPs. It is however worth noting that the cable
Internet access is shared among many neighboring homes, while the DSL based on
a telephone line is dedicated. The cable service can slow down significantly if many
people in the neighborhood access the Internet simultaneously. As such, in practice,
cable’s speed advantage over DSL is much less than the theoretical numbers suggest.

15.2 Local Area Network and Access Networks 493

In addition, both cable modem and DSL performance vary from one minute to the
next depending on the pattern of use and traffic on the Internet, and DSL and cable
service providers often implement so-called “speed caps” that limit the bandwidth
or total monthly data of their services.

In most areas, both DSL and cable accesses are available, although some areas
may have only one choice. These two technologies have dominated home Internet
access around the world, and have very similar market shares. The competition is
very tough, and they both try to provide better and richer services, particularly for
multimedia applications. For example, with the advent of Voice over Internet Protocol
(VoIP) telephony, cable modems have been extended to provide telephone service
through Skype or even landline services, allowing customers who purchase the cable
TV service to eliminate their plain old telephone service. On the other hand, many
telephone companies are offering digital TV services through their networks, too. The
convergency has made the triple play business model possible, that is, over a single
broadband connection, provisioning two bandwidth-intensive services, high-speed
Internet access and television, and the latency-sensitive telephone.

Fiber-To-The-Home or Neighborhood

Optical fibers can be laid to connect home networks to the core network directly. It
replaces all or part of the conventional metal local loop used for last-mile accesses,
providing the highest bandwidth. For example, a 155 Mbps downstream can reach
each of four homes through multiplexing over a 622 Mbps downstream that can be
easily attained by a single fiber.

Since existing homes generally have only twisted pairs and/or coaxial cables, the
implementation cost of Fiber-To-The-Home (FTTH) will be high, but many new
high-rise buildings have already had built-in fiber accesses. Alternatively, the fiber
can reach a node first (Fiber-To-The-Node or Neighborhood, FTTN) and then the
nearby home users connect to this cabinet using traditional coaxial cable or twisted-
pair wiring. The area served by the cabinet is usually less than one mile in radius
and can contain several hundred customers.

Such fiber-based accesses are considered to be “future-proof” because the data
rate of a connection is now only limited by the terminal equipment rather than the
fiber, permitting long-term speed improvements by equipment upgrades before the
fiber itself must be upgraded. It also offers good support for high-quality multimedia
services.

For example, AT&T offers an all fiber optic network under the name of
“U-verse”. It uses fiber optic connections to boxes either within a neighborhood or at
each home’s network interface device. From a neighborhood node, high-speed DSL
with ADSL2+ or VDSL technology are used to reach to the customers’ premises.
Table 15.3 shows the Internet connection speed of the U-verse, which can largely
remove the last-mile bottleneck for multimedia distribution to home users.

Another example is Google Fiber, which provides Internet connection speeds
around 1 Gbps (gigabit per second) for both download and upload, which is

494 15 Network Services and Protocols for Multimedia Communications

Table 15.3 Connection speeds and services of U-verse

Max turbo Max plus Max Elite Pro

Downstream speed up to 24 Mbps 18 Mbps 12 Mbps 6 Mbps 3 Mbps
Best choice for:

Video chat
√

Online gaming
√ √

Streaming SD video
√ √

Downloading movies
√ √ √

Emailing large files
√ √ √

Watching video clips
√ √ √ √

Online meetings
√ √ √ √

Music downloading and streaming
√ √ √ √ √

Sharing photos
√ √ √ √ √

Social networking
√ √ √ √ √

Web surfing and emailing
√ √ √ √ √

sufficiently high for any type of home-based application nowadays or in the fore-
seeable future. Like U-verse, the high-speed connections of Google Fiber also make
rich multimedia services beyond the basic data plans possible; these include 1 TB
(terabyte, or 1012 bytes) of Google Drive service and television service with a 2 TB
DVR recorder that will record up to eight live television shows simultaneously.

15.3 Internet Technologies and Protocols

Through the access networks, the home and office users are connected to the exter-
nal wide area Internet. The TCP/IP protocol suite plays the key roles in the Internet,
interconnecting diverse underlying networks and serving diverse upper-layer appli-
cations (see Fig. 15.1). For this reason, it is also known as the “narrow waist” of the
Internet. TCP/IP were indeed developed before OSI, and have become the de facto
standard for internetworking after their adoption by the Internet.

The Internet Engineering Task Force (IETF) and the Internet Society are the
principal technical development and standard-setting bodies for the Internet. They
publish Request for Comments (RFCs) that are authored by network engineers and
scientists in the form of a memorandum describing methods, behaviors, research, or
innovations applicable to the working of the Internet and networked systems.

15.3 Internet Technologies and Protocols 495

15.3.1 Network Layer: IP

The network layer provides two basic services: packet addressing and packet for-
warding. Point-to-point data transmission is readily supported within any LANs,
and in fact, the LANs usually support broadcast. For a network-layer packet to
be transmitted across different LANs or a WAN , routers are employed, which are
network-layer devices that receive and forward packets according to their destination
addresses. The forwarding is guided by routing tables that are collectively built and
updated by the routers using routing protocols.

There are two common ways to move data through a network of links and routers,
namely circuit switching and packet switching.
• Circuit Switching The PSTN (Public Switched Telephone Network) is a good

example of circuit switching, in which an end-to-end circuit must be established,
which is dedicated for the duration of the connection at a guaranteed bandwidth.
Although initially designed for voice communications, it was also used for data
transmission in earlier ISDN networks.
Circuit switching is preferable if the user demands a connection and/or more or less
constant data rates, as in traditional voice communications and certain constant bit
rate (CBR) video communications. The establishment and maintenance of a circuit
however can be costly, and for general data transfer of variable (sometimes bursty)
rates, it can be inefficient given that the circuit and its resources are exclusively
reserved.

• Packet Switching Packet switching is used for many modern data networks,
particularly today’s Internet, in which data rates tend to be variable and sometimes
bursty. Before transmission, data is broken into small packets, usually 1,000 bytes
or less. The header of each packet carries necessary control information, such as
the destination address, and the routers will examine the header of each individual
packet and make individual forward decisions.
Compared to circuit switching, the implementation of packet switching is simpler
and, because the resources (e.g., bandwidth) are not exclusively reserved but shared
among the packets, the network utilization can be much higher. This does come at
a cost. Without a dedicated circuit, store-and-forward transmission is commonly
used in a packet-switched network, which means that a packet must be received
entirely and inspected before it is forwarded to the next hop. In addition to this
store-and-forward delay, packets can suffer from queuing delay because if too
many packets arrive, they need to be queued in a buffer of the router before they
can be forwarded. If the buffer overflows when the link is severely congested,
packet loss can happen.
For packet switching, two approaches are available to switch and route the packets:

datagram and virtual circuit. In the former, each packet is treated independently, and
no specific route is predetermined prior to the transmission; hence, the packets may
be unknowingly lost or arrive out of order. It is up to the receiving station to detect
and recover the errors and rearrange the packets, say using Transmission Control
Protocol (TCP) in the transport layer as we will see in the next section.

496 15 Network Services and Protocols for Multimedia Communications

In virtual circuits, a route is predetermined through request and accept by all nodes
along the route. It is a “circuit” because the route is fixed (once negotiated) and used
for the duration of the connection; nonetheless, it is “virtual” because the “circuit” is
only logical and not dedicated as in the true circuit switching. Sequencing (ordering
the packets) is much easier in virtual circuits, and resources could be reserved along
the virtual circuit too, providing guaranteed services.

The virtual circuit solution is seemingly more sophisticated and was considered
as the technology for ensuring quality multimedia communications. A representative
virtual-circuit network is ATM (Asynchronous Transfer Mode) [9], which was once
believed to be a promising solution replacing the datagram-based Internet, moving
toward better network traffic control and delivery, especially for multimedia content.
It is however more complicated to implement, particularly for WANs, and the Internet
Protocol (IP) (RFC 791, 2460) remains based on datagram, which means that it
provides only a Best Effort service with no bandwidth, reliability, or delay guarantee.

As a datagram service, IP is connectionless and provides no end-to-end control.
Every packet is treated separately and is not related to past or future packets. Hence,
the packets can be received out of order and can also be dropped or duplicated.
Packet fragmentation can also happen when a packet has to travel over a network
that accepts only packets of a smaller size. In this case, the IP packets are split into
the required smaller size, sent over the network to the next hop, and reassembled and
resequenced afterwards.

Each router maintains a routing table, which identifies for each packet the next
hop that it should travel toward the destination. The routing tables are periodically
updated through routing protocols with network topology information exchanged
among the routers. The Internet is a loosely hierarchical network that is divided into
a number of Autonomous Systems (ASes), each of which has one or more gateways
for the nodes within the AS to communicate with those outside. Typical routing
protocols within an AS include OSPF (Open Shortest Path First) and RIP (Routing
Information Protocol), and among the gateways, the Border Gateway Protocol (BGP)
has been widely used.

The IP protocol also provides global addressing of computers across all inter-
connected networks, where every networked device is assigned a globally unique IP
address. Application layer identifications, e.g., the URL (Uniform Resource Locator)
of a server or client, can be mapped to the IP address of the server or client through the
Domain Name System (DNS). In the current IPv4 (IP version 4) (see Fig. 15.4), the IP
addresses are 32-bit numbers, usually specified using a dotted decimal notation. As
an example, the web server of the authors’ institution has a URL of http://www.sfu.ca
and its IP address is 142.58.102.68 (=10001110 00111010 01100110 01000100 in
binary format).

15.3.2 Transport Layer:TCP and UDP

The Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) are
two transport layer protocols used in the Internet to facilitate host-to-host (or end-
to-end) communications.

15.3 Internet Technologies and Protocols 497

htgneLlatoTnoisreV

Identification

0 4 8 12 16 20 24 28 31

Flags

lebaLwolFnoisreV

Payload Length

0 4 8 12 16 20 24 28 31

Next Header

IHL DSCP ECN

Fragment Offset

Time To Live Protocol Header Checksum

Source IP Address

Destination IP Address

Options (if IHL > 5)

Bit

(a)

(b)

0

32

64

96

128

160

Traffic Class

Hop Limit

Bit

0

32

64

96

128

160

192

224

256

288

Source Address

Destination Address

Fig. 15.4 Packet formats of IPv4 and IPv6 a IPv4 packet format b IPv6 packet format

Transmission Control Protocol

TCP (RFC 675, 793, 1122, 2581, 5681) offers a reliable byte pipe for sending and
receiving of application messages between two computers, regardless of the specific
types of applications. It relies on the IP layer for delivering the data to the destination
computer specified by its IP address.

TCP is connection-oriented: a connection must be established through a 3-way
handshake before the two ends can start communicating. For every TCP connec-
tion, both communicating ends allocate a buffer called a window to receive and send
data. Flow control is established by only sending data in the window to the desti-

498 15 Network Services and Protocols for Multimedia Communications

Destination PortSource Port

Sequence Number

Acknowledgement number (if ACK set)

Checksum Urgent pointer (if URG set)

Window Size
Data
offset

Reserved Flags

Option (if any)

0 4 8 12 16 20 24 28 31

Fig. 15.5 Header format of a TCP packet

nation without overflowing its window. Since multiple application processes may
use TCP/IP within one computer and a process may also establish multiple network
connections, multiplexing/demultiplexing is needed by identifying connections using
port numbers.

To ensure reliable transfer, TCP offers such services as message packetizing,
error detection, retransmission, and packet resequencing. Each TCP datagram header
contains the source and destination ports, sequence number, checksum, window field,
acknowledgment number, and other fields, as illustrated in Fig. 15.5.
• The source and destination ports, together with the source and destination IP

addresses in the network layer, are used for the source process to know where to
deliver the message and for the destination process to know where to reply to the
message. This 4-tuple ensures that a packet is delivered to a unique application
process running in a particular computer. The port numbers range from 0 to 65535,
and typical well-known port numbers include 80 for Web (HTTP), 25 for email
(SMTP), and 20/21 for FTP, to name but a few.

• As packets travel across the IP network, they can arrive out of order (by following
different paths), be lost, or be duplicated. A sequence number reorders the arriving
packets and detects whether any are missing. The sequence number is actually the
byte count of the first data byte of the packet rather than a serial number for the
packet.

• The checksum verifies with a high degree of certainty that the packet arrived
undamaged, in the presence of channel errors. If the calculated checksum for the
received packet does not match the transmitted one, the packet will be discarded and
a retransmission will later be invoked. Details about Internet checksum calculation
can be found at Sect. 17.3.1.

• The window field specifies how many bytes the destination’s buffer can currently
accommodate. This is typically sent with acknowledgment packets.

• Acknowledgment (ACK) packets have the ACK number specified — the number of
bytes correctly received so far in sequence (corresponding to a sequence number
of the first missing packet).

http://dx.doi.org/10.1007/978-3-319-05290-8_17

15.3 Internet Technologies and Protocols 499

Fig. 15.6 Sawtooth behavior
in TCP data transfer

Time

W
in

do
w

 S
iz

e

Bulk Data Transfer

The source process sends packets to the destination process up to the window
number and waits for ACKs before sending any more data. The ACK packet will
arrive with the new window number information to indicate how much more data
the destination buffer can receive. If an ACK packet is not received in a small time
interval, specified by retransmission timeout (RTO), the packet will be resent from
the local window buffer.

TCP also implements a congestion control mechanism in response to network
congestion, which can be observed by packet losses. TCP evolves over time with
changes in different parts, particulary the congestion control algorithm. Reno, new
Reno, and Sack are commonly used versions, all of which are mainly based on
an Additive Increase and Multiplicative Decrease (AIMD) mechanism; that is, the
sending rate, controlled by a sliding window, increases linearly when there is no
congestion, but exponentially decreases when there is a packet loss, which indicates
a potential congestion in the network.

The window-based AIMD has proven to be fair, robust, and efficient for multiple
TCP flows competing for network resources; yet the variation of its transmission
rate can be very high, leading to a well-known sawtooth behavior. As illustrated in
Fig. 15.6, the TCP congestion window will grow linearly when there is no congestion,
e.g., from 20 bytes to 100 bytes over time, but when there is a packet loss, it can
instantly reduce to 50 bytes (half of the window size that is before congestion), and
the transmission rate is proportionally reduced too. While this is fine for general file
transmission, it can be undesirable for many multimedia streaming applications that
demand a relatively smooth transmission rate with a minimum threshold.

User Datagram Protocol

UDP (RFC 768) is connectionless with no guarantee on delivery: if a message is to
be reliably delivered, it has to be handled by its own application in the application

500 15 Network Services and Protocols for Multimedia Communications

Destination PortSource Port

Length Checksum

0 4 8 12 16 20 24 28 31

Fig. 15.7 Header format of a UDP datagram

layer. Essentially, the only thing UDP provides is multiplexing using port numbers
and error detection through a checksum. Even for multiplexing and demultiplexing,
only the destination port number is used, which is less strict than TCP’s 4-tuple
does, but on other hand, more flexible for certain applications, e.g., multi-party
audio/video conference where each participant expects to hear/see all others. In this
scenario, using TCP’s multiplexing/demultiplexing will require a connection to be
established between every sender and receiver, which is simply too high a cost with
many participants.

The UDP’s packet format is illustrated in Fig. 15.7, whose header is of 8 bytes only,
considerably shorter than that of TCP (20 bytes without option). Such a difference
can be significant in many multimedia applications. For example, consider sending
64 kbps PCM-encoded voice, if the data chunks are collected every 20 ms, then each
chunk is of 160 bytes. The header overhead of TCP is thus 12.5 % and that of UDP
is only 5 %, not to mention there are header overhead in other layers.

Given the low header overhead and the removal of connection setup, UDP data
transmission can be faster than TCP. It is however unreliable, especially in a congested
network. Higher level protocols can be used for retransmission, flow control, and
congestion avoidance, and more realistically error concealment must be explored
for acceptable Quality of Service (QoS).

TCP-Friendly Rate Control

Note that the sawtooth behavior of the window-based TCP congestion control is not
well suited for media streaming, but an uncontrolled UDP flow can be too aggressive,
which interferes other flows, and easily starves an adaptive TCP flow competing for
bandwidth. To avoid this, TCP-FRiendly Rate Control (TFRC) (RFC 5348) has been
introduced, which ensures a UDP flow to be reasonably fair when competing for
bandwidth with TCP flows, where “reasonable” means its sending rate is within a
factor of two of the sending rate of a TCP flow under the same conditions, i.e., as if
the TCP flow is running over the same end-to-end path.

TFRC is generally implemented by estimating the equivalent TCP throughput over
the same path using parameters that are observable by the sender or the receiver. RFC
5348 suggests the following equation for X Bps , TCP’s average sending rate in bytes
per second:

X Bps = s

R × √
2 × b × p/3 + (tRT O × (3 × √

3 × b × p/8 × p × (1 + 32 × p2)))

15.3 Internet Technologies and Protocols 501

where s is the segment size in bytes (excluding IP and transport protocol headers),
R is the round-trip time (RTT) in seconds, p is the loss event rate (between 0 and
1.0) of the number of loss events as a fraction of the number of packets transmitted,
tRT O is the TCP retransmission timeout value in seconds, and b is the maximum
number of packets acknowledged by a single TCP acknowledgement.

Typically, tRT O is set to 4R and b = 1. The TCP throughput equation can then
be simplified as:

X Bps =
s

R × (
√

2 × p/3 + 12 × √
3 × p/8 × p × (1 + 32 × p2))

The parameters in the above equations are all known by the sender or can be
estimated by the receiver and then feedback to the sender. The sender can then
calculate the equivalent TCP throughput and accordingly control the sending rate of
the UDP flow. TFRC co-exists well with TCP and other TFRC flows, but has a much
lower variation of throughput over time compared with TCP, which makes it more
suitable for media data with constant encoding rate, e.g., voice or CBR video, where
a relatively smooth sending rate is a best match.

15.3.3 Network Address Translation and Firewall

The 32-bit IPv4 addressing in principle allows 232 ≈ 4 billion addresses, which
seemed more than adequate. In reality, however, it has already largely been exhausted.
In January 1995, IPv6 (IP version 6) was recommended as the next generation IP
(IPng) by IETF. Figure 15.4 compares the packet formats of IPv4 and IPv6. Among
the many improvements over IPv4, IPv6 adopts 128-bit addresses, allowing 2128 ≈
3.4 × 1038 addresses. It is expected to settle the problem of IP address shortage for
a long time.

Today we are still in the transition phase from IPv4 to IPv6. To solve the IPv4
address shortage, a practical solution is Network Address Translation (NAT) (RFC
4787). A NAT device, sitting behind a local private network and the external network,
separates the local hosts from the external network. Each host on the LAN is assigned
an internal IP address that cannot be accessed from the outside of the network. Instead,
they all share a single public IP address that is kept by the NAT device, which typically
maintains a dynamic NAT table that translates the addresses. To identify the multiple
hosts behind the NAT, the port number in the transport layer is used.

When a local host sends out an IP packet with the internal address and a source
port number, it goes through the NAT device, which changes the source IP address to
the NAT device’s public IP address and the source port number to a new port number
that has not been associated with the public IP address. This record is kept by the
NAT table, and an external destination host will see the public IP address and the new
port number only. When a reply IP packet comes back from the external host, the
destination address will be changed back to the internal IP address and the original
source port number according to the NAT table, and the packet is then forwarded to
the appropriate host.

502 15 Network Services and Protocols for Multimedia Communications

5 U
16.1.1.9:64398

16.1.1.9
Internet

 192.168.1.3:1001 16.1.1.9:65001

 192.168.1.15:2005 16.1.1.9:65130

 192.168.1.136:1092 16.1.1.9:64398

 192.168.1.201:3745 16.1.1.9:53927

NAT Router

Fig. 15.8 An illustration of Network Address Translation (NAT). A single IP address of the NAT-
enabled router (16.1.1.9) is effectively used by the four internal computers (on the left side) to
communicate with the outside Internet by overwriting the port numbers

An example of NAT is shown in Fig. 15.8, where the PCs in a LAN behind the
NAT device are of internal IP addresses 192.168.1.XXX, whereas the NAT device
has a single public IP address of 16.1.1.9. To communicate with external hosts,
a pair of (internal IP address : source port number) will be replaced by a pair of
(public address : new port number). For example, (192.168.1.3 : 1001) is replaced
by (16.1.1.9 : 65001), (192.168.1.15 : 2005) by (16.1.1.9 : 65130), and so on. Here the
new port numbers 65001, 65130, ... are chosen from the unused port number space
(associated with address 16.1.1.9), which in general is quite large and therefore many
internal IP addresses can be supported.

While NAT alleviates the IP address shortage problem, it imposes fundamental
restrictions on pair-wise connectivity of nodes, and may prohibit direct communica-
tion with one another. This is because it does not retain a host’s original port number.
For example, the default port number for a Web service is 80, which however can be
arbitrarily changed by the NAT device, making a Web server behind the NAT hardly
be accessible by external hosts. Whether communication is possible between two
hosts depends on such factors as the transport protocol (UDP or TCP) and whether
the hosts are located behind the same private network [10].

Similar penetration problem happens for a firewall [11], which is a software or
hardware-based network security system that controls the incoming and outgoing
network traffic based on a rule set. It has become an indispensable part for the safe
operation of today’s PCs and LANs given the vast threats from the insecure and
untrusted public Internet. Yet it can block legitimate traffic too. For example, many
firewalls blindly block any UDP-based traffic, making multimedia over UDP simply
fail.

In today’s Internet environment, over 50 % of nodes are located behind NATs
or firewalls. The connectivity constraints are a significant challenge to the viability
for multimedia content distribution mechanisms over the Internet, particularly for
peer-to-peer sharing. It is also one of the key motivations for HTTP-based streaming,
which, using only the standard Hyper Text Transfer Protocol (HTTP) transactions,

15.4 Multicast Extension 503

is capable of traversing most firewalls that let through the standard Web traffic, as
we will see in the next chapter.

15.4 Multicast Extension

In network terminology, a broadcast message is sent to all nodes in a domain, a
unicast message is sent to only one node, and a multicast message is sent to a set of
specified nodes.1 A large number of emerging applications, including Internet TV,
online games, and distance education, require support for broadcast or multicast, i.e.,
simultaneous content delivery to a large number of receivers [12].

The initial design of TCP/IP supports one-to-one unicast communication only.
Broadcast service is readily available in many LANs and also satellite-based net-
works; it is however simply not doable in the global Internet because it will cause
a storm of data forward. Instead, multicast should be used. In the Internet envi-
ronment, the primary issue for multicast is to determine at which layer it should
be implemented. According to the end-to-end argument,2 a functionality should be
(1) pushed to higher layers if possible, unless (2) implementing it at the lower layer
can achieve significant performance benefits that outweigh the cost of additional
complexity. These two considerations can be conflicting for multicast and, in the
past two decades, significant effort has been put to reconcile them, leading to multi-
cast implementations in different layers.

15.4.1 Router-Based Architectures: IP Multicast

In his seminal work in 1989 [14], Deering argued that the second consideration should
prevail and multicast should be implemented at the network layer. This view was
widely accepted and, for much of the 1990s, the research and industrial community
mainly focused on the router-based IP Multicast architecture, which was defined in
RFC 1112 and was augmented in RFC 4604 and 5771.

IP multicast has open anonymous group membership. An IP multicast group
address is used by a source (or sources for many-to-many communication) and
its receivers to send and receive multicast messages. The source does not have to
explicitly know its receivers, and a receiver can join or leave the multicast group at
will. Recall that under IPv4, IP addresses are 32 bits. If the first 4 bits are 1110, the

1 IPv6 also allows anycast, whereby the message is sent to any one of the specified nodes. This is
useful for such services as selection from a cluster of server replicas.
2 The end-to-end argument is a classic design principle of computer networking, first explicitly
articulated by Saltzer et al. [13] which has since become a core principle of the Internet development.
It states that application-specific functions should reside in the end hosts of a network rather than in
intermediary network nodes provided they can be implemented “completely and correctly” in the
end hosts. It ensures that the network core is simple, fast, and highly scalable.

504 15 Network Services and Protocols for Multimedia Communications

message is an IP-multicast message. It covers IP addresses ranging from 224.0.0.0
to 239.255.255.255, known as the Class D addresses. For example, if some content
is associated with group 230.0.0.1, the source will send data packets destined to
230.0.0.1. Receivers for that content will inform the network that they are interested
in receiving data packets sent to the group 230.0.0.1.

The Internet Group Management Protocol (IGMP) was designed to help the
maintenance of multicast groups. Two special types of IGMP messages are used:
Query and Report. The Query messages are multicast by routers to all local
hosts, to inquire about group membership. The Report is used to respond to a
query and to join groups. The routers periodically query group membership, and
declare themselves group members if they get a response to at least one query. If no
responses occur after a while, they declare themselves nonmembers. IGMP version
2 further enforces a lower latency, so the membership is pruned more promptly after
all members in the group leave.

Multicast routing is generally based on a shared tree: once the receivers join a
particular IP multicast group, a multicast distribution tree is constructed for that
group. For example, all data packets sent to the group 230.0.0.1 are distributed to
routers that each has at least one receiver who joined 239.0.0.1 (i.e., each with at
least one local group member), and each such router will further forward the packets
to its local receivers.

One of the first trials of IP-multicast was in March 1992, when the Internet Engi-
neering Task Force (IETF) meeting in San Diego was broadcast (audio only) on the
Internet. Starting in the early 1990s, the Multicast Backbone (MBone) was built [15]
and used for multicast services on the Internet [16,17]. Earlier applications, mostly
multimedia-based, include vat for audio conferencing,vic and nv for video con-
ferencing. Other application tools include wb for whiteboards in shared workspace
and sdr for maintaining session directories on MBone.

Since many routers do not support multicast, MBone uses a subnetwork of routers
(mrouters) that support multicast to forward multicast packets. As Fig. 15.9 shows,
the mrouters, each being responsible for a local region (or so-called island), are
connected with tunnels. Multicast packets are encapsulated inside regular IP packets
for “tunneling”, so that they can be sent to the destination through the islands.

IP multicast is a loosely coupled model that reflects the basic design principles
of the Internet. It retains the IP interface, and introduces the concept of open and
dynamic groups, which greatly inspires later proposals. Given that the network topol-
ogy is best-known in the network layer, multicast routing in this layer is also the most
efficient. It remains a best-effort service, and attempts to conform to the traditional
separation of routing and transport that has worked well in the unicast context. How-
ever, providing higher level features such as error, flow, and congestion control has
been shown to be more difficult than in the unicast case. In general, UDP (not TCP)
is used in conjunction with IP multicast, so as to avoid too many ACKs from TCP
receivers. For reliable file sharing or replication, reliable multicast transport pro-
tocols [18,19] need to be implemented on top of UDP. For continuous streaming
media, network and user heterogeneity should be accommodated, and for Video-on-
Demand (VoD), asynchronous requests from subscribed users should be accommo-

15.4 Multicast Extension 505

Tunnel

Tunnel Tunnel

MRouter

Router

MRouter

Router

Router

Router Router

MRouter

UserUserUser

User

User

User

Fig. 15.9 Tunnels for IP Multicast in MBone

dated. These are not readily solved in IP mulitcast/UDP, either, and we will introduce
solutions in the transport and application layers in the following sections and also
the next chapter.

15.4.2 Non Router-BasedMulticast Architectures

Today’s IP multicast deployment remains limited in reach and scope. IP multicast
calls for changes at the infrastructure level, i.e., in network routers. This intro-
duces high complexity and serious scaling constraints. The flat topology of MBone,
which has approximately 10,000 routes, is generally non-scalable [20]. The tunnel
management is also very ineffective, that is, tunnels connecting islands can hardly be
optimally allocated. Sometimes multiple tunnels are created over a single physical
link, causing congestion. Beside technical obstacles, there are also economic and

506 15 Network Services and Protocols for Multimedia Communications

political concerns; in particular, there is a lack of incentive for network operators to
install multicast-capable routers and to carry multicast traffic.

The placement of the multicast functionality was revisited in the late 1990s;
researchers started to advocate moving multicast functionality away from routers
towards end systems [21]. In these approaches, multicast related features, such as
group membership, multicast routing and packet duplication, are implemented at end
systems, assuming only unicast IP service. The end systems participate in multicast
communication via an overlay network, in the sense that each of its edges corresponds
to a unicast path between two nodes in the underlying Internet.

Moving multicast functionality to end systems has the potential to address many of
the problems associated with IP multicast. Since all packets are transmitted as unicast
packets, deployment is easier and hence accelerated. Solutions for supporting higher
layer features can be significantly simplified by leveraging well understood unicast
solutions, and by exploiting application-specific intelligence.

Given that nonrouter-based architectures push functionality to the network edges,
there are several choices in instantiating such an architecture. On the one end of the
spectrum is an infrastructure-centric architecture, where an organization that pro-
vides value-added services deploys proxies at strategic locations on the Internet. The
end systems attach themselves to nearby proxies, and receive data using plain unicast.
Such an approach is also commonly referred to as Content Distribution Networks
(CDNs), and has been employed by companies such as Akamai. On the other end
of the spectrum is a purely application end-point architecture, where functionality
is pushed to the users (know as peers) actually participating in a multicast session.
Administration, maintenance, responsibility for the operation of such a peer-to-peer
system are distributed among the users, instead of being handled by a single entity.

While the application layer solutions have the promise to enable ubiquitous
deployment, they often involve a wide range of autonomous users that may not
provide as good performance and easily fail or leave at will. It is impossible to com-
pletely prevent multiple overlay edges from traversing the same physical link and
thus some redundant traffic on physical links is unavoidable. Thus, the key challenge
for application end-point architectures is to function, scale and self-organize with
a highly transient population of users, without the need of a central server and the
associated management overhead.

In the next chapter, we will detail the large-scale multimedia content distribu-
tion mechanisms over CDN, application-layer multicast, and general peer-to-peer
networks.

15.5 Quality-of-Service for Multimedia Communications

Fundamentally, multimedia network communication and traditional computer net-
work communication are similar, since they both deal with data communications.
However, challenges in multimedia network communications arise due to a series of
distinct characteristics of audio/video data:

15.5 Quality-of-Service for Multimedia Communications 507

Fig. 15.10 The bitrate over
time of an MPEG-4 video
(Star Trek, 688 × 512 frame
size)

0 20 40 60 80 100 120
0

500

1000

1500

2000

2500

Time(s)

B
itr

at
e(

kb
ps

)

• Voluminous and Continuous They demand high data rates, and often have a lower
bound to ensure continuous playback. In general, a user expects to start playing
back audio/video objects before they are fully downloaded. For this reason, they
are commonly referred to as continuous media or streaming media.

• Real-Time and Interactive They demand low startup delay and synchronization
between audio and video for “lip sync”. Interactive applications such as video
conferencing and multi-party online gaming require two-way traffic, both of the
same high demands.

• Rate fluctuation The multimedia data rates fluctuate drastically and sometimes
bursty. In VoD or VoIP , no traffic most of the time but burst to high volume.
In a variable bit rate (VBR) video, the average rate and the peak rate can differ
significantly, depending on the scene complexity. For example, Fig. 15.10 shows
the bitrate evolution of an MPEG-4 video stream, which has an average rate about
1 Mbps, but the minimum rate and maximum rate are 300 kbps and 2600 kbps,
respectively.

15.5.1 Quality of Service

QoS for multimedia data transmission depends on many parameters. We now list the
most important ones as below:
• Bandwidth A measure of transmission speed over digital links or networks, often

in kilobits per second (kbps) or megabits per second (Mbps).3 As shown before, the

3 For analog signal, the bandwidth is generally measured in hertz, as in the fields of communications
and signal processing. The network bandwidth and the frequency bandwidth can be linked by
Hartley’s Law [22], which states “that the total amount of information that can be transmitted is
proportional to frequency range transmitted and the time of the transmission.”

508 15 Network Services and Protocols for Multimedia Communications

Frame playedTime t

(a)

(b)

Fig. 15.11 Jitters in frame playback: a high jitter; b low jitter

data rate of a multimedia stream can vary dramatically, and both the average and
the peak rates should be considered when planning for bandwidth for transmission.

• Latency (maximum frame/packet delay) The maximum time needed from trans-
mission to reception, often measured in milliseconds (msec, or ms). In voice
communication, for example, when the round-trip delay exceeds 50 msec, echo
becomes a noticeable problem; when the one-way delay is longer than 250 msec,
talker overlap would occur, since each caller will talk without knowing the other
is also talking.

• Packet loss or error A measure (in percentage) of the loss- or error rate of the
packetized data transmission. The packets can get lost due to network congestion
or garbled during transmission over the physical links. They may also be delivered
late or in the wrong order. For real-time multimedia, retransmission is often unde-
sirable, and therefore alternative solutions like forward error correction (FEC),
interleaving, or error-resilient coding are to be used.
In general, for uncompressed audio/video, the desirable packet loss is<10−2 (lose
every hundredth packet, on average). When it approaches 10 %, it becomes intol-
erable. For compressed multimedia data, the desirable packet loss is less than
10−7–10−8. The error rate in modern wired communication links, in particular,
fiber-optics, can be quite low. For example, the Bit Error Rate (BER) objective
for a fiber channel is 1 in 1012 (1 bit in 1,000,000,000,000 bits). At 2 Gbps, this
equates to seven errors per hour. The BER however can be much worse in wireless
links, and is a key challenge for multimedia over wireless networks.

• Jitter (or delay jitter) A measure of smoothness (along time axis) of the
audio/video playback. Technically, jitter is related to the variance of frame/packet
delays. Figure 15.11 illustrates examples of high and low jitters in frame play-
backs. A large buffer (jitter buffer) can be used to hold enough frames to allow the
frame with the longest delay to arrive, so as to reduce playback jitter. However,
this increases the latency and may not be desirable in real-time and interactive
applications.

• Sync skew A measure of multimedia data synchronization, often measured in
milliseconds (msec). For a good lip synchronization, the limit of sync skew is ±80
msec between audio and video. In general, ±200 msec is still acceptable. For a

15.5 Quality-of-Service for Multimedia Communications 509

video with voice the limit of sync skew is 120 msec if video precedes voice and
20 msec if voice precedes video. The discrepancy is because we are used to have
sound lagging image at a distance.

Multimedia Service Classes

Unlike traditional file sharing and downloading applications that have largely uniform
demands, there is a broad spectrum of multimedia data (from audio to image to
video, and from low quality audio/video to medium quality and to high quality) and
applications (one way or two way, interactive or noninteractive, real-time or nonrea-
ltime, and etc.) . We now list a set of the typical multimedia applications of different
QoS demands:
• Two-way traffic, low latency and jitter, possibly with prioritized delivery, such as

voice telephony and video telephony.
• Two-way traffic, low loss and low latency, with prioritized delivery, such as

e-commerce applications.
• Moderate latency and jitter, strict ordering and sync. One-way traffic, such as

streaming video; or two-way interactive traffic, such as web surfing and online
gaming.

• No real-time requirement, such as downloading or transferring large files (movies).
No guarantees for transmission.
Table 15.4 lists the general bandwidth/bitrate requirement for typical multimedia

applications. Table 15.5 lists some specifications for tolerance to delay and jitter in
digital audio and video of different qualities. As can be seen, the QoS demands
of multimedia applications vary significantly, and therefore the specific application
demands must be taken into account in protocol and system design and deployment.

User Perceived QoS

Although QoS is commonly measured by the above technical parameters, it itself is a
“collective effect of service performances that determine the degree of satisfaction of
the user of that service,” as defined by the International Telecommunications Union
(ITU). In other words, it has everything to do with how an user perceives it, which
is particularly true for services that involve multiple media and their interactions.

Together with the perceptual nonuniformity we have studied in previous chapters,
many issues of perception can be exploited in achieving the best perceived QoS
in networked multimedia. For example, in real-time multimedia, regularity is more
important than latency (i.e., jitter and quality fluctuation are more annoying than
slightly longer waiting), and temporal correctness is more important than the sound
and picture quality (i.e., ordering and synchronization of audio and video are of
primary importance). Humans also tend to focus on one subject at a time; a user’s
focus is usually at the center of a screen, and it takes time to refocus, especially after
a scene change.

510 15 Network Services and Protocols for Multimedia Communications

Table 15.4 Requirement on
network bandwidth/bitrate Application Speed requirement

Telephone 16 kbps
Audio conferencing 32 kbps
CD-quality audio 128–192 kbps
Digital music (QoS) 64–640 kbps
H. 261 64–2 Mbps
H. 263 <64 kbps
H. 264 1–12 Mbps
MPEG-1 video 1.2–1.5 Mbps
MPEG-2 video 4–60 Mbps
MPEG-4 video 1–20 Mbps
HDTV (compressed) >20 Mbps
HDTV (uncompressed) >1 Gbps
MPEG-4 video-on-demand (QoS) 250–750 kbps
Videoconferencing (QoS) 384 kbps–2 Mbps

Table 15.5 Tolerance of
latency and jitter in digital
audio and video

Application Average latency
tolerance

Average jitter
tolerance

(msec) (msec)

Low-end videoconference 300 130
(64 kbps)
Compressed voice 30 130
(16 kbps)
MPEG NTSC video 5 7
(1.5 Mbps)
MPEG audio 7 9
(256 kbps)
HDTV video 0.8 1
(20 Mbps)

15.5.2 Internet QoS

QoS policies and technologies enable such key metrics discussed in the previous
section as latency, packet loss, and jitter to be controlled by offering different levels
of service to different packet streams or applications. The conventional IP provides
the “best-effort” service only, which does not differentiate among different appli-
cations. Therefore, it is hard to ensure QoS over the basic IP beyond expanding
bandwidth. Unfortunately, in a complex and large-scale networks, abundant band-
width is unlikely to be available everywhere (in practice, many IP networks routinely
use oversubscription). Even if it is available everywhere, bandwidth alone cannot
resolve problems due to sudden peaks in traffic, and there are always new networked
applications demanding higher and higher bandwidth, e.g., high-definition video and
3D/multiview video.

15.5 Quality-of-Service for Multimedia Communications 511

There have been significant efforts toward data networking with better or even
guaranteed QoS. A representative is the ATM network we mentioned before, which
attempted to unify telecommunication and computer networks, serving a complete
range of user traffic, including data, voice, and video. It uses asynchronous time-
division multiplexing, and encodes data into small, fixed-sized cells, as opposite
to the variable-sized packets in the Internet. Connection-oriented virtual circuits
are used to provide guaranteed or semi-guaranteed QoS for a wide range of data
and multimedia communication applications. ATM became popular with telephone
companies and many computer makers in the 1990s. However, IP-based networks
have shown better price and resource utilization (albeit not guaranteed), and have
been dominating the market since the past decade. Later efforts thus have been mainly
on improving QoS within the Internet [23].

There are two common approaches. IntServ or integrated services is an architec-
ture that specifies the elements to guarantee QoS in fine-grains for each individual
flow. The idea is that every router in the network implements IntServ, and every
application that requires some kind of guarantees has to make an individual reser-
vation in advance. In contrast to IntServ, DiffServ or differentiated services specifies
a simple, scalable, and coarse-grained class-based mechanism for classifying and
managing aggregated network traffic and providing specific QoS to different classes
of traffic.

Integrated Service and Resource ReSerVation Protocol

In IntServ, Flow Specs describe what the resource reservation is for a flow, while the
Resource ReSerVation Protocol (RSVP) [24] is used as the underlying mechanism
to signal it across the network.

Flow specs include two components: First, what does the traffic look like? This
is defined in Traffic SPECification, also known as TSPEC; Second, what guarantees
does it need? This is defined in the service Request SPECification, also known as
RSPEC.

RSVP is a setup protocol for Internet resource reservation, which targets a multi-
cast setup (typical built on top of IP multicast) for general multimedia applications
(unicast can be viewed as a special case of mulitcast). A general communication
model supported by RSVP consists of m senders and n receivers, possibly in vari-
ous multicast groups (e.g., in Fig. 15.12a, m = 2, n = 3, and the trees for the two
multicast groups are depicted by the arrows—solid and dashed lines, respectively).
In the special case of single-source broadcasting, m = 1; whereas in audio or video
conferencing, each host acts as both sender and receiver in the session, that is, m = n.

The main challenges of RSVP are that many senders and receivers may compete
for the limited network bandwidth, the receivers can be heterogeneous in demanding
different contents with different QoS, and they can be dynamic by joining or quitting
multicast groups at any time. To address these challenges, RSVP introduces Path
and Resv messages. A Path message is initiated by the sender and travels toward
the multicast (or unicast) destination addresses. It contains information about the

512 15 Network Services and Protocols for Multimedia Communications

Fig. 15.12 A scenario of
network resource reservation
with RSVP: a senders S1 and
S2 send out their PATH
messages to receivers R1, R2,
and R3; b receiver R1 sends
out RESV message to S1; c
receiver R2 sends out RESV
message to S2; d receivers R2
and R3 send out their RESV
messages to S1

S1 S2

R1 R2 R3

C D

BA

S1 S2

R1 R2 R3

C D

BA

S1 S2

R1 R2 R3

C D

BA

S1 S2

R1 R2 R3

C D

BA

(a) (b)

(c) (d)

sender and the path (e.g., the previous RSVP hop), so that the receiver can find the
reverse path to the sender for resource reservation. A Resv message is sent by a
receiver that wishes to make a reservation.
• RSVP is receiver-initiated A receiver (at a leaf of the multicast tree) initiates the

reservation request Resv, and the request travels back toward the sender but not
necessarily all the way. A reservation will be merged with an existing reservation
made by other receiver(s) for the same session as soon as they meet at a router. The
merged reservation will accommodate the highest bandwidth requirement among
all merged requests. The user-initiated scheme is highly scalable, and it meets the
heterogeneous demands from the users.

• RSVP creates only soft state The receiver host must maintain the soft state by peri-
odically sending the same Resvmessage; otherwise, the state will time out. There
is no distinction between the initial message and any subsequent refresh message.

15.5 Quality-of-Service for Multimedia Communications 513

If there is any change in reservation, the state will automatically be updated
according to the new reservation parameters in the refreshing message. Hence,
the RSVP scheme is highly dynamic.
Figure 15.12 depicts a simple network with two senders (S1, S2), three receivers

(R1, R2, and R3), and four routers (A, B, C, D). Figure 15.12a shows that S1 and S2
send Path messages along their paths to R1, R2, and R3. In (b) and (c), R1 and R2
send out Resvmessages to S1 and S2, respectively, to make reservations for S1 and
S2 resources. From C to A, two separate channels must be reserved since R1 and R2
request different datastreams. In (d), R2 and R3 send out their Resv messages to
S1, to make additional requests. R3’s request is merged with R1’s previous request
at A, and R2’s is merged with R1’s at C.

Any possible variation of QoS that demands higher bandwidth can be dealt with
by modifying the reservation state parameters.

Differentiated Service

As opposed to IntServ, Differentiated Service (DiffServ) operates on the principle
of traffic aggregation and classification, where data packets are placed into a lim-
ited number of traffic classes, rather than differentiating network traffic based on
the requirements of individual flows. Each traffic class can be managed differently,
ensuring preferential treatment for higher priority traffic on the network.

In DiffServ, network routers implement per-hop behaviors (PHBs), which define
the packet-forwarding properties associated with a class of traffic. In practice, the
Type of Service octet in an IPv4 packet and the Traffic Class octet in an IPv6 packet
can be used as the DiffServ Code (DS) to classify packets to enable their differentiated
treatments (see Fig. 15.4).

The DS field contains a 6-bit Differentiated services Code Point (DSCP) value. In
theory, a network could have up to 64 (i.e., 26) different traffic classes using different
DSCPs. This gives a network operator great flexibility in defining traffic classes.
Different PHBs may be defined to offer, for example, lower loss or lower latency
for multimedia data than file transfer, or better service for audio than video, or even
different services within a multimedia application data:
• Uncompressed audio PCM audio bitstreams can be broken into groups of every

nth sample—prioritize and send k of the total of n groups (k ≤ n) and ask the
receiver to interpolate the lost groups if so desired. For example, if two out of four
groups are lost, the effective sampling rate is 22.05 kHz instead of 44.1 kHz. Loss
is perceived as change in sampling rate, not dropouts.

• JPEG image The different scans in Progressive JPEG and different resolutions of
the image in hierarchical JPEG can be given different services. For example, best
service for the scan with the DC and first few AC coefficients, and better service
for the lower resolution components of the hierarchical JPEG image.

• Compressed video To minimize playback delay and jitter, the best service can be
given to the reception of I-frames and the lowest priority to B-frames. In scalable

514 15 Network Services and Protocols for Multimedia Communications

video using layered coding, the base layer can be given a better service than the
enhancement layers.

In practice, most networks use the following commonly defined PHB:
• Default PHB, which is typically the best-effort service.
• Expedited Forwarding (EF), which is dedicated to low-loss, low-latency traffic.

It is suitable for premium voice, video, and other real-time services, and is often
given strict priority above all other traffic classes.

• Assured Forwarding (AF), which achieves assurance of delivery under prescribed
conditions. The traffic that exceeds the subscription rate faces a higher probability
of being dropped if congestion occurs.

• Class Selector PHBs, which maintain backward compatibility with non-DiffServ
traffic.

It is worth noting that the details of how individual DiffServ routers deal with the
DS field, i.e., PHB, is configuration-specific. For example, one implementation may
divide network traffic in AF into the following categories and allocate bandwidth
accordingly:
• Gold: Traffic in this category is allocated 50 % of the available bandwidth.
• Silver: Traffic in this category is allocated 30 % of the available bandwidth.
• Bronze: Traffic in this category is allocated 20 % of the available bandwidth.

Another implementation may have a different configuration or even completely
ignore their differences.

Compared with IntSev, DiffServ has coarser control granularity (in aggregated
classes, rather than individual flows), and is therefore simpler and scales well. They
are, however, not necessarily exclusive to each other. In real-world deployment,
IntServ and DiffServ may work together to accomplish the QoS targets with
reasonable costs. In particular, RSVP can be applied to individual local flows within
the network edge, and these flows are then aggregated with the DS being added by
QoS-aware Edge Devices. In the core network, there is no flow separation, where all
packets of each specific class are treated equally by the PHBs. In other words, RSVP
is tunneled in the core and only be visible and accommodated once the aggregated
traffic arrived at the Edge Devices for the destination. Since IntServ is now con-
fined within network edges, the costs for maintaining per flow states can be largely
reduced, imposing minimum overhead to the high-speed core network.

15.5.3 Rate Control and Buffer Management

IntServ and DiffServ functions have been implemented in many of today’s Internet
routers; however, their use in wide area networks remain limited. First, the complexity
of maintaining these services in large-scale dynamic networks can be quite high,
particularly for flow-based RSVP; Second, the scale and heterogeneity of Internet
terminals and routers make a complete end-to-end QoS guarantee generally difficult,
so for service differentiation. As such, it is difficult to predict the end-to-end behavior
for a packet crossing multiple domains before reaching its destination, because it is

15.5 Quality-of-Service for Multimedia Communications 515

up to all the service providers and their routers in the path to ensure that their policies
will take care of the packet in an appropriate fashion.

As such, most of the time, a networked multimedia application still has to assume
that the underlying network is of the best-effort service (or at least, without guaranteed
QoS), and adaptive transmission and control are to be used [25].

A key concern here is rate fluctuation with multimedia data. Audio encoding is
generally of Constant Bit Rate (CBR) during a talk, e.g., 64 kbps bitrate (8 kHz
sampling frequency, 8 bits per sample). For video, CBR coding needs to maintain
a constant bitrate at the source; yet variable distortions can be introduced given the
scenes differ across frames. CBR coding is also less efficient than VBR (Variable
Bit Rate) coding: to obtain comparable quality of coded media, the CBR bitrate is
typically 15–30 % higher than the mean VBR video bitrate.

To this end, VBR coding is often used. Usually, the more activities (motions in the
video), the higher the required bitrate is. In this case, the typical bitrates for MPEG-
1 (1.5 Mbps) and that for MPEG-2/4 (4 Mbps) are averages, and the real stream
can have a low bitrate at one point and a much higher bitrate at another point (see
Fig. 15.10). If the video is delivered through the network without any work-ahead
smoothing, the required network throughput must be higher than the video’s peak
bitrate for uninterrupted playback.

To cope with the variable bitrate and network load fluctuation, buffers are usually
employed at both sender and receiver ends [26]. A prefetch buffer can be introduced
at the client side to smooth the transmission rate (reducing the peak rate). If the size
of frame t is d(t), the buffer size is B, and the number of data bytes received so far
(at play time for frame t) is A(t), then for all t ∈ 1, 2, . . . , N , it is required that

t∑

i=1

d(i) ≤ A(t) ≤
t−1∑

i=1

d(i)+ B (15.1)

If A(t) <
∑t

i=1 d(i), we have inadequate network throughput and hence buffer
underflow (or starvation), whereas when A(t) >

∑t−1
i=1 d(i)+ B, we have excessive

network throughput and buffer overflow. Both are harmful to smooth, continuous
playback. In buffer underflow, no data is available to play, and in buffer overflow,
media packets must be dropped.

Figure 15.13 illustrates the limits imposed by the media playback (consumption)
data rate and the buffered data rate. The transmission rates are the slopes of the
curves. At any time, data must be in the buffer for smooth playback, and the data
transmitted must be more than the data consumed. If the available bandwidth is as in
Line II in the figure, at some point during playback, the data to be consumed will be
greater than can be sent. The buffer will underflow, and playback will be interrupted.
Also, at any point, the total amount of data transmitted must not exceed the total
consumed plus the size of the buffer.

If the network available bandwidth is as in Line I and the media was sent as fast
as possible without buffer considerations (as in normal file downloads), then toward
the end of the video, the data received will be greater than the buffer can store at
the time. The buffer will overflow and drop the extra packets. The server will have

516 15 Network Services and Protocols for Multimedia Communications

Data (bytes)
Available Network Bandwidth I

t (frame #)

Media Data

Available Network Bandwidth II

Underflow

OverflowMaximum Buffered Data

B
Buffer

Fig. 15.13 The data that a client can store in the buffer assists the smooth playback of the media
when the media rate exceeds the available network bandwidth

to retransmit the packets dropped, or these packets will be missing. This increases
bandwidth requirements (and hence may cause underflow in the future). In many
cases, such as multicast, no back channel is available.

To address this, we need to prefetch video data to fill the buffer and try to transmit
at the mean video bitrate, or to keep the buffer full without exceeding the available
bandwidth, which can be estimated as the TCP-friendly bandwidth as mentioned
earlier. In either case, for video sections that require higher bandwidth than available,
the data already in the buffer and the available network bandwidth should enable
smooth playback without buffer underflow. If the data rate characteristics are known
in advance, say for media stored in a server, it is possible to use the prefetch buffer
more efficiently for the network. The media server can plan ahead for a transmission
rate such that the media can be viewed without interruption and with minimized
bandwidth [27].

15.6 Protocols for Multimedia Transmission and Interaction

We now review the protocols for multimedia communications. These protocols build
on top of UDP or TCP, and work with the best-effort Internet or with IntServ or Diff-
Serv to provide quality multimedia data transmission, particularly in the streaming
model, and also enable various interactions between a media server and its clients.

15.6.1 HyperText Transfer Protocol

HTTP is a protocol that was originally designed for transmitting Web content, but it
also supports transmission of any file type. The standard development of HTTP was

15.6 Protocols for Multimedia Transmission and Interaction 517

monitored by both IETF and the World Wide Web Consortium (W3C), culminating
in the publication of a series of RFCs, most notably RFC 2616 (June 1999), which
defines HTTP/1.1, the version of HTTP in common use.

HTTP is a “stateless” request/response protocol, in the sense that a client typically
opens a connection to the HTTP server, requests information, the server responds, and
the connection is terminated — no information is carried over for the next request.

The basic request format is
Method URI Version
Additional-Headers

Message-body

The Uniform Resource Identifier (URI) identifies the resource accessed, such as
the host name, always preceded by the token “http://” or “https://”. A URI
could be a URL, for example. It can also include query strings (some interactions
require submitting data). Method is a way of exchanging information or performing
tasks on the URI. Two popular methods are GET and POST. GET specifies that
the information requested is in the request string itself, while the POST method
specifies that the resource pointed to in the URI should consider the message body.
POST is generally used for submitting HTML forms. Additional-Headers
specifies additional parameters about the client. For example, to request access to
this textbook’s website, the following HTTP message might be generated:
GET http://www.cs.sfu.ca/mm.book/HTTP/1.1

The basic response format is
Version Status-Code Status-Phrase
Additional-Headers

Message-body

Status-Code is a number that identifies the response type (or error that occurs),
and Status-Phrase is a textual description of it. Two commonly seen status
codes and phrases are 200 OK when the request was processed successfully and
404 Not Found when the URI does not exist. For example, in response to the
example request above for this textbook’s URL, the web server may return something
like

HTTP/1.1 200 OK Server:
[No-plugs-here-please] Date: Wed, 25 July 2013
20:04:30 GMT
Content-Length: 1045 Content-Type: text/html

<HTML> ... </HTML>

HTTP builds on top of TCP to ensure reliable data transfer. It was not origi-
nally designed for multimedia content distribution, not to mention streaming media.
Yet, HTTP-based streaming has recently become popular, thanks to smart stream

518 15 Network Services and Protocols for Multimedia Communications

segmentation strategies and the abundant Web server resources available for HTTP
data transfer, as we will examine in the next chapter.

15.6.2 Real-TimeTransport Protocol

Real-Time Transport Protocol (RTP), defined in RFC 3550, is designed for the trans-
port of real-time data, such as audio and video streams. As we have seen, networked
multimedia applications have diverse characteristics and demands; there are also
tight interactions between the network and the media. Hence, RTP’s design follows
two key principles, namely application layer framing, i.e., framing for media data
should be performed properly by the application layer, and integrated layer process-
ing, i.e., integrating multiple layers into one to allow efficient cooperation [28]. These
distinguish RTP from other traditional application layer protocols, such as the HTTP
for Web transactions and FTP for file transfer, that each targets a single well-defined
application. Instead, RTP resides in between the transport layer and the application
layer, and bridges them for real-time multimedia transmission.

RTP usually runs on top of UDP, which provides an efficient (albeit less reliable)
connectionless transport service. There are three main reasons for using UDP instead
of TCP. First, TCP is a connection-oriented transport protocol; hence, it is more diffi-
cult to scale up in a multicast environment. From the very beginning, RTP had already
targeted multicast streaming, with unicast being a special case only. Second, TCP
achieves its reliability by retransmitting missing packets. As mentioned earlier, mul-
timedia data transmissions is loss-tolerant and perfect reliability is not necessary; the
late arrival of retransmitted data may not be usable in real-time applications, either,
and persistent retransmission would even block the data flow, which is undesirable
for continuous streaming. Last, the dramatic rate fluctuation (sawtooth behavior) in
TCP is often not desirable for continuous media.

TCP does not provide timing information, which is critical for continuous media.
Since UDP has no timing information either, nor does it guarantee that the data pack-
ets arrive in the original order (not to mention synchronization of multiple sources),
RTP must create its own timestamping and sequencing mechanisms to ensure the
ordering. RTP introduces the following additional parameters in the header of each
packet:
• Payload type indicates the media data type as well as its encoding scheme (e.g.,

PCM audio, MPEG 1/2/4, H.263/264/265 audio/video, and etc), so that the receiver
knows how to decode it.

• Timestamp is the most important mechanism of RTP. The timestamp records the
instant when the first octet of the packet is sampled, which is set by the sender.
With the timestamps, the receiver can play the audio/video in proper timing order
and synchronize multiple streams (e.g., audio and video) when necessary.

• Sequence number is to complement the function of timestamping. It is incre-
mented by one for each RTP data packet sent, to ensure that the packets can
be reconstructed in order by the receiver. This becomes necessary because, for

15.6 Protocols for Multimedia Transmission and Interaction 519

Sequence number

Timestamp

Synchronization source (SSRC) ID

0 3115

Payload type

9

. . .

8

Contributing source (CSRC) IDs (optional)

CSRCPV

4

X M

16

Fig. 15.14 RTP packet header

example, all packets of one video frame can be set with the same timestamp, and
timestamping alone becomes insufficient.

• Synchronization source (SSRC) ID identifies the sources of multimedia data
(e.g., audio, video). If the data come from the same source (e.g., a translator or a
mixer), they will be given the same SSRC ID, so as to be synchronized.

• Contributing Source (CSRC) ID identifies the source of contributors, such as all
speakers in an audio conference.
Figure 15.14 shows the RTP header format. The first 12 octets are of a fixed format,

followed by optional (0 or more) 32-bit Contributing Source (CSRC) IDs. Bits 0 and
1 are for the version of RTP, bit 2 (P) for signaling a padded payload, bit 3 (X) for
signaling an extension to the header, and bits 4 through 7 for a 4-bit CSRC count that
indicates the number of CSRC IDs following the fixed part of the header.

Bit 8 (M) signals the first packet in an audio frame or last packet in a video frame,
since an audio frame can be played out as soon as the first packet is received, whereas
a video frame can be rendered only after the last packet is received. Bits 9 through
15 describe the payload type, Bits 16 through 31 are for sequence number, followed
by a 32-bit timestamp and a 32-bit Synchronization Source (SSRC) ID.

15.6.3 RTP Control Protocol

RTP Control Protocol (RTCP), also defined in RFC 3550, is a companion protocol
of RTP. It monitors QoS in providing feedback to the source on quality of data
transmission and conveys information about the participants of a multicast session.
RTCP also provides the necessary information for audio and video synchronization,
even if they are sent through different packet streams.

RTCP provides a series of typical reports and is extensible, allowing for
application-specific RTCP reports:
1. Receiver report (RR) provides quality feedback (number of last packet received,

number of lost packets, jitter, and timestamps for calculating round-trip delays).

520 15 Network Services and Protocols for Multimedia Communications

2. Sender report (SR) provides information about the reception of RR, number of
packets/bytes sent, and so on.

3. Source description (SDES) provides information about the source (e-mail
address, phone number, full name of the participant).

4. Bye indicates the end of participation.
5. Application-specific functions (APP) provides for future extension of new

features.
RTP and RTCP packets are sent to the same IP address (multicast or unicast) but

on different ports. RTCP reports are expected to be sent by all participants, even in a
multicast session which may involve thousands of senders and receivers. Such traffic
will increase proportionally with the number of participants. Thus, to avoid network
congestion, the protocol must include session bandwidth management, achieved
by dynamically controlling the frequency of report transmissions. RTCP bandwidth
usage should generally not exceed 5 % of total session bandwidth. Furthermore, 25 %
of the RTCP bandwidth should be reserved to media sources at all times, so that in
large sessions new participants can identify the senders without excessive delay.

Note that, while RTCP offers QoS feedbacks, it does not specify how these feed-
backs are to be used, but leaves the operations to the application layer. The rationale
is that, as we have seen, the multimedia applications have highly diverse require-
ments (in bandwidth, delay, packet loss, and etc.), and therefore no single set of
operations can satisfy all of them. Instead, each application should customize their
own operations with the feedbacks to improve QoS. This is quite different from TCP,
which offers a uniform interface for a range of data applications with homogeneous
QoS requirements, namely, delay or bandwidth insensitive, and perfect reliability. In
the following sections and the next chapter, we will see more examples of the use of
the RTCP’s QoS feedbacks.

15.6.4 Real-Time Streaming Protocol

The Real-Time Streaming Protocol (RTSP), defined in RFC 2326, is a signaling
protocol to control streaming media servers. The protocol is used for establishing
and controlling media sessions between end points. Clients of media servers issue
VCR-like commands, such as play, random-seek, and pause, to facilitate real-time
control of playback of media files from the server. The transmission of streaming data
itself is not a task of the RTSP protocol. Most RTSP servers use RTP in conjunction
with RTCP for media stream delivery, although proprietary transport protocols are
also possible.

Figure 15.15 illustrates a possible scenario of four typical RTSP operations:
1. Requesting presentation description The client issues a DESCRIBE request

to the media server to obtain the presentation description, such as, media types
(audio, video, graphics, etc.), frame rate, resolution, codec, and so on, from the
server.

15.6 Protocols for Multimedia Transmission and Interaction 521

GET request

RTCP

RTP audio

RTP video

SETUP response

TEARDOWN response

GET response

OPTIONS response

PLAY response

PAUSE response

TEARDOWN request

PAUSE request

PLAY request

SETUP request

OPTIONS request

C

l

i

e

n

t

M
e
d
i
a

S
e
r
v
e
r

Fig. 15.15 A scenario of RTSP operations

2. Session setup The client issues a SETUP to inform the server of the destination
IP address, port number, protocols, and TTL (for multicast). The session is set up
when the server returns a session ID.

3. Requesting and receiving media After receiving a PLAY, the server starts to
transmit streaming audio/video data, using RTP. It is followed by a RECORD or
PAUSE. Other VCR commands, such as FAST-FORWARD and REWIND are also
supported. During the session, the client periodically sends an RTCP packet to
the server, to provide feedback information about the QoS received (as described
in Sect. 15.6.3).

4. Session closure TEARDOWN closes the session.

522 15 Network Services and Protocols for Multimedia Communications

Fig. 15.16 Network protocol
structure for internet
telephony

RTP, RTCP, RSVP, RTSP

Network layer (IP, IP Multicast)

Data link layer

Physical layer

Transport layer (UDP, TCP)

H.323 or SIP

15.7 Case Study: Internet Telephony

We now use a case of Internet Telephony to see the use of the protocols we have
introduced as well as introduce other important signaling protocols for multimedia
communications.

As desktop/laptop computers and the Internet became readily available and more
and more voice and data communications became digital, “voice over data networks,”
especially VoIP, started to attract a great deal of interest in research and user com-
munities. With ever-increasing network bandwidth and the ever-improving quality
of multimedia data compression, Internet telephony [29] has become a reality.

The main advantages of Internet telephony over the plain old telephone services
(POTS) that does not include such new features as voice mail, call waiting, and call
forwarding are as follows:
• It provides great flexibility and extensibility in accommodating such new services

as voicemail, video conversations, live text messages, and so on.
• It uses packet switching, not circuit switching; hence, network usage is much more

efficient (voice communication is bursty and VBR-encoded).
• With the technologies of multicast or multipoint communication, multiparty calls

are not much more difficult than two-party calls.
• With advanced multimedia data-compression techniques, various degrees of QoS

can be supported and dynamically adjusted according to the network traffic, an
improvement over the “all or none” service in POTS.

• Richer graphical user interfaces can be developed to show available features and
services, monitor call status and progress, and so on.
As Fig. 15.16 shows, the transport of real-time audio (and video) in Internet

telephony is supported by RTP (with its control protocol, RTCP), as described in
Sect. 15.6.2. Streaming media is handled by RTSP and Internet resource reservation,
if available, is taken care of by RSVP. Recently, new generations of Internet tele-
phony, most notably Skype, also uses the peer-to-peer technology to achieve better
scalability.

15.7 Case Study: Internet Telephony 523

15.7.1 Signaling Protocols: H.323 and Session Initiation
Protocol

A streaming media server can be readily identified by a URL, whereas acceptance
of a call via Internet telephony depends on the callee’s current location, capability,
availability, and desire to communicate, which requires advanced signaling protocols.

The following are brief descriptions of the H.323 standard from ITU, and one of
the most commonly used IETF standards, the Session Initiation Protocol (SIP).

H.323 Standard

H.323 [30,31] is an ITU standard for packet-based multimedia communication ser-
vices. It specifies signaling protocols and describes terminals, multipoint control units
(for conferencing), and gateways for integrating Internet telephony with General
Switched Telephone Network (GSTN)4 data terminals. The H.323 signaling process
consists of two phases:
1. Call setup The caller sends the gatekeeper (GK) a Registration, Admission and

Status (RAS) Admission Request (ARQ) message, which contains the name and
phone number of the callee. The GK may either grant permission or reject the
request, with reasons such as “security violation” and “insufficient bandwidth”.

2. Capability exchange An H.245 control channel will be established, for which
the first step is to exchange capabilities of both the caller and callee, such as
whether it is audio, video, or data; compression and encryption, and so on.
H.323 provides mandatory support for audio and optional support for data and

video. It is associated with a family of related software standards that deal with call
control and data compression for Internet telephony.

Signaling and Control
• H.225 Call control protocol, including signaling, registration, admissions, packe-

tization, and synchronization of media streams.
• H.245 Control protocol for multimedia communications—for example, opening

and closing channels for media streams, obtaining gateway between GSTN and
Internet telephony.

• H.235 Security and encryption for H.323 and other H.245-based multimedia
terminals.

Audio Codecs
• G.711 Codec for 3.1 kHz audio over 48, 56, or 64 kbps channels. G.711 describes

PCM for normal telephony.
• G.722 Codec for 7 kHz audio over 48, 56, or 64 kbps channels.

4 GSTN is a synonym for PSTN (public switched telephone network).

524 15 Network Services and Protocols for Multimedia Communications

Session Initiation Protocol (SIP)

SIP is IETF’s recommendation (RFC 3261) for establishing and terminating sessions
in Internet telephony. Different from H.323, SIP is a text-based protocol, and is not
limited to VoIP communications—it supports sessions for multimedia conferences
and general multimedia content distribution. As a client-server protocol, SIP allows a
caller (the client) to initiate a request, which a server processes and responds to. There
are three types of servers. A proxy server and a redirect server forward call requests.
The difference between the two is that the proxy server forwards the requests to
the next-hop server, whereas the redirect server returns the address of the next-hop
server to the client, so as to redirect the call toward the destination.

The third type is a location server, which finds current location of users. Loca-
tion servers usually communicate with the redirect or proxy servers. They may use
finger, rwhois, Lightweight Directory Access Protocol (LDAP), or other protocols to
determine a user’s address.

SIP can advertise its session using e-mail, news groups, web pages or directories,
or the Session Announcement Protocol (SAP). The methods (commands) for clients
to invoke are
• INVITE—invites callee(s) to participate in a call.
• ACK—acknowledges the invitation.
• OPTIONS—inquires about media capabilities without setting up a call.
• CANCEL—terminates the invitation.
• BYE—terminates a call.
• REGISTER—sends user’s location information to a registrar (a SIP server).

Figure 15.17 illustrates a possible scenario when a caller initiates a SIP session:
Step 1 Caller sends an INVITE john@home.ca to the local Proxy server

P1.
Step 2 The proxy uses its Domain Name Service (DNS) to locate the server for

john@home.ca and sends the request to it.
Steps 3, 4 john@home.ca is not logged on the server. A request is sent to the

nearby location server. John’s current address, john@work.ca, is
located.

Step 5 Since the server is a redirect server, it returns the address
john@work.ca to the proxy server P1.

Step 6 Try the next proxy server P2 for john@work.ca.
Steps 7, 8 P2 consults its location server and obtains John’s local address,

john_doe@my.work.ca.
Steps 9, 10 The next-hop proxy server P3 is contacted, which in turn forwards the

invitation to where the client (callee) is.
Steps 11–14 John accepts the call at his current location (at work) and the acknowl-

edgments are returned to the caller.
SIP can also use Session Description Protocol (SDP) (RFC 4566) to gather infor-

mation about the users’ media capabilities. As its name suggests, SDP describes
multimedia sessions. The SDP descriptions are in a plain text format. They include
the number and types of media streams (audio, video, whiteboard session, and etc.),

15.7 Case Study: Internet Telephony 525

Redirect server

Location server

Location server

SIP client (callee)

SIP client (caller)

4

5

6

912

13

14

3

2
1

10

11
Proxy server (P3)

Proxy
server (P2)

Proxy
server (P1)

8

7

Fig. 15.17 A possible scenario of SIP session initiation

destination address (unicast or multicast) for each stream, sending and receiving
port numbers, and media formats (payload types). When initiating a call, the caller
includes the SDP information in the INVITE message. The called party responds
and sometimes revises the SDP information, according to its capability. Below we
show an example session description, adapted from RFC 4566.
v=0
o=jdoe 2890844526 2890842807 IN IP4 10.47.16.5
s=SDP Seminar
i=A Seminar on the session description protocol
u=http://www.example.com/seminars/sdp.pdf
e=j.doe@example.com (Jane Doe)
c=IN IP4 224.2.17.12/127
t=2873397496 2873404696
a=recvonly
m=audio 49170 RTP/AVP 0
m=video 51372 RTP/AVP 99
a=rtpmap:99 h263-1998/90000

This session description is being proposed to a receiving client (with username
“jdoe”) who was requesting a session from her host located at IPv4 address
10.47.16.5. The session is named “SDP Seminar”, which has a more complete title
“A Seminar on the session description protocol.” It also contains a Web-hosted PDF
file and the description of one audio and one video that are part of this proposed
session.

526 15 Network Services and Protocols for Multimedia Communications

The media contents are both available on the same media server host, whose
contact name is “Jane Doe,” reachable by her indicated email address. The two media
streams are to be transported by the basic RTP Audio Video Profile (RTP/AVP) from
an IPv4 multicast address 224.2.17.12 (Time To Live of up to 127 hops) with UDP
ports 49170 and 51372 for audio and video, respectively. The audio has an RTP/AVP
format 0 and the video has format 99, which the SDP server also defines and maps
as being a “video/h263-1998” media codec.

15.8 Further Exploration

General discussions on computer networks and data communications are given in the
books by Tanenbaum [1] Stallings [2], and Kurose and Ross [3]. The RFCs for many
of the network protocols can be found at the website of IETF (Internet Engineering
Task Force).

15.9 Exercises

1. What is the main difference between the OSI and TCP/IP reference models?
Describe the functionalities of each layer in the OSI model and their relations to
multimedia communications.

2. True or False.
(a) ADSL uses cable modem for data transmission.
(b) To avoid overwhelming the network, TCP adopts a flow control mechanism.
(c) TCP flow control and congestion control are both window based.
(d) Out of order delivery won’t happen with Virtual Circuit.
(e) UDP has lower header overhead than TCP.
(f) Datagram network needs call setup before transmission.
(g) The current Internet does not provide guaranteed services.
(h) CBR video is easier for network traffic engineering than VBR video.

3. Consider multiplexing/demultiplexing, which is one of the basic functionalities
of the transport layer.
(a) List the 4-tuple that is used by TCP for demultiplexing. For each parameter

in the 4-tuple, show a scenario that the parameter is necessary.
(b) Note that UDP only uses the destination port number for demultiplexing.

Describe a scenario where UDP’s scheme fits better. Hint: The scenario is
very common in multimedia applications.

4. Find out the IP address of your computer or smartphone/tablet. Is it a real physical
IP address or an internal address behind a NAT?

5. Consider a NAT-enabled home network. (a) Can two different local clients access
an external web server simultaneously? (b) Can we establish two web servers

15.9 Exercises 527

Fig. 15.18 Throughput of
two TCP users sharing a
bottleneck

Throughput (user 1)
0

T
hr

ou
gh

pu
t (

us
er

 2
)

R

R

(x0, y0)

(both of port 80) in this network, which are to be accessed by external computers
with the basic NAT setting? (c) If we want to establish only one web server (with
port 80) in this network, propose a solution and discuss its potential problems.

6. What is the key difference between IPv6 and IPv4, and why are the changes
in the IPv6 necessary ? Note that the deployment of IPv6 remains limited now.
Explain the challenges in the deployment and list two interim solutions that
extend the lifetime of IPv4 before IPv6 is fully deployed.

7. Discuss the pros and cons of implementing multicast in the network layer or in
the application layer. Can we implement multicast in any other layer, and how?

8. What is the relation between delay and jitter? Describe a mechanism to mitigate
the impact of jitter.

9. Discuss at least two alternative methods for enabling QoS routing on packet-
switched networks based on a QoS class specified for any multimedia packet.

10. Consider the ATM network and today’s Internet.
(a) What are the key differences between the two types of networks? Why does

the Internet become the dominating network now?
(b) What are the key challenges for multimedia over the Internet?

11. Consider the AIMD congestion control mechanism in TCP.
(a) Justify that AIMD ensures fair and efficient sharing for TCP flows competing

for bottleneck band width. To facilitate your discussion, you may consider
the simplest case with two TCP users competing for a single bottleneck. In
Fig. 15.18, the throughputs of the two users are represented by the X-axis
and the Y-axis, respectively. When the aggregated throughput exceeds the
bottleneck bandwidth R, congestion will happen (in the upper right side of
the figure), though it will be detected after a short delay given that TCP uses
packet loss as the congestion indicator.
For an initial throughput of the two users, say, x0 and y0, where x0 < y0, you
can trace the their throughput change with AIMD, and show that they will

528 15 Network Services and Protocols for Multimedia Communications

eventually converge to a fair and efficient share of the bottleneck bandwidth.
Hint: There is only one such point.

(b) Explain whether AIMD is suitable for multimedia streaming applications
or not.

(c) Explain the relation between AIMD and TFRC.
12. TCP achieves reliable data transfer through retransmission.

(a) Discuss the possible overheads of retransmission.
(b) List two applications that retransmissions are necessary.
(c) List two applications that retransmissions are not necessary or not possible.

Explain your answer.
13. Explain why RTP does not have a built-in congestion control mechanism, while

TCP does. Also note that RTSP is independent of RTP for streaming control, i.e.,
using a separate channel. This is known as out-of-band, because the data channel
and control channel are separated. Are there any advantage or disadvantage in
combining both of them into a single channel?

14. Consider Fig. 15.12 that illustrates RSVP. In (d), receiver R3 decides to send
an RSVP RESV message to S1. Assuming the figure specifies the complete
state of the network, is the path reserved optimal for maximizing future network
throughput? If not, what is the optimal path? Without modifying the RSVP
protocol, suggest a scheme in which such a path will be discovered and chosen
by the network nodes.

15. Consider a typical Internet telephony system of 64 kbps data rate with a sampling
frequency of 8 kHz.
(a) If the data chunks are generated every 20 ms, how many data samples are

there in each data chunk, and what is the size of each chunk?
(b) What is the header overhead when a data chunk is encapsulated into the

RTP/UDP/IP protocol stack.
(c) Assume there is only one caller and one callee, what is the bandwidth allo-

cated to RTCP?
16. Specify on Fig. 15.13 the characteristics of feasible video transmission sched-

ules. What is the optimal transmission schedule?

References

1. D.J. Wetherall, A.S. Tanenbaum, Computer Networks, 5th edn. (Prentice Hall PTR, Upper
Saddle River, New Jersey, 2012)

2. W. Stallings, Data and Computer Communications, 10th edn. (Prentice Hall,Upper Saddle
River, New Jersey, 2013)

3. J.F. Kurose, K.W. Ross, Computer Networking: A Top-Down Approach, 6th edn. (Pearson,
New York, 2012)

4. H. Zimmermann, OSI reference model-the ISO model of architecture for open systems inter-
connection. IEEE Trans. Commun. 28(4), 425–432 (1980)

References 529

5. IEEE Standards for Local and Metropolitan Area Networks: Overview and Architecture. IEEE
Std 802–1990 (1990)

6. J.F. Shoch, Y.K. Dalal, D.D. Redell, R.C. Crane, Evolution of the ethernet local computer
network. Computer 15(8), 10–27 (1982)

7. M. Decina, E. Scace, CCITT recommendations on the ISDN: a review. IEEE J. Sel. Areas
Commun. 4(3), 320–325 (1986)

8. B. Jennie, B. Dave, DSL: A Wiley Tech Brief (Technology Briefs Series), 1st edn. (Wiley,
Hoboken, 2002)

9. U. D. Black, ATM, Volume III: Internetworking with ATM, 1st edn. (Prentice Hall PTR, Toronto,
1998)

10. J. Rosenberg, J. Weinberger, C. Huitema, R. Mahy, Stun–Simple Traversal of User Data-
gram Protocol (UDP) Through Network Address Translators (NATs), RFC 3489, Internet
Engineering Task Force, March 2003

11. R. Oppliger, Internet security: firewalls and beyond. Commun. ACM 40(5), 92–102 (1997)
12. J. Liu, S.G. Rao, Bo Li, H. Zhang, Opportunities and challenges of peer-to-peer internet video

broadcast. Proc. of the IEEE 96(1), 11–24 (2008)
13. J.H. Saltzer, D.P. Reed, D.D. Clark, End-to-end arguments in system design. ACM Trans.

Comput. Syst. 2(4), 277–288 (1984)
14. S. Deering, D. Cheriton, Multicast routing in datagram internetworks and extended LANs.

ACM Trans. Comput. Syst. 8(2), 85–110 (1990)
15. H. Eriksson, MBONE: the multicast backbone. Commun. ACM 37(8), 54–60 (1994)
16. M.R. Macedonia, D.P. Brutzman, MBone provides audio and video across the Internet. IEEE

Comput. 27(4), 30–36 (1994)
17. V. Kumar, MBone: Interactive Multimedia on the Internet (New Riders, Indianapolis, 1995)
18. S. Paul et al., Reliable Multicast Transport Protocol (RMTP). IEEE J. Sel. Areas Commun.

15(3), 407–421 (1997)
19. B. Whetten, G. Taskale, An overview of Reliable Multicast Transport Protocol II. IEEE Network

14, 37–47 (2000)
20. K.C. Almeroth, The evolution of multicast: from the MBone to interdomain multicast to Inter-

net2 deployment. IEEE Network 14, 10–20 (2000)
21. Y.-H. Chu, S.G. Rao, H. Zhang, A case for end system multicast. IEEE J. Sel. A. Commun.

20(8), 1456–1471 (2006)
22. R.V.L. Hartley, Transmission of information. Bell Syst. Tech. J. 7, 535–563 (1928)
23. X. Xiao, L. M. Ni, Internet QOS: a big picture. Netwrk. Mag. of Global Internetwkg. 13(2),

8–18 (1999)
24. L. Zhang et al., RSVP: a new Resource ReSerVation Protocol. IEEE Netw. Mag. 7(5), 8–19

(1993)
25. C. Liu, in Multimedia over IP: RSVP, RTP, RTCP, RTSP, ed. by R. Osso, Handbook of Emerging

Communications Technologies: The Next Decade (CRC Press, Boca Raton, 2000), pp. 29–46
26. M. Krunz, Bandwidth allocation strategies for transporting variable-bit-ratevideo traffic. IEEE

Commun. Mag. 35(1), 40–46 (1999)
27. J.D. Salehi, Z.L. Zhang, J.F. Kurose, D. Towsley, Supporting stored video: reducing rate vari-

ability and end-to-endresource requirements through optimal smoothing. ACM SIGMETRICS
24(1), 222–231 (1996)

28. D.D. Clark, D.L. Tennenhouse, Architectural considerations for a new generation of protocols.
SIGCOMM Comput. Commun. Rev. 20(4), 200–208 (1990)

29. H. Schulzrinne, J. Rosenberg, The IETF internet telephony architecture and protocols. IEEE
Network 13, 18–23 (1999)

30. Packet-based Multimedia Communications Systems. ITU-T Recommendation H.323,
November 2000 (earlier version September 1999)

31. J. Toga, J. Ott, ITU-T standardization activities for interactive multimedia communications on
packet-based networks: H.323 and related recommunications. Comput. Netw. 31(3), 205–223
(1999)

16InternetMultimedia Content
Distribution

In the previous chapter, we have introduced the basic Internet infrastructure and
protocols for real-time multimedia services. These protocol suites have been incor-
porated by client-side media players receiving streams from media servers over the
Internet. The key functionality for multimedia data transfer is provided by the Real-
Time Transport Protocol (RTP), including payload identification, sequence num-
bering for loss detection, and timestamping for playback control. Running on top
of UDP, RTP itself does not guarantee Quality of Service (QoS), but relies on its
companion, the RTP Control Protocol (RTCP), to monitor the network status and
provide feedback for application-layer adaptation. The Real-Time Streaming Pro-
tocol (RTSP) coordinates the delivery of media objects and enables a rich set of
controls for interactive playback.

Figure 16.1 shows a basic client/server-based multimedia media streaming sys-
tem using the real-time protocol suite. It works fine for small-scale media content
distribution over the Internet, in which media objects such as videos can be served
by a single server to these users. Such an architecture has quickly become infeasible
when more media contents are made available online and more users are network-
and multimedia-ready.

There have been significant studies on efficient content distribution over the
Internet, targeting a large number of users. Most of them were optimized for
delivering conventional web objects (e.g., HTML pages or small images) or for
file download. Streaming media however poses a new set of challenges [1–3]:

Huge size: A conventional static web object is typically of the order of 1–100 K
bytes. In contrast, a media object has a high data rate and a long playback duration,
which combined yield a huge data volume. For example, a one-hour standard MPEG-
1 video has a total volume of about 675 MB. Later standards have successfully
improved the compression efficiency, but the video object sizes, even with the latest
H.265 compression, are still large, not to mention the new High Definition (HD) and
3D videos.

Intensive bandwidth use: The streaming nature of delivery requires a significant
amount of disk I/O and network bandwidth, sustaining over a long period.

Z.-N. Li et al., Fundamentals of Multimedia, 531
Texts in Computer Science, DOI: 10.1007/978-3-319-05290-8_16,
© Springer International Publishing Switzerland 2014

532 16 Internet Multimedia Content Distribution

Media Server

Client Interface and Management

Transport Management

Session Management

Client

Client

Client

Media Storage and IndexingUDP/RTP
RTSP/RTCP

Fig. 16.1 A basic client/server-based media streaming system

Rich interactivity: The long playback duration of a streaming object also enables
various client–server interactions. As an example, existing studies found that nearly
90 % media playbacks are terminated prematurely by clients [4]. In addition, during
a playback, a client often expects VCR-like operations, such as fast-forward and
rewind. This implies that access rates might be different for different portions of a
stream.

Many emerging applications, such as Internet TV and live event broadcast, further
demand real-time multimedia streaming services with a massive audience, which
can easily overwhelm the server. The scaling challenge for such multimedia content
distribution is enormous. To reach 100 million viewers, delivery of TV quality video
encoded in MPEG-4 (1.5 Mbps) may require an aggregate capacity of 1.5 Tbps. To put
things into perspective, consider two large-scale Internet video broadcasts: the CBS
broadcast of the NCAA tournament in March 2006, which at the peak has 268,000
simultaneous viewers, and the opening ceremony of the London Summer Olympics in
July 2012, which drew a peak broadcast audience of 27.1 million, of which 9.2 million
were via BBC’s mobile site and 2.3 million on tablets. Even with low bandwidth
Internet video of 400 Kbps, the CBS/NCAA broadcast needs more than 100 Gbps
server and network bandwidth; on the busiest day of the London Olympics, BBC’s
website delivered 2.8 Petabyte data, with the peak traffic at 700 Gbps. These can
hardly be handled by any single server.

In this chapter, we discuss content distribution mechanisms that enable highly
scalable multimedia content streaming, including proxy caching, multicast, content
distribution networks, peer-to-peer, and HTTP streaming.

16.1 Proxy Caching

To reduce client-perceived access latencies as well as server/network loads, an effec-
tive means is to cache frequently used data at proxies close to clients. It also enhances
the availability of objects and mitigates packet losses, as a local transmission is gen-
erally more reliable than a remote transmission. Proxy caching thus has become
one of the vital components in virtually all web systems [5]. Streaming media, par-
ticularly those pre-stored, could also benefit significant performance improvement

16.1 Proxy Caching 533

Control Channel
(RTSP, RTCP)

Scheduler

Media
Repository

ServerMedia Proxy

Proxy Manager

Enterprise
Network

Cache

Player

Buffer

Client

Backbone
Network

Data Channel
(RTP)

A
ss

em
bl

er
/S

w
itc

he
r

Data Channel
(RTP)

Control Channel
(RTSP,RTCP)

Fig. 16.2 A generic system diagram of proxy-assisted media streaming using RTP/RTCP/RTSP

from proxy caching, given their static nature in content and highly localized access
interests.

Media caching however has many distinct focuses from conventional web caching
[6]. On one hand, traditional web caching spends considerable effort to ensure that
the copies at the origin servers and the proxy are consistent. Since the content of
an audio/video object is rarely updated, such management issues are less critical in
media caching. On the other hand, given the high resource requirements, caching each
media object entirely at a proxy is hardly practical. It is necessary to decide which
portions of which objects to be cached under cache space, disk I/O, and network I/O
constraints, so that the benefit of caching outweighs the overhead for synchronizing
different portions of a video stream in the proxy and in the server. A generic system
diagram of proxy-cache-assisted media streaming is depicted in Fig. 16.2.

The proxy must reply to a client’s PLAY request and initiate transmission of
RTP and RTCP messages to the client for the cached portion, while requesting the
uncached portion(s) from the server. Such fetching can be achieved through an RTSP
Range request specifying the playback points, as illustrated in Fig. 16.3. The
Range request also enables clients to retrieve different segments of a media
object from multiple servers or proxies, if needed.

According to the selection of the portions to cache, we can classify existing algo-
rithms into four categories: sliding-interval caching, prefix caching, segment caching,
and rate-split caching.

16.1.1 Sliding-Interval Caching

This algorithm caches a sliding interval of a media object to facilitate consecutive
accesses [7,8]. For illustration, given two consecutive requests for the same object,
the first request may access the object from the server and incrementally store it into
the proxy cache; the second request can then access the cached portion and release
it after the access. If the two requests arrive close in time, only a small portion of
the media object needs to be cached at any time instance, and yet the second request
can be completely satisfied from the proxy, as illustrated in Fig. 16.4. In general, if

534 16 Internet Multimedia Content Distribution

RTSP

RTP

RTSP

OPTIONS

DESCRIBE

SETUP

PLAY

TEARDOWN

OK

OK

OK

OK

SETUP

OK

PLAY Range

OK

TEARDOWN

OK

ServerProxyClient

Portion 1
(Cached)

Portion 2
(Uncached)

Portion 2

Fig. 16.3 Operations for streaming with partial caching

cached at proxy

r1 r1r2 r1r2

(a) (b) (c)

Fig.16.4 An illustration of sliding-interval caching. The object consists of 9 frames, each requiring
one unit time to deliver from the proxy to a client. Requests 1 and 2 arrive at times 0 and 2,
respectively. To serve request 2, only two frames need to be cached at any time instance. a Time 0:
request 1 arrives; b Time 1–2: frames 1 and 2 accessed by request 1 and cached; request 2 arrives;
c Time 2–3: frame 3 accessed by request 1 and cached; frame 1 read by request 2 and released

multiple requests for an object arrive in a short period, a set of adjacent intervals can
be grouped to form a run, of which the cached portion will be released only after the
last request has been satisfied.

Sliding-interval caching can significantly reduce the network bandwidth
consumption and start-up delay for subsequent accesses. However, as the cached
portion is dynamically updated with playback, the sliding-interval caching involves
high disk bandwidth demands; in the worst case, it would double the disk I/O due

16.1 Proxy Caching 535

cached prefix
current playback to be prefetched

Fig. 16.5 A snapshot of prefix caching

to the concurrent read/write operations. To effectively utilize the available cache
resources, the caching policy can be modeled as a two-constraint knapsack problem
given the space and bandwidth requirements of each object [7], and heuristics can
be developed to dynamically select the caching granularity, i.e., the run length, so
as to balance the bandwidth and space usages. Given that memory spaces are large
nowadays, it is also possible to allocate memory buffers to accommodate media data
and thus avoid the intensive disk read/write [8].

The effectiveness of sliding-interval caching diminishes with the increase in the
access intervals. If the access interval of the same object is longer than the duration
of the playback, the algorithm is degenerated to the unaffordable full-object caching.
To address this issue, it is preferable to retain the cached content over a relatively
long time period, and most of the caching algorithms to be discussed in the rest of
this section fall into this category.

16.1.2 Prefix Caching and Segment Caching

This algorithm caches the initial portion of a media object, called prefix, at a proxy [9].
Upon receiving a client request, the proxy immediately delivers the prefix to the client
and, meanwhile, fetches the remaining portion, the suffix, from the origin server and
relays it to the client (see Fig. 16.5). As the proxy is generally closer to the clients
than the origin server, the start-up delay for a playback can be remarkably reduced.

Segment caching generalizes the prefix caching paradigm by partitioning a me-
dia object into a series of segments, differentiating their respective utilities, and
making caching decision accordingly (see Fig. 16.6). A salient feature of segment-
based caching is its support to preview and such VCR-like operations as random
access, fast-forward, and rewind. For example, some key segments of a media object
(hotspots), as identified by content providers, can be cached [10]. When a client
requests the object, the proxy first delivers the hotspots to provide an overview of the
stream; the client can then decide whether to play the entire stream or quickly jump to
some specific portion introduced by a hotspot. Furthermore, in fast-forwarding and
rewinding operations, only the corresponding hotspots are delivered and displayed,
while other portions are skipped. As such, the load of the server and backbone net-
work can be greatly reduced, but the client will not miss any important segments in
the media object.

536 16 Internet Multimedia Content Distribution

cached segments

Fig. 16.6 An illustration of segment caching

The segments are not necessarily of the same length, nor predefined. One solution
is to group the frames of a media object into variable-sized segments, with the length
increasing exponentially with the distance from the start of the media stream, i.e., the
size of segment i is 2i−1, which consists of frames 2i−1, 2i−1+1, . . . , 2i −1 [11]. The
utility of a segment is calculated as the ratio of the segment reference frequency over
its distance from the beginning segment, which favors caching the initial segments
as well as those with higher access frequencies. The proxy can also quickly adapt to
the changing access patterns of cached objects by discarding big chunks as needed. If
the access frequencies are not known in advance, segmentation should be postponed
as late as possible (called lazy segmentation), thus allowing the proxy to collect a
sufficient amount of access statistics to improve cache effectiveness [4].

16.1.3 Rate-Split Caching andWork-Ahead Smoothing

While all the aforementioned caching algorithms partition a media object along the
time axis, the rate-split caching (also known as video staging) [12] partitions a media
along the rate axis: the upper part will be cached at the proxy, whereas the lower
part will remain stored at the origin server (see Fig. 16.7). This type of partitioning is
particularly attractive for VBR streaming, as only the lower part of a nearly constant
rate has to be delivered through the backbone network. For a QoS network with
resource reservation, if the bandwidth is reserved based on the peak rate of a stream,
caching the upper part at the proxy significantly reduces the rate variability, which
in turn improves the backbone bandwidth utilization.

If the client has buffer capability (refer to Sect. 15.5.3 in the previous chapter),
work-ahead smoothing [13] can be incorporated into video staging to further reduce
the backbone bandwidth requirement.

Define d(t) to be the size of frame t , where t ∈ 1, 2, . . . , N , and N is the total
number of frames in the video. Similarly, define a(t) to be the amount of data
transmitted by the video server during the playback time for frame t (for short, call
it at time t). Let D(t) be the total data consumed and A(t) be the total data sent at
time t . Formally, we have

D(t) =
t∑

i=1

d(i) (16.1)

http://dx.doi.org/10.1007/978-3-319-05290-8_15

16.1 Proxy Caching 537

cut-off rate

cached at proxy

Fig. 16.7 An illustration of rate-split caching

Data (bytes)

Constant (average)
rate schedule

Maximum buffered data
W(t)

Optimal schedule
A(t)

(a)

(b) (d)

(c)

(e)

δ

t (frame #)

Media data
D(t)

B
Buffer

Fig. 16.8 The optimal smoothing plan for a specific video and buffer size. In this case, it is not
feasible to transmit at the constant (average) data rate

A(t) =
t∑

i=1

a(i) (16.2)

Let the buffer size be B. At any time t , the maximum amount of data that can be
received without overflowing the buffer during time 1, . . . , t is W (t) = D(t −1)+B.
Now it is easy to state the conditions for a server transmission rate that avoids buffer
overflow or underflow:

D(t) ≤ A(t) ≤ W (t) (16.3)

To avoid buffer overflow or underflow throughout the video’s duration, Eq. (16.3)
has to hold for all t ∈ 1, 2, . . . , N . Define S to be the server transmission schedule
(or plan), i.e., S = a(1), a(2), . . . , a(N). S is called a feasible transmission schedule
if for all t , S obeys Eq. (16.3). Figure 16.8 illustrates the bounding curves D(t) and
W (t) and shows that a constant (average)-bitrate transmission plan is not feasible
for this video, because simply adopting the average bitrate would cause underflow.

When frame sizes d(t) for all t are known ahead of the transmission time, the
server can plan ahead to generate an optimal transmission schedule that is feasible and

538 16 Internet Multimedia Content Distribution

minimize the peak transmission rate [13]. Additionally, the plan minimizes schedule
variance, optimally trying to smooth the transmission as much as possible.

We can think of this technique as stretching a rubber band from D(1) to
D(N) bounded by the curves defined by D(t) and W (t). The slope of the total-
data-transmitted curve is the transmission data rate. Intuitively, we can minimize the
slope (or the peak rate) if, whenever the transmission data rate has to change, it does
so as early as possible in the transmission plan.

As an illustration, consider Fig. 16.8 where the server starts transmitting data
when the prefetch buffer is at state (a). It determines that to avoid buffer underflow
at point (c), the transmission rate has to be high enough to have enough data at point
(c). However, at that rate, the buffer will overflow at point (b). Hence it is necessary
to reduce the transmission rate somewhere between points (c) and (b).

The earliest such point (that minimizes transmission rate variability) is point (c).
The rate is reduced to a lower constant bitrate until point (d), where the buffer is empty.
After that, the rate must be further reduced (to lower than the average bitrate!) to
avoid overflow until point (e), when the rate must finally be increased.

Consider any interval [p, q] and let B(t) represent the amount of data in the buffer
at time t . Then the maximum constant data rate that can be used without overflowing
the buffer is given by Rmax:

Rmax = min
p+1≤t≤q

W (t) − (D(p)+ B(p))
t − p

(16.4)

The minimum data rate that must be used over the same interval to avoid underflow
is given by Rmin:

Rmin = max
p+1≤t≤q

D(t) − (D(p)+ B(p))
t − p

(16.5)

Naturally it is required that Rmax ≥ Rmin, otherwise no constant bitrate
transmission is feasible over interval [p, q]. The algorithm to construct the opti-
mal transmission plan starts with interval [p, q = p + 1] and keeps incrementing q ,
each time recalculating Rmax and Rmin. If Rmax is to be increased, a rate segment is
created with rate Rmax over interval [p, qmax], where qmax is the latest point at which
the buffer is full (the latest point in interval [p, q] where Rmax is achieved).

Equivalently, if Rmin is to be decreased, a rate segment is created with rate Rmin
over interval [p, qmin], where qmin is the latest point at which the buffer is empty.

Planning transmission rates can readily consider the maximum allowed network
jitter. Suppose there is no delay in the receiving rate. At time t , A(t) bytes of data
have been received, which must not exceed W (t). Now suppose the network delay is
at its worst—δ sec maximum delay. Video decoding will be delayed by δ seconds,
so the prefetch buffer will not be freed. Hence the D(t) curve needs to be modified to
a D(t − δ) curve, as depicted in Fig. 16.8. This provides protection against overflow
or underflow in the plan for a given maximum delay jitter.

We can either perform smoothing first and then select the cut-off rate for video
staging, or select the cut-off rate and then perform smoothing. Empirical evaluation
has shown that a significant bandwidth reduction can be achieved with a reasonably
small cache space [12].

16.1 Proxy Caching 539

Table 16.1 Comparison of Proxy Caching Algorithms

Sliding-interval Prefix Segment Rate-split
caching caching caching caching

Portion of
Cached portion Sliding intervals Prefix Segments higher rate

VCR-like support No No Yes No
Disk I/O High Moderate Moderate Moderate

Resource Disk space Low Moderate High High
demand

Sync overhead Low Moderate High High
Bandwidth

Performance reduction High∗ Moderate Moderate Moderate

improvement Start-up latency

reduction High∗ High High∗∗ Moderate

∗ There is no reduction for the first request in a run.
∗∗ Assume the initial segment is cached.

16.1.4 Summary and Comparison

Table 16.1 summarizes the caching algorithms introduced above. While these fea-
tures and metrics provide a general guideline for algorithm selection, the choice for
a specific streaming system also largely depends on a number of practical issues,
in particular, the complexity of the implementation. Many of these algorithms have
been employed in commercial systems, demonstrating their viability and superiority.
These algorithms are not necessarily exclusive to each other, and a combination of
them may yield a better performance. For example, segment caching combined with
prefix caching of each segment can reduce start-up latency for VCR-like random
playback from any key-segment. If the cache space is abundant, the proxy can also
devote certain space to assist work-ahead smoothing for variable-bit-rate (VBR) me-
dia [9]. With this smoothing cache, the proxy can prefetch large frames in advance
of each burst to absorb delay jitter and bandwidth fluctuations of the server-to-proxy
path. The delay of prefetching can be hidden by the prefix caching. Similar to sliding-
interval caching, the content of the smoothing cache is dynamically updated with
playback. The purposes however are different: the former is to improve cache hit for
subsequent requests, while the latter is to facilitate work-ahead smoothing.

16.2 Content Distribution Networks (CDNs)

Caching is generally passive, in the sense that only if a user fetches an object would
the object be cached at a proxy. In other words, a proxy needs time to fill up its cache
space and there will be no immediate benefit for the first user accessing an object.

540 16 Internet Multimedia Content Distribution

(a) (b)

Fig. 16.9 Comparison between traditional single server and CDN. a Traditional Client/Server
solution. b Content distribution network (CDN) solution

A more proactive solution is a Content Delivery Network or Content Distribution
Network (CDN), which is a large geo-distributed system of servers deployed in dat-
acenters across the Internet; these servers replicate content from the origin server,
pushing them to network edges close to end-users, so as to avoid middle-mile bottle-
necks as much as possible (see Fig. 16.9). Originally for accelerating web accesses,
this technology has rapidly evolved beyond facilitating static web content delivery.
Today, CDNs serve a large fraction of the Internet data distribution, including both
conventional web accesses and file download, and new generation of applications
like live streaming media, on-demand streaming media, and online social networks.

A CDN provider hosts the content from content providers (i.e., CDN customers)
and delivers the content to users of interest. This is done by mirroring the content
in replicated servers and then building a mapping system accordingly. When a user
types a URL into his/her browser, the domain name of the URL is translated by
the mapping system into the IP address of a CDN server that stores a replica of the
content. The user is then redirected to the CDN server to fetch the content. This
process is generally transparent to the user.

Figure 16.10 provides a high-level view of the request-routing in a CDN environ-
ment. The interaction flows are as follows:
Step 1. The user requests content from the content provider by specifying its URL

in the web browser, and the request is directed to its origin server.
Step 2. When the origin server receives the request, it makes a decision to provide

only the basic content (e.g. index page of the website), leaving others to
CDN.

Step 3. To serve the high bandwidth demanding and frequently asked content (e.g.,
embedded objects fresh content, navigation bar, banner ads, etc.), the origin
server redirects user’s request to the CDN provider.

Step 4. Using the mapping algorithm, the CDN provider selects the replica server.
Step 5. The selected server serves the user by providing the replicated copy of the

requested object.

16.2 Content Distribution Networks (CDNs) 541

Local
Network

Internet
R

R

R

User

Mapping
Algorithm

Replica server

Replica server

Replica server

Origin Server

4

Objects to be served
by CDN

Fig. 16.10 A high-level view of request-routing in a CDN

To assign the user to the best possible CDN server, the mapping system bases its
answers on large amounts of historical and real-time data that have been collected
and processed regarding the global network and server conditions. For performance
optimization, the locations of the fewest hops or the highest server availability will be
chosen. For cost-optimization, the least-expensive locations can be chosen instead.
In the real world, these two goals tend to align, as the replicated servers that are close
to a user may have the advantage of both performance and cost. As an example, we
use the Traceroute tools (tracert in MS Windows) to track the path between our
institution and Hulu, a major video streaming service provider. The path tracking
result is shown below.

tracert www.hulu.com
Tracing route to a1700.g.akamai.net [142.231.1.173]
over a maximum of 30 hops:

1 1 ms 2 ms 1 ms 199.60.1.254
2 3 ms 2 ms 1 ms 142.58.45.70
3 1 ms <1 ms <1 ms 142.58.45.46
4 1 ms <1 ms <1 ms van-hcc1360-x-1-bby-sh1125-

x-1.net.sfu.ca
[142.58.29.10]

5 1 ms 1 ms 1 ms ORAN-SFU-cr1.vantx1.BC.net
[142.231.1.45]

6 2 ms 1 ms 1 ms 207.23.240.70
7 1 ms 1 ms 1 ms a142-231-1-173.deploy.ak

amaitechnologies.com
[142.231.1.173]

Trace complete.

It can be seen that the Hulu’s web server we intended to reach is indeed an Akamai
server (a1700.g.akamai.net), which is located in BCNet—a network that is close to

542 16 Internet Multimedia Content Distribution

our campus, while not in a network near Hulu’s headquater in California. This sug-
gests that Hulu is using the CDN service provided by Akamai, one of the world’s
largest CDN providers, and the specific server offered to us is the nearest to us, which
is also of low cost as our campus network is closely associated with BCNet.

The CDN provider gets paid by content providers, i.e., its customers. In turn, it
pays ISPs, carriers, and network operators for hosting its servers in their datacenters
and for using their network resources. The amount of servers managed by a CDN
provider can be very large. For example, Akamai maintains a network of 250,000
servers running in 80 countries worldwide. This large overlay network of servers
effectively reduces bandwidth costs and content access delays, and increases the
global availability of content. It creates sizable savings in capital and operational
expenses, as the CDN customers no longer have to build their own large-size in-
frastructures that are not only expensive but also underutilized most of the time
except during popular events. In addition, the CDN offers a content provider better
protection from malicious attacks, because their large distributed server infrastruc-
ture can effectively absorb most of the attacking traffic.

16.2.1 Representative: Akamai Streaming CDN

For bandwidth-intensive streaming media, CDN provides better scalability by
delivering the content over the last-mile from servers close to end-users. The vir-
tually unlimited resources from a large CDN also reduces the pressure on content
providers to accurately predict capacity needs and enables them to gracefully absorb
bursts of user demand. This is also one of the key reasons toward the recent success
of Cloud Computing, a more general form of CDN as we will discuss in Chap. 19.

For large and comprehensive CDN operators, like Akamai, the service platform
could comprise multiple delivery networks, each being tailored to a specific type of
content, e.g., static web content, dynamic news update, or streaming media, to name
but a few. At a high level, these delivery networks share a similar architecture, but the
underlying technology and implementation of each system component may differ so
as to best suit the specific type of content.

We now have a closer look at Akamai’s media streaming CDN, which has been
widely used by such companies as Apple, Microsoft, and BBC for their video ser-
vices [14]. In this streaming CDN, once a live stream is captured and encoded, the
stream is sent to an Akamai server, called entrypoints. To avoid having this single
entrypoint becoming the single point of failure, multiple copies of the stream can
be sent to additional entrypoints. If any entrypoint goes down, other copies can be
used for recovery. The stream’s packets are then transported from the entrypoint to
a subset of edge servers that are close to end-users.

Note that the transport system must simultaneously distribute thousands of live
streams from their respective entrypoints to the subset of edge servers that are
interested in the stream. To perform this task in a scalable fashion, an intermedi-
ate layer of servers called reflectors is used. Sitting between the entrypoints and the
edge servers, each reflector can receive one or more streams from the entrypoints and
then send those streams to one or more clusters of edge servers. This enables rapid

http://dx.doi.org/10.1007/978-3-319-05290-8_19

16.2 Content Distribution Networks (CDNs) 543

Edge Servers

Reflectors

Entrypoints

Fig. 16.11 Conceptual relations among entrypoints, reflectors, and edge servers in Akamai’s
streaming CDN

replicating of a stream to a large number of edge clusters should the streaming event
become extremely popular. The conceptual relation among entrypoints (sources),
reflectors, and edge servers is shown in Fig. 16.11.

The use of reflectors also makes the content distribution more robust, because now
there are multiple alternate paths between entrypoints and edge servers. If no single
high-quality path is available between an entrypoint and an edge server, the system
uses multiple link-disjoint paths that utilize different reflectors as intermediaries
(see Fig. 16.11). Using the data forwarded along multiple paths, the edge servers
can recover packet losses in individual paths, and forward the end-users the best
combined results.

The Akamai’s servers residing in more than 2,000 of the world’s networks also
monitor the Internet in real-time, gathering information about traffic, congestion, and
trouble spots in the distribution network. A set of user agents will also continuously
simulate users by repeatedly playing streams and testing their quality. A number of
stream quality metrics can then be derived to reflect end-users’ perception. These in-
clude the start-up time, the effective bandwidth to end-users, the stream availability,
which measures how often a user can play streams without failures, as well as the
frequency and duration of interruptions during playback. Akamai uses these infor-
mation to optimize routes and replicate data dynamically to deliver streams, offering
end-users high-quality of experiences.

16.3 Broadcast/Multicast Video-on-Demand

Both proxy caching and CDN explore the temporal and geographical locality
of users’ interests in media objects. Such locality can also be explored through
broadcast or multicast services to deliver the same content simultaneously to a
massive amount of concurrent users. It works well for live media streaming. For
media-on-demand services, the users’ requests are asynchronous and therefore one

544 16 Internet Multimedia Content Distribution

single broadcast/multicast channel cannot serve the requests arriving at different
times, even if they are for the same audio/video. In this section, we will introduce
scalable broadcast/multicast solutions for media-on-demand with such asynchronous
requests.

Note that there are subtle differences between broadcast and multicast as described
in the previous chapter: the former is to all the destinations and the latter is to a group
of destinations only. While broadcast is possible in air, cable networks, or local area
networks, it simply cannot be carried over the global Internet. Nevertheless, we do
not distinguish them if the context is clear and refer to both as broadcast here.

16.3.1 Smart TV and Set-Top Box (STB)

Among all possible Media-on-Demand services, the most popular is likely to be
subscription to video: over high-speed networks, customers can specify the movies
or TV programs they want and the time they want to view them. This will realize
Interactive TV (iTV) or Smart TV that supports a growing number of activities, such
as
• TV (basic, subscription, pay-per-view)
• Video-on-Demand (VoD)
• Information services (news, weather, magazines, sports events, etc.)
• Interactive entertainment (Online games, etc.)
• E-commerce (online shopping, stock trading, etc.)
• Digital libraries and distance education (e-learning, etc.)

The key differences between a smart TV and the conventional cable TV are
(1) A smart TV invites user interactions; hence the need for two-way traffic—
downstream (content provider to user) and upstream (user to content provider), and
(2) a smart TV is rich in information and multimedia services. With the penetration of
Digital Video Broadcasting (DVB), the activities mentioned above all have emerged
in today’s Multimedia Home Platform (DVB-MHP).

To perform the above functions, a network-ready computer or a Set-top Box (STB)
for a conventional TV set is required, which generally has the following components,
as Fig. 16.12 shows:
• Network interface and communication unit, including a digital tuner, security

devices, and a communication channel for basic navigation of Web and digital
libraries as well as services and maintenance.

• Processing unit, including CPU, memory, and a special-purpose operating system
for the STB.

• Audio/video unit, including audio and video decoders, Digital Signal Processor
(DSP), buffers, and D/A converters.

• Graphics unit, supporting real-time graphics for animation and games.
• Peripheral control unit, including controllers for disks, audio and video I/O

devices (e.g., digital video cameras), external memory card reader and writer, and
so on.

16.3 Broadcast/Multicast Video-on-Demand 545

Processing
unit

Audio/Video
unit

Graphics
unit

Peripheral control
unit

TV monitor

Multimedia Networks

Network interface and
communication unit

STB
(Set-Top Box)

Disks I/O devices

Fig. 16.12 General architecture of set-top box

16.3.2 Scalable Multicast/Broadcast VoD

Consider the Video-on-Demand service with smart TV users. Existing statistics
suggest that most of the demands are usually concentrated on a few (10–20) popular
movies or TV shows (e.g., new releases and top-ten movies/shows of the season).
While one single multicast or broadcast channel cannot satisfy all the user requests
arriving at different times, it is possible to smartly multicast or broadcast these
videos, so that a number of clients can be put into the different groups following
their requests [15].

One earlier solution is Batching, which, like sliding interval caching, serves clients
arriving close together in time using a single broadcast. An important quality measure
of such a broadcast VoD service is the latency. We define the access time as the upper
bound between the time of requesting a video and the time of actually consuming
it. Apparently, the access time with batching increases with an increasing amount of
client request aggregation.

Given the potentially high bandwidth of today’s broadband networks and the low
cost of local storage, it is conceivable that the video can be fed to the client in a
relatively shorter time than its playback duration. This leads to the development of
a series of periodical broadcast VoD solutions.

546 16 Internet Multimedia Content Distribution

δ

δ

Channel 1

Channel 2

Channel 3

Channel 6 1

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 1 2 3 4 5 6
. .

 .

. .
 .

Fig. 16.13 Staggered broadcasting with M = 8 videos and K = 6 channels

Staggered Broadcasting

For simplicity, we assume all videos are encoded using constant-bit-rate (CBR), are
of the same length L (measured in time units), and will be played sequentially from
beginning to end without interruption. The available high bandwidth W is divided
by the playback rate b to yield the bandwidth ratio B. The bandwidth of the server
is usually divided up into K logical channels (K ≥ 1).

Assuming the server broadcasts up to M videos (M ≥ 1), all can be periodically
broadcast on all these channels with the start-time of each video staggered. This is
referred to as Staggered broadcasting. Figure 16.13 shows an example of staggered
broadcasting in which M = 8 and K = 6.

For staggered broadcasting, if the division of the bandwidth is equal among all K
logical channels, then the access time for any video is δ = M ·L

B . Note that the access
time is actually independent of the value of K . In other words, the access time will
be reduced linearly with an increased network bandwidth.

Pyramid Broadcasting

To improve the staggered broadcasting, Pyramid broadcasting [16] divides a video
into segments of increasing sizes. That is, Li+1 = α ·Li , where Li is the size (length)
of Segment Si and α > 1. Segment Si will be periodically broadcast on Channel
i . In other words, instead of staggering the videos on K channels, the segments are
now staggered. Each channel is given the same bandwidth, and the larger segments
are broadcast less frequently.

Since the available bandwidth is assumed to be significantly larger than the video
playback rate b (i.e., B >> 1), it is argued that the client can be playing a smaller
Segment Si and simultaneously be receiving a larger Segment Si+1.

To guarantee continuous (noninterrupted) playback, the necessary condition is

playback_time(Si) ≥ access_time(Si+1) (16.6)

16.3 Broadcast/Multicast Video-on-Demand 547

Channel 1

Channel 2

Channel 3

Channel 4

Channel 5

Channel 6

Channel 7

t
12 16 24 28 32 36 40 44 48200 4 8

Fig. 16.14 Skyscraper broadcasting with seven segments

where the playback_time(Si) = Li . Given the bandwidth allocated to each channel
is B/K · b, we have access_time(Si+1) = Li+1·M

B/K = α·Li ·M
B/K , which yields

Li ≥ α · Li · M
B/K

(16.7)

Consequently,

α ≤ B
M · K

(16.8)

The size of S1 determines the access time for pyramid broadcasting. By default,
we set α = B

M ·K to yield the shortest access time. The time drops exponentially with
the increase in total bandwidth B, because α can be increased linearly.

A main drawback of the above scheme is the need for a large storage space on the
client side, because the last two segments are typically 75–80 % of the video size.
Instead of using a geometric series, Skyscraper broadcasting [17] uses {1, 2, 2, 5, 5,
12, 12, 25, 25, 52, 52, …} as the series of segment sizes, to alleviate the demand on
a large buffer.

Figure 16.14 shows an example of Skyscraper broadcasting with seven segments.
As shown, two clients who made a request at time intervals (1, 2) and (16, 17),
respectively, have their respective transmission schedules. At any given moment, no
more than two segments need to be received.

Harmonic Broadcasting

Harmonic broadcasting [18] adopts a different strategy. The size of all segments
remains constant, whereas the bandwidth of channel i is Bi = b/ i , where b is the
video’s playback rate. In other words, the channel bandwidths follow the decreasing
pattern b, b/2, b/3, . . . b/K . The total bandwidth allocated for delivering the video

548 16 Internet Multimedia Content Distribution

Channel 1

Channel 2

Channel 3

Channel 4

S1 S1 S1 S1 S1 S1

S2,1 S2,2 S2,1 S2,2 S2,1 S2,2

S3,1 S3,2 S3,3 S3,1 S3,2 S3,3

S4,1 S4,2 S4,3 S4,4 S4,1 S4,2

b

b/2

b/3

b/4

. . .

. . .

. . .

. . .

Fig. 16.15 Harmonic broadcasting

is thus

B =
K∑

i=1

b
i
= HK · b (16.9)

where K is the total number of segments, and HK = ∑K
i=1

1
i is the harmonic number

of K .
Figure 16.15 shows an example of harmonic broadcasting. After requesting the

video, the client is allowed to download and play the first occurrence of segment S1
from channel 1. Meanwhile, the client will download all other segments from their
respective channels.

Take S2 as an example: it consists of two halves, S21 and S22. Since bandwidth
B2 is only b/2, during the playback time of S1, one-half of S2 (say S21) will be
downloaded (prefetched). It takes the entire playback time of S2 to download the
other half (say S22), just as S2 is finishing playback. Similarly, by this time, two-
thirds of S3 has already been prefetched, and so the remaining third of S3 can be
downloaded just in time for playback from channel 3, which has a bandwidth of only
b/3, and so on.

The advantage of harmonic broadcasting is that the Harmonic number grows
slowly with K . For example, when K = 30, HK ≈ 4. If the video is 120 min long,
this yields small segments—only 4 min (120/30) each. Hence, the access time for
harmonic broadcasting is generally shorter than for Pyramid broadcasting, and the

16.3 Broadcast/Multicast Video-on-Demand 549

Fig. 16.16 Stream merging

0 t

B joins A

C joins A

C joins B

C

A

B

Bytes
delivered

1 2 3 4 5 6 7 8

demand on total bandwidth (in this case 4b) is modest. Its required buffer size at
the client side is 37 % of the entire video [18], which also compares favorably with
the original pyramid broadcasting scheme.

However, the above Harmonic broadcasting scheme does not always work. For
example, if the client starts to download at the second instance of S1 in Fig. 16.15,
then by the time it finishes S1, only the second half of S2—that is, S22—is prefetched.
The client will not be able to simultaneously download and play S21 from channel 2,
since the available bandwidth is only half the playback rate.

An obvious fix to the above problem is to ask the client to delay the playback of
S1 by one slot, although it will double the access time.

StreamMerging

The above broadcast schemes are most effective when limited user interactions are
expected—that is, once requested, clients will stay with the sequential access sched-
ule and watch the video in its entirety.

Stream merging is more adaptive to dynamic user interactions, which is achieved
by dynamically combining multicast sessions [19]. It still makes the assumption that
the client’s receiving bandwidth is higher than the video playback rate. In fact, it is
common to assume that the receiving bandwidth is at least twice the playback rate,
so that the client can receive two streams at the same time.

The server will deliver a video stream as soon as it receives the request from
a client. Meanwhile, the client is also given access to a second stream of the same
video, which was initiated earlier by another client. At a certain point, the first stream
becomes unnecessary, because all its contents have been prefetched from the second
stream. At this time, the first stream will merge with (or “join”) the second.

As Fig. 16.16 shows, the “first stream” B starts at time t = 2. The solid line
indicates the playback rate, and the dashed line indicates the receiving bandwidth,

550 16 Internet Multimedia Content Distribution

which is twice the playback rate. The client is allowed to prefetch from an earlier
(“second”) stream A, which was launched at t = 0. At t = 4, stream B joins A.

The technique of stream merging can be applied hierarchically [19]. As Fig. 16.16
shows, stream C, which started at t = 4, would join B at t = 6, which in turn joined
A. The original stream B would have been obsolete after t = 4, since it joined A. In
this case, it will have to be retained until t = 6, when C joins A.

A variation of stream merging is piggybacking, in which the playback rate of the
streams is slightly and dynamically adjusted, to enable merging (piggybacking) of
the streams.

16.4 Broadcast/Multicast for Heterogeneous Users

The Internet’s intrinsic heterogeneity poses another challenge to multimedia
broadcast/multicast. In traditional end-to-end adaptation schemes, the sender ad-
justs its transmission rate according to some feedback from its receiver. In a broad-
cast/multicast environment, this solution tends to be suboptimal because there is no
single target rate for a group of heterogeneous users.

It is thus necessary to use multi-rate multicast, in which the users in a multi-
cast session can receive media data at different rates according to their respective
bandwidths or processing capabilities [20]. From the viewpoint of a media source,
multi-rate streams can be produced via two methods. The first is information repli-
cation; that is, the sender generates replicated streams for the same media content
but at different rates. The second is information decomposition. A commonly used
decomposition scheme is cumulative layering, in which a raw media sequence is
compressed into some nonoverlapping streams, or layers. The reconstructed quality
is low if only one layer is decoded, but can be refined by decoding more layers. From
media compression’s perspective, replication and decomposition can be implemented
through transcoding and scalable audio/video coding (see Sect. 10.5.3), respectively.
The remaining question is the efficient transmission of multi-rate video streams to a
large group of heterogeneous users using the Internet multicast infrastructure.

16.4.1 Stream Replication

Stream replication can be viewed as a trade-off between single-rate multicast and
multiple point-to-point connections. Its feasibility is well justified in a typical mul-
ticast environment where the bandwidths of the receivers usually follow some clus-
tered distribution. This is because they use standard access interfaces, for example,
a 1.5 Mbps ADSL, a 15 Mbps VDSL, and a 100 Mbps fiber access, or they might
share some bottleneck links and hence experience the same bottleneck bandwidth.
As a result, a limited number of streams can be used to match these clusters to
achieve reasonably good fairness. A representative of stream replication is the Des-
tination Set Grouping (DSG) protocol [21]. In DSG, a source maintains a small

http://dx.doi.org/10.1007/978-3-319-05290-8_10

16.4 Broadcast/Multicast for Heterogeneous Users 551

number of media streams (say 3) for the same video content but with different rates.
Each user subscribes to a stream that best matches its bandwidth. It periodically
monitors the video reception level and reports this to the sender. A stream is then
feedback-controlled within prescribed limits by its group of users. Specifically, if
the percentile of congested users is above a certain threshold, the bandwidth of the
stream should be reduced; if all the users experience no packet loss, its bandwidth can
be increased. The user may also move across groups when its available bandwidth
changes significantly.

Due to its simplicity, stream replication has been advocated in many commercial
video streaming products, such as the SureStream mechanism provided by RelaN-
etworks’ RealSystem. For YouTube, it originally offered videos at only one quality
level, displayed at a resolution of 320 × 240 pixels using the Sorenson Spark codec
(a variant of H.263), with mono MP3 audio. Later, 3GP format for mobile phones
and high quality mode of 480 × 360 pixels were added. Today, YouTube videos are
available in a range of quality levels, as shown in Table 16.2, matching the demands
from highly heterogeneous Internet and mobile users. The former names of standard
quality (SQ), high quality (HQ), and high definition (HD) have been replaced by
numerical values representing the vertical resolution of the video. The default video
stream is encoded in H.264/MPEG-4 AVC format, with stereo AAC audio.

16.4.2 LayeredMulticast

For cumulative layered video (or scalable video), Receiver-driven Layered
Multicast (RLM) [22] has been suggested, which takes advantage of the dynamic
group concept in the IP multicast model. An RLM sender transmits each video layer
over a separate multicast group. The number of layers as well as their rates is predeter-
mined. Adaptation is performed only at the user’s end by a probing-based scheme.
Basically, a user periodically joins a higher layer’s group to explore the available
bandwidth. If packet loss exceeds a tolerable threshold after the join-experiment,
i.e., congestion occurs, the user should leave the group; otherwise it will stay at the
new subscription level.

Figure 16.17 shows an example of the layer joining/leaving behavior of a receiver.
It started from layer 1 (the base layer), and then gradually joined enhancement layers
2, 3, and 4 as there was no congestion. After joining layer 4, however, congestion
occured and it had to leave this highest layer. It waited for a while, seeing no con-
gestion, and rejoined layer 4. This triggered congestion again, and the receiver had
to leave again, observing the network condition and planning for the next join-
experiment. Note that the waiting time for the next join-experiment is longer than
that of the previous one; such an exponential backoff ensures that the receiver will
not be too aggressive in joining new layers and cause frequent congestion.

One drawback of this probing-based scheme is that one user’s join-experiments
can induce packet losses experienced by others sharing the same bottleneck link.
For example, the receiver in Fig. 16.17 dropped from layer 3 to 2 in a later time,
which was not caused by its own join-experiment, but by others’ experiment that

552 16 Internet Multimedia Content Distribution

Table 16.2 Comparison of YouTube media encoding options

itag Default Video Video Video Video Audio Audio
value container resolution encoding profile bitrate

(Mbit/s)
encoding bitrate

(kbit/s)

5 FLV 240p Sorenson
H.263

N/A 0.25 MP3 64

6 FLV 270p Sorenson
H.263

N/A 0.8 MP3 64

13 3GP N/A MPEG-4
Visual

N/A 0.5 AAC N/A

17 3GP 144p MPEG-4
Visual

Simple 0.05 AAC 24

18 MP4 270p/360p H.264 Baseline 0.5 AAC 96
22 MP4 720p H.264 High 2–2.9 AAC 192
34 FLV 360p H.264 Main 0.5 AAC 128
35 FLV 480p H.264 Main 0.8–1 AAC 128
36 3GP 240p MPEG-4

Visual
Simple 0.17 AAC 38

37 MP4 1080p H.264 High 3–5.9 AAC 192
38 MP4 3072p H.264 High 3.5–5 AAC 192
43 WebM 360p VP8 N/A 0.5 Vorbis 128
44 WebM 480p VP8 N/A 1 Vorbis 128
45 WebM 720p VP8 N/A 2 Vorbis 192
46 WebM 1080p VP8 N/A N/A Vorbis 192
82 MP4 360p H.264 3D 0.5 AAC 96
83 MP4 240p H.264 3D 0.5 AAC 96
84 MP4 720p H.264 3D 2-2.9 AAC 152
85 FLV 520p H.264 3D 2-2.9 AAC 152
100 WebM 360p VP8 3D N/A Vorbis 128
101 WebM 360p VP8 3D N/A Vorbis 192
102 WebM 720p VP8 3D N/A Vorbis 192
120 FLV 720p AVC Main@L3.1 2 AAC 128

1

2
3

4

L
ay

er
 #

Time

Fig. 16.17 An illustration of received-driven layered multicast

introduced congestion—in the current Internet that has no packet classification and
prioritization, packet loss will occur in any layer when congestion happens, not nec-
essarily the highest layer. These losses would occur frequently if all the users perform

16.4 Broadcast/Multicast for Heterogeneous Users 553

uncoordinated join-experiments. RLM incorporates a shared learning mechanism to
solve this problem. With shared learning, a user notifies all other participants about a
join-experiment to be conducted, and others will accordingly refrain from conducting
their own experiments in the mean time. This avoids misinterpretation of congestion,
but can reduce the scalability of RLM and significantly increase its convergence time.

The difficulties associated with coordinating join and leave attempts motivated
the design of the Receiver-driven Layered Congestion Control (RLC) protocol [23].
RLC uses receiver-driven join/leave actions to mimic the behavior of TCP conges-
tion control, i.e., Additive Increase and Multiplicative Decrease (AIMD). The join
experiments among the receivers are synchronized and the rate of each layer is set to
twice as much as the subsequent lower layer. This results in an exponential decrease
of the bandwidth consumed in case of losses (like TCP).

Nevertheless, the objective of TCP differs significantly from the objective of
video transmission protocols. Although this solution interacts better with TCP, it
could experience the same saw-tooth behavior of TCP flows as we have seen before,
resulting in unstable video quality. Therefore, rather than mimic the behavior of TCP,
a more reasonable objective for video streaming should be to achieve a long-term
fair share with TCP traffic with smoothly controlled rate, as the TCP-Friendly Rate
Control (TFRC) protocol does. In the multicast case, each user can estimate the
equivalent throughput of a TCP connection running over the same path from the
sender, and performs join and leave actions according to this estimated bandwidth..

As discussed in Sect. 15.3.2, a TCP throughput model generally depends on the
packet size, loss event rate, and round-trip time (RTT). The former two can be
readily estimated by a receiver, but the estimation of RTT between the sender and
a receiver requires feedback packets, which may cause the well-known feedback
implosion problem in a large multicast session; that is, too many feedbacks from the
large number of receivers overwhelm the sender. Smart lightweight feedback loops
have been developed to address this issue. For example, the Multicast Enhanced
Loss-Delay based Adaptation (MLDA) protocol [24] employs an open-loop RTT
estimation method as a complement to the closed-loop (feedback-based) method.
It tracks the one-way trip time from the sender to the receiver and transforms it to
an estimate of the round-trip time. Link asymmetry can be compensated by low-
frequency close-loop estimations.

16.5 Application-Layer Multicast

Today the scope and reach of IP multicast remain limited, and many ISPs simply
block or disable IP multicast due to various security and economic concerns [25].
The idea of using the application layer for multicast data forwarding came a long
time ago [26,27]. Though both application-layer multicast and IP multicast require
intermediate nodes in the network topology to support the replication of data packets,
the implementation in the application layer has much less demanding on end-hosts,
as compared to switches and routers in the Internet core [28].

http://dx.doi.org/10.1007/978-3-319-05290-8_15

554 16 Internet Multimedia Content Distribution

Fig. 16.18 An illustration of application-level overlay network

Figure 16.18 depicts an example of an application-layer multicast network that
overlays the underlying Internet routers. When organizing the end-hosts into an over-
lay for disseminating video streams, a series of important criteria must be considered
for overlay construction and maintenance [29].
• Overlay efficiency. The overlay constructed must be efficient both from the network

and the application perspectives. For multicast video, high bandwidth and low
latencies are simultaneously required. However, for applications that are real-time
but not interactive, a start-up delay of a few seconds can be tolerated.

• Scalability and load balancing. Since multicast sessions can scale to tens of thou-
sands of receivers, the overlay must scale to support such large sizes, and the
overhead associated must be reasonable even at large scales.

• Self-organizing. The overlay construction should take place in a distributed fash-
ion and must be robust to dynamic changes in group membership. Further, the
overlay must adapt to long-term variations in Internet path characteristics (such
as bandwidth and latency), while being resilient to inaccuracies. The system must
be self-improving in that the overlay should incrementally evolve into a better
structure as more information become available.

• Node constraints. Since the system relies on users contributing bandwidth, it is
important to ensure that the total bandwidth a user is required to contribute does
not exceed its inherent access bandwidth capacity. Also, a large fractions of users
may stay behind NATs and firewalls—the connectivity restrictions posed by such
users may severely limit the overlay capacity.
A number of proposals have emerged for application-layer multicast (also known

as overlay multicast, end-system multicast, etc.) [29]. While they differ on a wide
range of dimensions, earlier proposals were largely push-based, in which end-nodes
are organized into structures (typically trees) for delivering data, with each data
packet being disseminated using the same structure. Nodes on the structure have
well-defined relationships, for example, the “parent-child” relationship in trees. Since
all data packets follow this structure, it becomes critical to ensure the structure is
optimized to offer good performance to all receivers. Furthermore, the structure
must be maintained, as nodes join and leave the group at will—in particular, if a
node crashes or otherwise stops performing adequately, all of its offspring in the tree

16.5 Application-Layer Multicast 555

will stop receiving packets, and the tree must be repaired. Finally, when constructing
tree-based structures, loop avoidance is an important issue that must be addressed.

16.5.1 Representative: End-SystemMulticast (ESM)

The ESM system [30] employs a tree-based overlay protocol that is distributed,
self-organizing, and performance-aware. The tree, rooted at the source, is optimized
primarily for bandwidth, and secondarily for delay.

GroupManagement

Each ESM node maintains information about a small random subset of members, as
well as information about the path from the source to itself. A new node joins the
multicast session by contacting the source and retrieving a random list of members
that are currently in the group. It then selects one of these members as its parent.
Each node A also periodically picks one member (say B) at random, and sends B a
subset of group members that A knows, along with the last timestamp it has heard for
each member. When B receives a membership message, it updates its list of known
members. Finally, members are deleted if their states have not been refreshed in a
period.

Membership Dynamics

Dealing with graceful member leave is fairly straightforward: the member continues
forwarding data for a short period, while its children look for new parents using the
parent selection method described below. This serves to minimize disruptions to the
overlay. The members also send periodic control packets to their children to indicate
existence.

Performance-Aware Adaptation

Each node maintains the application-level throughput it is receiving in a recent time
window. If its throughput is significantly below the source rate, then it selects a new
parent. One key parameter here is the detection time, which indicates how long a
node must stay with a poor performing parent before it switches to another parent.
The ESM system employs a default detection time of 5 s. The choice of this value
has been influenced by the fact that a congestion control protocol is running on
the data path (TCP or TFRC), and switching to a new parent thus requires going
through a slow-start phase, which may take 1–2 s to get the full source rate. The
protocol adaptively tunes the detection time because the nodes may not be capable
of receiving the full source rate, there may be few good and available parent choices

556 16 Internet Multimedia Content Distribution

in the system, or the nodes may experience intermittent network congestion on links
close to them.

Parent Selection

When a node (say A) joins the multicast overlay, or needs to make a parent change,
it probes a random subset of nodes it knows. The probing is biased toward members
that have not been probed or have low delay. Each node B that responds provides the
information about: (1) the throughput it is currently receiving, and delay from the
source; (2) whether it is degree-saturated or not; and (3) whether it is a descendant
of A. The probe also enables A to determine the round-trip time (RTT) to B. A waits
for responses for a timeout period of 1 second, a large enough value of RTT, so as
to maximize the number of responses received from members. From the responses
A receives, it eliminates its descendants and the members that are saturated.

For each node B that has not been eliminated, A evaluates the performance
(throughput and delay) it expects to receive if B were chosen as a parent. For ex-
ample, the expected application throughput is the minimum of the throughput B is
currently seeing and the available bandwidth of the path between B and A if the
estimate is available. History of the past performance is maintained—if A has pre-
viously chosen B as parent, then it has an estimate of the bandwidth of the path
between B and A. If the bandwidth to the nodes is not known, then A picks a parent
based on delay. A identifies the node B that could best improve performance, and
switches to the parent B either if the estimated application throughput is high enough
for A to receive a higher quality stream, or if B maintains the same bandwidth level
as A’s current parent, but improves delay. The latter heuristic helps to increase tree
efficiency by clustering nearby nodes.

16.5.2 Multi-tree Structure

The tree-based designs are perhaps the most natural approach. One concern with
them is that the failure of nodes, particularly those close to the root may disrupt
the data delivery to a large number of users, and potentially result in poor transient
performance. Furthermore, a majority of nodes are leaves in the structure, and their
outgoing bandwidth is not being utilized. More resilient structures, in particular,
multi-tree [31,32], thus have been introduced.

In a multi-tree, the source encodes the stream into sub-streams and distributes
each sub-stream along a particular overlay tree. The quality experienced by a receiver
depends on the number of sub-streams that it receives. There are two key advantages
of the multi-tree solution. First, the overall resiliency of the system is improved, as
a node is not completely disrupted by the failure of an ancestor on a single tree.
Second, the potential bandwidth of all nodes can be utilized, as long as each node is
not a leaf in at least one tree.

16.5 Application-Layer Multicast 557

Tree 2Tree 1

S/2 S/2

Source rate (S)

A B

C

B A

C

Fig.16.19 A multi-tree application-layer multicast with two trees. Note that node A in Tree 1 and
that in Tree 2 are physically the same nodes, so for node B or C

Figure 16.19 illustrates how the multicast content is delivered with a multi-tree
approach using two trees. The source distributes a stream rate S/2 over each tree,
where S is the source rate. C receives S/2 from the tree, with potentially different
parents to reconstruct the original content. Nodes A and B each can contribute a
bandwidth S/2, and allocate their bandwidth in Tree2 and Tree1, respectively. In a
single-tree approach, it is hard to utilize the contributions from these nodes. It can be
seen that Akamai’s streaming CDN that we examined earlier also uses a multi-tree
solution (with reflectors), despite the nodes there being dedicated replication servers.

16.6 Peer-to-Peer Video Streaming with Mesh Overlays

Peer-to-peer (P2P) further extends the application-layer multicast paradigm by taking
advantage of the ability of participating end-hosts, or peers, in a multicast group to
contribute their uplink bandwidth. It was first brought to spotlight by the advent
of Napster (1998) and Gnutella (2001). Later, the design philosophy in the highly
popular BitTorrent software has converged with academic solutions in application-
layer multicast, and a new generation of data-driven peer-to-peer streaming protocols
on random mesh topologies emerged [29].

Data-driven or mesh overlay designs sharply contrast with tree-based application-
layer multicast in that they do not construct and maintain an explicit structure for
delivering data. The underlying argument is that, rather than constantly repair a
structure in a highly dynamic peer-to-peer environment, we can use the availability of

558 16 Internet Multimedia Content Distribution

data to guide the data flow. In comparison, the tree-based application-layer multicast
adopts a more rigid design [33,34], in that the structure of each tree needs to be
actively managed as peers join and leave the session.

A naive approach to distribute data without explicitly maintaining a structure is
to use gossip algorithms [35]. In a typical gossip algorithm, a node sends a newly
generated message to a set of randomly selected nodes; these nodes do similarly
in the next round, and so do other nodes until the message is spread to all. The
random choice of gossip targets achieves resilience to random failures and enables
decentralized operation. However, gossip cannot be used directly for video content
distribution because its random push may cause significant redundancy with the high-
bandwidth video. Without an explicit structure support, start-up and transmission
delays can be significant, too.

To handle this, mesh overlays adopts a pull-based technique for data dissemina-
tion. More explicitly, each node maintains a set of partners, and periodically exchange
data availability information with the partners. The node may then retrieve the un-
available data from one or more partners, or supply the available data to partners.
Redundancy is avoided, as the node pulls data only if it has not already possessed it.
Since any data segment may be available at multiple partners, the overlay is robust
to failures—departure of a node simply means its partners will use other partners to
receive data segments. Finally, the randomized partnerships imply that the potential
bandwidth available between the peers can be fully utilized. As a result, pull-based
protocols are much simpler to design and more amenable to real-world implementa-
tions. It has the potential to scale with group size, as greater demand also generates
more resources.

There are common issues existing in both peer-to-peer file sharing and video
streaming; for example, pricing for uploading/downloading and copyright protect-
ing. The key difference is the timing constraints that a streaming protocol must
accommodate: if video segments do not arrive in time, they are not useful when it
comes to the time of playing them back. Thus, an important component of the data-
driven overlay is a scheduling algorithm, which strives to schedule the segments that
must be downloaded from various partners to meet the playback deadlines.

16.6.1 Representative: CoolStreaming

CoolStreaming [36] is the first large-scale data-driven peer-to-peer systems that was
deployed in the real world for video streaming. Other successful companies such as
PPLive, PPStream, and UUSee also adopted mesh-based pull techniques to deliver
live or on-demand media content to millions of users.

Figure 16.20 depicts the system diagram of a CoolStreaming node, which consists
of three key modules: (1) a membership manager, which helps the node maintain a
partial view of other overlay nodes; (2) a partnership manager, which establishes and
maintains the partnership with other known nodes; (3) a scheduler, which schedules
the transmission of video data. For each segment of a video stream, a CoolStreaming
node can be either a receiver or a supplier, or both, depending dynamically on this

16.6 Peer-to-Peer Video Streaming with Mesh Overlays 559

 Network Interface

 Partner Partner Partner

Buffer

Player

Scheduler
Partnership
 Manager

Buffer Map
(BM)

Membership
 Manager

Fig. 16.20 A generic system diagram for a CoolStreaming node

segment’s availability information, which is periodically exchanged between the
node and its partners. An exception is the video source, which, as the origin node,
is always a supplier. It could be a dedicated video server, or simply an overlay node
that has a live video program to distribute.

Membership and Partner Management

Each CoolStreaming node has a unique identifier, such as its IP address, and maintains
a membership cache (mCache) containing a partial list of the identifiers for active
nodes in the overlay. In a basic node joining algorithm, a newly joined node first
contacts the origin node, which randomly selects a deputy node from its mCache and
redirects the new node to the deputy. The new node can then obtain a list of partner
candidates from the deputy, and contacts these candidates to establish its partners in
the overlay.

This process is generally viable because the origin node persists during the lifetime
of streaming and its identifier/address is universally known. The redirection enables
more uniform partner selections for newly joined nodes, and greatly minimized the
origin node’s load.

A key practical issue here is how to create and update the mCache. To accommo-
date overlay dynamics, each node periodically generates a membership message to
announce its existence; each message is a 4-tuple <seq_num, id, num_partner ,
time_to_live>, where seq_num is the sequence number of the message, id is the
node’s identifier, num_partner is its current total number of partners, and time_to_live
records the remaining valid time of the message. Upon receiving a message of a new
seq_num, the node updates its mCache entry for node id, or create the entry if
not existing. The entry is a 5-tuple <seq_num, id, num_partner , time_to_live,

560 16 Internet Multimedia Content Distribution

A GF

E

B
C

D

H

Fig. 16.21 An illustration of partnerships in CoolStreaming with A being the origin node. The
partnership is bi-directional, except for node A, which serves as a supplier only. For example, node
F is a partner of nodes B, C, and E, and node E is a partner of nodes B, F, and H

last_update_time>, where the first four components are copied from the received
membership message, and the fifth is the local time of the last update for the entry.

The following two events also trigger updates of an mCache entry: (1) the mem-
bership message is forwarded to other nodes through gossiping; and (2) the node
serves as a deputy and the entry is included in the partner candidate list. In either
case, time_to_live is decreased by current_local_time − last_update_time. If
the new value is less than or equal to zero, the entry will be removed; otherwise,
num_partner will be increased by one in the deputy case.

Buffer Map Representation and Exchange

An example of partnership in an overlay is shown in Fig. 16.21. As said, neither
the partnerships nor the data transmission directions are fixed. More explicitly, a
video stream is divided into segments of a uniform length, and the availability of the
segments in the buffer of a node can be represented by a Buffer Map (BM). Each
node continuously exchanges its BM with the partners, and then schedules which
segment is to be fetched from which partner accordingly.

Timely and continuous segment delivery is crucial to media streaming, but not to
file download. In BitTorrent, the download phases of the peers are not synchronized,
and new segments from anywhere in the file are acceptable. In CoolStreaming, the
playback progress of the peers is roughly synchronized, and any segment downloaded
after its playback time will be useless. A sliding window thus represents the active
buffer portion, as shown in Fig. 16.22.

Suggested by experimental results, CoolStreaming adopts a sliding window of
120 segments, each of 1-second video. A BM thus consists of a bitstring of 120 bits,
each indicating the availability of a corresponding segment. The sequence number
of the first segment in the sliding window is recorded by another two bytes, which
can be rolled back for extra long video programs (>24 h).

16.6 Peer-to-Peer Video Streaming with Mesh Overlays 561

Playback point

Whole File

Sliding Window

(a)

(b)

Fig.16.22 Buffer snapshots of BitTorrent (a) and CoolStreaming (b), where shaded segments are
available in the buffer

Scheduling Algorithm

Given the BMs of a node and its partners, a schedule is then generated for fetching
the expected segments from the partners. For a homogeneous and static network, a
simple round-robin scheduler may work well, but for a dynamic and heterogeneous
network, a more intelligent scheduler is necessary. Specifically, the scheduling al-
gorithm strikes to meet two constraints: the playback deadline for each segment,
and the heterogeneous streaming bandwidth from the partners. If the first constraint
cannot be satisfied, then the number of segments missing deadlines should be kept
minimum, so as to maintain a continuous playback. This problem is a variation of
the Parallel machine scheduling, which is known to be NP-hard. It is thus not easy
to find an optimal solution, particularly considering that the algorithm must quickly
adapt to the highly dynamic network conditions. CoolStreaming resorts to a simple
heuristic of fast response time.

The heuristic first calculates the number of potential suppliers for each segment
(i.e., the partners containing or to contain the segment in their buffers). Since a
segment with less potential suppliers is more difficult to meet the deadline constraints,
the algorithm determines the supplier of each segment starting from those with only
one potential supplier, then those with two, and so forth. Among the multiple potential
suppliers, the one with the highest bandwidth and enough available time is selected.

As an example, consider node F in Fig. 16.21, which has partners B, C, and E.
Assume that a buffer map contains only four segments and they are 1000, 0010,
0011, and 0101 for nodes F, B, C, and E, respectively. That is, node F has only
segment 1 available in its local buffer, but 2, 3, and 4 missing. Among the three
missing segments, segment 2 has only one supplier (node E) and segments 3 and 4
each have two suppliers (B, C for 3, and C, E for 4). As such, node F will schedule to
fetch segment 2 first, from node E. It will then fetch segments 3 and 4. For segment
3, between the two potential suppliers B and C, the one with the higher bandwidth
will be scheduled. The same strategy applies to segment 4.

562 16 Internet Multimedia Content Distribution

Given a schedule, the segments to be fetched from the same supplier are marked
in a BM-like bit sequence, which is sent to that supplier, and these segments are then
delivered in order through the TCP-Friendly Rate Control (TFRC) protocol. There
have been many enhancements to the basic scheduling algorithm in CoolStreaming,
and existing studies have also suggested that the use of advanced network coding
can possibly enable optimal scheduling [37,38].

Failure Recovery and Partnership Refinement

A CoolStreaming node can depart gracefully or accidentally due to an unexpected
failure. In either case, the departure can be easily detected after an idle time of
TFRC or BM exchange, and an affected node can quickly react through rescheduling
using the BM information about the remaining partners. Besides this built-in recovery
mechanism, CoolStreaming also lets each node periodically establish new partner-
ships with nodes randomly selected from its local membership list. This operation
serves two purposes: First, it helps each node maintain a stable number of partners in
the presence of node departures; Second, it helps each node explore partners of better
quality, e.g., those constantly having a higher upload bandwidth and more available
segments.

16.6.2 Hybrid Tree andMesh Overlay

We have seen solutions of both tree-based overlays (e.g., ESM) and mesh-based
peer-to-peer overlays (e.g., CoolStreamig). A tree is the most efficient structure
for multicasting, but has to face the inherent instability, maintenance overhead,
and bandwidth under-utilization. The selling point for the mesh is its simplicity
and robustness. Its control communication overhead however cannot be overlooked.
Intuitively, since the sliding window at a peer advances itself over time, the buffer
maps need to be exchanged as frequently as needed, which may lead to a substantial
amount of overhead.

A natural question is therefore whether we can combine them to realize a hybrid
overlay that is both efficient and robust. The combination can be achieved in different
dimensions. An example is Chunkyspread [39], which splits a stream into distinct
slices and transmits over separate but not necessarily disjoint trees. The participating
nodes also form a neighboring graph, and the degree in the graph is proportional to
its desired transmission load. This hybrid design simplifies the tree construction and
maintenance, but largely retains its efficiency and achieves fine-grained control.

Another solution is a more explicit tree-backbone-based approach [40]. Existing
trace studies have shown evidence that most of the data segments delivered through
a data-pull mesh overlay essentially follow a specific tree structure or a small set
of trees. The similarity of the trees, defined as the fraction of their common links,
can be as high as 70 %. The overlay performance thus closely depends on the set of
common internal nodes and their organization. This suggests that, while maintaining

16.6 Peer-to-Peer Video Streaming with Mesh Overlays 563

B

A

D
E

B

AC

D
E

Treebone

Stable Node Unstable Node
Push Data Pull Data
Neighborhood

Source

Outskirts
............

C

......
......

Source(a) (b)

Fig.16.23 An illustration of a hybrid tree and mesh design. a The hybrid overlay; b Node B leaves.
To make the figures cleaner, we omit many unstable nodes in the outskirts

a prior topology for all the nodes is costly, optimizing the organization for a core
subset is worth consideration. In particular, if such a subset consists of the stable
nodes, we can expect high efficiency with low overhead and delay simultaneously.
Figure 16.23 shows an example of a tree backbone that consists mainly of stable
nodes; other nonstable nodes are attached to the backbone as outskirts. Most of the
streaming data will be pushed through the backbone, and eventually reaches the
outskirts. To improve the resilience and efficiency of the backbone, the nodes can be
further organized into a mesh overlay, as indicated by the dotted lines in the figure.
In this auxiliary mesh, a node will not actively schedule to pull data blocks from
neighbors as in the pure mesh; rather, a pull will be invoked only if there is data
outage from the backbone.

When an unstable node, such as node A fails or leaves, it will not affect the data
pushed along the backbone. On the other hand, the backbone nodes are stable and
seldom leave; even if a leave happens, the impact can be mitigated with the help from
the mesh overlay. For example, consider the leave of node B, shown in Fig. 16.23b.
While node C is affected, it can easily pull the missing data from its mesh neighbors
before it re-attaches to the backbone.

16.7 HTTP-BasedMedia Streaming

Although peer-to-peer has proven to be highly scalable in video delivery, there
are critical issues for peer-to-peer system deployment by content providers:
(1) Ease-of-use. In peer-to-peer streaming, the users are usually required to install
customized client software or plugins to be able to cache the video contents watched
and exchange the contents with others—this is not user-friendly given that today’s
users are so familiar with using web browsers to consume Internet contents directly;
(2) Copyright. In a peer-to-peer streaming system that arose from illegal file sharing,

564 16 Internet Multimedia Content Distribution

currently playingvideo in buffervideo sent by server

Fig. 16.24 An illustration of HTTP Streaming

the users exchange contents with each other autonomously—it is very difficult for
the content providers to control the copyright in the video streaming.

Peer-to-peer also relies on peers’ contribution to the system. In the real world,
there are many free riders who do not want to contribute their resources. Even if
the peers are willing to contribute, the upload bandwidth of many peers is often
constrained given the asymmetricity in such access networks as ADSL. Moreover,
the data exchanged between peers need to traverse NAT in both directions through
open ports, which is known to be difficult as we have discussed in the previous
chapter. They are exposed to security threats, too, and are often blocked by firewalls.

16.7.1 HTTP for Streaming

As the underlying protocol for web transactions, the Hyper Text Transfer Protocol
(HTTP) is generally firewall-friendly because almost all firewalls are configured
to support connections for web transactions. HTTP server resources are also widely
available commodity and therefore supporting HTTP streaming for massive audience
can be cost-effective using the existing web infrastructure.

HTTP was not initially designed for streaming applications. It does not provide
signaling mechanisms for interactive streaming control, and its underlying transport
protocol, TCP, was not originally designed for continuous media, either. The key to
support streaming with HTTP is to break the overall media stream into a sequence
of small HTTP-based file downloads; each download includes one short chunk of an
overall potentially unbounded stream. Using a series of the HTTP’s GET commands,
a user can progressively download the small files while playing those already being
downloaded. Any damaged or delayed block will have limited impact, thus ensuring
continuous playback. This process is illustrated in Fig. 16.24.

HTTP does not maintain session states on the server. Therefore, provisioning a
large number of clients does not impose significant cost on server resources. This
is quite different from RTP/RTCP/RTSP-based streaming that have to maintain per-
session states. Yet each client can keep a record of its playback progress, and the
progressive download also allows a client to seek to a specific position in the media
stream by downloading the corresponding file, or more precisely, performing an

16.7 HTTP-Based Media Streaming 565

HTTP’s byte range request for the file, realizing similar functionalities offered
by RTSP.

HTTP streaming has been implemented in commercial products. Today, repre-
sentative online video providers, including Netflix, YouTube, Hulu, are using HTTP
to stream their videos to the users. Besides the superiorities we have mentioned
earlier, HTTP streaming is benefiting from the rapidly expanding capacity and
dropping pricing of today’s CDNs. Specifically, the emergence of such ad-based
business models have boosted the importance of video quality, as there is a crucial
interplay between video quality and user engagement. As a consequence, content
providers, with an objective of generating more revenue, are caring more about the
visual quality and stability of their streaming service to maximize user engagement.
Since today’s CDNs are mainly designed and optimized to serve the web contents
[41], HTTP streaming is capable of using the existing infrastructure to deliver high
quality media with low cost, better stability and security, and simpler interfaces.

16.7.2 Dynamic Adaptive Streaming Over HTTP (DASH)

Different HTTP-based implementations use different manifest and segment formats
and hence, to receive the content from each server, a device must support its cor-
responding proprietary client protocol. There is a demand for standardization so
that different devices can inter-operate. The heterogeneous networks and devices
also require the media streaming to be dynamical and adaptive. To this end, the
Dynamic Adaptive Streaming over HTTP (DASH) standard has been developed by
the MPEG group. Work on DASH started in 2010; it became an international standard
in November 2011, and was officially published as ISO/IEC 23009-1:2012 in April
2012 [42].

DASH defines a set of implementation protocols across the servers, clients, and
description files. In DASH, a video stream is encoded and divided into multiple
segments, including initialization segments that contain the required information
for initializing the media decoder, and media segments that contain the following
data: (1) the media data, and (2) the stream access point, indicating where the client
decoder can play. Subsegments can also be used such that a user can download them
using the HTTP’s partial GETS command, which includes a Range header
field, requesting that only part of the entity be transferred.

A Media Presentation Description (MPD) describes the relation of the segments
and how they form a video presentation, which facilitates segment fetching for con-
tinuous playback. A sample MPD file is shown below.

<MPD>

<BaseURL>http://www.baseurl_1.com</BaseURL>//Destination URL(s)
<Period>
<AdaptationSet>//Video Set
<Representation bandwidth=“4190760" height=“1080" width=“1920">
<SegmentInfo>... </SegmentInfo>//Quality_1

566 16 Internet Multimedia Content Distribution

Fig. 16.25 A scenario of DASH-based streaming

</Representation>
<Representation bandwidth=“2073921" height=“720" width=“1280">
<SegmentInfo>... </SegmentInfo>//Quality_2

</Representation>
</AdaptationSet>
<AdaptationSet>//Audio Set
<Representation bandwidth=“127234" sampleRate=“44100">
<SegmentInfo>... </SegmentInfo>//Quality_1

</Representation>
</AdaptationSet>

</Period>
</MPD>

All BaseURLs are shown at the beginning of the MPD file. A client can analyze
this part to acquire the destination URLs and then pull streaming data from the
servers. In this simple MPD file, there is only one period, which consists of video
and audio adaptation sets. There are two video sequences with different resolutions
and bitrates, allowing the client to choose based on local and networking conditions.
There is only one soundtrack (of 44.1 KHz sampling rate) for the video stream. In
a more complex scenario, the audio set may also have several soundtracks with
different languages and bitrates.

Figure 16.25 illustrates the DASH-based streaming with the two video levels and
one audio level. The client can use an adaption algorithm to choose the appropriate
audio and video levels. During playback, the adaption algorithm will monitor the
local and network status, so as to achieve the best possible QoS, e.g., request lower
quality segments when the network bandwidth is low, and higher quality if enough
bandwidth is available.

As a new and open standard, there are many issues worthy of further investigations
in its development:
• Rate adaptation components. DASH only defines the segmentation and the file de-

scription, and leaves rate adaptation for either the client or the server to implement.
The client may utilize multi-path and multi-server approaches to receive video seg-
ments [43]. Such receiver-driven approaches, customized in the application layer,

16.7 HTTP-Based Media Streaming 567

Table 16.3 Typical Server/Client configurations for HTTP streaming

Type Server Client

Adobe adaptive streaming Flash media server Flash media player
Apple HTTP Live streaming Generic HTTP servers QuickTime/iOS player
Microsoft Live smooth streaming Internet information services (IIS) Silverlight player

are highly flexible and scalable. On the other hand, the servers could also be able
to adaptively change the bitrate for its clients, based on the perception of the client
download speed and server load.

• Rate adaptation strategies. Rate adaptation strategies determine how different ver-
sions of segments are received by clients, to achieve such objectives as streaming
stability, fairness, and high quality. It has been shown that the existing implemen-
tations in popular commercial products were either too aggressive or too conser-
vative, and better strategies that jointly consider efficiency, fairness, and stability
are to be developed [44].
DASH is also codec agnostic, though its prime container is MPEG-4. It allows

seamless adoption of the coming improved HEVC video codec (i.e., H.265). As
compatible clients become available, it promises to be widely adopted in a wide
range of devices. In Table 16.3, we list the server and client configurations of popular
HTTP/DASH implementations from industry.

16.8 Exercises

1. Consider prefix caching with a total proxy cache size of S and N videos of
user access probabilities r1, r2, . . . , rN , respectively. Assume that the utility of
caching for each video is given by function U (li) where li is the length of the
cached prefix for video i . Develop an algorithm to optimize the total utility of
the proxy. You may start from the simple case where U (li) = li · ri .

2. For the optimal work-ahead smoothing technique, how would you algorithmi-
cally determine at which point to change the planned transmission rate? What
is the transmission rate?

3. Consider again the optimal work-ahead smoothing technique. It was suggested
that instead of using every video frame, only frames at the beginning of statisti-
cally different compression video segments can be considered. How would you
modify the algorithm (or video information) to support that?

4. Discuss the similarities and differences between proxy caching and CDN. Is it
beneficial to utilize both of them in a system?

568 16 Internet Multimedia Content Distribution

Caller Peer

Relay Peer

Callee Peer

Super Peer

Super Peer
Super Peer

Skype

Skype
Skype

Skype

Skype

Skype

Skype
Skype

Skype

Skype

Skype

Skype

Fig. 16.26 An illustration of the Skype peer-to-peer network

5. Discuss the similarities and differences between a CDN for web content dis-
tribution and that for multimedia streaming. What is the role of reflectors in
Akamai’s streaming CDN?

6. For Staggered broadcasting, if the division of the bandwidth is equal among all
K logical channels (K ≥ 1), show that the access time is independent of the
value of K .

7. Given the available bandwidth of each user, b1, b2, …, bN , in a multicast session
of N users, and the number of replicated video streams, M , develop a solution
to allocate the bitrate to each stream, Bi , i = 1, 2, . . . , M , so that the average
inter-receiver fairness is maximized. Here, the inter-receiver fairness for user j
is defined as max Bk

b j
where Bk ≤ b j , k = 1, 2, . . . , M , i.e., the video stream of

the highest rate that user j can receive.
8. In Receiver-driven Layer Multicast (RLM), why is shared learning necessary?

If IntServ or DiffServ is deployed in the network, will RLM still need shared
learning?

9. In a multicast scenario, too many receivers sending feedback to the sender can
cause a feedback implosion that would block the sender. Suggest two methods
to avoid the implosion and yet provide reasonably useful feedback information
to the sender.

10. To achieve TCP-Friend Rate Control (TFRC), the Round-Trip Time (RTT)
between the sender and the receiver must be estimated (see Sect. 15.3.2). In
the unicast TFRC, the sender generally estimates the RTT and hence the TCP-
friendly throughput, and accordingly controls the sending rate. In a multicast
scenario, who should take care of this and how? Explain your answer.

11. In this question, we explore the scalability of peer-to-peer, as compared to
client/server. We assume that there is one server and N users. The upload

http://dx.doi.org/10.1007/978-3-319-05290-8_15

16.8 Exercises 569

bandwidth of the server is S bps, and the download bandwidth of user i is
Di bps, i = 1, 2, . . . , N . There is a file of size M bits to be distributed from the
server to all the users.

(a) Consider the client/server architecture. Each user is a now a client that is
directly served by the server. Calculate the time to distribute the file to all
the users.

(b) Now consider the peer-to-peer architecture. Each user is now peer, who can
either download directly from the server or from other peers. Assume that the
upload bandwidth of user i for serving other peers is Ui bps, i = 1, 2, . . . , N .
Calculate the time to distribute the file to all the users.

(c) Using the results, explain in what conditions will peer-to-peer scale better
(with more users) than client/server. Are these conditions naturally satisfied
in the Internet?

12. Discuss the similarities and differences between peer-to-peer file sharing and
peer-to-peer live streaming. How will such differences affect the implementation
of a peer-to-peer living streaming? And how will they affect the calculation in
the previous question.

13. Consider tree-based and mesh-based overlays for peer-to-peer streaming.

(a) Discuss the pros and cons of each of them.
(b) Why is the pull operation used in mesh-based overlays?
(c) Propose a solution (other than those introduced in the book) to combine them

toward a hybrid overlay. You may target different application scenarios, e.g.,
for minimizing delay or for multi-channel TV broadcast where some users
may frequently change channels.

14. Consider Skype, a popular Voice-over-IP (VoIP) application using peer-to-peer
communication. The peers in Skype are organized into a hierarchical overlay
network, with the peers being classified as super peers or ordinary peers, as
illustrated in Fig. 16.26. When two Skype users (caller and callee) need to set
up a call, both the ordinary peers and the super peers can serve as relays.

(a) Skype generally uses UDP for audio streams but TCP for control messages.
What kind of control messages are necessary for Skype peers, and why is
TCP used?

(b) Explain the benefit of distinguishing super peers and ordinary peers.
(c) Besides one-to-one calls, Skype also supports multi-party conferences. How

many copies of audio streams would be delivered in an N user conference,
if each user needs to send its copy of stream to all others?

(d) Note that this number can be high. Skype reduces it by asking each user to
send its stream to the conference initiator, who will combine the streams into
one stream and then forward to each of the other users. How many streams
are to be forwarded in the whole conference now? Discuss the pros and cons
of this solution, and suggest improvements.

15. One important reason that HTTP was not traditionally used for media streaming
is that the underlying TCP has highly fluctuated transmission rate (the saw-tooth

570 16 Internet Multimedia Content Distribution

behavior), and during severe congestion or channel errors, it may persistently
block the data pipe. Explain how DASH addresses these problems. Also discuss
other supports for streaming that are missing in the basic HTTP but addressed
in DASH.

References

1. B. Li, Z. Wang, J. Liu, W. Zhu, Two decades of internet video streaming: a retrospective view.
ACM Trans. Multimedia Comput. Commun. Appl. 9(1s):1–33 (2013)

2. D. Wu, Y.T. Hou, W. Zhu, Y.-Q. Zhang, J.M. Peha, Streaming video over the internet: ap-
proaches and directions. IEEE Trans. Circuits Syst. Video Technol. 11(3):282–300 (2001)

3. D. Wu, Y.T. Hou, Y.-Q. Zhang, Transporting real-time video over the internet: challenges and
approaches. Proc. IEEE 88(12):1855–1877 (2000)

4. S. Chen, B. Shen, S. Wee, X. Zhang, Designs of high quality streaming proxy systems. Twenty-
third Annual Joint Conference of the IEEE Computer and Communications Societies, INFO-
COM, vol. 3, pp. 1512–1521 (2004)

5. X. Jianliang, J. Liu, B. Li, X. Jia, Caching and prefetching for web content distribution. IEEE
Comput. Sci. Eng. 6(4), 54–59 (2004)

6. J. Liu, X. Jianliang, Proxy caching for media streaming over the internet. IEEE Commun. Mag.
42(8), 88–94 (2004)

7. R. Tewari, H.M. Vin, A. Dany, Y.D. Sitaramy, Resource-based caching for web servers, in
Proceedings of SPIE/ACM Conference on Multimedia Computing and Networking, pp. 191–
204 (1998)

8. S. Chen, B. Shen, Y. Yan, S. Basu, X. Zhang, SRB: shared running buffers in proxy to exploit
memory locality of multiple streaming media sessions, in Proceedings of 24th International
Conference on Distributed Computing Systems, pp. 787–794 (2004)

9. S. Sen, J. Rexford, D. Towsley, Proxy prefix caching for multimedia streams, in Proceedings
of IEEE INFOCOM’99, vol. 3, pp. 1310–1319 (1999)

10. H. Fabmi, M. Latif, S. Sedigh-Ali, A. Ghafoor, P. Liu, L.H. Hsu, Proxy servers for scalable
interactive video support. Computer 34(9), 54–60 (2001)

11. K.-L. Wu, P.S. Yu, J.L. Wolf, Segment-based proxy caching of multimedia streams, in Pro-
ceedings of the 10th International Conference on World Wide Web, ACM, pp. 36–44 (2001)

12. Z.-L. Zhang, Y. Wang, D.H.C. Du, D. Shu, Video staging: a proxy-server-based approach to
end-to-end video delivery over wide-area networks. IEEE/ACM Trans. Netw. 8(4), 429–442
(2000)

13. J.D. Salehi, Z.L. Zhang, J.F. Kurose, D. Towsley, Supporting stored video: reducing rate vari-
ability and end-to-end resource requirements through optimal smoothing. ACM SIGMETRICS
24(1):222–231 (1996)

14. E. Nygren, R.K. Sitaraman, J. Sun, The Akamai network: a platform for high-performance
internet applications. SIGOPS Oper. Syst. Rev. 44, 2–19 (2010)

15. A. Hu, Video-on-demand broadcasting protocols: a compreshensive study, in Proceedings of
IEEE INFOCOM (2001)

16. S. Viswanathan, T. Imielinski, Pyramid broadcasting for video on demand service. IEEE
Conference on Multimedia Computing and Networking, pp. 66–77 (1995)

17. K.A. Hua, S. Sheu, Skyscraper broadcasting: a new broadcasting scheme for metropolitan
video-on-demand systems, in Proceedings of ACM SIGCOMM, pp. 89–100 (1997)

18. L. Juhn, L. Tseng, Harmonic broadcasting for video-on-demand service. IEEE Trans. Broadcast
43(3), 268–271 (1997)

References 571

19. D. Eager, M. Vernon, J. Zahorjan, Minimizing bandwidth requirements for on-demand data
delivery. IEEE Trans. Knowl. Data Eng. 13(5), 742–757 (2001)

20. B. Li, J. Liu, Multirate video multicast over the internet: an overview. IEEE Netw. 17(1), 24–29
(2003)

21. S.Y. Cheung, M.H. Ammar, Using destination set grouping to improve the performance of
window-controlled multipoint connections, in Proceedinf of Fourth International Conference
on Computer Communications and Networks (1995), pp. 388–395

22. S. McCanne, V. Jacobson, M. Vetterli, Receiver-driven layered multicast, In Conference
Proceeding on Applications, Technologies, Architectures, and Protocols for Computer Com-
munications, SIGCOMM ’96 (1996), pp. 117–130

23. L. Vicisano, J. Crowcroft, L. Rizzo, Tcp-like congestion control for layered multicast data
transfer, in Proceedings of IEEE INFOCOM’98, vol. 3 (1998), pp. 996–1003

24. D. Sisalem, A. Wolisz, Mlda: a tcp-friendly congestion control framework for heterogeneous
multicast environments, in 2000 Eighth International Workshop on Quality of Service, IWQOS,
pp. 65–74, 2000

25. C. Diot, B.N. Levine, B. Lyles, H. Kassem, D. Balensiefen, Deployment issues for the ip
multicast service and architecture. IEEE Netw. 14(1), 78–88 (2000)

26. S. Sheu, K.A. Hua, W. Tavanapong, Chaining: a generalized batching technique for
video-on-demand systems, in Proceeding of IEEE International Conference on Multimedia
Computing and Systems (1997)

27. Y.-H. Chu, S.G. Rao, H. Zhang, A case for end system multicast, in Proceeding of ACM
SIGMETRICS (2000)

28. M. Hosseini, D.T. Ahmed, S. Shirmohammadi, N.D. Georganas, A survey of application-layer
multicast protocols. IEEE Commun. Surv. Tutorials 9(3), 58–74 (2007)

29. J. Liu, S.G. Rao, B. Li, H. Zhang, Opportunities and challenges of peer-to-peer internet video
broadcast. Proc. of the IEEE 96(1), 11–24 (2008)

30. Y.-H. Chu, S.G. Rao, H. Zhang, A case for end system multicast. IEEE J. Sel. A. Commun.
20(8), 1456–1471 (2006)

31. V.N. Padmanabhan, H.J. Wang, P.A. Chou, K. Sripanidkulchai, Distributing streaming media
content using cooperative networking, in Proceeding of the 12th International workshop on
Network and Operating Systems Support for Sigital Audio and Video, NOSSDAV ’02, ACM,
New York (2000), pp. 177–186

32. M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron, A. Singh, Splitstream:
high-bandwidth multicast in cooperative environments, in Proceeding of the Nineteenth ACM
Symposium on Operating Systems Principles, SOSP ’03, ACM, New York (2003), pp. 298–313

33. V. Venkataraman, K. Yoshida, P. Francis, Chunkyspread: heterogeneous unstructured tree-
based peer-to-peer multicast, in Proceeding of 5th International Workshop on Peer-to-Peer
Systems (IPTPS) (2006), pp. 2–11

34. N. Magharei, R. Rejaie, Y. Guo, Mesh or multiple-tree: a comparative study of live P2P stream-
ing approaaches, in Proceeding of IEEE INFOCOM (2007)

35. P.T. Eugster, R. Guerraoui, A.M. Kermarrec, L. Massoulié, From epidemics to distributed
computing. IEEE Comput. 37, 60–67 (2004)

36. X. Zhang, J. Liu, B. Li, T.P. Yum, Coolstreaming/donet: a data-driven overlay network for
peer-to-peer live media streaming, in Proceedings of IEEE INFOCOM, vol. 3 (2005), pp.
2102–2111

37. Z. Liu, C. Wu, B. Li, S. Zhao, UUSee: large-scale operational on-demand streaming with
random network coding, in Proceeding of IEEE INFOCOM (2010)

38. M. Wang, B. Li, R2: random push with random network coding in live peer-to-peer streaming.
IEEE J. Sel. Areas Commun. 25, 1678–1694 (2007)

39. V. Venkataraman, K. Yoshida, P. Francis, Chunkyspread: heterogeneous unstructured tree-
based peer-to-peer multicast, in Proceeding of the 14th IEEE International Conference on
Network Protocols, ICNP ’06 (2006), pp 2–11

572 16 Internet Multimedia Content Distribution

40. F. Wang, Y. Xiong, J. Liu, Mtreebone: a collaborative tree-mesh overlay network for multicast
video streaming. IEEE Trans. Parallel Distrib. Syst. 21(3), 379–392 (2010)

41. G. Pallis, A. Vakali, Insight and perspectives for content delivery networks. Commun. ACM
49(1), 101–106 (2006)

42. ISO/IEC JTC 1/SC 29/WG 11 (MPEG). Dynamic adaptive streaming over HTTP (2010)
43. S. Gouache, G. Bichot, A. Bsila, C. Howson, Distributed and adaptive HTTP streaming, in

Proceeding of IEEE ICME (2011)
44. S. Akhshabi, A.C. Begen, C. Dovrolis, An experimental evaluation of rate-adaptation algo-

rithms in adaptive streaming over HTTP, in Proceeding of ACM MMSys (2011)

17MultimediaOverWireless andMobile
Networks

The rapid developments in computer and communication technologies have made
ubiquitous computing a reality. From cordless phones in the early days to later cellular
phones, wireless mobile communication has been the core technology that enables
anywhere and anytime information access and sharing. The new generation of smart
mobile devices that emerged only in the recent years are driving the revolution further.
Multimedia over wireless and mobile networks share many similarities as over the
wired Internet; yet the unique characteristics of wireless channels and the frequent
movement of users also pose new challenges that must be addressed.

17.1 Characteristics ofWireless Channels

Wireless radio transmission channels are far more error-prone than wire-line com-
munications are. In this section, we briefly present the most common radio channel
models to gain insight into the cause of errors and to classify the types of bit errors,
the amount, and their patterns. More details can be found in [1,27,28].

Various effects cause radio signal degradation in the receiver side. They can be
classified as short-range and long-range effects. Accordingly, path loss models are
available for long-range atmospheric attenuation channels, and fading models are
available for short-range degradation.

17.1.1 Path Loss

For long-range communication, the signal loss is dominated by atmospheric atten-
uation. Depending on the frequency, radio waves can penetrate the ionosphere
(>3 GHz) and establish line-of-sight (LOS) communication, or for lower frequen-
cies reflect off the ionosphere and the ground, or travel along the ionosphere to the
receiver. Frequencies over 3 GHz (which are necessary for satellite transmissions to

Z.-N. Li et al., Fundamentals of Multimedia, 573
Texts in Computer Science, DOI: 10.1007/978-3-319-05290-8_17,
© Springer International Publishing Switzerland 2014

574 17 Multimedia OverWireless and Mobile Networks

Fig. 17.1 An example of
multipath

Transmitter

Reflected
Path

Direct
Path

penetrate the ionosphere) experience gaseous attenuations, influenced primarily by
oxygen and water (vapor or rain).

The free-space attenuation model for LOS transmission is in inverse proportion
to the square of distance (d2) and is given by the Friis radiation equation

Sr = St Gt Grλ2

(4π2)d2 L
(17.1)

Sr and St are the received and transmitted signal power, Gr and Gt are the antenna
gain factors, λ is the signal wavelength, and L is the receiver loss. It can be shown
that if we assume ground reflection, attenuation increases to be proportional to d4.

Another popular medium-scale (urban city size) model is the Hata model, which
is empirically derived based on the Okumura path loss data in Tokyo. The basic form
of the path loss equation in dB is given by

L = A + B · log10(d)+ C. (17.2)

Here, A is a function of the frequency and antenna heights, B is an environment
function, and C is a function depending on the carrier frequency. Again, d is the
distance from the transmitter to the receiver.

For satellite communications that are mainly affected by rain, meteorological
rainfall density maps can be used to communicate with the region. Attenuation is
computed according to the amount of rainfall in the area on the given date.

17.1.2 Multipath Fading

Fading is a common phenomenon in wireless (and especially mobile) communica-
tions, in which the received signal power (suddenly) drops [1]. Signal fading occurs
due to reflection, refraction, scattering, and diffraction (mainly from moving objects),
as illustrated in Fig. 17.1. Multipath fading occurs when a signal reaches the receiver
via multiple paths (some of them bouncing off buildings, hills, and other objects).
Because they arrive at different times and phases, the multiple instances of the signal
can cancel each other, causing the loss of signal or connection. The problem becomes
more severe when higher data rates are explored.

For indoor channels, the radio signal power is generally lower, and there are more
objects in a small place; some are moving. Hence, multipath fading is the main

17.1 Characteristics ofWireless Channels 575

Fig. 17.2 The Gilbert-Elliott
two-state Markov chain
model. State 0: Good;
State 1: Bad 0 1

P01

P10

P00 P11

factor for signal degradation. In outdoor environments, refraction, diffraction, and
scattering effects are also the important causes of signal degradation, mostly by the
ground and buildings.

A multipath model probabilistically states the received signal amplitude, which
varies according to whether the signals superimposed at the receiver are added
destructively or constructively. The Doppler spread of a signal is defined as the
distribution of the signal power over the frequency spectrum (the signal is modu-
lated at a specific frequency bandwidth). When the Doppler spread of the signal is
small enough, the signal is coherent—that is, there is only one distinguishable signal
at the receiver. This is typically the case for narrowband signals. When the signal is
wideband, different frequencies of the signal have different fading paths, and a few
distinguishable signal paths are observed at the receiver, separated in time.

For narrowband signals, the most popular models are Rayleigh fading and Rician
fading. The Rayleigh fading model assumes an infinite number of signal paths
with non line-of-sight (NLOS) to the receiver for modeling the probability density
function Pr of received signal amplitude r :

Pr (r) =
r
σ2 · e

−r2

2σ2 (17.3)

where σ is the standard deviation of the probability density function. Although the
number of signal paths is typically not too large, the Rayleigh model does provide a
good approximation when the number of paths is over 5.

A Rayleigh fading channel can be approximated using a Markov process with a
finite number of states, referred to as a Finite State Markov Channel [2]. The simplest
form, known as the Gilbert-Elliott model [3], is with only two states, representing
the good and the bad channel conditions. As illustrated in Fig. 17.2, state 0 has no
error and state 1 is erroneous, and the wireless channel condition switches between
them with transition probabilities P00 to P11. It captures the short-term bursty nature
of wireless errors, and has been widely used in simulations.

A more general model that assumes LOS is the Rician model. It defines a K-factor
as a ratio of the signal power to the scattered power—that is, K is the factor by which
the LOS signal is greater than the other paths. The Rician probability density function
Pc is

Pc(r) =
r
σ2 · e

−r2

2σ2 −K · Io(
r
σ

√
2K), where K = s2

2σ2 (17.4)

As before, r and σ are the signal amplitude and standard deviation, respectively,
and s is the LOS signal power. Io is a modified Bessel function of the first kind with
0 order. Note that when s = 0 (K = 0), there is no LOS, and the model thus reduces

576 17 Multimedia OverWireless and Mobile Networks

K = 1
K = 3 K = 5 K = 10 K = 20

r

P(r) K = 0
0.6

0.5

0.4

0.3

0.2

0.1

0 2 4 6 8 10

Fig. 17.3 Rician PDF plot with K-factor = 0, 1, 3, 5, 10, and 20

to a Rayleigh distribution. When K = ∞, the model reflects the popular additive
white Gaussian noise (AWGN) conditions. Figure 17.3 shows the Rician probability
density function for K-factors of 0, 1, 3, 5, 10, and 20, respectively, with a standard
deviation of σ = 1.0.

For a wideband signal, the fading paths are more empirically driven. One way is
to model the amplitude as a summation over all the paths, each having randomized
fading. The number of paths can be 7 for a closed-room environment (six walls
and LOS) or a larger number for other environments. An alternative technique of
modeling the channel fading is by measuring the channel impulse response.

A similar technique is to use rake receivers, through which multiple radio receivers
are tuned to signals with different phases and amplitudes, to recompose the transmis-
sion that is split to different distinguishable paths. The signal at each rake receiver
is added up to achieve better SNR. To tune the rake receivers to the proper fading
paths, a special pilot channel sends a well-known pilot signal, and the rake receivers
are adjusted to recognize that symbol on each fading path.

17.2 Wireless Networking Technologies

Like wired networks, there is a large family of wireless networks, using different
technologies to combat fading and pass loss and covering geographical areas of
different sizes. In a wide-area cellular network, a field is covered by a number of cells.
Each mobile terminal in a cell contacts its Access Point (AP) or Base Station (BS),

17.2 Wireless Networking Technologies 577

which serves as a gateway to the network. The AP themselves are connected through
high-speed wired lines, or wireless networks or satellites that form the backbone
network. When a mobile user moves out of the range of the current AP, a handoff (or
handover, as it is called in Europe) is required to maintain the communication. The
size of a cell is typically of 1,000 m in cities, but can be larger (macrocell) or smaller
(microcell) depending on the location and the density of users. The whole network of
cells collectively cover a city- or nation-wide area or even beyond, ensuring anywhere
connection.

A Wireless Local Area Network (WLAN), on the other hand, covers a much shorter
range, generally within 100 m. Given the short distances, the bandwidth can be very
high while the access cost and power consumption can be low, making them ideal for
use within a house or an office building. Many modern home entertainment systems
are built around WLANs. Public WLAN accesses have also been offered by many
airports, shops, restaurants, or even city-wide.

In this section, we provide an overview of the different generations of wireless
cellular networks and wireless local area networks.

17.2.1 1G Cellular AnalogWireless Networks

The very early wireless communication networks were used mostly for voice commu-
nications, such as telephone and voice mail. The first-generation (1G) cellular phones
used an analog technology with Frequency Division Multiple Access (FDMA), in
which each user is assigned a separate frequency channel during the communica-
tion. Its standards were Advanced Mobile Phone System (AMPS) in North America,
Total Access Communication System (TACS), and Nordic Mobile Telephony (NMT)
in Europe and Asia, respectively. Digital data transmission users needed modems to
access the network; the typical data rate was 9,600 bps.

AMPS, for example, operates at the 800–900 MHz frequency band. Each direction
of the two-way communication is allocated 25 MHz, with mobile station transmit
(MS transmit) in the band of 824–849 MHz and base station transmit (BS transmit)
in the band of 869–894 MHz. Each of the 25 MHz bands is then divided up for two
operator bands, A and B, giving each 12.5 MHz. FDMA further divides each of the
12.5 MHz operator bands into 416 channels, which results in each channel having a
bandwidth of 30 kHz. The frequency of any MS transmit channel is always 45 MHz
below the frequency of the corresponding BS transmit channel in communication.

Similarly, TACS operates at the 900 MHz frequency band. It carries up to 1,320
full-duplex channels, with a channel spacing of 25 kHz.

Figure 17.4 illustrates a sample geometric layout for an FDMA cellular system. A
cluster of seven hexagon cells can be defined for the covered cellular area. As long
as each cell in a cluster is assigned a unique set of frequency channels, interference
from neighboring cells will be negligible. For clarity, the cells from the first cluster
are marked with thicker borders.

The same set of frequency channels (denoted f1 to f7 in Fig. 17.4) will be reused
once in each cluster, following the illustrated symmetric pattern. The so called

578 17 Multimedia OverWireless and Mobile Networks

Fig. 17.4 An example of
geometric layout for an
FDMA cellular system with a
cluster size of seven hexagon
cells f1

f3

f4f2

f7 f5

f6

f1

f3

f4f2

f7 f5

f6

f1

f3

f4f2

f7 f5

f6

reuse factor is K = 7. In the AMPS system, for example, the maximum num-
ber of channels (including control channels) available in each cell is reduced to
416/K = 416/7 ≈ 59.

In this configuration, the users in two different clusters using the same frequency
fn are guaranteed to be more than D apart geographically, where D is the diameter
of the hexagonal cell. In a vacuum, electromagnetic signals decay at a rate of D−2

over a distance D. In real physical spaces on the earth, the decay is consistently
measured at a much faster rate of D−3.5 to D−5. As such, the interference by users
of the same frequency channel from other groups becomes insignificant.

17.2.2 2G Cellular Networks: GSM and Narrowband CDMA

Besides voice, digital data was increasingly transmitted for applications such as text
messaging, streaming audio, and electronic publishing. Starting from the second-
generation (2G) wireless networks, digital technologies had replaced the analog
technologies. The digital cellular networks adopted two competing technologies
since 1993: Time Division Multiple Access (TDMA) and Code Division Multiple
Access (CDMA). The Global System for Mobile communications (GSM) [4], which
was based on TDMA, is the most widely used worldwide.

TDMA and GSM

As the name suggests, TDMA creates multiple channels in multiple time slots while
allowing them to share the same carrier frequency. In practice, TDMA is generally
combined with FDMA —that is, the entire allocated spectrum is first divided into

17.2 Wireless Networking Technologies 579

f (MHz)

t

Frame N−1

Frame N

Frame N+1

4.615 ms

4.615 ms

Uplink Downlink

25 MHz25 MHz

200 KHz
200 KHz

890 960935915

.
.

. .
 .

. .
 .

. .
 .

. .
 .

Fig. 17.5 Frequency and time divisions in GSM

multiple carrier frequency channels, each of which is further divided in the time
dimension by TDMA.

GSM was established by the European Conference of Postal and Telecommuni-
cations Administrations (CEPT) in 1982, with the objective of creating a standard
for a mobile communication network capable of handling millions of subscribers
and providing roaming services throughout Europe. It was designed to operate in
the 900 MHz frequency range and was accordingly named GSM 900. Europe also
supported GSM 1800, which is the original GSM standard modified to operate at the
1.8 GHz frequency range.

In North America, the GSM network uses frequencies in the range of 1.9 GHz
(GSM 1900).

As Fig. 17.5 shows, the uplink (mobile station to base station) of GSM 900 uses the
890–915 MHz band, and the downlink (BS to mobile station) uses 935–960 MHz.
That is, each is allocated 25 MHz. The frequency division in GSM divides each
25 MHz into 124 carrier frequencies, each with a separation of 200 kHz. The time
division in GSM then divides each carrier frequency into TDMA frames; 26 TDMA
frames are grouped into a Traffic Channel (TCH) of 120 ms that carries voice and
data traffic.

Each TDMA frame is approximately 4.615 ms (i.e., 120/26 ms) and consists of
eight time slots of length 4.615/8 ≈ 0.577 ms. Each mobile station is given unique
time slots during which it can send and receive data. The sending/receiving does not
occur at the same time slot, but are separated by three slots.

GSM provides a variety of data services, through sending and receiving data to
users on POTS, ISDN, and packet-switched or circuit-switched public data networks.
It also supports a Short Message Service (SMS), in which text messages up to 160

580 17 Multimedia OverWireless and Mobile Networks

characters can be delivered to (and from) mobile phones. Another feature is the
adoption of the subscriber identity module (SIM), a smart card that carries the mobile
user’s personal number and enables ubiquitous access to cellular services. SIM is
used in later generations of cellular networks too and is available virtually in all
today’s cellphones.

By default, the GSM network is circuit switched, and its data rate is limited to
9.6 kbps (kilobits per second), which is hardly useful for general data services (cer-
tainly not for multimedia data). General Packet Radio Service (GPRS), developed
in 1999, supports packet-switched data over GSM wireless connections, so users are
“always connected.” It is also referred to as one of the 2.5G (between second- and
third-generation) services. The theoretical maximum speed of GPRS is 171.2 kbps
when all eight TDMA time slots are taken by a single user. In real implementations,
the single-user throughput reached 56 kbps in year 2001. Apparently, when the net-
work is shared by multiple users, the maximum data rate for each GPRS user will
drop.

Preliminary multimedia content exchange was supported by GPRS through the
Multimedia Messaging Service (MMS). It extends the basic SMS in GSM that allows
exchange of text messages only up to 160 characters in length. To send a multimedia
content, the sending device first encodes it with an MMS Message Encapsulation
Specification. The encoded message is forwarded to the carrier’s MMS store and to
the forward server, known as the Multimedia Messaging Service Centre (MMSC).
Once the MMSC receives the message, it first determines whether the receiver’s
handset is MMS-capable. If so, the content is extracted and sent to a temporary
storage server with an HTTP front-end. An SMS control message containing
the URL of the content is then sent to the recipient’s handset to trigger the receiver’s
browser to open and receive the content from the embedded URL. Given the limited
data rate of GPRS, the multimedia content is generally downloaded and then played,
while not through real-time streaming.

Code DivisionMultiple Access

Code Division Multiple Access (CDMA) [5] is a major breakthrough in wireless com-
munications. It is a spread spectrum technology, in which the bandwidth of a signal
is spread before transmission. In its appearance, the spread signal might be indistin-
guishable from background noise, and so it has distinct advantages of being secure
and robust against intentional interference (known as jamming). Spread spectrum is
applicable to digital as well as analog signals, because both can be modulated and
“spread.” The earlier generation of cordless phones and cellular phones, for example,
used analog signals. However, it is the digital applications, in particular CDMA, that
made the technology popular in modern wireless data networks.

The foundation of CDMA is Direct Sequence (DS) spread spectrum. Unlike
FDMA, in which each user is supposed to occupy a unique frequency band at any
moment, multiple CDMA users can make use of the same (and full) bandwidth of
the shared wideband channel during the entire period of transmission! A common

17.2 Wireless Networking Technologies 581

−1
1

−1

1

−1
1

DS codeTr

Pseudo-noise

Data

Fig. 17.6 Spreading in DS spread spectrum

Wideband
pseudo-noise

carrier

DS
spreader

Modulator Demodulator
Data Data

Transmitter Receiver

DS
despreader

DS spread spectrum

signals

Wideband
pseudo-noise

carrier

Fig. 17.7 Transmitter and Receiver of DS spread spectrum

frequency band can also be allocated to multiple users in all cells—in other words,
providing a reuse factor of K = 1. This has the potential to greatly increase the
maximum number of users, as long as the interference from them is manageable.

As Fig. 17.6 shows, for each CDMA transmitter a unique spreading code is
assigned to a DS spreader. The spreading code (also called chip code) consists of a
stream of narrow pulses called chips, with a bit width of Tr . Its bandwidth Br is on
the order of 1/Tr .

The spreading code is multiplied with the input data by the DS spreader. When
the data bit is 1, the output DS code is identical to the spreading code, and when
the data bit is 0 (represented by −1), the output DS code is the inverted spreading
code. As a result, the spectrum of the original narrowband data is spread, and the
bandwidth of the DS signal is

BDS = Br . (17.5)

The despreading process involves taking the product of the DS code and the
spreading sequence. As long as the same sequence is used as in the spreader, the
resulting signal is the same as the original data.

To separate the receivers for multiple access, i.e., CDMA, orthogonal codes can
be used. As an example, consider spreading codes for two receivers: (1,−1,−1,1)
and (−1,1,1,−1), which are orthogonal to each other (in practice, the code length

582 17 Multimedia OverWireless and Mobile Networks

can be much longer); that is, their inner product is zero. Assume the data bit for
receiver 1 is x and that for receiver 2 is y. The output DS code for receiver 1 is
x · (1,−1,−1, 1) and that for receiver 2 is y · (−1, 1, 1,−1). The sender combines
them together, sending x · (1,−1,−1, 1)+ y · (−1, 1, 1,−1). The decoding results
at receivers 1 and 2 using their respective codes will be

(x · (1,−1,−1, 1)+ y · (−1, 1, 1,−1)) · (1,−1,−1, 1) = 4x (at receiver 1)

(x · (1,−1,−1, 1)+ y · (−1, 1, 1,−1)) · (−1, 1, 1,−1) = 4y (at receiver 2)

which, after normalization by 4 (the spreading code length), become x and y for
receivers 1 and 2, respectively. In other words, there is no interference between them.

Because Tr is small, Br is much wider than the bandwidth Bb of the narrowband
signal.

In practice, to support more users and achieve better spectrum utilization, non-
orthogonal Pseudo-random Noise (PN) sequences can be used as codes. This is based
on the observation that in general not all users are active in a cell. Since the effective
noise is the sum of all other users’ signals, as long as an adequate level of “average
case” interference is maintained, the quality of the CDMA reception is guaranteed.
Such a soft capacity makes CDMA much more flexible than TDMA or FDMA with
hard capacity only, accommodating more users when necessary and alleviating the
undesirable dropping of ongoing calls when reaching the capacity limit.

17.2.3 3G Cellular Networks:Wideband CDMA

The 2G cellular networks were mainly designed for voice communications with
circuit switching and had very limited support for Internet data access, not to mention
multimedia services. Starting from the third generation (3G), multimedia services
have become the core issues for the cellular network development. Applications
include continuous media on demand, mobile interactive video call, remote medical
service, and so on.

GPRS is considered as the first major step in the evolution of GSM networks
toward 3G, which started to support the Multimedia Messaging Service (MMS), albeit
with cumbersome operations. GPRS networks evolved to the Enhanced Data rates
for GSM Evolution (EDGE) networks with enhanced modulation. It is a backward-
compatible digital mobile phone technology that allows improved data transmission
rates, as an extension over the standard GSM, known as 2.75G. Yet its support for
multimedia remains very limited.

The 3G standardization process started in 1998, when the ITU called for Radio
Transmission Technology (RTT) proposals for International Mobile Telecommuni-
cation-2000 (IMT-2000). Since then, the project has been known as 3G or Universal
Mobile Telecommunications System (UMTS).

While a large number of 2G wireless networks used TDMA/GSM and some
CDMA, the 3G wireless networks have been predominantly using Wideband CDMA

17.2 Wireless Networking Technologies 583

(WCDMA). The key differences in WCDMA air interface from a narrowband CDMA
air interface are
• To support bitrates up to 2 Mbps, a wider channel bandwidth is allocated. The

WCDMA channel bandwidth is 5 MHz, as opposed to 1.25 MHz for IS-95 and
other earlier standards.

• To effectively use the 5 MHz bandwidth, longer spreading codes at higher chip
rates are used. The chip rate specified is 3.84 Mcps, as opposed to 1.2288 Mcps.

• WCDMA supports variable bitrates, from 8 kbps up to 2 Mbps. This is achieved
using variable-length spreading codes and time frames of 10 ms, at which the user
data rate remains constant but can change from one frame to the other—hence
bandwidth on demand.
To achieve global standardization, the Third Generation Partnership Project

(3GPP) was established in late 1998 to specify a global standard for the WCDMA
technology, which was named Universal Terrestrial Radio Access (UTRA). At the
same time the Telecommunication Industry Association (TIA), with major industry
support, had been developing the cdma2000 air interface recommendation for ITU.
As similar work was going on in Asia, following the 3GPP example; the standards
organizations decided to form a second forum called Third Generation Partnership
Project 2 (3GPP2).

The 3GPP and 3GPP2 forums, despite having some similarities in WCDMA air
interface proposals, still proposed competing standards. However, in the interest of
creating a global standard, the two forums are monitoring each other’s progress and
support recommendations by the operators harmonization group. The harmonized
standard, referred to as global 3G (G3G), has three modes: Direct Spread (DS),
Multi-Carrier (MC), and Time Division Duplex (TDD), where the DS and TDD
modes are specified as in WCDMA by the 3GPP group, and the MC mode is, as in
cdma2000, specified by 3GPP2. All air interfaces (all modes) can be used with both
core networks.

A migration (or evolution) path was specified for the 2G wireless networks sup-
porting digital communication over circuit-switched channels to the 3G networks
supporting high data rates over both circuit-switched and packet-switched channels.
The evolution path offers intermediate steps that are easier and cheaper to achieve,
which is associated with enhanced data rates and packet data services (i.e., the addi-
tion of packet switching to 2G networks). Table 17.1 summarizes the 2G, 2.5G,
and 3G standards that have been developed using the IS-41 core networks (in North
America) and GSM MAP core networks (in Europe).

The bandwidth made available by 3G networks gives rise to applications not
previously available to mobile phone users. Examples include online maps, online
gaming, mobile TV, and instant picture/video content sharing. The multimedia nature
of these 3G wireless services also calls for a rapid development of new generations
of handsets, where support for high-quality video, better software and user interface,
and longer battery life are key factors. These smartphones and tablets have greatly
changed the way for people to interact with mobile devices and even their social
behaviors.

584 17 Multimedia OverWireless and Mobile Networks

Table 17.1 Evolution from
2G to 3G wireless
networks

Peak data Carrier
rate R spectrum

W (MHz)

IS-41 core network
2G cdmaOne (IS-95A) 14.4 kbps 1.25
2.5G cdmaOne (IS-95B) 115 kbps 1.25
3G cdma2000 1X 307 kbps 1.25
3G cdma2000 1xEV-DO 2.4 Mbps 1.25
3G cdma2000 1xEV-DV 4.8 Mbps 1.25
3G cdma2000 3X >2 Mbps 5

GSM MAP core network
2G GSM (TDMA) 14.4 kbps 1.25
2.5G GPRS (TDMA) 170 kbps 1.25
3G EDGE (TDMA) 384 kbps 1.25
3G WCDMA 2 Mbps 5

Fig. 17.8 A 2 × 2 MIMO
antenna system

Transmit Receive

22

11

12

21

17.2.4 4G Cellular Networks and Beyond

Continuous improvements in semiconductor and computing technologies encourage
the wireless industry and consumers to naturally anticipate 4G wireless network-
ing [6]. Several new radio techniques are employed to achieve higher rates and
lower latencies than 3G. They include Space Division Multiplexing via Multiple
Input/Multiple Output (MIMO), Space Time Coding (STC) using higher order of
modulation and encoding schemes, sophisticated beam forming and beam direc-
tionality control, and intercell interference mitigation. Of these, MIMO and beam
forming are advanced antenna technologies. Using multiple sending and receiving
antennas, MIMO creates multiple channels to carry user information, leading to
higher capacity and less impact from interference. Figure 17.8 shows a typical 2 × 2
MIMO system. The beam-forming techniques temporarily improve gain and offer
higher capacity. The properties of a beam are tuned or customized for a subscriber
to achieve this capability for a limited duration. STC improves the number of bits
transmitted per Hz over the available bandwidth. These techniques collectively lead
to higher capacity as required by advanced networks [7].

Additionally, techniques that reduce interference are also used to further boost
the capacity, most notably Orthogonal Frequency Division Multiplexing (OFDM).

17.2 Wireless Networking Technologies 585

While CDMA is well-suited for voice, OFDM can be a better transport mechanism
for multimedia data. With a mix of technologies, backward compatibility is possible.

There are, however, still many debates about the definition of 4G given the breadth
of technology covered under the 4G umbrella. IMT-Advanced, as defined by ITU,
has been commonly viewed as the guideline for 4G standards [8]. An IMT-Advanced
cellular system must fulfill the following requirements:
• Based on an all-IP packet switched network.
• Peak data rates of up to 100 Mbps for high mobility and up to 1 Gbps for

nomadic/local wireless access.
• Dynamically share and use the network resources to support more simultaneous

users per cell.
• Smooth handovers across heterogeneous networks.
• High quality of service for next generation multimedia support.

The pre-4G 3GPP Long-Term Evolution (LTE) technology is often branded as
4G-LTE. The initial LTE releases had a theoretical capacity of up to 100 Mbps in the
downlink and 50 Mbps in the uplink, which however still do not fully comply with
the IMT-Advanced requirements.

In September 2009, a number of proposals were submitted to ITU as 4G candi-
dates, mostly based on two technologies:
• LTE Advanced standardized by the 3GPP.
• 802.16m standardized by the IEEE (i.e., WiMAX).

These two candidate systems have been commercially deployed: the first Mobile
WiMAX network in South Korea in 2006, and the first LTE network in Oslo, Norway
and Stockholm, Sweden in 2009. Today LTE Advanced has largely taken the place
of WiMAX, and has been considered as the standard for 4G [9].

The target of 3GPP LTE Advanced is to reach and surpass the ITU requirements
through improving the existing LTE network. This upgrade path makes it more
cost effective for vendors. LTE Advanced makes use of additional spectrums and
multiplexing to achieve higher data speeds. It achieves peak download rates up to
299.6 Mbps and upload rates up to 75.4 Mbps depending on the user equipment cat-
egory (e.g.,with 4 × 4 MIMO antennas using 20 MHz of spectrum). Five different
terminal classes have been defined from a voice centric class up to high end terminals
that support the peak data rates. It also enables lower data transfer latencies (<5 ms
latency for small packets), and lower latencies for handover and connection setup
time than with previous radio access technologies. Support for mobility is improved
too. Depending on the frequency band, it allows terminals to move at speeds up to
350 km/h (220 mph) or 500 km/h (310 mph). More importantly, through macrodi-
versity, also known as group cooperative relay, high bitrates are now available in a
larger portion of a cell, especially to users in an exposed position in between several
BSs. All these enable high-quality multimedia services with seamless mobility, even
in such extreme scenario as today’s high-speed trains.

586 17 Multimedia OverWireless and Mobile Networks

17.2.5 Wireless Local Area Networks

The increasing availability of such mobile computing devices as laptops and tablets
brought about keen interest in Wireless Local Area Networks (WLANs), which
potentially provide much higher throughput with much lower costs than the wide-
area cellular wireless networks. The emergence lately of ubiquitous and pervasive
computing [10] has further created a new surge of interest in WLANs and other
short-range communication techniques.

Most of today’s WANs are based on the 802.11 family of standards (also known as
Wi-Fi), developed by the IEEE 802.11 working group. They specify Medium Access
Control (MAC) and Physical (PHY) layers for wireless connectivity in a local area
within a radius less than 100 m, addressing the following important issues:
• Security. Enhanced authentication and encryption, since the broadcast over-the-air

is more susceptible to break-ins.
• Power management. Saves power during no transmission and handles doze and

awake.
• Roaming. Permits acceptance of the basic message format by different AP.

The initial 802.11 standard uses the 2.4 GHz radio band, which is the globally unli-
censed Industrial, Scientific and Medical (ISM) short-range radio frequency band.
As such, it faces interferences from both of its own users and many other wireless
systems, e.g., cordless phones.

Similar to Ethernet, the basic channel access method of 802.11 is Carrier Sense
Multiple Access (CSMA). However, Collision Detection (CD) in Ethernet is not
employed. This is because of the unique Hidden Terminal problem in wireless com-
munications. As shown in Fig. 17.9, wireless terminals S1 and S3 are at a far edge
of the AP (S2)’s range. Recall that, unlike that of wired signals, the strength of a
wireless signal decays very quickly with distance and a receiver can hear the signal
only if its strength is above a certain threshold. As such, even if both S1 and S3 are
“exposed” to AP S2, i.e., can hear S2 (and vice versa), they do not necessarily hear
each other given the long distance. These two terminals are therefore “hidden” to
each other—if they send packets simultaneously, the two packets will collide at S2,
but neither S1 nor S3 can detect the collision.

To address the hidden terminal problem, 802.11 uses Collision Avoidance (CA);
that is, during carrier sensing, if another node’s transmission is heard, the current
node should wait for a period of time for transmission to finish before listening again
for a free communications channel. CSMA/CA can optionally be supplemented by
the exchange of a Request to Send RTS packet sent by the sender, and a Clear to
Send CTS packet sent by the intended receiver. This alters all the nodes within the
range of the sender, receiver, or both, to not transmit for the duration of the intended
transmission. For example, before sending a message to S2, S1 can first send an RTS
request, and S2 will then broadcast a CTS for S1, which will be heard by both S1
and S3. S1 can then send the message and S3 will temporarily refrain from sending,
thus avoid potential collisions.

17.2 Wireless Networking Technologies 587

S1 S2 S3

S3 is a hidden terminal to S1

S1 S2 S3

S1 is an exposed terminal for S2

Fig. 17.9 An illustration of the hidden terminal problem. S2 is the AP; S1 and S3 are “hidden” to
each other due to the long distance, but they can cause interference at S2

IEEE 802.11b/g

IEEE 802.11b is an enhancement of the basic 802.11. It uses DS spread spectrum
and operates in the 2.4 GHz band. With the aid of new modulation technologies, it
supports 5.5 and 11 Mbps in addition to the original 1 and 2 Mbps, and its functionality
is comparable to Ethernet.

In North America, for example, the allocated spectrum for 802.11b is 2.400–
2.4835 GHz. Regardless of the data rate (1, 2, 5.5, or 11 Mbps), the bandwidth of a
DS spread spectrum channel is 20 MHz. Three nonoverlapped DS channels can be
accommodated simultaneously, allowing a maximum of 3 APs in a local area.

IEEE 802.11g, an extension of 802.11b, is an attempt to achieve data rates up
to 54 Mbps. It was designed to be downward compatible with 802.11b and hence
still uses the 2.4 GHz band, but OFDM is used instead of DS spread spectrum. IEEE
802.11b/g has gained public acceptance and is appearing in WLANs everywhere,
including university campuses, airports, conference centers, and so on.

IEEE 802.11a

IEEE 802.11a operates in the 5 GHz band and supports data rates in the range of 6–
54 Mbps. It uses OFDM instead of DS spread spectrum, too, and allows 12 nonover-
lapping channels, hence a maximum of 12 APs in a local area.

588 17 Multimedia OverWireless and Mobile Networks

Because 802.11a operates in the higher frequency (5 GHz) band, it faces much less
radio interference, such as from cordless phones, than 802.11 and 802.11b. Coupled
with the higher data rate, it has great potential for supporting various multimedia
applications in a LAN environment.

802.11a products started shipping late, lagging 802.11b products due to the 5 GHz
components being more difficult to manufacture. It was then not widely adopted in
the consumer space given that the less-expensive 802.11b was already dominating the
market. With the arrival of less expensive early 802.11g products on the market, which
were backwards-compatible with 802.11b, the bandwidth advantage of the 5 GHz
802.11a in the consumer market was further reduced. It, however, does penetrate into
enterprise network environments which require increased capacity and reliability
over 802.11b/g-only networks. Dual-band, or dual-mode APs and network interface
cards that can automatically handle 802.11a and b/g, are now common in all the
markets, and very close in price to b/g- only devices.

IEEE 802.11n and 802.11ac

The latest WLAN standard, 802.11n, improves network performance over all the
past 802.11 standards, with a significant increase in the maximum net data rate to
600 Mbps with the use of four spatial streams at a channel width of 40 MHz [11].
It builds on previous 802.11 standards by adding multiple input, multiple output
(MIMO), and frame aggregation to the MAC layer.

Channels operating with a width of 40 MHz are another feature incorporated into
802.11n; this doubles the channel width from 20 MHz in the previous 802.11 PHYs
to transmit data, and provides twice the PHY data rate available over a single 20 MHz
channel. It can be enabled in the 5 GHz mode, or within the 2.4 GHz mode if there
is knowledge that it will not interfere with any other 802.11 or non-802.11 systems
(such as cordless phones) using the same frequencies.

When 802.11g was released to share the band with existing 802.11b devices,
it provided ways of ensuring coexistence between legacy and successor devices.
802.11n extends the coexistence management to protect its transmissions from legacy
devices, including 802.11a/b/g, making its deployment much easier and smooth. It
is quickly replacing the existing 802.11a/b/g devices in recent years, offering much
better support for multimedia over wireless.

A newer WALN standard, 802.11ac, is under active development, with the final
802.11 Working Group approval and the publication scheduled for early 2014. It will
offer multistation WLAN throughput of at least 1 Gbps and a single link throughput
of at least 500 Mbps. This is accomplished by further enhancing the air interfaces in
802.11n: wider radio bandwidth (up to 160 MHz), more MIMO streams (up to 8),
multiuser MIMO, and high-density modulation.

17.2 Wireless Networking Technologies 589

17.2.6 Bluetooth and Short-RangeTechnologies

It is known that proximity-based services have constituted a considerable portion of
the mobile data traffic. Such services enable geographically close users to directly
exchange data. Bluetooth (named after the tenth-century king of Denmark, Harold
Bluetooth) is a protocol intended for such short-range (called piconet) wireless com-
munications [12].

Bluetooth uses Frequency Hopping (FH), a spread spectrum technology for data
transmission in the 2.4 GHz ISM short-range radio frequency band. Similar tech-
niques have been used in the 802.11 WLAN. Bluetooth also employs a master-slave
structure. One master may communicate with up to seven slaves in a piconet; all
devices share the master’s clock. Packet exchange is based on a basic clock, defined
by the master.

Bluetooth provides a secure and low-cost way to connect and exchange informa-
tion between devices such as faxes, mobile phones, laptops, printers, Global Posi-
tioning System (GPS) receivers, digital cameras, and video game consoles. It was
principally designed as a low-bandwidth technology. However, it permits moving or
still pictures to be sent from a digital camera or mobile phone, at a speed of over
700 kbps, within a distance of 10 m. Many other short-range wireless communication
protocols have also been developed in recent years for direct data exchange between
mobile devices, including Near Field Communication (NFC) and Wi-Fi Direct, and
etc. Advanced technologies such as Ultra Wide Band (UWB) and cognitive radio are
also under active development.

17.3 Multimedia OverWireless Channels

We have studied the evolution of 2G networks to high-capacity 3G/4G networks as
well as that of wireless local area networks. The main driving force toward the new
generation of higher speed wireless networks are from multimedia communications
over wireless. Suggested multimedia applications range from streaming video, video-
conferencing, online gaming, collaborative work, and slide show presentations, to
enhanced roadside assistance and online map guidance for drivers, to name but a few.

The characteristics of wireless handheld devices are worth keeping in mind when
designing multimedia transmission over wireless, in particular video transmission.
First, both the handheld size and battery life limit the processing power and memory
of the device. Thus, encoding and decoding must have relatively low complexity.
On the other hand, the smaller screen sizes well accept relatively lower resolution
videos, which helps reduce the processing time. This, however, is changing given
the rapid adoption of high-resolution screens in mobile devices.

Second, due to memory constraints and reasons for the use of wireless devices, as
well as billing procedures, real-time communication is likely to be required. Long
delays before starting to see a video are either not possible or not acceptable.

590 17 Multimedia OverWireless and Mobile Networks

Finally, wireless channels have much more interference than wired channels,
with specific loss patterns depending on the environment conditions. The bitrate for
wireless channels is also much more limited, even with the 3G/4G. This implies
that even though a lot of bit protection must be applied, coding efficiency has to be
maintained as well. And error-resilient coding is important.

The 3G standards specify that video shall be standard compliant. Moreover, most
companies will concentrate on developing products using standards, in the interest
of interoperability of mobiles and networks. The video standards reasonable for use
over wireless channels are MPEG-4 and H.263/264/265 and their variants, given their
high efficiency in low bitrate. The 3GPP/3GPP2 group has defined the following QoS
parameters for wireless videoconferencing services [13,14].
• Synchronization. Video and audio should be synchronized to within 20 ms.
• Throughput. The minimum video bitrate to be supported is 32 kbps. Video rates

of 128 kbps, 384 kbps, and above should be supported as well.
• Delay. The maximum end-to-end transmission delay is defined to be 400 ms.
• Jitter. The maximum delay jitter (maximum difference between the average delay

and the 95th percentile of the delay distribution) is 200 ms.
• Error rate. A frame error rate of 10−2 or a bit error rate of 10−3 should be

tolerated.
In this section, we are concerned mainly with sending multimedia data robustly

over wireless channels, particularly for video communication, the natural extension
to voice communication. We will introduce solutions for error detection, error cor-
rection, error-resilient entropy coding, and error concealment in the wireless network
context, although most of these techniques are also applicable to other networks.

17.3.1 Error Detection

Error detection is to identify errors caused by noise or other impairments during
transmission from the sender to the receiver. Commonly used error detection tools
include parity checking, checksum, and Cyclic Redundancy Check (CRC) [15,16].

Parity Checking

With binary data, errors appear as bit flips. Parity checking adds a parity bit to a
source bitstring to ensure that the number of set bits (i.e., bits with value 1) in the
outcome is even (called even parity) or odd (called odd parity). For example, with
even parity checking, a bit 1 should be appended to bitstring 10101000, and a bit 0
should be appended to 10101100.

This is a very simple scheme that can be used to detect any single or odd number
of errors on the receiver’s side. An even number of flipped bits, however, will make
the parity bit appear correct even though the data is erroneous.

17.3 Multimedia OverWireless Channels 591

Checksum

A checksum of an input message is a modular arithmetic sum of all the codewords in
the message. The sender can append the checksum to the message, and the receiver
can perform the same sum operation to check whether there is any error. It has
been implemented in many network protocols, from data link and network layers, to
transport and application layers. The Internet checksum algorithm in these protocols
works as follows (see more details in RFC 1071):
1. First pair the bytes of the input data to form 16-bit integers. If there is an odd

number of bytes, then append a byte of zero in the end.
2. Calculate the 1’s complement sum of these 16-bit integers. Any overflow encoun-

tered during the sum will be wrapped around to the lowest bit.
3. The result serves as the checksum field, which is then appended to the 16-bit

integers.
4. On the receiver’s end, the 1’s complement sum is computed over the received

16-bit integers, including the checksum field. Only if all the bits are 1 will the
received data be correct.
To illustrate this, let the input data be a byte sequence of D1, D2, D3, D4, . . . , DN .

Using the notation [a, b] for the 16-bit integer a · 256 + b, where a and b are bytes,
then the 16-bit 1’s complement sum of these bytes is given by one of the following
(here +′ means 1’s complement sum):

[D1, D2] + ′[D3, D4] + ′ · · · + ′[DN−1, DN] (N is even; no padding)

[D1, D2] + ′[D3, D4] + ′ · · · + ′[DN , 0] (N is odd; append a zero).

As an example, suppose we have the following input data of 4 bytes: 10111011,
10110101, 10001111, and 00001100. They will be grouped as 1011101110110101
and 1000111100001100.

The sum of these two 16 bit integers is

1011101110110101
+1000111100001100

0100101011000010

This addition has an overflow, which has been wrapped around to the lowest bit.
The 1’s complement is then obtained by converting all the 0s to 1s and all the 1s to
0s. Thus the 1s complement of the above sum becomes 1011010100111101, which
becomes the checksum.

The receiver will perform the same grouping and summation for the received
bytes, and then add the received checksum too. It is easy to see that if there is no
error, then the outcome should be 1111111111111111. Otherwise, if any bit becomes
0, then errors happen during transmission.

592 17 Multimedia OverWireless and Mobile Networks

Cyclic Redundancy Check

The basic idea behind Cyclic Redundancy Check (CRC) is to divide a binary input
by a keyword K that is known to both the sender and the receiver. The remainder R
after the division constitutes the check word for the input. The sender sends both the
input data and the check word, and the receiver can then check the data by repeating
the calculation and verifying whether the remainder is still R. Obviously, to ensure
that the check word R is fixed to r bits (zeros can be padded at the highest bits if
needed), the keyword K should be of r + 1 bits.

CRC implementation uses a simplified form of arithmetic for the division, namely,
computing the remainder of dividing with modulo-2 in GF(2) (Galois field with two
elements), in which we have

0 − 0 = 0 + 0 = 0
1 − 0 = 1 + 0 = 1
0 − 1 = 0 + 1 = 1
1 − 1 = 1 + 1 = 0

In other words, addition and subtraction are identical and both are equivalent to
exclusive OR (XOR, ⊕). Multiplication and division are the same as in conventional
base-2 arithmetic, too, except that, with the XOR operation, any required addition
or substraction is now without carries or borrows. All these make the hardware
implementation much simpler and faster.

Given the message word M , and the keyword K , we can manually calculate the
remainder R using conventional long division, just with modulo-2 arithmetic. We
also append r zeros to M before division, which makes the later verification easier,
as we will see soon. For example, for M = 10111 and K = 101, we have

101
10011)

1011100
101

110
101

110
101

11

Hence, R = 11, which is to be appended as the check word to the message.
It is not difficult to show that, in this case, M · 2r ⊕ R is perfectly divisible by K

(which we leave as an exercise). Hence, instead of calculating the remainder on the
receiver’s side and comparing with the R from the sender, the receiver can simply
divide M · 2r ⊕ R by K and check whether the remainder is zero or not. If it is zero,
then there is no error; otherwise, the error is detected.

The keyword K indeed comes from a generator polynomial whose coefficients
are the binary bits of the keyword K . For example, for K = 100101 in the binary

17.3 Multimedia OverWireless Channels 593

00101
11010
00110

0
1
0

00101
10010
00110

0
1
0

11001
parity error

parity
error

11001

Fig.17.10 An example of a two-dimensional even parity checking. Left No error; Right A single-bit
error detected and corrected

format, its polynomial expression is x5 + x2 + 1. The keyword is, therefore, also
called a generator. Choosing a good generator is a nontrivial job and there have
been extensive studies [16]. For a well-chosen generator, two simple facts are known
(more can be found in [16]):
1. If the generator polynomial contains two or more terms, all single-bit errors can

be detected.
2. An r -bit CRC can detect all burst errors of length no more than r . Here the burst

means that the first and last bits are in error, and the bits in between may or may
not be in error.
Standard generators of 8-, 12-, 16-, and 32-bits have been defined in international

standards. For example, the following 32-bit generator has been used in a number of
link-layer IEEE protocols, in particular, the Internet since 1975:

GC RC−32 = 100000100110000010001110110110111

Note that it is of 33 bits (so that the remainder is of 32 bits). It is also the CRC
generator that is used in MPEG-2, and the error message “CRC failed!” often appears
for a scratched DVD that is hard to read by the disk player.

17.3.2 Error Correction

Once an error is detected, a retransmission could be used to recover the error, as such
reliable transport protocols as TCP does. The back channel, however, is not always
available, e.g., for satellite transmission, or can be quite expensive to create, e.g.,
in the broadcast or multicast scenarios. For real-time multimedia streaming, the delay
for retransmission can be too long, making the retransmitted packet useless.

Instead, for real-time multimedia, Forward Error Correction (FEC) is often used,
which adds redundant data to a bitstream to recover some random bit errors in
it [16]. Consider a simple extension to the parity checking, from one dimension to
two dimensions [17]. We not only calculate the parity bit for each bitstring of M
bits, but also group every M bitstrings to form a matrix and calculate the parity bit
of each column of the matrix.

With this two-dimensional parity checking, we can both detect and correct errors!
This is because a bit error will cause a failure of a row parity checking and a failure

594 17 Multimedia OverWireless and Mobile Networks

of a column parity checking, which cross at a unique location—the flipped bit in the
erroneous bitstring, as illustrated in the example in Fig. 17.10.

This is a very simple FEC scheme. It doubles the amount of parity bits, but the
error correction capability is very limited; e.g., if two errors occur in a row, we will
not be able to detect them, not to mention correcting them.

There are two categories of practical error correction codes: block codes and
convolutional codes [15,16]. The block codes apply to a group of bits, i.e., a block,
at once to generate redundancy. The convolutional codes apply to a string of bits one
at a time and have memory that can store previous bits as well.

Block Codes

The block codes take an input of k bits and append r = n − k bits of FEC data,
resulting in an n-bit-long string [18]. These codes are referred to as (n, k) codes.
For instance, the basic ASCII words are of 7 bits; parity checking adds a single bit
(r = 1) for any ASCII word, and so it is an (8,7) code, with 8 bits in total (n = 8), of
which seven are data (k = 7). The code rate is k/n, or 7/8 in the parity checking case.

Hamming Codes
Richard Hamming observed that error correction codes operate by adding space
between valid source strings. The space can be measured using a Hamming distance,
defined as the minimum number of bits between any coded strings that need to be
changed so as to be identical to another valid string.

To detect r errors, the Hamming distance has to be at least equal r +1; otherwise,
the corrupted string might seem valid again. This is not sufficient for correcting r
errors, however, since there is not enough distance among valid codes to choose a
preferable correction. To correct r errors, the Hamming distance must be at least
2r + 1.

This leads to the invention of first block code, the Hamming(7,4)-code, in 1950.
It encodes 4 data bits into 7 bits by adding 3 parity bits based on a generator matrix
G, say

G =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 1
1 0 1 1
1 0 0 0
0 1 1 1
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

Given an input data p (4 bits as a vector), the output code x is obtained by taking
the product G · p and then performing modulo 2. As an example, for bits 1001, the
input vector p is (1, 0, 0, 1)T ; the product will be vector (2, 2, 1, 1, 0, 0, 1)T , and the
encoded output x will be (0, 0, 1, 1, 0, 0, 1)T after modulo 2, or a 7-bit data block
of 0011001.

17.3 Multimedia OverWireless Channels 595

The Hamming(7,4)-code can detect and correct any single-bit error. To do this, a
parity-check matrix H is used

H =

⎛

⎝
1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

⎞

⎠

Similar to encoding, we take the product H · x with modulo 2, which yields a
vector z of length 3. We can treat z as a 3-bit binary number. If it is zero, then
there is no error; otherwise, it indicates the location of the error (by checking the
corresponding column in H). For example, for x = 0011001, we have z = 0, i.e.,
no error; on the other hand, for x ′ = 0111001, we have z = 010, which corresponds
to the second column of H , indicating bit 2 is erroneous.

Extended Hamming codes can detect up to 2-bit errors or correct 1-bit errors
without detection of uncorrected errors. By contrast, the simple 1D parity code can
detect only an odd number of bits in error and cannot correct errors.

BCH and RS Codes
More powerful cyclic codes are stated in terms of generator polynomials of maxi-
mum degree equal to the number of source bits. The source bits are the coefficients
of the polynomial, and redundancy is generated by multiplying with another polyno-
mial. The code is cyclic, since the modulo operation in effect shifts the polynomial
coefficients. The Cyclic Redundancy Check (CRC) we have seen before belongs to
this category, though it is mainly used for error detection. A widely used class of
cyclic error correction codes is the Bose-Chaudhuri-Hocquenghem (BCH) codes.
The generator polynomial for BCH is also given over a Galois Field (GF) and is the
lowest degree polynomial with roots of αi , where α is a primitive element of the
field and i goes over the range of 1 to twice the number of bits we wish to correct.

BCH codes can be encoded and decoded quickly using integer arithmetic. H.261
and H.263 use BCH to allow for 18 redundant bits every 493 source bits. Unfortu-
nately, the 18 redundant bits will correct at most two errors in the source. Thus, the
packets are still vulnerable to burst bit errors or single-packet errors.

An important subclass of BCH codes that applies to multiple packets is the Reed–
Solomon (RS) codes. The RS codes have a generator polynomial over GF(2m), with
m being the packet size in bits. RS codes take a group of k source packets and output
n packets with r = n − k redundancy packets. Up to r lost packets can be recovered
from n coded packets if we know the erasure points.1 Otherwise, as with all FEC
codes, recovery can be applied only to half the number of packets, since error-point
detection is now necessary as well.

In the RS codes, only ⌈ r
2⌉ packets can be recovered. Fortunately, in the packet

FEC scenario, the packet itself often contains a sequence number and checksum or
CRC in its header. In most cases, a packet with an error is dropped, and we can tell
the location of the missing packet from the missing sequence number.

1 Errors are also called erasures, since an erroneous packet can be useless, and has to be “erased”.

596 17 Multimedia OverWireless and Mobile Networks

The RS codes are useful for both storage and transmission over networks. When
there are burst packet losses, it is possible to detect which packets were received
incorrectly and recover them using the available redundancy. If the video has scala-
bility, a better use of allocated bandwidth is to apply adequate FEC protection on the
base layer, containing motion vectors and all header information required to decode
video to the minimum QoS. The enhancement layers can receive either less protec-
tion or none at all, relying just on resilient coding and error concealment. Either way,
the minimum QoS is already achieved.

A disadvantage of the block codes is that they cannot be selectively applied to cer-
tain bits. It is difficult to protect higher protocol layer headers with more redundancy
bits than for, say, DCT coefficients, unless they are sent explicitly through different
packets. On the other hand, convolutional codes can do this, which make them more
efficient for data in which unequal protection is advantageous, such as videos.

Convolutional Codes

The convolutional FEC codes are defined over generator polynomials as well [15].
They are computed by shifting k message bits into a coder that convolves them with
the generator polynomial to generate n bits. The rate of such code is defined to be k

n .
The shifting is necessary, since coding is achieved using memory (shift) registers.
There can be more than k registers, in which case past bits also affect the redundancy
code generated.

After producing the n bits, some redundancy bits can be deleted (or “punctured”)
to decrease the size of n, and increase the rate of the code. Such FEC schemes are
known as rate compatible punctured convolutional (RCPC) codes. The higher the
rate, the lower the bit protection will be, but also the less overhead on the bitrate. A
Viterbi algorithm with soft decisions decodes the encoded bit stream, although turbo
codes are gaining popularity.

Given the limited network bandwidth, it is important to minimize redundancy,
because it comes at the expense of bitrates available for source coding. At the same
time, enough redundancy is needed so that the video can maintain required QoS
under the current channel error conditions. Moreover, the data in a compressed
media stream are of different importance. Some data are vitally important for correct
decoding. For example, some lost and improperly estimated data, such as picture
coding mode, quantization level, or most data in higher layers of a video standard
protocol stack, will cause catastrophic video decoding failure. Others, such as missing
DCT coefficients may be estimated or their effect visually concealed to some degree.
As such, given certain channel conditions, different amount of FEC can be applied to
these data to provide different level of protection, which is known as Unequal Error
Protection (UEP).

RCPC puncturing is done after generation of parity information. Knowing the
significance of the source bits for video quality, we can apply a different amount
of puncturing and hence achieve UEP. Studies and simulations of wireless radio
models have shown that applying unequal protection using RCPC according to bit

17.3 Multimedia OverWireless Channels 597

Fig. 17.11 Interleaving
scheme for redundancy codes.
Packets or bits are stored in
rows, and redundancy is
generated in the last r
columns. The sending order is
by columns, top to bottom,
then left to right

h

T
ra

ns
m

is
si

on
 o

rd
er

Packing order

n

k r

significance information results in better video quality (up to 2 dB better) for the
same allocated bitrate than videos protected using the RS codes.

Simplistically, the Picture layer in a video protocol should get the highest protec-
tion, the macroblock layer that is more localized will get lower protection, and the
DCT coefficients in the block layer can get little protection, or none at all. This could
be extended further to scalable videos in similar ways.

The 3G networks have also incorporated data-type-specific provisions and recog-
nize the video standard chosen for transmission; they can adaptively apply transport
coding of the video stream with enough unequal redundancy suitable to the channel
conditions at the time and QoS requested.

Packet Interleaving

It is also possible to use packet interleaving to increase resilience to burst packet
loss. As Fig. 17.11 shows, the RS codes are generated for each of the h rows of k
source video packets. Instead of transmitting with the original order, we can use the
column-major order, so that the first packet of each of the h rows is transmitted first,
then the second, and so on. Such an interleaving can effectively convert a burst loss
to a series of smaller uniform losses across the original rows, which are much easier
to handle given the enough redundancy in each row. In other words, we could tolerate
more than r erasures with error correction and concealment.

It is worth noting that the interleaving does not increase bandwidth overhead but
introduces additional delay.

17.3.3 Error-Resilient Coding

A video stream is either packetized and transmitted over a packet-switched channel
or transmitted as a continuous bitstream over a circuit-switched channel, with the
former being more popular nowadays. In either case, it is obvious that packet loss or
bit error will reduce video quality. If a bit loss or packet loss is localized in the video

598 17 Multimedia OverWireless and Mobile Networks

in both space and time, the loss can still be acceptable, since a frame is displayed for
a very short period, and a small error might go unnoticed.

However, digital video coding techniques involve variable-length codes, and
frames are coded with different prediction and quantization levels. Unfortunately,
when a packet containing variable bit length data (such as DCT coefficients) is dam-
aged, that error, if unconstrained, will propagate all the way throughout the stream.
This is called loss of decoder synchronization. Even if the decoder can detect the error
due to an invalid coded symbol or coefficients out of range, it still cannot establish
the next point from which to start decoding [19].

As we have learned in Chap. 10, this complete bitstream loss does not happen
for videos coded with standardized protocol layers. The Picture layer and the Group
Of Blocks (GOB) layer or Slice headers have synchronization markers that enable
decoder resynchronization. For example, the H.263 bitstream has four layers—the
Picture layer, GOB layer, Macroblock layer, and Block layer. The Picture Layer starts
with a unique 22-bit picture start code (PSC). The longest entropy-coded symbol
possible is 13 bits, so the PSC serves as a synchronization marker as well. The
GOB layer is provided for synchronization after a few blocks rather than the entire
frame. The group of blocks start code (GBSC) is 17 bits long and also serves as
a synchronization marker.2 The macroblock and the Block layers do not contain
unique start codes, as these are deemed high overhead.

Slice Mode

ITU standards after H.261 (i.e., H.263 to 265) support slice-structured mode instead
of GOBs (see for example H.263 Annex K), where slices group block together
according to the block’s coded bit length rather than the number of blocks. The
objective is to space slice headers within a known distance of each other. That way,
when a bitstream error looks like a synchronization marker and if the marker is not
where the slice headers should be, it is discarded and no false resynchronization
occurs.

Since slices need to group an integral number of macroblocks together, and mac-
roblocks are coded using VLCs, it is not possible to have all slices the same size.
However, there is a minimum distance after which the next scanned macroblock will
be added to a new slice. We know that DC coefficients in macroblocks and motion
vectors of macroblocks are differentially coded. Therefore, if a macroblock is dam-
aged and the decoder locates the next synchronization marker, it might still not be
able to decode the stream.

To alleviate the problem, slices also reset spatial prediction parameters; differential
coding across slice boundaries is not permitted. The ISO MPEG standards (and H.264
as well) specify slices that are not required to be of similar bit length and so do not
protect against false markers well.

2 Synchronization markers are always larger than the minimum required, in case bit errors change
bits to look like synchronization markers.

http://dx.doi.org/10.1007/978-3-319-05290-8_10

17.3 Multimedia OverWireless Channels 599

Other than synchronization loss, we should note that errors in prediction reference
frames cause much more damage to signal quality than errors in frames not used for
prediction. That is, a frame error for an I-frame will deteriorate the quality of a video
stream more than a frame error for a P- or B-frame. Similarly, if the video is scalable,
an error at the base layer will deteriorate the quality of a video stream more than in
enhancement layers.

Reversible Variable-Length Code

Another useful tool to address the loss of decoder synchronization is Reversible
Variable-Length Code (RVLC) [20,21]. An RVLC makes instantaneous decoding
possible both in the forward and backward directions. With the conventional VLC,
a single-bit error can cause continuous errors in reconstructing the data even if no
further bit error happens. In other words, the information carried by the remain-
ing correct bits become useless. If we can decode from the reverse direction, then
such information could be recovered. Another potential use of RVLC is in the ran-
dom access of a coded stream. The ability to decode and search in two directions
should halve the amount of indexing overhead with the same average search time as
compared to the standard one-directional VLC.

An RVLC, however, must satisfy the prefix condition for instantaneous forward
decoding (as we have seen in Chap. 7) and also a suffix condition for instantaneous
backward decoding. That is, each code word must not coincide with any suffix of
a longer code word. A conventional VLC, say, Huffman coding, satisfies only the
prefix condition and can only be decoded from left to right.

As an example, consider the symbol distribution in Table 17.2. For input ACDBC,
the Huffman coded bit stream (C1 in Table 17.2) is 10010011101, which cannot be
decoded instantaneously in the backward direction (right to left) because the last two
bits 10 might be either symbol “C” or the suffix of “D”.

To ensure both the prefix and the suffix conditions, we can use a VLC composed
entirely of symmetrical code words, e.g., the second column (C2) in Table 17.2. Each
symmetric code is clearly reversible, and a bit stream formed by them is reversible
too. For example, ACDBC will be coded as 0010101011101, which is uniquely
decodable from both directions. Compared to Huffman coding (average code length
of 2.21), this symmetric RVLC has a slightly longer average code length (2.44).
More efficient asymmetric RVLC can also be systematically constructed (C3 in the
table), which has an average code length of 2.37. Though it is still higher than
that of Huffman coding, the overhead is acceptable given the potential benefit of
bidirectional decoding.

RVLC has been used in MPEG-4 Part 3. To further help with synchronization,
a data partitioning scheme in MPEG-4, groups and separates header information,
motion vectors, and DCT coefficients into different packets and puts synchronization
markers between them. Such a scheme is also beneficial to unequal protection.

Additionally, an adaptive intraframe refresh mode is allowed, where each mac-
roblock can be coded independently of the frame as an inter- or intrablock according

http://dx.doi.org/10.1007/978-3-319-05290-8_7

600 17 Multimedia OverWireless and Mobile Networks

Table 17.2 Huffman code
(C1), Symmetric RVLC (C2),
and Asymmetric RVLC (C3)

Symbol Probability C1 C2 C3

A 0.32 10 00 11
B 0.32 11 11 10
C 0.15 01 101 01
D 0.13 001 010 000
E 0.08 000 0110 00100

to its motion, to assist with error concealment. A faster moving block will require
more frequent refreshing—that is, be coded in intramode more often. Synchroniza-
tion markers are easy to recognize and are particularly well suited to devices with
limited processing power, such as cell phones and mobile devices.

For interactive applications, if a back channel is available to the encoder, a few
additional error control techniques are available with the feedback information. For
example, according to the bandwidth available at any moment, the receiver can
ask the sender to lower or increase the video bitrate (transmission rate control),
which combats packet loss due to congestion. If the stream is scalable, it can ask
for enhancement layers as well. Annex N of H.263+ also specifies that the receiver
can notice damage in a reference frame and request that the encoder uses a different
reference frame for prediction—a reference frame the decoder has reconstructed
correctly. Unfortunately, for many real-time streaming applications with tight delay
constraints or multicast/broadcast scenarios, such a backchannel for each receiver
may not be available.

Error-Resilient Entropy Coding

The main purpose of GOBs, slices, and synchronization markers are to re-establish
synchronization in the decoder as soon as possible after an error. In Annex K of
H.263+, the use of slices achieves better resilience, since they impose further con-
straints on where the stream can be synchronized. Error-Resilient Entropy Coding
(EREC), further achieves synchronization after every single macroblock, without
any of the overheads of the slice headers or GOB headers. It takes entropy-coded,
variable-length macroblocks and rearranges them in an error-resilient fashion. In
addition, it can provide graceful degradation.

EREC takes a coded bitstream of a few blocks and rearranges them so that the
beginning of all the blocks is a fixed distance apart. Although the blocks can be of
any size and any media we wish to synchronize, the following description will refer
to macroblocks in videos. The algorithm proceeds as in Fig. 17.12.

Initially, EREC slots (rows) of fixed bit length are allocated with a total bit length
equal to (or exceeding) the total bit length of all the macroblocks. The number of slots
is equal to the number of macroblocks, except that the macroblocks have varying bit
length and the slots have a fixed bit length (approximately equal to the average bit
length of all the macroblocks). As shown, the last EREC slot (row) is shorter when
the total number of bits does not divide evenly by the number of slots.

17.3 Multimedia OverWireless Channels 601

MacroblocksEREC slots

Fig. 17.12 Example of macroblock encoding using EREC

Let k be the number of macroblocks, which is equal to the number of slots, l be
the total bit length of all the macroblocks, mbs[] be the macroblocks, and slots[]
be the EREC slots; the procedure for encoding the macroblocks is shown below.

Procedure 17.1 Macroblock encoding using EREC

BEGIN
j = 0;
Repeat until l = 0
{

for i = 0 to k − 1
{

m = (i + j) mod k;
// m is the macroblock number corresponding to slot i ;
Shift as many bits as possible (without overflow) from mbs[i] into
slots[m];
sb = number of bits successfully shifted into slots[m] (without over-
flow);
l = l − sb;

}
j = j + 1; // shift the macroblocks downwards

}
END

602 17 Multimedia OverWireless and Mobile Networks

EREC slotsMacroblocks

Fig. 17.13 Example of macroblock decoding using EREC

The macroblocks are shifted into the corresponding slots until all the bits of the
macroblock have been assigned or remaining bits of the macroblock don’t fit into
the slot. Then the macroblocks are shifted down, and this procedure repeats.

The decoder side works in reverse, with the additional requirement that it has to
detect when a macroblock has been read in full. It accomplishes this by detecting
the end of macroblock when all DCT coefficients have been decoded (or a block end
code). Figure 17.13 shows an example of the decoding process for the macroblocks
coded using EREC in Fig. 17.12.

The transmission order of the data in the slots is row-major—that is, at first the data
in slot 0 is sent, then slot 1, and so on, left to right. It is easy to see how this technique
is resilient to errors. No matter where the damage is, even at the beginning of a
macroblock, we still know where the next macroblock starts—it is a fixed distance
from the previous one. In this case, no synchronization markers are used, so the GOB
layer or slices are not necessary either (although we still might want to restrict spatial
propagation of error).

When the macroblocks are coded using a data partitioning technique (such as the
one for MPEG-4 described in the previous section) and also bitplane partitioning, an
error in the bitstream will destroy less-significant data while receiving the significant
data. It is obvious that the chance for error propagation is greater for bits at the end of
the slot than at the beginning. On average, this will also reduce visual deterioration
over a nonpartitioned encoding. This achieves graceful degradation under worsening
error conditions.

17.3 Multimedia OverWireless Channels 603

17.3.4 Error Concealment

Despite all the efforts to minimize occurrences of errors and their significance, errors
can still happen unless with persistent retransmission, which however is not practical
for continuous media with delay constraints. The residual error will be acoustically or
visually annoying. Error concealment techniques are then introduced to approximate
the lost data on the decoder side, so as to mitigate their negative audio or visual impact.

Error concealment techniques apply in the spatial, temporal, or frequency domains,
or a combination of them. For the case of video, these techniques use neighboring
frames temporally or neighboring macroblocks spatially. The transport stream coder
interleaves the video packets, so that in case of a burst packet loss, not all the errors
will be at one place, and the missing data can be estimated from the neighborhood.

Error concealment is necessary for wireless audio/video communication, since
the error rates are higher than for wired channels and might even be higher than can
be transmitted with appropriate bit protection. Moreover, the error rate fluctuates
more often, depending on various mobility or weather conditions. Decoding errors
due to missing or wrong data received are also more noticeable on devices with
limited resolution and small screen sizes. This is especially true if the macroblock
size remains large, to achieve encoding efficiency for lower wireless bitrates. Here we
summarize the common techniques for error concealment, particularly for video [22].

Dealing with Lost Macroblocks

A simple and popular technique for concealment can be used when DCT blocks are
damaged but the motion vectors are received correctly. The missing block coefficients
are estimated from the reference frame, assuming no prediction errors. Since the
goal of the motion-compensated video is to minimize prediction errors, this is an
appropriate assumption. The missing block is hence temporally masked using the
block in the reference frame.

We can achieve even better results if the video is scalable. In that case, we assume
that the base layer is received correctly and that it contains the motion vectors and
base layer coefficients that are most important. Then, for a lost macroblock at the
enhancement layer, we use the motion vectors from the base layer, replace the DCT
coefficients at the enhancement layer, and decode as usual from there. Since coeffi-
cients of less importance are estimated (such as higher frequency coefficients), even
if the estimation is not too accurate due to prediction errors, the concealment is more
effective than in a nonscalable case.

If the motion vector information is damaged as well, this technique can be used
only if the motion vectors are estimated using another concealment technique (to be
discussed next). The estimation of the motion vector has to be good, or the visual
quality of the video could be inauspicious. To apply this technique for intraframes,
some standards, such as MPEG-2, also allow the acquisition of motion vectors for
intracoded frames (i.e., treating them as intra- as well as interframes). These motion
vectors are discarded if the block has no error.

604 17 Multimedia OverWireless and Mobile Networks

CombiningTemporal, Spatial, and Frequency Coherences

Instead of just relying on the temporal coherence of motion vectors, we can combine
it with spatial and frequency coherences. By having rules for estimating missing
block coefficients using the received coefficients and neighboring blocks in the same
frame, we can conceal errors for intraframes and for frames with damaged motion
vector information. Additionally, combining with prediction using motion vectors
will give us a better approximation of the prediction error block.

Missing block coefficients can be estimated spatially by minimizing the error of a
smoothness function defined over the block and neighboring blocks. For simplicity,
the smoothness function can be chosen as the sum of squared differences of pairwise
neighboring pixels in the block. The function unknowns are the missing coefficients.
In the case where the motion information is available, prediction smoothness is added
to the objective function for minimization, weighted as desired.

The simple smoothness measure defined above has the problem that it smoothes
edges as well. We can attempt to do better by increasing the order of the smoothing
criterion from linear to quadratic or cubic. This will increase the chances of having
both edge reconstruction and smoothing along the edge direction. At a larger com-
putational cost, we can use an edge-adaptive smoothing method, whereby the edge
directions inside the block are first determined, and the smoothing is not permitted
across edges.

Smoothing High-Frequency Coefficients

Although the human visual system is more sensitive to low frequencies, it would be
disturbing to see a checkerboard pattern where it does not belong. This will happen
when a high-frequency coefficient is erroneously assigned a high value. The simplest
remedy is to set high-frequency coefficients to 0 if they are damaged.

If the frequencies of neighboring blocks are correlated, it is possible to estimate
lost coefficients in the frequency domain directly. For each missing frequency coef-
ficient in a block, we estimate its value using an interpolation of the same frequency
coefficient values from the four neighboring blocks. This is applicable at higher fre-
quencies only if the image has regular patterns. Unfortunately that is not usually the
case for natural images, so most of the time the high coefficients are again set to 0.
Temporal prediction error blocks are even less correlated at all frequencies, so this
method applies only for intraframes.

Estimating Lost MotionVectors

The loss of motion vectors prevents decoding of an entire predicted block, so it is
important to estimate motion vectors well. The easiest way to estimate lost motion
vectors is to set them to 0. This works well only in the presence of very little
motion. A better estimation is obtained by examining the motion vectors of reference

17.3 Multimedia OverWireless Channels 605

Mobility Speed

Low High

Fixed
(0 km/h) Airplane

(905 km/h)Walking
(5.3 km/h)

Cars & Trains
(50 km/h) Highspeed Trains

(345 km/h)

Mobility Range

Local Global

Home
Network

InternationalCampus/Office
Network

Citywide Nationwide

Fig. 17.14 Real-world mobility range and mobility speed

macroblocks and of neighboring macroblocks. Assuming the motion is also coherent,
it is reasonable to take the motion vectors of the corresponding macroblock in the
reference frame as the motion vectors for the damaged target block.

Similarly, assuming objects with consistent motion fields occupy more than one
macroblock, the motion vector for the damaged block can be approximated as an
interpolation of the motion vectors of the surrounding blocks that were received
correctly. Typical simple interpolation schemes are weighted-average and median.
Also, the spatial estimation of the motion vector can be combined with the estimation
from the reference frame using weighted sums.

17.4 Mobility Management

Mobility is another distinct feature of wireless portable devices. The traditional
TCP/UDP/IP networks were originally designed for communications between fixed
ends. There are many issues that need to be resolved to support mobility, which has
long been a research topic in the Internet community, particularly in recent years
when the number of mobile terminals dramatically increases [23,24]. There is a
broad spectrum of device and user mobility, in terms of both range and speed, as
illustrated in Fig. 17.14.

The deep penetration of modern wireless accesses has made network connectivity
anywhere and anytime a reality, which urges network operators/adminstrators to
deploy mobility management protocols for ubiquitous accesses. From a network
operator/administrator’s view, a network usually covers a large geographical area
(or administrative domain) consisting of several subnetworks. Mobility of a user in
a network can be broadly classified into three categories:

606 17 Multimedia OverWireless and Mobile Networks

• Micromobility (intra-subnet mobility), where movement is within a subnet.
• Macromobility (intradomain mobility), where movement is across different sub-

nets within a single domain.
• Global mobility (interdomain mobility), where movement is across different

domains in various geographical regions.
Global mobility involves longer timescales, where the goal is to ensure that mobile

devices can re-establish communication after a move rather than provide continu-
ous connectivity. Early studies on Mobile IP have addressed the simple scenario of
global mobility that a computer is unplugged from a network, transported to another
network, and then replugged. With the support of modern wireless mobile networks,
such as 3G/4G and WLAN, the mobility can be much more frequent with complex
patterns. It is, therefore, important to ensure continuous and seamless connectivity
during micro- and macromobility, together with secure authentication, authoriza-
tion, and accounting. The short timescales here call for joint effort across multiple
layers. This is further complicated with streaming media applications that expect
uninterrupted data transfer during the movement.

To avoid interruption during communication, handoff (also known as handover)
management is required, by which a mobile terminal keeps its connection active
when it moves from one network access point to another. Another important function
needed to support mobility is location management, which tracks the locations of
mobile terminals, and provides such popular location-based services as searching
nearby users or media content related to the locations of interest.

17.4.1 Network Layer Mobile IP

We start our discussion on mobility management from the network layer support
for global mobility. The most widely used protocol for this purpose is Mobile IP,
whose initial version was developed by IETF in 1996. IETF released Mobile IPv4
(RFC3220) and Mobile IPv6 (RFC3775) standards in 2002 and 2004, respectively.
There are certain differences in their details, but the overall architectures and the
high-level designs are similar for both versions.

The key support offered by Mobile IP is to assign a mobile host two IP addresses:
a home address (HoA) that represents the fixed address of the mobile node (MN) and
a care-of-address (CoA) that changes with the IP subnet to which the MN is currently
attached. Each mobile node has a home agent (HA) in its home network, from which
it acquires its HoA. In Mobile IPv4, the foreign network where the MN currently
is attached should have a foreign agent (FA), which is replaced by an access router
(AR) in Mobile IPv6. The mobile node obtains its CoA from its current FA or AR.

When the mobile node MN is in its home network, it acts like any other fixed
node of that network with no special mobile IP features. When it moves out of its
home network to a foreign network, the following steps are to be followed (see Fig.
17.15):

17.4 Mobility Management 607

FA

MN

HA

CN

Internet

1

2

3

4

5

Home Network

Foreign Network

Fig. 17.15 The operations in mobile IP

Fig. 17.16 The data path in
mobile IP

CN HA FA MN

IP Data

IP Data

IP Data

IP Data
(Tunnelled)

1. The MN obtains the CoA and informs its HA of the new address by sending a
Registration Request message to the HA.

2. The HA, upon receiving the message, shall reply to the MN with a
Registration Reply message. The HA keeps the binding record of the
MN, which is transparent to a correspondent node (CN) that intends to commu-
nicate with the MN.

3. Once a packet from the CN to the MN arrives at the home network, the HA will
intercept the packet.

4. The HA then forward it to the FA by a tunnel that encapsulates the original packets
(with the HoA in the headers) into packets with the CoA in the headers. Once the
FA receives the tunneled packets, it removes the extra header and delivers it to
the MN.

5. When the MN wishes to send data back to the CN, the packets are sent directly
from the MN to the destination since the CN’s IP address is known by the MN.
This data path for mobile IP is further illustrated in Fig. 17.16.
Such a simple implementation that involves MN, HA, and CN can cause triangular

routing, that is, the communication between the MN and CN now has to go through
the HA using tunneling. It can be quite efficient if the MN and CN are very close;

608 17 Multimedia OverWireless and Mobile Networks

in an extreme case, both MN and CN can be in the same network while the HA is
far away. To alleviate triangular routing, the CN can also keep the mapping between
the mobile’s HoA and CoA, and accordingly send packets to the mobile directly,
without going through the HA. In this case, the mobile node must update its CoA to
CNs as well.

Even with route optimization, Mobile IP can still introduce significant network
overhead in terms of increased delay, packet loss, and signaling when the MNs change
their point of attachment to network frequently or the number of MNs grows dramati-
cally. Hierarchical Mobile IP (HMIP) (RFC 4140) is a simple extension that improves
the performance by using a Mobility Anchor Point (MAP) to handle the movement of
a MN in a local region. The MN, if supporting HMIP, obtains a Regional CoA (RCoA)
and registers it with its HA as its current CoA; while RCoA is the locator for the
mobile in Mobile IP, it is also its regional identifier used in HMIP. At the same time,
the MN obtains a Local CoA (LCoA) from the subnet it attaches to. When moving
within the region, the MN only updates the MAP with the mapping between its RCoA
and LCoA. It reduces the burden of the HA by reducing the frequency of updates.
The shorter delay between the MN and the MAP also improves response time.

17.4.2 Link-Layer Handoff Management

Link-layer handoff or handover occurs when a mobile device changes its radio chan-
nels to minimize interference under the same AP or BS (called intracell handoff) or
when it moves into an adjacent cell (called intercell handoff). For example, in GSM,
if there is strong interference, the frequency or time slot can be changed for a mobile
device, which remains attached to the same BS transceiver. For intercell handoff,
there are two types of implementations, namely, hard handoff and soft handoff.

Hard Handoff

As illustrated in Fig. 17.17, a hard handoff is triggered when the signal strength from
the existing BS, perceived by the MN moving out of the cell, is below a threshold
before connecting to the new BS. The MN occupies only one channel at a time: the
channel in the source cell is released and only then the channel in the target cell is
engaged. Hence, the connection to the source is broken before or as the connection
to the target is made. For this reason, hard handoff is also referred to as break before
make. To minimize the impact of the event, the operations have to be short that causes
almost no user-perceptible disruption to the session. In the early analog systems, it
could be heard as a click or a very short beep; in modern digital systems it is generally
unnoticeable.

The implementation of hard handoff is relatively simple as the hardware does not
need to be capable of receiving two or more channels in parallel. In GSM, the decision
is done by the BS with mobile’s assistance, which reports the signals strength back
to the BS. The BS also knows the availability of channels in the nearby cells through

17.4 Mobility Management 609

BS-A BS-B BS-A BS-B

(a) (b)

Fig.17.17 An illustration of hard handoff. Before handoff, the mobile node is connected to BS-A,
but the signal strength becomes weaker when it is moving toward BS-B. At a certain time when the
signal strength of BS-B is above a threshold (and that of BS-A becomes very weak), a hard handoff
decision will be made, such that the connection to BS-A is first broken and the connection to BS-B
is then established. a Before hand off and b After hand off

information exchange. If the network decides that it is necessary for the mobile to
hand off, it assigns a new channel and time slot to the mobile, and then informs the
BS and the mobile of the change.

The ongoing session, however, can be temporarily disrupted if the hard handoff
fails. Reestablishment is then needed, which may be noticeable to the users and
sometimes could fail, causing a session to be terminated abnormally. Also when the
mobile stays between BSs, it can bounce back and forth, causing an undesirable
ping-pong phenomenon.

Soft Handoff

In a soft handoff, the channel in the source cell is retained and used for a while in
parallel with the channel in the target cell. In this case, the connection to the target is
established before the connection to the source is broken. The interval, during which
the two connections are used in parallel, may be brief or substantial. For this reason,
the soft handoff is also referred to as make before break, and is perceived by network
engineers as a state of the call, rather than a instant event as in hard handoff.

One advantage of the soft handoff is that the connection to the source cell is
broken only when a reliable connection to the target cell has been established, and
therefore the chances that the call is terminated abnormally due to failed handoffs
are lower. A soft handoff may involve using connections to more than two cells—
connections to three, four, or more cells can be maintained at the same time; the best
of these channels can be used for the call at a given moment or all the signals can be
combined to produce a clearer copy of the signal. Since fading and interference in
different channels are not necessarily correlated, the probability of them taking place
at the same moment in all channels is very low. Thus the reliability of the connection
becomes higher.

Soft handoff permits a smooth handoff that is critical to continuous media data
flows. This advantage comes at the cost of more complex hardware in the device,
which must be capable of receiving and processing several channels in parallel.
This can be realized in CDMA or WCDMA through different transmission codes on
different physical channels.

610 17 Multimedia OverWireless and Mobile Networks

Vertical Handoff

A more interesting and complex handoff is between different types of networks,
known as vertical handoff [25]. A typical example is between Wi-Fi and cellular
networks, as the former is cheaper and fast and the latter is of broader and ubiquitous
coverage. Switching between them, therefore, combines their advantages [26].

A typical vertical handoff consists three steps, namely, system discovery, handoff
decision, and handoff execution. During the discovery phase, the mobile terminal
determines which networks can be used. These networks may also advertise the sup-
ported data rates and the QoS parameters. In the decision phase, the mobile terminal
determines whether the connections should continue using the current network or
be switched to the target network. The decision may depend on various parame-
ters or metrics including the type of the application (e.g., conversational or one-way
streaming), the minimum bandwidth and delay required by the application, the trans-
mit power, and the user’s preferences. During the execution phase, the connections
in the mobile terminal are rerouted from the existing network to the target network
in a seamless manner.

The 3G networks support multimedia transmissions with a bitrate of 384 kbps
for fast mobility to 2 Mbps for slow mobility, and the 4G achieves even higher
rates up to 100 Mbps. It also allows global roaming across multiple networks with
vertical handoffs, e.g., from a cellular network to a high-speed wireless LAN. To
enable smooth transitions, besides the mobility solutions in the data-link and network
layers, additional support from the transport and application layers with cross-layer
optimizations are also needed. For example, if the transport layer or application
layer is aware of a potential handoff, then prefetching could be executed by the BS
in the target cell, which can avoid the potential service interruption, thus enabling
continuous streaming.

17.5 Further Exploration

Rappaport [1], Goldsmith [27], and Tse and Viswanath [28] offer comprehensive and
in-depth tutorials on the foundations of wireless communication. Viterbi [5] provides
a solid analysis on spread spectrum and the foundation of CDMA. Wang et al. [29]
give an in-depth discussion on error control in video communications.

17.6 Exercises

1. In the implementations of TDMA systems such as GSM, an FDMA technology
is still in use to divide the allocated carrier spectrum into smaller channels. Why
is this necessary?

17.6 Exercises 611

2. We have seen a geometric layout for a cellular network in Fig. 17.4. The figure
assumes hexagonal cells and a symmetric plan (i.e., that the scheme for splitting
the frequency spectrum over different cells is uniform). Also, the reuse factor
is K = 7. Depending on cell sizes and radio interference, the reuse factor may
need to be different. Still requiring hexagonal cells, can all possible reuse factors
achieve a symmetric plan? Which ones can? Can you speculate on a formula for
general possible reuse factors?

3. Consider the hard handoff and soft handoff for mobile terminals moving across
cells.

(a) Why is a soft handoff possible with CDMA. Is it possible with TDMA or
FDMA?

(b) Which type of handoff works better with multimedia streaming?

4. Most of the schemes for channel allocation discussed in this chapter are fixed
(or uniform) channel assignment schemes. It is possible to design a dynamic
channel allocation scheme to improve the performance of a cellular network.
Suggest such a dynamic channel allocation scheme.

5. The Gilbert-Elliott two-state Markov model has been widely used in simulations
to characterize wireless errors, as illustrated in Fig. 17.2.
(a) Given the state transition probabilities p00, p11, p10, and p01, calculate

steady-state probability P0 and P1 that the wireless channel is in state 0 and
state 1, respectively.

(b) Write a simple program to simulate the process. Run it for a long enough
time and calculate the average length of error bursts. Discuss how it would
affect multimedia data transmission.

6. Consider a wireless network whose signal does not decay dramatically, i.e.,
within the network range, the signal strength is always high enough. However,
the signal can be blocked by physical barriers. Will this network have the hidden
terminal problem? Briefly explain your answer.

7. In today’s networks, both the transport layer and link-layer implement error
detection mechanisms. Why do we still need error detection in the link layer
given that the transport layer protocol, say TCP, assumes that the lower layers of
a network is unreliable and seeks to guarantee reliable data transfer using error
detection and retransmission? Hint: Consider the performance gain.

8. Discuss the error detection and correction capability of the two-dimensional
parity check.

9. Calculate the Internet checksum of the following message: 10101101 01100001
10001000 11000001

10. Consider Cyclic Redundancy Check (CRC).
(a) Assume the keyword, K , is 1001, and the message M is 10101110. What is

the width (in bits) of the CRC bits, R? What is the value of R? Please give
detailed calculations.

(b) Prove that M · 2r ⊕ R is perfectly divisible by K , and verify it using the M ,
K , and R values above.

612 17 Multimedia OverWireless and Mobile Networks

11. Discuss why interleaving increases the delay in decoding? Will interleaving be
effective if the loss is uniformly distributed?

12. H.263+ and MPEG-4 use RVLCs, which allow decoding of a stream in both
forward and backward directions from a synchronization marker.

(a) Why is decoding from both directions preferred?
(b) Why is this beneficial for transmissions over wireless channels?
(c) What condition is necessary for the codes to be reversibly decodable? Are

these two set of codes reversible: (00, 01, 11, 1010, 10010) and (00, 01, 10,
111, 110)?

(d) Why are RVLCs usually applied only to motion vectors?

13. Suggest two error concealment methods for audio streaming over wireless chan-
nels.

14. There is a broad spectrum of device and user mobility, in terms of both range
and speed, as illustrated in Fig. 17.14. Discuss the challenges in the different
mobility scenarios, and the potential solutions.

15. To alleviate triangular routing, a CN can also keep the mapping between the
mobiles HoA and CoA, and accordingly encapsulate packets to the mobile
directly, without going through the HA.

(a) In which scenario does this direct routing solution work best?
(b) Discuss any potential problem with the direct routing solution.
(c) Propose another solution that addresses the triangular routing problem.

Discuss its pros and cons.

References

1. T.S, Rappaport, Wireless Communications: Principles and Practice, 2nd edn. (Pearson Edu-
cation, Upper Saddle River, 2010)

2. H.-S. Wang, N. Moayeri, Finite-state markov channel-a useful model for radio communication
channels. IEEE Trans. Veh. Technol 44(1), 163–171 (1995)

3. E.N. Gilbert, Capacity of a burst-noise channel. Bell Syst. Tech. J. 29, 147 (1960)
4. M. Rahnema, Overview of GSM system and protocol architecture. IEEE Commun. Mag. 31(4),

92–100 (1993)
5. A.J. Viterbi, CDMA: Principles of Spread Spectrum Communication (Addison Wesley Long-

man, Redwood City, 1995)
6. M. Baker, From LTE-advanced to the future. IEEE Commun. Mag. 50(2), 116–120 (2012)
7. C. Zhang, S.L. Ariyavisitakul, M. Tao, LTE-advanced and 4g wireless communications. IEEE

Commun. Mag. 50, 102–103 (2012)
8. M.2134 - requirements related to technical performance for IMT-advanced radio interface(s).

Technical report, ITU-R (2008)
9. Agilent Technologies, M. Rumney, LTE and the Evolution to 4G Wireless: Design and Mea-

surement Challenges (Wiley, 2013)
10. J. Burkhardt et al., Pervasive Computing: Technology and Architecture of Mobile Internet

Applications (Addison Wesley Professional, 2002)

References 613

11. E. Perahia, R. Stacey, Next Generation Wireless LANs: 802.11n and 802.11ac (Cambridge
University Press, New York, 2013)

12. L. Harte, Introduction to Bluetooth, 2nd edn. (Althos, 2009)
13. Third Generation Partnership Project 2 (3GPP2). Video conferencing services - stage 1. 3GGP2

Specifications, S.R0022 (2000)
14. Third Generation Partnership Project (3GPP). QoS for speech and multimedia codec. 3GPP

Specifications, TR-26.912 (2000)
15. A. Houghton, Error Coding for Engineers (Kluwer Academic Publishers, Boston, 2001)
16. T.K. Moon, Error Correction Coding: Mathematical Methods and Algorithms (Wiley-

Interscience, 2005)
17. J.F. Kurose, K.W. Ross. Computer Networking: A Top-Down Approach, 6th edn. (Pearson,

New York, 2012)
18. E.K. Wesel, Wireless Multimedia Communications: Networking Video, Voice, and Data

(Addison-Wesley, Reading city, 1998)
19. K.N. Ngan, C.W. Yap, K.T. Tan, Video Coding For Wireless Communication Systems (Marcel

Dekker Inc, New York, 2001)
20. Y. Takishima, M. Wada, H. Murakami, Reversible variable length codes. IEEE Trans. Commun.

43(2–4), 158–162 (1995)
21. C.W. Tsai, J.L. Wu, On constructing the Huffman-code-based reversible variable-length codes.

IEEE Trans. Commun. 49(9), 1506–1509 (2001)
22. Y. Wang, Q.F. Zhu, Error control and concealment for video communication: a review. Proc.

IEEE 86(5), 974–997 (1998)
23. D. Le, X. Fu, A review of mobility support paradigms for the Internet. IEEE Commun. Surv.

Tutorials 8(1), 38–51 (2006)
24. D. Saha, A. Mukherjee, I.S. Misra, M. Chakraborty, Mobility support in ip: a survey of related

protocols. IEEE Netw. 18(6), 34–40 (2004)
25. J. McNair, F. Zhu, Vertical handoffs in fourth-generation multinetwork environments. IEEE

Wireless Commun. 11(3), 8–15 (2004)
26. J. Sommers, P. Barford. Cell vs. wifi: on the performance of metro area mobile connections. In

Proceedings of the 2012 ACM Conference on Internet Measurement Conference (IMC ’12),
pp. 301–314, New York, 2012

27. A. Goldsmith, Wireless Communications. (Cambridge University Press, 2005)
28. D. Tse, P, Viswanath, Fundamentals of Wireless Communication (Cambridge University Press,

New York, 2005)
29. Y. Wang, J. Ostermann, Y.Q. Zhang, Video Processing and Communications (Prentice Hall,

Upper Saddle River, 2002)

Part IV
Multimedia Information Sharing

and Retrieval

Over the past decade, a number of new technologies have contributed to the
development of Web 2.0, which was formally introduced in late 2004. The
advanced interaction provided by Web 2.0 allows every single user to generate and
share content, representing a substantial change from the conventional Web 1.0,
where users merely consume information. Nowadays, such popular Web 2.0-based
social media sharing websites as YouTube, Facebook, and Twitter have drastically
changed the content distribution landscape, and indeed have become an integral
part in people’s daily life.

Meanwhile, advances in datacenters and machine virtualization have catapulted
the popularity of cloud computing. Attracted by the abundant resources in the
cloud and the on-demand ‘‘pay-as-you-go’’ pricing model, an increasing number of
multimedia services have been hosted on cloud computing platforms. For example,
Netflix, one of the leading video streaming service providers reportedly makes use
of Amazon’s cloud service. As well, Sony’s new Playstation game consoles are
powered by cloud computing, which offloads many computation-intensive
multimedia processing tasks, e.g., 3D rendering to remote servers, lifting the
hardware and software constraints inherent in local consoles.

The sheer amount of user-generated content empowered by social media and
cloud computing also demands automated multimedia data analysis and retrieval,
so as to locate syntactically and semantically useful content. This calls for
effective solutions to greatly extend traditional text-based search, and to identify
redundant or even pirated contents that indeed have been critical challenges for the
management of media sharing sites This Part examines the challenges and
solutions for the new generation of multimedia sharing and retrieval services in the
Web 2.0 era. In Chap. 18 we examine the unique characteristics of social media
sharing and their impact, and in Chap. 19 we go on to examine cloud-assisted
multimedia computing and content sharing. Chapter 20 further provides an
introduction to multimedia content retrieval.

http://dx.doi.org/10.1007/978-3-319-05290-8_18
http://dx.doi.org/10.1007/978-3-319-05290-8_19
http://dx.doi.org/10.1007/978-3-319-05290-8_20

18SocialMedia Sharing

Social media, a group of Internet-based applications that build on the ideological
and technological foundations of Web 2.0, allow the creation and exchange of user-
generated contents [1]. These services combine rich Graphical User Interfaces (GUI)
and multimedia contents, and enable ubiquitous content generation and sharing and
scalable communication. They have substantially changed the way organizations,
communities, and individuals communicate. Two distinct characteristics of Web 2.0
are considered as key factors to the success of the new generation of social media:
Collective intelligence. The base knowledge of general users of the Web is con-

tributing to the content of the Web. The users have become the content providers
and therefore the contents are richer and more dynamic.

Rich connections and activities. The users and their contents are linked to each
other, creating an organic growth of connections and activities. A social network
built out of the connections enables strong ties amongst the users and broad and
rapid content propagation.

There are many types of social media services, including user-generated content
sharing (e.g., YouTube), online social networking (e.g., Facebook), question-and-
answer (e.g., Ask), and collaboratively edited encyclopedia (e.g., Wikipedia), to
name but a few. In these social media services, the contents, as well as the users,
have become interconnected, enabling convenient information sharing for feelings,
activities, and location information, as well as resources, blogs, photos, and videos.

With the pervasive penetration of wireless mobile networks, the advanced devel-
opment of smartphones and tablets, and the massive market of mobile applications,
social media contents can now be easily generated and accessed at any time and
anywhere. YouTube’s own statistics have reported that YouTube mobile gets over
600 million views a day, making up almost 40 % of YouTube’s global watch time.
The new trends on social media creation, deployment, and spreading, far beyond
conventional media, have brought up numerous well-known Internet memes and
celebrities that have no doubt been changing our daily life.

In this chapter, we present an overview of this rapidly evolving field, particularly
for social media services for multimedia content sharing. We first overview two
important social media services, namely user-generated media content sharing and

Z.-N. Li et al., Fundamentals of Multimedia, 617
Texts in Computer Science, DOI: 10.1007/978-3-319-05290-8_18,
© Springer International Publishing Switzerland 2014

618 18 Social Media Sharing

online social networking. We closely examine the YouTube video sharing service.
We then discuss media object propagation in social networks. Finally, we discuss
user behaviors in sharing and the associated optimization.

18.1 Representative Social Media Services

We now present the background for two important social media services and their
representative implementations.

18.1.1 User-Generated Content Sharing

Having arisen in web publishing and new media content production circles, User-
generated content (UGC) plays a key role in today’s social media services. It is
used for a wide range of applications with different types of media, e.g., text, music,
picture, and video, as well as a combination of open source, free software, and flexible
licensing or related agreements to further reduce the barriers to collaboration, skill-
building, and discovery. For content generation and sharing, video data are arguably
more difficult than such other types of media as text and pictures, given their large
size, high bandwidth demand, and long playback duration.

In traditional video on-demand and live streaming services, videos are offered
by enterprise content providers, stored in servers, and then streamed to users. A
number of new generation video sharing websites, represented here by YouTube,
offer users opportunities to make their videos directly accessible by others, by such
simple operations in Web 2.0 as embedding and sharing.

Established in 2005, YouTube is so far the most significant and successful video
sharing website. It allows registered users to upload videos, mostly short videos. The
users can watch, embed, share, and engage with videos easily. As one of the fastest
growing websites in the Internet, YouTube had served 100 million videos per day in
2006; yet by December 2013, more than 1 billion unique users visit YouTube each
month, over 6 billion h of video are watched each month—that is almost an hour for
every person on Earth, and 100 h of new videos are uploaded every minute. YouTube
is also highly globalized—it is localized in 61 countries and across 61 languages,
and 80 % of YouTube traffic comes from outside the US. The success of similar sites
(e.g., Vimeo, Youku, and Tudou) further confirms the mass market interest in UGC
video sharing services.

18.1.2 Online Social Networking

Online social networking services provide an Internet-based platform to connect
people with social relations, e.g., friends, classmates, and colleagues in the real
world, or people who simply share common interests.

18.1 Representative Social Media Services 619

Facebook, founded in 2004, is one of the dominating online social networking
services on the Internet. As of November 2013, Facebook had 1.19 billion active
users worldwide and 728 million of them log onto Facebook on a daily basis. It
provides users with a platform to connect with friends, by updating status, uploading
photos, commenting and “liking” other’s posts, etc. Currently, there are 4.5 billion
likes and comments generated each day, together with 300 million photos uploaded.
Facebook opens its API for developers to build thousands of applications and games,
which makes it more enjoyable.

Another important social networking website, Twitter, is a representative of
microblog, a simpler but much faster version of blog. It allows users to send text-
based posts, called tweets, of up to 140 characters. Although short, the tweets can
link to richer contents such as images and videos. By following friends or interested
accounts, such as news providers, celebrities, brands, and organizations, Twitter users
can obtain real-time notifications, and spread the posts by a retweet mechanism.
Like Facebook, Twitter also opens its APIs, and there is a large collection of reg-
istered Twitter applications available, particularly for mobile users, making Twitter
easier to access.

Both Facebook and Twitter support the sharing and propagation of such media
objects as pictures, music, and video among friends, although the media content
may be hosted by external sites. Recently, Twitter has also begun offering the Vine
service, which, available exclusively for mobile users, enables them to create and
post video clips. A Vine user can create a short video clip up to six seconds long
while recording through Vine’s in-app camera. The clip can then be shared through
Twitter, Facebook, or other social networking services.

18.2 User-GeneratedMedia Content Sharing

Social media has greatly changed mechanisms of content generation and access, and
also brings unprecedented challenges to server and network management. Under-
standing the features of social media services is thus crucial to traffic engineering
and to the sustainable development of these new generation of services. We now
provide an overview of their unique features, using YouTube as a representative.

18.2.1 YouTubeVideo Format andMeta-data

YouTube’s video playback technology is based on Adobe’s Flash Player, which
allows YouTube to display videos with quality comparable to well-established video
playback technologies (such as Windows Media Player, QuickTime, and Realplayer).
YouTube accepts uploaded videos in many formats, which are converted to the .FLV
(Adobe Flash Video) format after uploading. It is well recognized that the use of a
uniform and easily playable format is critical to the success of YouTube. YouTube
used the H.263 video codec earlier, and introduced “high quality” format with the

620 18 Social Media Sharing

Table 18.1 An example
of the meta-data of a
YouTube video

ID YiQu4gpoa6k

Uploader NewAgeEnlightenment
Date added August 08, 2008
Category Sports
Video length 270 s
Number of views 924,691
Number of ratings 1,039
Number of comments 212
Related videos ri1h2_jrVjU,

0JdQlaQpOuU, …

H.264 codec for better viewing quality in late 2008 (See Fig. 16.2 in Chap. 16 for a
complete list of the audio/video formats offered by YouTube to date).

YouTube assigns each video a distinct 11-digit ID composed of the characters 0–9,
a–z, A–Z, -, and _. Each video contains the following intuitive meta-data: video I D,
uploader , date added , category, length, number of views, number of ratings,
number of comments, and a list of related videos. The related videos are linked
to other videos that have similar titles, descriptions, or tags, all of which are chosen
by the uploader. A YouTube page only shows at most 20 related videos at once, but
more can be displayed by scrolling down the list. A typical example of the meta-data
is shown in Table 18.1.

18.2.2 Characteristics of YouTubeVideo

There have been significant research efforts aimed at understanding the workloads of
traditional media servers, for example, video popularity and access locality [2,4,5].
While sharing similar characteristics, many of the video statistics of these traditional
media servers are quite different from YouTube-like sites, e.g., the video length
distribution and user access pattern. More importantly, these videos are generally
movies and TV programs that are not generated by ordinary users, nor are they
connected by social relations.

Video Category
In YouTube, one of 15 categories is selected by a user when uploading a video.
Table 18.2 lists the number and percentage of all the categories, from a dataset of 5
million videos crawled over a 1.5-year span [3]. We can see that the distribution is
highly skewed: the most popular category is “Entertainment,” at about 25.4 %, and
the second is “Music,” at about 24.8 %. These two categories of videos constitute
half of the entire YouTube video collection, suggesting that YouTube is mainly an
entertainment-like site. “Unavailable” are videos set to private, or videos that have
been flagged as inappropriate content, for which the crawler can only get meta
information from the YouTube API. “Removed” are videos that have been deleted

http://dx.doi.org/10.1007/978-3-319-05290-8_16
http://dx.doi.org/10.1007/978-3-319-05290-8_16

18.2 User-Generated Media Content Sharing 621

Table 18.2 List of YouTube video categories

Rank Category Count Percentage (%)

1 Entertainment 1,304,724 25.4
2 Music 1,274,825 24.8
3 Comedy 449,652 8.7
4 People and blogs 447,581 8.7
5 Film and animation 442,109 8.6
6 Sports 390, 619 7.6
7 News and politics 186,753 3.6
8 Autos and vehicles 169,883 3.3
9 Howto and style 124,885 2.4
10 Pets and animals 86,444 1.7
11 Travel and events 82,068 1.6
12 Education 54,133 1.1
13 Science and echnology 50,925 1.0
14 Unavailable 42,928 0.8
15 Nonprofits and activism 16,925 0.3
16 Gaming 10,182 0.2
17 Removed 9,131 0.2

by the uploader, or by a YouTube moderator (due to violation of the terms of use),
but are still linked to by other videos.

Video Length
The length of YouTube videos is the most distinguishing difference from tradi-
tional video contents. Whereas most traditional servers contain a significant por-
tion of long videos, typically 1–2 hour movies (e.g., HPLabs Media Server [4] and
OnlineTVRecorder [5]), YouTube mostly comprises short video clips, and 98.0 %
of the videos’ lengths are within 600 s. Although YouTube has increased its initial
10 min length limit to 15 min and allows certain users to upload videos of unlimited
length, most of the user-generated videos remain quite short in nature.

Figure 18.1 shows the histogram and cumulative distribution function (CDF) of
YouTube videos’ lengths within 700 s, which exhibits three peaks. The first peak
is within 1 min, and contains 20.0 % of the videos, which shows that YouTube is
primarily a site for very short videos. The second peak is between 3 and 4 min, and
contains about 17.4 % of the videos. As shown in Fig. 18.2, this peak corresponds to
the videos in the “Music” category, which is the second most popular category for
YouTube. The third peak is near the maximum of 10 min, which is the earlier limit
on the length of uploaded videos.

Figure 18.2 shows the video length distributions for the top four most popular
categories. “Entertainment” videos have a distribution similar to the entire videos.
“Music” videos have a high peak between 3 and 4 min (29.1 %), which is the

622 18 Social Media Sharing

0

1

2

3

4
x 104

N
um

be
r

of
 V

id
eo

s

Video Length (second)
0 100 200 300 400 500 600 700

0

0.25

0.5

0.75

1

C
D

F

Fig. 18.1 Histogram and cumulative distribution (CDF, the solid line) of YouTube video length

Entertainment

0 200 400 600

Music

0 200 400 600

Comedy

0 200 400 600

People & Blogs

0 200 400 600

Fig. 18.2 Length histograms and cumulative distributions for the four top categories

typical length range for music TVs. “Comedy” and “People & Blogs’ videos have
more videos within 2 min (53.1 % and 41.7 % respectively), likely corresponding to
“highlight” type of clips.

18.2 User-Generated Media Content Sharing 623

Access Patterns

Given that UGC video length is shorter by two orders of magnitude as compared to
traditional movies or TV shows, YouTube’s video content production is significantly
faster with less effort [6]. It has been found that the 10 % top popular videos account
for nearly 80 % of views, indicating that YouTube is highly skewed toward popular
videos. This also implies that proxy caching can have high hit ratios since only a
small portion of the videos will be requested frequently.

Yet YouTube users tend to abort the playback very soon, with 60 % of videos being
watched for less than 20 % of their duration, which is particularly true for mobile
users [7]. Furthermore, only 10 % of the videos are watched again on the following
day [8]. A closer examination that classifies YouTube videos into top videos, removed
pirate videos, and random videos has shown that copyrighted videos tend to get most
of the views earlier, while videos in the top lists tend to experience sudden bursts
of popularity [9,10]. In a campus network, however, the top popular videos do not
contribute much to the total videos viewed on a daily basis, probably because the
users are of closer relations in sharing video [8]. All these points suggest that YouTube
users’ viewing behaviors are highly diversified, affected by both the video quality (as
in traditional video sharing) as well as their social relations (unique to social media).

18.2.3 Small-World inYouTubeVideos

YouTube is a prominent social media service: there are communities and groups
in YouTube, and thus videos are no longer independent of each other. Such social
networking is unique to this new generation of video sharing services. It has been
shown that, besides web searching, tracing related video is another top view source
in YouTube-like UGC sites. There is a strong correlation between the number of
views of a video and that of its top related videos [10], and this also provides more
diversity on video views, helping users discover more videos of their own interest
rather than the popular videos only.

The small-world network phenomenon is probably the most interesting charac-
teristic for social networks. Milgram [11] initiated the study of small-world net-
works when investigating the phenomenon that people are linked by short chains of
acquaintance (a.k.a., six degrees of separation). Such networks possess character-
istics of both random graphs 1 and regular graphs2 [13]. More formally, given the
network as a graph G = (V, E), the clustering coefficient Ci of a node i ∈ V is
the proportion of all the possible edges between neighbors of the node that actually
exist in the graph, and the clustering coefficient of the graph, C(G), is the average of
the clustering coefficients of all nodes. The characteristic path length di of a node

1 A random graph is generated based on certain probability distributions. Purely random graphs,
built according to the Erdös-Rényi (ER) model, exhibit a small characteristic path length (varying
typically as the logarithm of the number of nodes) along with a small clustering coefficient [12].
2 A regular graph is a graph where each vertex has the same degree.

624 18 Social Media Sharing

10
2

10
3

10
4

10
5

10
6

10
7

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Dataset Size

C
lu

st
er

in
g

C
oe

ffi
ci

en
t

YouTube Network
Random Graph

102 103 104 105 106 107
0

5

10

15

20

Dataset Size

C
ha

ra
ct

er
is

tic
 P

at
h

Le
ng

th

YouTube Network
Random Graph

(a)

(b)

Fig. 18.3 Small-world characteristic of YouTube videos

i ∈ V is the average of the minimum number of hops it takes to reach all other nodes
in V and the characteristic path length of the graph, D(G), is then the average of the
characteristic path lengths of all nodes. A small-world network has a large clustering
coefficient like a regular graph, but it also has a small characteristic path length like
a random graph.

The graph topology for the network of YouTube videos can be measured by
using the related links in the YouTube dataset to form directed edges in a video
graph. Figure 18.3a shows the clustering coefficient for the graph, as a function of
the size of the dataset. The clustering coefficient is quite high (between 0.2 and 0.3),
especially in comparison to random graphs (nearly 0). There is a slow decreasing
trend in the clustering coefficient, showing that there is some inverse dependence on
the graph size, which is common for small-world networks [14]. Figure 18.3b shows

18.2 User-Generated Media Content Sharing 625

(a) (b)

Fig. 18.4 Two sample graphs of YouTube videos and their links

the characteristic path length for the graphs. It can be seen that the average diameter
(between 10 and 15) is only slightly larger than the diameter of a random graph
(between 4 and 8), which is quite good considering the still large clustering coefficient
of these datasets. Moreover, as the size of graph increases, the characteristic path
length decreases for the YouTube video graph, but increases for random graphs with
the same number of nodes and average node degrees. This phenomena further verifies
that the YouTube graph is a small-world network.

The small-world characteristics of the video graph can also be observed from their
visual illustrations (see Fig. 18.4 for two representatives of 1000 and 4000 nodes).
The clustering behavior is very obvious in these two graphs, due to the user-generated
nature of the tags, titles, and descriptions of the videos that are used by YouTube to
find related ones. The results are similar to other real-world user-generated graphs
that exist, yet their parameters can be quite different. For example, the graph formed
by URL links in the World Wide Web exhibits a much longer characteristic path
length of 18.59 [15]. This is likely due to the larger number of nodes (8 × 108 in
the Web), but it also indicates that the YouTube network of videos is a much closer
group.

18.2.4 YouTube from a Partner’s View

YouTube displays advertisements on the webpages to monetize videos, and this has
been the main source of YouTube’s revenue. Besides user-generated videos, such
companies and organizations as Electronic Arts, ESPN, and Warner Brothers are
also providing their premium videos on YouTube now. To accommodate these con-
tent owners with copyrighted videos and popular channels, YouTube has introduced
a YouTube Partner Program, which has largely improved the quality of YouTube
videos, and has further increased YouTube’s revenue.

626 18 Social Media Sharing

Fig. 18.5 YouTube insight dashboard

The statistics of videos are of great potential value to the YouTube partners.
For example, which videos are popular? And which external websites are refer-
ring more views? The partners can leverage these statistics to adapt their content
deployment and user engagement strategies. To help the YouTube partners with this
goal, YouTube introduced the Insight Analytics to provide various basic statistics on
videos and channels. Figure 18.5 gives a snapshot of the Web-based Insight Analytics
dashboard.

YouTube users have various means to reach YouTube videos. The last webpages
where the viewers come from is called referral sources. Understanding referrals
is essential for YouTube partners to adapt their user engagement strategy. We can
classify the referral sources into four categories [16]:

Suggestion The referral comes from YouTube’s related video links;
Video Search The referral comes from YouTube or search results, e.g.,

from Google;

18.2 User-Generated Media Content Sharing 627

35%

31%

16%

11%

7%
Channel A

29%

37%

12%

11%

12%

Channel B

23%

36%

16%

2%

24%

Channel C

26%

34%
6%

15%

19%

Channel D
13%

51%

7%

10%

19%

Channel E

SUGGESTION

SEARCH

SURFING

SOCIAL

NON−SOCIAL

Fig. 18.6 Breakdown of the referral source

YouTube Surfing The referral comes from any YouTube pages (except for
related video links and search results), including annota-
tion links, YouTube channel pages, subscriber links, paid
and unpaid YouTube promotion, and etc.;

Social Referral The referral source is a link on an external webpage, or
the video was embedded on an external webpage;

Non-Social Direct YouTube analytics does not identify a referral source,
indicating that the viewer navigated directly to the video,
e.g., by copying and pasting the URL.

Figure 18.6 shows the breakdown of the above five categories for four sample chan-
nels. It is clear that the breakdown percentages are channel-dependent. For example,
one-third of the users reach Channel A videos from suggested videos, and one-third
reach from search results; Channel B and Channel D is similar to Channel A; very
few users reach Channel C videos from external sources; half of the users reach
Channel E videos from search results.

This observation confirms that search results and related videos (Suggestion)
are the top sources of views [9,10]. Although Social Referral is not the top
view source, the impact of external website referral cannot simply be ignored. There
is a great chance that a user, attracted by an external referral, will watch more videos
from the related video list. In other words, Social Referral can be considered
as an introductive referral.

628 18 Social Media Sharing

Table 18.3 Summary of top external websites referrers

Channel A Channel B Channel C

1st 9.0 % downloading site 16.2 % Facebook 31.9 % gaming wiki
2nd 4.4 % Facebook 2.2 % n/a 7.6 % Facebook
3rd 2.6 % forum 1.5 % downloading site 5.3 % gaming blog
4th 1.7 % gaming site 1.2 % n/a 5.1 % gaming site
5th 1.5 % gaming site 0.9 % downloading site 3.7 % Internet video site

Channel D Channel E
1st 41.2 % Reddit 62.4 % Facebook
2nd 9.9 % Facebook 2.4 % music streaming
3rd 4.7 % Twitter 2.0 % music blog
4th 2.0 % blog 2.0 % Twitter
5th 1.7 % entertainment site 1.6 % music blog

Table 18.3 lists the top-five external website sources for each channel. It does not
disclose the specific names of the websites except such notable social networking
service as Facebook, Twitter, and Reddit, and simply uses general descriptions. It
again can be seen from the table that there is channel-dependency. No external website
dominates the external referrals for Channel A, and the small percentage indicates
that there is a great number of sources. In Channel E, over 60 % of the referrals are
from Facebook, over 20 times greater than the second one. Facebook also dominates
in Channel B, yet the percentage is not as high as in Channel E. Facebook is the
second in both Channel C and Channel D, while the first ones have high percentage.
In summary, YouTube videos have been sharing in many different portals and we
will further study the propagation structures in online social networks later.

18.2.5 Enhancing UGCVideo Sharing

The size of user-generated YouTube videos (most being less than 25 MB) is much
smaller than a traditional video (a typical MPEG movie of 700 MB). Yet the number
of these videos (in the billion order now) is orders of magnitude higher than that
of traditional video services (e.g., only 412 in HPLabs’ Media Server [4]), and this
number is rapidly increasing with new user contributions. As such, the scalability
challenges faced by YouTube-like social media services is indeed more significant.
This is further complicated by the social networking amongst YouTube users and
videos, which however also opens new opportunities. We next discuss the implica-
tions of these unique characteristics of YouTube videos toward improving its service,
in terms of latency, bandwidth, storage, and scale.

18.2 User-Generated Media Content Sharing 629

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Cache Size (GB, Prefix size is 400 KB)

H
it−

R
at

io

100 102 104 106 108100

102

104

106

108

Number of Views

M
ea

n
of

 In
co

m
in

g
N

ei
gh

bo
ur

’s

 V
ie

w
s

(a) (b)

Fig.18.7 Proxy caching for YouTube videos. a Prefix caching hit-ratio as a function of cache size
b Mean of neighbors’ views against the number of views for a video

Proxy Caching

As mentioned earlier, YouTube is highly skewed toward popular videos: 10 % top
popular videos account for nearly 80 % of the views [6]. On the other hand, YouTube
users tend to abort the playback very soon, with 60 % of videos being watched for
less than 20 % of their duration, which is particularly true for mobile users [7]. As
such, proxy caching, in particular, prefix caching [17] (see Sect. 16.1.2), can be quite
effective. Assume for each video, the proxy will cache a 10 second initial prefix, i.e.,
about 400 KB of the video. Based on existing statistics, Fig. 18.7a plots the hit-ratio
as a function of the cache size, assuming that the cache space is devoted only to the
most popular videos. To achieve an 80 % hit-ratio, the proxy would require less than
8 GB of disk space for the current YouTube video repository, which is acceptable for
today’s proxy servers.

The cache efficiency can be further improved by exploring the small-world char-
acteristic of the related video links. That is, if a group of videos have a tight relation,
then a user is likely to watch another video in the group after finishing the first one.
This expectation is confirmed by Fig. 18.7b, which shows a clear correlation (cor-
relation coefficient being 0.749) between the number of views for a videos and the
mean views of its related videos. Once a video is played and cached, the prefixes
of its directly related videos can also be pre-fetched and cached, if the cache space
allows.

Storage in Content Distribution Networks

Given the sheer data volume of user-generated content and the locality of users’
interests, when storing the UGC videos in a CDN it is necessary to partition the
contents and assign them into different geo-distributed CDN servers. Different from
traditional web contents or standalone movies that are isolated, social media contents
have connections among each other, and thus the partition is nontrivial.

http://dx.doi.org/10.1007/978-3-319-05290-8_16

630 18 Social Media Sharing

100 101 102 103
100

102

104

106

108

Number of Incoming Links

N
um

be
r

of
 V

ie
w

s

Fig. 18.8 Popularity against incoming links

It is intuitive to preserve the social relationship when partitioning the social graph,
because contents with social relationship are likely be accessed together or within
a short period. If the two related contents are located in two different servers, it
might increase the lookup time and the communication overhead [18]. Meanwhile,
the user access pattern should also be considered, so as to balance the workloads of
the servers.

Consider YouTube’s video graph, which is a directed graph with videos related to
others. Figure 18.8 shows the scatter plot of the YouTube video’s popularity against
the number of incoming links. There is a clear trend that videos with more incoming
links are more popular, because these videos have more chances to be accessed
through related videos. As shown in Fig. 18.7b, there is also strong correlation
between the video views of a node against its neighbor’s. Most of the videos have a
comparable number of views as their neighbors’.

In summary, a popular content’s social neighbors are probably also popular, and
they are likely to be clustered based on the social relationships. As such, partitioning
the content entirely based on social relationship would lead to unbalanced partitions,
that is, some CDN servers will have high or even overwhelming workload while
some servers can be nearly idle.

Figure 18.9 gives a simple example to make this phenomenon clearer: 8 nodes,
each with a weight in terms of popularity as shown, constitute a social graph, which
is going to be divided into two parts. As a result, the number of interconnections is 2
of the left graph, but the standard deviation of the total weight in each part is as great
as 348; for the right graph that takes popularity into account, although the number
of interconnections increases to 4, the standard deviation is reduced to as small as
23, and thus the two parts will be accessed more evenly.

18.2 User-Generated Media Content Sharing 631

200

100 50

6

25 12

400 3 200

100 50

6

25 12

400 3

(a) (b)

Fig. 18.9 Example of different partitions based on a social relationship only, b both social rela-
tionship and popularity

Peer-to-Peer Sharing

A shift to the peer-to-peer paradigm has also been suggested to overcome the scalabil-
ity challenge. However, since most YouTube videos are short, a peer-to-peer overlay
can be highly dynamic and unstable with frequent joins and leaves. On the other hand,
the social relations can be used again to foster user collaboration and peer partner
search. One example that explores the user interest correlation for peer-assisted short
video sharing is NetTube [19].

In NetTube, the server stores all the videos and supplies them to clients. The clients
also share the videos through peer-to-peer communications—each client (a peer)
caches all its previously played videos, and makes them available for redistributing.
As such, for a client interested in a particular video, all the peers that have previously
downloaded this video can serve as potential suppliers, forming an overlay for this
video, together with the peers that are downloading this video.

A mesh-based overlay is formed for each video in NetTube, where the peers pull
expected data from a set of partners (other peers or the server) through a sliding-
window-based scheduling algorithm. Yet, given the shorter video length, the startup
and playback delay would be amplified from the perception of users. Given the users
are less patient in waiting for short videos, more trials of joining/leaving would occur,
leading to even higher churn rates. To address these challenges, a novel delay-aware
scheduling that is customized for the short videos is developed. It implements an
intelligent indicator in the downloading buffer to tell whether the peer is about to
encounter delay. If yes, it will utilize an aggressive strategy for transmitting the data
to mitigate delay. That is, the senders will prioritize such requests, even if they have
to suspend some other transmissions.

Since for such short video sharing, a client in general will watch a series of videos,
it is necessary to quickly locate the potential suppliers for the next video and enable a
smooth transition. To this end, NetTube introduces an upper layer overlay on top of the
overlays of individual videos. In the upper layer overlay, given a peer, neighborhood
relations are established among all the overlays that contain this peer. This is a
conceptual relation that will not be used for data delivery; instead it enables quick
search for video suppliers in the social network context, i.e., clustering clients with
similar interests. To achieve fast and smooth transition, NetTube further introduces

632 18 Social Media Sharing

P3
v2

P5
P1

P6

P1

v1
P2

P3

P4

P1

v3P2
P7

P4

v4P6

P8

P5
P2

v5P10

P11

P12
P9

Upper-Layer

Lower-Layer Source

Client

Fig. 18.10 Illustration of a bi-layer overlay in NetTube

a cluster-aware pre-fetching, where the system pre-fetches video prefixes during the
playback of the current video. With the existence of video interest correlation, the
hit-rate of pre-fetching can be very high after a client plays back multiple videos, as
discussed earlier. Figure 18.10 shows this bi-layer overlay.

18.3 Media Propagation in Online Social Networks

The new generation of online social network services, such as Facebook or Twitter,
directly connect people through cascaded relations, and information thus spreads
much faster and more extensively than through conventional web portals or news-
group services, not to mention cumbersome emails [20]. As an example, Twitter
first reported Tiger Woods’ car crash 30 min before CNN, inverting the conventional
2.5-h delay of online blogging after mainstream news report [21].

With the development in broadband access and data compression, video has
become an important type of object spreading over social networks, beyond ear-
lier simple text or image object sharing [20,22]. Yet video objects, as richer media,
possess quite different characteristics. From a data volume perspective, video objects
are generally of much larger size than other types of objects; hence, most videos are
fed from external hosting sites, e.g., YouTube, and then spread as URL links (together
with titles and/or thumbnails). As a matter of fact, today’s video sharing services and
social networking services have become highly integrated. YouTube enables auto-
matic posting on Facebook and Twitter based on users’ options, and the users can
also share interesting videos on their social networking webpages. YouTube’s own
statistics reveal that 500 years of YouTube video are watched every day on Facebook,
and over 700 YouTube videos are shared on Twitter each minute.

18.3 Media Propagation in Online Social Networks 633

100 102 104 106
100

101

102

103

104

100 102 104 106
100

101

102

103

104

Rank

N
um

be
r

of
 In

iti
at

ed
 V

id
eo

s data
Zipf’s (a=1.09)
Zipf’s (a=0.44)

Rank

N
um

be
r

of
 S

ha
re

(a) (b)

Fig. 18.11 Rank distributions of initiated videos and shared videos. a Initiated videos b Shared
videos

From a social perspective, text diaries and photos often possess personal informa-
tion, while videos are generally more “public." Together with shorter links, videos
often spread more broadly than texts and images. Yet the sheer and ever-increasing
data volume, the broader coverage, and the longer access durations of video objects
also present significant challenges compared to other types of objects, not only to
social networking service management, but also to network traffic engineering and
to the resource provisioning of external video sites.

18.3.1 Sharing Patterns of Individual Users

Since video object sharing involves both propagation over the online social network
and accesses to the external video site, there are two critical questions to answer.
1. How often do users initiate video sharing?
2. How often do users further share a video upon receiving it?
Each initiator triggers the first share of a video. It has been found that, in a one-week
dataset of 12.8 million video sharing and 115 million viewing events, 827 thousand
initiating records can be extracted [23]. While this number is not small, it is only
6.5 % out of the 12.8 million sharing records. This indeed reflects the pervasiveness
and power of video spreading in social network.

The rank distribution of the initiators (in terms of the number of initiated videos) is
plotted in Fig. 18.11a. It suggests that most users initiate few videos, but a few active
users have initiated a remarkable number of videos. The most active user indeed has
initiated over 2,000 videos in one week.

Zipf’s law [24] is usually used to describe a skewed distribution, which is a straight
line in logarithmic scale. However, the data in Fig. 18.11a cannot be simply fitted
by one Zipf line: the data after top-10 appear to be a straight line, but the top-10
data clearly differ from the rest. Yet they can be roughly fitted by another Zipf line.
The distinction suggests the existence of two possible types of users with different

634 18 Social Media Sharing

initiating behaviors: (1) most of the initiators (over 99 %) initiate only a few videos;
and (2) a set of active initiators have much more friends and also initiate a much
larger number of videos. The change at threshold 90 is actually quite sharp, showing
clear distinction in the two types of initiators. These active initiators serve as hubs
that draw much more attention than the general users and are worthy of particular
attention in system optimization.

The distribution of the number of each user’s shares is shown in Fig. 18.11b, which
again indicates that there are some extremely active users sharing a great number
of videos, although most of the users only share a small number of videos. There
are also users who have watched more than 1,000 videos without sharing any, like
free-riders in peer-to-peer systems.

The above observations suggest that the users have diverse activeness, and we can
roughly distinguish three types of users.
• Spreaders (SU), a small number of users who initiate a lot of videos, and also

have many friends, being hub-like. Some spreaders are non-personal accounts
specifically interested in collecting and spreading interesting, funny, attractive
contents, including videos; it is also possible that spreaders are bots, spreading
videos in a spam manner;

• Free-riders (FU), who watch many videos without sharing any, which noticeably
hinders video spreading;

• Ordinary users (OU), who sometimes initiate a few videos, watch some shared
videos, and share some videos they watched.

18.3.2 Video Propagation Structure andModel

Figure 18.12 shows visual examples of two typical propagation structures: one type
has a moderate depth, but limited branching—most of the branches are directly
from the source, with no further branching, as shown in Figure 18.12a, b; the other
type branches frequently at different levels, and some branches can be very long,
as shown in Fig. 18.12c and Fig. 18.12d (the root node is enlarged for better visual-
ization). Table 18.4 further lists the descriptions from each video’s URL, revealing
their content. We can see that the video propagation path and coverage are highly
diverse, depending on both the video content itself and the user watching and sharing
behavior.

There have been many studies on the propagation structure and model of message
sharing through online social networks [20,25]. A widely used model that is aware
of the users’ status is the epidemic model, which describes the transmission of com-
municable disease through individuals [26]. As well as in epidemiology, it has also
been recently used to model computer virus infections and information propagations
such as news and rumors [27].

One classical epidemic model is the SIR model (Susceptible-Infectious-
Recovered), first proposed by Kermack and McKendrick [28]. It considers a fixed
population with three compartments: Susceptible (S), Infectious (I), and Recovered
(R). The initial letters also represent the number of people in each compartment at a

18.3 Media Propagation in Online Social Networks 635

(a)

(c) (d)

(b)

Fig. 18.12 Illustration of spreading trees for popular videos. a size = 1093, height = 9 b size =
951, height = 8 c size = 805, height = 30 d size = 126, height = 23

Table 18.4 Statistics and descriptions of the four videos (see Figure 18.12)

Size Height Views Length (s) Category Description

1093 9 34,531 123 news a father picked up daughter from school by
helicopter

951 8 14,281 60 advt. earth hour promotion video
805 30 12,658 306 music charity single “Children” by Chinese stars
126 23 1,431 235 comedy funny lip sync video

particular time t , that is, S(t) represents the number of individuals not yet infected;
I (t) represents the number of individuals who have been infected and are capable
of spreading the disease to those in the susceptible category; R(t) represents the
number of individuals who have been infected and then recovered. Given transition
rate β from S to I and γ from I to R, the following equations can be derived:

d S
dt

= −βSI,
d I
dt

= βSI − γ I,
d R
dt

= γ I.

There is a natural mapping between conventional object sharing propagation in
social networks and the compartments of the SIR model. For a particular object, all

636 18 Social Media Sharing

Recovered
(watched not shared)

Infectious
(watching)

Susceptible
(online)

1-pS

p
V1-pV

Permanent
(watched & shared)

p
S

D1
(receive)

D2
(finish)

Immune
(not watched/shared)

Fig. 18.13 The Susceptible-Immune-Infectious-Recovered-Permanent (SI2RP) model

the users in the social network are Susceptible at the beginning; at a certain time,
the users accessing the object are Infectious, indicating that they are able to infect
others by sharing the object. They can be Recovered if they choose not to share. Yet
for video spreading, the mapping is not complete:
1. A user can choose not to watch the received video, and likely not participate

in the spreading as well. To differentiate these users and the users in R who
have watched or directly shared the video, we categorize these users to a new
compartment, Immune (Im).

2. In the classical SIR model, the transition is time-dependent, i.e., at any time, there
is a chance that the stage transits to the next one. While for video spreading in
social networks, the transition of the stages depends on decisions at a certain time.
For example, the user needs to choose watch or not, and share or not share. To
address this problem, two temporary decision stage,D1 and D2 can be introduced.

3. It is necessary to differentiate the users who have shared the video and those
who have not after watching the video. A new compartment, Permanent (P),
can be introduced, indicating users who have shared the video, and otherwise
Recovered.
The enhanced SI2RP (Susceptible-Immune-Infectious-Recovered-Permanent)

model is illustrated in Fig. 18.13. For each video propagation process, the initia-
tor is Infectious at the beginning.

The transition rate from S to D1 is β, and thus a Susceptible user will spend 1/β
unit time to receive a shared video from a friend. The user then makes a decision
whether or not to watch the video. If the user is not interested in it and decides not to
watch or share, she/he is considered as Immune. The probability of the user watching
or directly sharing the video can be denoted as pV .

If the user decides to watch the video, she/he becomes Infectious. The transition
rate from I to D2 is γ , indicating that the user will spend 1/γ time to finish watching

18.3 Media Propagation in Online Social Networks 637

the video. The user then makes the second decision, whether or not to share the
video. If the user decides not to share, she/he becomes Recovered or Permanent
otherwise. The probability of a user deciding to share the video is denoted by pS .
The transition rate β and γ can be inferred from measurement results, so are DI , pV ,
and pS in the model. These four probability distribution or probability characterize
the behavior of different types of users, namely spreaders (SU), ordinary users (OU),
and free-riders (FU).
• An SU initiates video shares according to distribution DI (An OU or FU does not

initiate).
• A user watches videos shared by friends with probability pV , which is based on

the reception rate.
• After watching, an SU or OU shares the video with probability pS , which is based

on the share rate.

18.3.3 VideoWatching and Sharing Behaviors

It has been found that, in social network sharing, compared to strangers, friends have
relatively higher probability of reciprocal visits. When a content is uploaded by a
friend, a user is more likely to browse. The users are also more active in viewing
profiles than leaving comments, and consequentially, latent interactions cover a wider
range of friends than visible interactions [29]. More importantly, most of the users are
willing to share their resources to assist others with close relations, which naturally
leads to collaborative delivery [30].

Different from text or images that can be instantly viewed, a posted video will not
be really watched until the recipient clicks the link. Upon receiving the video post,
the recipient (friend or follower) has three options:
1. Watches the video, and thus the requirement of streaming quality, such as startup

latency and playback continuity, should be satisfied.
2. Not to watch the live video, but download the video and expect to watch it later.
3. Shows no interest in the video. If the user does not want to watch the video now

or later, she/he may not share the resources with other uploader’s friends, either.
The coexistence clearly makes a system design more complicated. More specifi-

cally, there exist two types of friends interested in the posted video, namely streaming
users and storage users. The streaming users expect to watch the video immediately,
and the storage users will download and watch the video at a different time, due to
the presence of other concurrent events.

The streaming users might stop watching after a while if they find the video is
out of their interest, even though the video is posted by friends. Such dynamics will
affect the data delivery if they serve as relays for other users. On the other hand,
the storage users who are downloading the video asynchronously do not have the
concern of interest nor playback quality, until they start to watch the video. Hence
such users are considered relatively stable.

638 18 Social Media Sharing

000

0 1

00 01 10

001 010 011 100 101 110

11

source

storage node streaming node

Fig. 18.14 Example of a labeled overlay tree with IDs

18.3.4 Coordinating Live Streaming and Online Storage

The COOLS (Coordinated Live Streaming and Storage Sharing) system [30] utilizes
the stable storage users to improve the QoS for streaming users in social video
sharing. COOLS advocates a peer-to-peer tree overlay design for video posting and
sharing. It is known that a tree overlay with data push is more efficient than a mesh
overlay with data pull, but maintaining the tree with node churns is a daunting task.
Fortunately, the existence of storage users implies that their churns are much less
frequent than the traditional live streaming, which can thus be strategically placed
to improve the robustness of a tree overlay.

To efficiently coordinate the two types of users, COOLS uses a labeled tree that
embeds node locations in the overlay. An example of a binary labeled tree is given
in Fig. 18.14. The two children of the root node (the source) have ID 0 and 1,
respectively. For a given node, its left child’s ID is the node’s ID appended by a 0,
and the right child’s ID is that appended by a 1. As such, the ID embeds the location
of a node and also that of its all ancestors. The number of digits (length) indicates
its depth in the tree.

COOLS defines a partial order of the ID: if two IDs are of identical length, the
one with a greater value is considered greater (for example, 010 is greater than 001);
otherwise, the longer ID is greater (for example, 000 is greater than 11).

It also defines an increment operation of the ID: if not all the bits of the ID are 1s,
an increment operation will increase the ID value by 1; otherwise, the length of ID
will be increased by 1 and all bits are set to 0. This gives the next value of the ID.
The operation of decrement can be defined accordingly by decreasing the ID.

18.3 Media Propagation in Online Social Networks 639

Since the storage nodes are relatively stable, they should be placed at more critical
locations of the tree, that is, close to the source. In other words, the storage nodes’ IDs
should be smaller than that of streaming nodes after the tree is stabilized. Figure 18.14
shows the organization of two types of nodes in the overlay tree.

For streaming nodes, it is necessary to guarantee short startup latencies, which
requires them to be close to the source as well. Fortunately, since the storage users
are delay-tolerant, the dilemma can be eliminated by prioritizing the streaming nodes
in the initial stage.

Specifically, COOLS first constructs two trees, one contains all the streaming
nodes, referred to as the streaming tree, and the other contains all the storage nodes,
referred to as the storage tree. The source only delivers data in the streaming tree at
the beginning. After the streaming nodes have buffered enough data to avoid outage,
the two trees will be merged to one final overlay tree.

The source records the current maximum ID of each tree. To construct the two
trees, the source adds nodes to the corresponding trees sequentially. A newly added
node will be assigned an ID as the next value of the maximum ID. The node thus
knows its parent’s location by checking the prefix of its own ID. If the source has
enough children (2 in this case), it will provide the address of one of its children
whose ID is the same as the first digit of the new node’s ID; that is, which branch
should the new node go. Otherwise, the new node becomes one of the source’s
children.

Figure 18.15 shows the procedure of merging the two trees. Denote the next value
of the current maximum ID of the storage tree as firstID, as it will be the first ID
of a streaming node after merging the two trees. The new ID of the left streaming
child node will be f irst I D, and the right streaming child node is assigned with the
next value of f irst I D. The source also computes a potential maximum ID based on
the two original maximum IDs, denoted as finalID, e.g., 0000 in Figure 18.15. The
source then disseminates this value throughout the tree.

After the two trees have been merged, the overlay is probably not a complete tree,
as some streaming nodes may locate deeper than expected, based on the f inal I D.
These nodes are in an non-steady state, e.g., node 0000, 0001, 1100, 1101 and 1110
in the second step of Fig. 18.15. Some leaf storage nodes are also non-steady if they
should have children but do not have yet, also based on f inal I D, e.g., nodes 00, 01
and 10. Other nodes are in a steady state. The non-steady streaming nodes should
be promoted upwards.

The non-steady nodes send control messages toward the source. If the node finds
out that its ID is no smaller than f inal I D, it will send a promotion message; if its
potential children’s ID is smaller than f inal I D but does not have any child yet,
the node will send a child requiring message. A rendezvous node (not necessary
the source) receiving such messages matches them, and notifies the two senders to
connect with each other. For example, in Fig. 18.15, node 00 matches itself with node
0000, node 0 matches node 01 with node 0001, node 1 matches node 10 with nodes
1100 and 1101, and the source matches node 01 with node 1110.

Suppose the heights of the original two trees are Hl and Hs , respectively. To merge
and promote, in the worst case, all the promotion and child requiring messages are

640 18 Social Media Sharing

000

0 1

00 01 10

001 010 011 100 101 110

11

source

111

finalID

000

0 1

00 01 10

001 010

111
0

100 101 110

11

source

111

finalID

000

0 1

00 01 10

000
0

000
1

111
0

110
0

110
1

110

11

source

111

finalID

source

firstID

00 1

00 01 10 00 01

010000 001

10

1

source

11

source

firstID

(1) (2) (3) (4)

Fig. 18.15 An example of COOLS overlay construction: creating, merging, and promotion

matched at the source. Thus in each round, the nodes in the lowest depth send
promotion message and get matched, which takes (Hs + H ′

l) unit time, where H ′
l

is initially Hl and decreased by 1 in each round. The tree’s height will eventually
become H , and all the nodes between depth Hs and depth H are streaming node.
Hence there will be (Hl+Hs−H) rounds. For a complete tree, all the three heights are
bounded by O(log N), and the time to complete the promotion is therefore bounded
by O((log N)2), where N is the total number of nodes in the system.

18.4 Further Exploration

Research on the social relations and social graphs in the human society has a long
history, so does that on disease propagation in epidemiology [26,28]. Online social
media and social networking however appeared only in very recent years and are
still undergoing rapid changes. Research in this field remains in an early stage and
many exciting topics are to be explored [31].

18.5 Exercises

1. Find out a typical Web 1.0 application and a typical Web 2.0 application, and
discuss their key differences.

2. Discuss the key differences between YouTube videos and the traditional movies
and TV shows. How would they affect content distribution?

3. YouTube publishes statistics about its videos online. As of the end of 2013, we
have the following statistics:
• More than 1 billion unique users visit YouTube each month
• Over 6 billion h of video are watched each month on YouTube
• 100 hours of video are uploaded to YouTube every minute
• 80 % of YouTube traffic comes from outside the US
• YouTube is localized in 61 countries and across 61 languages
• Mobile makes up almost 40 % of YouTube’s global watch time

18.5 Exercises 641

Segment 3

Segment 1

Segment 1

A

Seed

B

C

Segment 2

Fig. 18.16 An example of the tit-for-tat strategy

Check the recent statistics and estimate the monthly growth speed of YouTube.
Suggest some reasons that make YouTube-like services expand so quickly and
the potential challenges therein.

4. Is it beneficial to place all the content from a social media service in one server?
If not, what are the challenges to place the content in multiple servers?

5. Discuss the propagation and consumption patterns of multimedia content in a
social networking tool that you are familiar with.

6. Given a positive integer n and a probability value 0 ≤ p ≤ 1, an Erdös-Rényi
(ER) random graph G(n, p) is with n vertices where each possible edge has
probability p of existing. This is the most important class of random graphs.
(a) Write a simple program to generate ER random graphs, and calculate their

characteristic path lengths and clustering coefficients. Compare them with
the YouTube video graph we have discussed earlier.

(b) Discuss whether the graph formed by an online social network, say the graph
of Facebook user accounts, is such a random graph or not. Hint: Think about
the way that the edges are formed.

7. A simple model for information propagation is gossip. With gossip, a network
node, upon receiving a message, will randomly forward it to the neighboring
nodes with probability p.
(a) Write a simple program to simulate the gossip algorithm in randomly gen-

erated networks. A node may delay t time before forwarding. Discuss the
impact of p and t on the coverage and propagation speed of a message.

(b) Is it beneficial if the nodes can have different values of p? If so, provide
some guidelines in the selection of p for each node.

642 18 Social Media Sharing

(c) Is gossip suitable for modeling the propagation process of a picture shared
in a realworld social network, say Facebook? How about video ?

8. In an online social network, a free rider only consumes videos but does not share
videos. Free riders also exist in peer-to-peer file sharing: they download data
segments from others, but never upload. BitTorrent adopts a tit-for-tat strategy to
solve the incentive problem, i.e., you get paid only if you contribute. As depicted
in Fig. 18.16, peers A, B, and C download different segments from each other.
This forms a feedback loop; for example, uploading segment 2 from A to B will
be feedback to A by the upload of segment 3 from C to A, which stimulates peer
A to cooperate.
(a) Discuss whether the tit-for-tat strategy works for video propagation with

free riders.
(b) For live video streaming with delay constraints, with tit-for-tat work?

9. The basic binary tree in COOLS can be quite high. For example, when there are
1000 nodes, the tree height can easily reach to 10.
(a) What are the potential problems with a tall tree.
(b) One simple solution to reduce the height of the tree to is increase the number

of children for each node. Will this solution work for COOLS?
(c) Suggest a possible solution that practically works and analyze its effective-

ness.

References

1. A. M. Kaplan, M. Haenlein, Users of the world, unite! the challenges and opportunities of
social media. Bus. Horiz. 53(1), 59–68, (2010)

2. S. Acharya, B. Smith, P. Parnes, Characterizing user access to videos on the World Wide Web.
In Proceedings of ACM/SPIE Multimedia Computing and Networking (MMCN), 2000

3. X. Cheng, J. Liu, C. Dale, Understanding the characteristics of internet short video sharing:
a YouTube-based measurement study. IEEE Trans. on. Multimedia. 15(5), 1184–1194 (2013)

4. W. Tang, F. Yun, L. Cherkasova, Amin Vahdat, Long-term Streaming Media Server Workload
Analysis and Modeling (Technical report, HP Labs, 2003)

5. T. Hoßfeld K. Leibnitz, A qualitative measurement survey of popular internet-based IPTV sys-
tems. In Proceedings of International Conference on Communications and Electronics (ICCE),
June 2008, pp. 156–161

6. M. Cha, H. Kwak, P. Rodriguez, Y-Y Ahn, S. Moon. I Tube, You Tube, Everybody Tubes:
analyzing the world’s largest user generated content video system. In Proceedings of the 7th
ACM SIGCOMM Conference on Internet Measurement (IMC ’07), October 2007, pp. 1–14

7. A. Finamore, M. Mellia, M. M. Munafò, R. Torres, S. G. Rao, YouTube Everywhere: impact
of device and infrastructure synergies on user experience. In Proceedings of the 2011 ACM
SIGCOMM conference on Internet measurement (IMC ’11), November 2011, pp. 345–360

8. P. Gill, M. Arlitt, Z. Li, A. Mahanti, YouTube Traffic Characterization: a view from the edge.
In Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement (IMC ’07),
October 2007, pp. 15–28

References 643

9. F. Figueiredo, B. Fabrício, J. M. Almeida, The tube over time: characterizing popularity growth
of YouTube videos. In Proceedings of the fourth ACM International Conference on Web Search
and Data Mining (WSDM ’11), February 2011, pp. 745–754

10. R. Zhou, S. Khemmarat, L. Gao, The impact of YouTube recommendation system on video
views. In Proceedings of the 10th Annual Conference on Internet Measurement (IMC ’10),
October 2010, pp. 404–410

11. Stanley Milgram, The Small World Problem. Psychol. Today 2(1), 60–67 (1967)
12. D. B. West, Introduction to Graph Theory, (2nd Edition). (Oxford University Press, 2001)
13. Duncan J. Watts, Steven H. Strogatz, Collective dynamics of “Small-World” networks. Nature

393(6684), 440–442 (1998)
14. Erzsébet Ravasz, Albert-László Barabási, Hierarchical organization in complex networks.

Physical Review E 67(2), 026112 (2003)
15. Réka Albert, Hawoong Jeong, Albert-László Barabási, The diameter of the World Wide Web.

Nature 401, 130–131 (1999)
16. X. Cheng, M. Fatourechi, X. Ma, J. Liu, Insight data of YouTube: from a partner’s view. In

Proceedings of ACM NOSSDAV, March 2014
17. S. Sen, J. Rexford, D. F. Towsley, Proxy prefix caching for multimedia streams. In Proceedings

of IEEE INFOCOM, 1999
18. M. E.J. Newman, M. Girvan, Finding and evaluating community structure in networks. Phy.

Rev. E, 69(2), 026113 (2004)
19. X. Cheng and J. Liu. NetTube: exploring social networks for peer-to-peer short video sharing.

In Proceedings of IEEE INFOCOM, April 2009, pp. 1152–1160
20. D. Wang, Z. Wen, H. Tong, C. -Y Lin, C. Song, A. -L Barabasi, Information spreading in

context. In Proceedings of the 20th International Conference on World Wide Web (WWW ’11),
April 2011, pp. 735–744,

21. J. Leskovec, L. Backstrom, J. Kleinberg Meme-tracking and the dynamics of the news cycle.
In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, June 2009, pp. 497–506

22. K. Dyagilev, S. Mannor, Y-T. Elad, Generative models for rapid information propagation.
In Proceedings of the First Workshop on Social Media Analytics (SOMA ’10), July 2010,
pp. 35–43

23. X. Cheng, H. Li, J. Liu, Video sharing propagation in social networks: measurement, modeling,
and analysis. In Proceedings of IEEE INFOCOM Mini-Conference, April 2013

24. G. K. Zipf, Human Behavior and the Principle of Least Effort. (Addison-Wesley, Boston, 1949)
25. H. Kwak, C. Lee, H. Park, S. Moon, What is twitter, a social network or a news media? In

Proceedings of the 19th International World Wide Web Conference (WWW ’10), April 2010,
pp. 591–600

26. J. D. Daley, J. Gani, J. M. Gani, Epidemic modelling: an introduction. Cambridge Studies in
Mathematical Biology. (Cambridge University Press, Cambridge, 2001)

27. Z. Liu, Y. -C. Lai, N. Ye, Propagation and immunization of infection on general networks with
both homogeneous and heterogeneous components. Phy. Rev. E 67(1), 031911 (2003)

28. W. O. Kermack, A. G. McKendrick, A Contribution to the mathematical theory of epidemics.
Proc. R. Soc. Lond. Series A, 115(772), 700–721, (1927)

29. J. Jiang, C. Wilson, X. Wang, P. Huang, W. Sha, Y. Dai, B. Y. Zhao, Understanding latent
interactions in online social networks. In Proceedings of the 10th Annual Conference on Internet
measurement (IMC ’10), November 2010, pp. 369–382

30. Xu Cheng and Jiangchuan Liu. Tweeting videos: Coordinate live streaming and storage sharing.
In Proceedings of the 20th International Workshop on Network and Operating Systems Support
for Digital Audio and Video, NOSSDAV ’10, pp. 15–20, 2010

31. C. Kadushin, Understanding Social Networks: Theories, Concepts, and Findings. (Oxford
University Press, New York, 2012)

19CloudComputing forMultimedia
Services

The emergence of cloud computing [1] has dramatically changed the service models
for modern computer applications. Utilizing elastic resources in powerful data cen-
ters, it enables end users to conveniently access computing infrastructure, plat-
forms, and software provided by remote cloud providers (e.g., Amazon, Google,
and Microsoft) in a pay-as-you-go manner or with long-term lease contracts. This
new generation of computing paradigm, offering reliable, elastic, and cost-effective
resource provisioning, can significantly mitigate the overhead for enterprises to con-
struct and maintain their own computing, storage, and network infrastructures. It has
provided countless new opportunities for both new and existing applications.

Existing applications, from content sharing and file synchronization to media
streaming, have experienced a leap forward in terms of system efficiency and usability
through leveraging cloud computing platforms. These advances mainly come from
exploiting the cloud’s massive resources with elastic provisioning and pricing and
with smart computational offloading.

On the other hand, start-up companies can easily implement their novel ideas into
real products with minimum investment in the initial stage and expand the system
scale without much effort later on. A representative is Dropbox, a typical cloud
storage and file synchronization service provider, which, from the very beginning,
has relied on Amazon’s S3 cloud servers for file storage and uses Amazon’s EC2
cloud instances to provide such key functions as synchronization and collaboration
among different users. We have also seen such new generation of multimedia services
as cloud-based VoD and gaming that have emerged in the market and may change the
whole business model in the coming years. A prominent example is Netflix, a major
Internet streaming video provider, which migrated its infrastructure to Amazon’s
cloud platform in 2010 and has since become one of the most important cloud
users. In total, Netflix has over 1 petabyte of media data stored in Amazon’s cloud.
It pays by bytes for bandwidth and storage resources, so that the long-term costs
become much lower than those with over-provisioning in self-owned servers. Another
example is Cloudcoder, an adaptive video transcoding service that offloads much of
the processing to the cloud. Built on Microsoft’s Azure cloud platform, Cloudcoder

Z.-N. Li et al., Fundamentals of Multimedia, 645
Texts in Computer Science, DOI: 10.1007/978-3-319-05290-8_19,
© Springer International Publishing Switzerland 2014

646 19 Cloud Computing for Multimedia Services

Smart Phones

Laptop

PC

Internet

Cloud Provider

Tablets

Storage/Computation/Bandwidth

Fig. 19.1 A conceptual overview of cloud computing

can support a large number of transcoder instances simultaneously, which can also
be automatically scaled to handle bursts of requests.

In this chapter, we provide an overview of cloud computing, focusing on its
impact on multimedia services. We then discuss multimedia content sharing with
cloud storage and multimedia computation offloading to the cloud. We also use
cloud gaming as a case study to examine the role of the cloud in the new generation
of interactive multimedia services.

19.1 Cloud Computing Overview

Cloud computing relies on sharing of resources to achieve coherence and economies
of scale similar to a utility over a network, like the electricity grid does. As illus-
trated in Fig. 19.1, cloud users can run their applications on powerful server clusters
offered by the cloud service provider, with system and development software read-
ily deployed inside the cloud, mitigating the users’ burden of full installation and
continual upgrade on their local hardware/software. A cloud user can also store their
data in the cloud instead of on their own devices, making ubiquitous data access
possible.

At the foundation of cloud computing is the broader concept of resource virtual-
ization and sharing. Focusing on maximizing the utilization of aggregated physical
resources, cloud resources are shared by multiple users with dynamical on-demand
allocation. For example, a cloud can serve European users during their business
hours, while the same set of resources can later be used by North American users
during their business hours. And each user sees its own dedicated virtual space.

19.1 Cloud Computing Overview 647

The cloud services can be public or private. In a public cloud, the services and
infrastructure are provided off-site over the public Internet. These clouds offer the
greatest level of efficiency in resource sharing; however, they can be less secure
and more vulnerable than private clouds. Unlike public clouds, in a private cloud,
the services and infrastructure are maintained on a private network. These clouds
offer the greatest level of security and control, though they require the company to
still purchase and maintain the software and infrastructure. In either case, there are
a common set of essential characteristics of cloud computing, as identified by the
National Institute of Standards and Technology (NIST) [2]:

On-demand self-service. A user can unilaterally provision computing capabilities
(e.g., server time and network storage) as needed without human interaction with
each service provider;

Resource pooling and rapid elasticity. The provider’s resources are pooled
to serve multiple users, with different physical and virtual resources dynamically
assigned and reassigned according to user demand. To a cloud user, the resources
available for provisioning often appear unlimited and can be appropriated in any
quantity at any time;

Measured service. Cloud systems automatically control and optimize resource
use by leveraging a metering capability at an abstraction level appropriate to the
type of service (e.g., storage, processing, bandwidth, and active user accounts). The
resource usage can be monitored, controlled, and reported, providing transparency
for both the provider and the users;

Broad network access. Persistent and quality network accesses are available to
accommodate heterogeneous client platforms (e.g., mobile phones, tablets, laptops,
and workstations).

In marketing, cloud services are mostly offered from data centers with powerful
server clusters in three fundamental models (see Fig. 19.2): Infrastructure as a service
(IaaS), Platform as a service (PaaS), and Software as a service (SaaS), where IaaS
is the most basic and each higher model abstracts from the details of the lower
models. Network as a Service (NaaS) and Communication as a Service (CaaS) have
been recently added as part of the basic cloud computing models too, enabling a
telecommunication-centric cloud ecosystem.

Infrastructure as a Service (IaaS)
IaaS is the very basic and essential cloud service. Well-known examples of IaaS
include such infrastructure vendor environments as the Amazon’s Elastic Compute
Cloud (EC2), which allow users to rent virtual machines on which to run applications,
and such cloud storage services as Amazon’s Simple Storage Service (S3), which
allow users to store and retrieve data, at any time, from anywhere on the Web.

In general, an IaaS provider offers a pool of computation resources, in the form of
physical machines, or more often, virtual machines, as well as other resources, e.g.,
virtual-machine disk image library, data block or file-based storage, firewalls, load
balancers, IP addresses, virtual local area networks, and software bundles. For wide-
area connectivity, the users can use either the public Internet or dedicated virtual
private networks.

648 19 Cloud Computing for Multimedia Services

Fig. 19.2 An illustration of
cloud service models

Public Hybrid Private

Software as a Service
(SaaS)

Platform as a Service
(PaaS)

Infrastructure as a Service
(IaaS)

Control

A
bs

tr
ac

tio
n

Fl
ex

ib
ili

ty

To deploy their applications, cloud users install operating-system images and their
application software on the cloud infrastructure. With machine virtualization, an IaaS
cloud provider can support a large numbers of users with its pool of hardware and
software, and scale services up and down according to users’ varying requirements.
The cloud providers typically bill IaaS services on a utility computing basis, where
the cost reflects the amount of resources allocated and consumed.

Platform as a Service (PaaS)
PaaS delivers development environments as a service, which typically includes the
operating system, programming language execution environment, database, web
server, etc. Applications can be built and run on the PaaS provider’s infrastructure
and then delivered to end users via the Internet. As such, the cost and complexity
of purchasing and managing the underlying hardware and software layers can be
greatly reduced. Moreover, the underlying computation and storage resources can
scale automatically to match the applications’ demands. Google’s App Engine is a
typical example of PaaS.

Software as a Service (SaaS)
SaaS, probably the most widely used cloud service model to date, allows an appli-
cation to run on the infrastructure and platforms offered by the cloud rather than
on local hardware/software. As such, the user of an application does not have to
heavily invest on it own servers, software, license, etc. SaaS is usually priced on a
usage basis, or with a monthly or yearly flat fee per user. The price is scalable and
adjustable if users are added or removed at any point.

SaaS greatly reduces IT operational costs by outsourcing hardware and software
maintenance and support to the cloud provider. This enables the business to real-
locate IT operations costs away from hardware/software spending and personnel
expenses, toward meeting other goals. Besides cost saving and simplified mainte-
nance and support on the user’s side, cloud applications also enjoy superior scalabil-
ity, which can be achieved by cloning tasks onto multiple virtual machines at run-time

19.1 Cloud Computing Overview 649

to meet changing work demands. A load balancer can distribute the workload over the
virtual machines. Yet these are transparent to the cloud users, who see only the vir-
tual machine allocated to itself. Google Apps and Microsoft Office 365 are typical
examples of SaaS.

Figure 19.2 illustrates the relations among different cloud service models, partic-
ularly in terms of their abstraction, control, and flexibility levels.

Since year 2000, Amazon has played a leading role in the development of cloud
computing by modernizing their data centers. In 2006, Amazon initiated a new
product development effort to provide cloud computing to external customers, and
launched the Amazon Web Services (AWS) on a utility computing basis, which has
since become one of the most widely used cloud computing platforms. We next
examine two representative services provided by Amazon’s AWS, namely, S3 for
storage and EC2 for computation, both of which have been widely used for supporting
multimedia services.

19.1.1 Representative Storage Service: Amazon S3

Cloud storage has the advantage of being always-on, so that users can access their
files from any device and can share their files with others who may access the content
at an arbitrary time. With advanced storage management, cloud storage also provides
a much higher level of reliability than local storage, yet with comparable or lower
costs. All these are critical to media sharing, one of the most demanding storage
services.

Amazon’s S3 provides a web service interface that can be used to store and retrieve
any amount of data, at any time, from anywhere on the Web. It gives a developer
access to the same highly scalable, reliable, secure, fast, inexpensive infrastructure
that Amazon uses to run its own global network of websites. The service aims to
maximize the benefits of scale and to pass those benefits on to developers and end
users. To this end, S3 is intentionally built with a minimal feature set with simple
operations.

An S3 user can write, read, and delete objects each containing from 1 byte to
5 terabytes of data. Each object is stored in a bucket and retrieved via a unique,
developer-assigned key. The bucket can be stored in one of the several regions. The S3
user can choose a region to optimize for latency, minimize costs, or address regulatory
requirements. S3 is currently available in the US Standard, US West (Oregon), US
West (Northern California), EU (Ireland), Asia Pacific (Singapore), Asia Pacific
(Tokyo), Asia Pacific (Sydney), South America (Sao Paulo), and GovCloud (US)
regions. The objects stored in a region never leaves it unless transferred out, and,
like a CDN routing, a network map is used to route the request. Figure 19.3 shows
an example of a data object stored in the US West (Oregon) region.

S3 is built to be flexible so that protocols or functional layers can be easily added.
The default download protocol is HTTP. A BitTorrent protocol interface is also
provided to lower the costs for large-scale distribution.

650 19 Cloud Computing for Multimedia Services

Objects

Objects

Bucket
Bucket

Objects

Data

Objects

Meta-data

AWS Region

US West Oregon

AWS Availability Zone

Fig. 19.3 An example of a data object stored in an Amazon AWS region (US East)

The data stored in Amazon S3 is secure by default; only the bucket and object
owners have access to the S3 resources created by them. It supports multiple access
control mechanisms, as well as encryption for both secure transit and secure storage
on disk. To increase durability, it synchronously stores the data across multiple
facilities, and calculates checksums on all network traffic to detect corruption of
data packets when storing or retrieving data. Unlike traditional storage systems that
require laborious data verification and manual repair, S3 performs regular, systematic
data integrity checks and is built to be automatically self-healing.

S3 also automatically archives objects to even lower cost storage options or per-
form recurring deletions, reducing the costs over an object’s lifetime. The costs can be
monitored and controlled by the users through the S3 APIs or Management Console.
Table 19.1 shows the current pricing plan of the S3 services.

19.1.2 Representative Computation Service: Amazon EC2

Amazon’s Elastic Compute Cloud (EC2) is a web service that provides resizable
compute capacity in the cloud. It presents a virtual computing environment, allow-
ing users to launch instances with a variety of operating systems, load them with
customized application environment, and manage network access permissions. Dif-
ferent instance provisioning plans are available to meet a user’ demands:

On-Demand Instances: On-Demand Instances let the user pay for compute capac-
ity by hour with no long-term commitments. This frees the user from the costs
and complexities of planning, purchasing, and maintaining hardware/software and

19.1 Cloud Computing Overview 651

Table 19.1 The storage pricing of US Standard Region

Standard
storage (per GB)

Reduced redun-
dancy storage
(per GB)

Glacier storage
(per GB)

First 1 (TB / month) $0.095 $0.076 $0.010
Next 49 (TB / month) $0.080 $0.064 $0.010
Next 450 (TB / month) $0.070 $0.056 $0.010
Next 500 (TB / month) $0.065 $0.052 $0.010
Next 4000 (TB / month) $0.060 $0.048 $0.010
Next 5000 (TB / month) $0.055 $0.037 $0.010

transforms the commonly large fixed costs into much smaller variable costs. They
also remove the need to buy safety net capacity to handle periodic traffic spikes;

Reserved Instances: Reserved Instances give the user the option to make a one-time
payment for each instance it wants to reserve and in turn receive a significant discount
on the hourly charge for that instance. There are three Reserved Instance types: light,
medium, and heavy utilization reserved, which enable the user to balance the amount
it pays upfront with effective hourly prices. A Reserved Instance Marketplace is
also available, which provides users with the opportunity to sell the instances if their
needs change (for example, want to move instances to a new AWS region, change to
a new instance type, or sell capacity for projects that end before the reservation term
expires);

Spot Instances: Spot Instances allow users to bid on unused EC2 capacity and run
those instances for as long as their bid exceeds the current spot price. The spot price
changes periodically based on supply and demand, and the user whose bids meet or
exceed the price gains access to the available instances. If the user has flexibility in
when the applications can run, using spot instances can significantly lower the costs.

An EC2 user has the choice of multiple instance types, operating systems, and
software packages. It can select a configuration of memory, CPU, instance storage,
and the optimal boot partition size that is optimal for specific choice of applications
and operating systems, e.g., Linux distributions or Microsoft Windows Server. The
user can also increase or decrease capacity within minutes, and has complete con-
trol of the instances with root access. Moreover, to achieve reliability, replacement
instances can be rapidly and predictably commissioned. For each region, the current
Service Level Agreement commitment is 99.95 % availability.

The instance creation and configuration can be done through simple web service
interfaces, as illustrated in Fig. 19.4. The user first selects a preconfigured Amazon
Machine Image (AMI) template to boot up and run immediately (Step 1); or create
an AMI containing the applications, libraries, data, and associated configuration
settings. The user then chooses the expected instance type(s) (Steps 2 and 3), attaches
storage, and set up network and security requirements, and starts, terminates, and

652 19 Cloud Computing for Multimedia Services

monitors the instances using the web service APIs or a variety of management tools.
Security and network access can also be configured on the instance.

Designed for use with other AWS modules, EC2 works seamlessly in conjunction
with Amazon S3, and such other Amazon services as Relational Database Service
(RDS), SimpleDB, and Simple Queue Service (SQS) to provide a complete solution
for computing, query processing, and storage across a wide range of applications, as
Fig. 19.5 illustrates.

Specifically, an EC2 instance can be attached with a storage from the Amazon
Elastic Block Store (EBS), which provides block level storage volumes from 1 GB to
1 TB. EBS provides the ability to create point-in-time snapshots of volumes, which
can then be stored in S3 for long-term durability, as Fig. 19.6 illustrates.

19.2 Multimedia Cloud Computing

For multimedia applications and services over the Internet, there are strong demands
for cloud computing, due to the massive storage and computation required for serving
millions of wired Internet or mobile network users. In this new multimedia cloud
computing paradigm [3], users can store and process their multimedia data in the
cloud in a distributed manner, eliminating full installation of the media application
software on local computers or devices.

Multimedia cloud computing shares many common characteristics with general-
purpose cloud computing. Yet, multimedia services are highly heterogeneous. There
exist a wide array of types of media and associated services, such as voice over
IP, video conferencing, photo sharing and editing, image search, and image-based
rendering, to name but a few; the cloud should support different types of media and
their services for massive user bases simultaneously. Besides service heterogeneity,
different types of devices, such as smart TVs, PCs, and smartphones, have different
capabilities for multimedia processing. The cloud should have adaptive capability
to fit these types of devices, in terms of CPU and GPU (Graphics Processing Unit),
display, memory, and storage.

The multimedia cloud should also provide QoS provisioning to meet their distinct
QoS requirements. There are two ways of providing QoS provisioning for multime-
dia: one is to add QoS to the current cloud-computing infrastructure and the other
is to add a QoS middleware between the cloud infrastructure and the multimedia
applications. The former focuses on the design and improvement within the cloud
infrastructure. The latter focuses on improving cloud QoS in the middle layers, such
as QoS in the transport layer and QoS mapping between the cloud infrastructure and
media applications.

In summary, the heavy demands of multimedia data access, processing, and trans-
mission would create bottlenecks in a general-purpose cloud. Today’s cloud design
has largely focused on allocating computing and storage resources through utility-
like mechanisms, while QoS requirement in terms of bandwidth, delay, and jitter have
yet to be addressed. To realize multimedia cloud computing, a synergy between the

19.2 Multimedia Cloud Computing 653

Fig. 19.4 Key steps in creating an Amazon EC2 instance

654 19 Cloud Computing for Multimedia Services

Applications of Cloud User

Libraries &SDKs
.NET, Java, PHP, etc.

Web Interface
Management Console

IDE Plug-Ins
AWS for Eclipse

Deployment & Automation
AWS Elastic Beanstalk
AWS CloudFormation

Identity & Billing
AWS IAM

Consolidated Billing

Monitoring
Amazon CloudWatch

Auto Scale

Network & Routing
Amazon VPC

Amazon Elastic LB
Amazon Route 53

Parallel Processing
Elastic MapReduce

Content Delivery
Amazon CloudFront

Workforce
Amazon

Mechanical Turk

Messaging
Amazon SNS
Amazon SQS

Compute
Amazon EC2

Storage
Amazon S3

Amazon EBS

Database
Amazon RDS

Amazon Simple DB

AWS Global Physical Infrastructure
(Geographical Regions, Availability Zones, Points of Presence)

Fig. 19.5 Relations among the different components in Amazon Web Service (AWS)

EBS

EC2
Instance

EC2

EBS

EC2
Instance

EC2

EBS

EC2
Instance

EC2

EBS

EC2
Instance

EC2

Amazon S3

Fig. 19.6 The relations among Amazon S3, EC2, and the Elastic Block Store (EBS). EBS offers
storage volumes from 1 GB to 1 TB that can be mounted as devices for EC2 instances, and the
persistent storage is enabled by S3

19.2 Multimedia Cloud Computing 655

Storage

Authoring/Editing

Content
adaptation/Convesion

Content Delivery

Cloud Media

Resource Allocator

Load Balancer

Media Cloud
Hard Disk

CPU

GPU

Fig. 19.7 Modules and their relations in multimedia cloud computing

cloud and multimedia services becomes necessary; that is, multimedia-aware cloud
computing with enhanced QoS support for multimedia applications and services,
and cloud-aware multimedia that facilitates content storage, processing, adaptation,
rendering, in the cloud with optimized resource utilization [3], as Fig. 19.7 illustrates.

19.3 Cloud-AssistedMedia Sharing

We first consider the use of the cloud for media sharing services. As we have seen
in the previous chapters, representative media sharing services such as YouTube
are developing extremely fast. In general, it is difficult if not impossible to predict
the impact and the development of these new services in advance. The provision of
resources is thus a great challenge, because any service with novel ideas, advanced
techniques, and smart marketing strategies is possible to grow to the similar scale
as YouTube. Yet there is a high possibility to fail, losing revenue, and even being
shut down.

Developers face a dilemma at the early stage of media sharing services. On one
hand, to provision large enough resources at the beginning is costly and risky, and
if the service is not as popular as expected to gain enough revenue, the resources
would be wasted. On the other hand, starting the service small usually comes with
scalability issues. New features and increasing user base will put high pressure on
the insufficient infrastructure, which downgrades the quality of service.

The cloud, which offers reliable, elastic, and cost-effective resource provisioning
with “pay-as-you-go” service, is clearly an elegant solution here, allowing designers
to start a service small but easy to scale large. Besides starting a service from the

656 19 Cloud Computing for Multimedia Services

North
America

Asia

Europe

South
America

Australia

Source

Cloud
Layer

User
Layer

…...

Cloud Server
Being Leased

Cloud Server not
Being Leased

Cloud Traffic

User Traffic

Fig. 19.8 A generic framework for migrating live media streaming service to the cloud

cloud, a migration that moves the contents to the cloud is beneficial as well for
existing media services, in the presence of scalability challenges.

Sharing is an integral part of cloud service. The request of easy and scalable
sharing is the main reason that multimedia contents now occupy a large portion of
cloud storage space. The always-on and centralized data centers can make one-to-
many sharing highly efficient and synchronous—uploaded content can be readily
shared to a large population instantly or lately. Sharing through a cloud could also
offer better QoS given that the connections with data centers are generally good, not
to mention the firewall and NAT (Network Address Translation) traversal problems
commonly encountered in peer-to-peer sharing.

Figure 19.8 shows a generic framework that facilitates the migration of existing
live media streaming services to a cloud-assisted solution. It is divided into two layers,
namely, Cloud Layer and User Layer. The Cloud Layer consists of the live media
source and dynamically leased cloud servers. Upon receiving a user’s subscription
request, the Cloud Layer will redirect this user to a properly selected cloud server.
Such a redirection, however, is transparent to the user, i.e., the whole Cloud Layer
is deemed to be a single source server from a user’s perspective. Since the user
demands change over time, which are also location-dependent, the Cloud Layer
will accordingly adjust the amount and location distribution of the leased servers.
Intuitively, it will lease more server resources upon demand increase during peak

19.3 Cloud-Assisted Media Sharing 657

times, and terminate leases upon decrease. The implementation of the User Layer
can be flexible. They can be individual users purely relying on the Cloud Layer, or
served by peer-to-peer or a CDN infrastructure, but seeking for extra assistance from
the cloud during load surges. In other words, it can smoothly migrate diverse existing
live streaming systems to the cloud.

There are however a number of critical theoretical and practical issues to be
addressed in this generic framework. Though cloud services are improving, given
the hardware, software, and network limits, latencies in resource provisioning remain
exist, e.g., to start or terminate a virtual machine can take a few minutes in the current
Amazon EC2 implementation. While such latencies have been gradually reduced
with improved cloud design, they can hardly eliminated. Therefore, the system must
well predict when to lease new servers to meet the changing demands and when to
terminate a server to minimize the lease costs. This can be done by a demand forecast
algorithm for cloud users [4].

19.3.1 Impact of Globalization

The larger, dynamic, and nonuniform client population further aggravates the
problem. To make it even worse, today’s media sharing services have become highly
globalized, with subscribers from all over the world. Such a globalization makes user
behaviors and demands even more diverse and dynamic. Consider the user demand
distribution of PPTV, a popular live media streaming systems with multi-million
subscribers [5, 6]. Figure 19.9 shows the distribution of two representative channels
(CCTV3 and DragonBall) during one day. It is easy to see that they had attracted
users from all over the world, and the peak time therefore shifted from region to
region, depending on the timezone. For example, on the CCTV3 channel, the peak
time of North America was around 20:00, while for Asian users, it was around 8:00.
During the period 12:00–20:00, Asian users had very low demands, while Euro-
pean users generated most of their demands and the North American users also had
moderate demands. Similar observations can also be found from the DragonBall
channel, despite the fact that the streaming contents delivered on the two channels
were completely different.

In this context, the cloud should be combined with the Content Distribution Net-
work (CDN) solution, so as to serve the users with geo-distributed servers. This in
fact a general trend in today’s cloud development beyond highly centralized data cen-
ters. One example is Amazon’s CloudFront, a cloud-based CDN that is integrated in
AWS. Using a network of edge locations around the world, CloudFront caches copies
of static content close to viewers, lowering latency when they download objects and
offering high, sustained data transfer rates needed to deliver large popular objects to
end users at scale. The requests for dynamic content can be carried back to the ori-
gin servers running in AWS, e.g., S3, over optimized network paths (see Fig. 19.10).
These network paths are constantly monitored by Amazon, and the connections from
CloudFront edge locations to the origin can be reused to serve dynamic content with
the best possible performance.

658 19 Cloud Computing for Multimedia Services

Fig. 19.9 An illustration of
the user demand distributions
and variations of a popular
live media streaming system
(PPTV) on its two typical
channels (CCTV3 and
DragonBall) during one day.
For ease of comparison, the
user demands have been
normalized by the
corresponding maximum
demand of each day. The time
shown on x-axis is based on
EST. a CCTV-3,
b DragonBall

20:00 0:00 4:00 8:00 12:00 16:00 20:00

Unidentified

Africa

Asia

Australia

Europe

South America

North America

Time (EST)

20:00 0:00 4:00 8:00 12:00 16:00 20:00

Unidentified

Africa

Asia

Australia

Europe

South America

North America

Time (EST)

(a)

(b)

19.3.2 Case Study:Netflix

One of the most successful migration of media sharing applications to the cloud
is Netflix, which now takes up a third of US download Internet traffic during peak
traffic hours. Established in 1997, Netflix began to move away from its original core
business model of mailing DVDs by introducing video-on-demand via the Internet
in early 2007. The original Netflix digital video distribution was based on a few
large Oracle servers with a Java front end, with DVD subscription being the main
business. Later in 2008, it had suffered from storage data corruption bugs that took
service down. The rapidly increased scale creates another challenge, which however
can hardly be predicted when building private server clusters, not to mention the
staff and skills needed to run a large and high-growth rate data center infrastructure.

19.3 Cloud-Assisted Media Sharing 659

Amazon S3

Origin Server

Amazon CloudFront Network

List of distributions

Edge locations
spread out

geographically

You

Links to
Amazon

CloudFront

Your web site or
application

End users spread
out geograhically

Fig. 19.10 An illustration of the CloudFront service, where a number of edge servers are
geographically distributed, serving nearby cloud users

Amazon AWS
CDN Server

CDN Server

CDN Server
Client

Registration
and

Payment

Metafile

Video Chunks
(DASH)

Upload versions
to CDN Servers

Master Copies

Netflix's
Own Server

Fig. 19.11 The cloud-based Netflix architecture

Since 2009, Netflix started using Amazon’s AWS for part of its services, and moved
its entire technology infrastructure to AWS in 2012.

To support the combination of huge traffic and unpredictable demand bursts,
Netflix has developed a global video distribution system using the AWS cloud.
Figure 19.11 shows the architectural view of the cloud-based Netflix system, which
includes the following key modules:

660 19 Cloud Computing for Multimedia Services

Content

Video
Masters

EC2

S3

CDN

Play

DRM

CDN
routing

Bookmarks

Logging

WWW

Sign-Up

Search

Movie
Choosing

Ratings

API

Metadata

Device
Config

TV Movie
Choosing

Mobile
iPhone

Fig. 19.12 The services integrated in Netflix and the cloud modules for them

1. Content Conversion. Netflix purchases master copies of digital films from movie
studios and, using the powerful EC2 cloud machines, converts them to over 50
different versions with different video resolutions and audio quality, targeting a
diverse array of client video players running on desktop computers, smartphones,
and even DVD players or game consoles connected to television;

2. Content Storage. The master copies and the many converted copies are stored
in S3. In total, Netflix has over 1 petabyte of data stored on Amazon;

3. Content Distribution. To serve worldwide users, the data are sent to content
delivery networks (including Akamai, Limelight, and Level 3) that feed the con-
tent to local ISPs. With the versions of different formats and bit rates, Dynamic
Adaptive Streaming over HTTP (DASH) is available for streaming to end users.
All of these services are distributed across three AWS availability zones. Netflix

itself only maintains a minimum hardware infrastructure for user registration and
credit card payment. Figure 19.12 shows different functional modules in Netflix and
their relations with the cloud and CDNs.

Using Amazon’s cloud and the CDNs, Netflix can react better and faster to user
demand with every increasing scale. It pays by bytes for computation, bandwidth
and storage resources so that the long-term costs become much lower than those
with over-provisioning in self-owned servers. Such costs, without the cloud, can be
prohibitively high for dedicated content providers.

19.4 Computation Offloading for Multimedia Services

Besides storage, computation is another rich resource offered by the cloud. Many
computation-intensive tasks can now be migrated to the cloud, and the users do not
have to maintain the ultra expensive high-performance servers or server clusters but
just pay for the cost in an on-demand fashion.

19.4 Computation Offloading for Multimedia Services 661

Such computation offloading effectively expands the usability of local devices
beyond their physical limits, which is particularly attractive for mobile devices [7–9].
Today’s smartphones and tablets are increasingly penetrating into people’s everyday
life as efficient and convenient tools for communication and entertainment. The touch
screen and all kinds of sensors provide even richer user experiences than desktop PCs
do. Despite the fast development of such key components as CPU, GPU, memory, and
wireless access technologies, and the effort toward unifying handheld and desktop
computers, it remains widely agreed that mobile terminals will not completely replace
laptop and desktop computers in the near future. Migrating popular PC software to
mobile platforms or developing similar substitutes for them is still confined by their
limited computation capability as well as the uniqueness of operating systems and
hardware architectures. To make it even worse, battery, as the only power source
of most mobile terminals, has seen relatively slow improvement in the past decade,
which has become a major impediment in providing reliable and sophisticated mobile
applications to meet user demands.

Combining the strength of the cloud and the convenience of mobile terminals
thus becomes a promising route. An example is Apple’s Siri service—after a piece
of voice is recorded by an iPhone, a local recognizer will conduct speech recognition
and decide whether to resort to the back end cloud to make an appropriate response.
Other examples include MAUI [10] and CloneCloud [11]. The former enables fine-
grained energy-aware offloading of mobile codes to a cloud based on the history of
energy consumption. It achieves maximum energy savings of 90, 45, and 27 %, and
maximum performance speedups of roughly 9.5, 1.5, and 2.5 for face recognition,
chess, and video game, respectively. CloneCloud uses function inputs and an offline
model of runtime costs to dynamically partition applications between a weak device
and the cloud. It reports speedups of 14.05, 21.2, and 12.43 for virus scanning, image
search, and behavior profiling, respectively.

19.4.1 Requirements for Computation Offloading

Assembling local resources and remote clouds organically to make offloading trans-
parent to end users requires nontrivial effort [8, 9].

First, motivation for offloading. In the very beginning, the major motivation to
offload should be determined, to save energy locally, to improve computation per-
formance, or both. This will serve as a guideline in the high-level design.

Second, gain of offloading. To understand the potential gain after offloading, a
profiling or breakdown analysis of the application is needed to see whether the
application can benefit from offloading. There is no incentive to resort to the cloud
for a job that can be easily and efficiently executed locally.

Third, decision of offloading. The offloading decision can be made statically or
dynamically. For static offloading, the related parameters need to be accurately esti-
mated in advance and the offloading strategy needs to be decided when developing
the application. On the contrary, dynamic offloading monitors the runtime conditions
and makes decisions accordingly, at the expense of higher overhead.

662 19 Cloud Computing for Multimedia Services

For multimedia applications, QoS requirements is also an important consideration.
The critical QoS requirements (e.g., latency, image/video quality, computation accu-
racy) need to be respected so that offloading will not influence user experience. A
simple solution for computation offloading is to move the whole computation engine
to the remote cloud, then upload all the data required for computation to the cloud
and download the computed results. While this is common in many implementations,
complex enterprise applications are typically composed of multiple service compo-
nents, which can hardly be migrated to the cloud in one piece and instantaneously.

This is further complicated with the wireless communications in mobile terminals.
As compared to their wired counterparts, the mobile terminals are generally more
resource-constrained; in particular, the wireless communication capacity and the bat-
tery capacity are their inherent bottlenecks [12, 13]. The energy trade-offs heavily
depend on the workload characteristics, data communication patterns, and technolo-
gies used [14], all of which need to be carefully addressed. As such, offloading the
whole computation module of an application to the remote cloud is not necessary,
nor effective, if the data volume is large. This may not be a severe problem for users
with high-speed wired network connection, but can dramatically reduce the benefit
for mobile users.

19.4.2 Service Partitioning for Video Coding

Consider video encoding/compression, an essential task in a broad spectrum of
mobile multimedia applications. A local user uses his/her mobile terminal to capture
video in real-time, expecting to encode the video and then stream it to others in real-
time as well. Directly uploading the raw video without efficient encoding inevitably
leads to high bandwidth cost and large transmission energy consumption. On the
other hand, video encoding often incurs heavy computation, which results in high
energy consumption as well. For example, to encode a video of 5 seconds (30 frames
per second with resolution of 176 × 144 and pixel depth of 8 bits) using an H.264
encoder needs almost 1 × 1010 CPU cycles in total [15], or 2 × 109 CPU cycles
per second on average, which means that a 2 GHz CPU is required for real-time
encoding. Considering that the newest smartphones and tablets are equipped with
high-definition cameras, the CPU workload can be 5–10 times higher than that in
the above example.

Offloading the whole video compression task to the cloud, however, is not prac-
tical because it is identical to directly uploading the raw video data. The wireless
transmission can be either too costly or simply impossible with limited bandwidth. It
is known that motion-estimation is the most computation-intensive module, account-
ing for almost 90 % of the computation. This module obviously should be the focus
of offloading.

Yet it is not simple to decouple motion estimation from others given data depen-
dency in coding, i.e., motion estimation of a frame depends on the data of the previous
reference frame. A mobile terminal should upload the current video frame and the
reference frame to the cloud for estimation and then download the estimated Motion

19.4 Computation Offloading for Multimedia Services 663

Fig. 19.13 Mesh-based motion estimation between two frames, using a regular mesh for the
predictive frame

Vectors (MVs) from the cloud and complete the remaining video encoding steps
(e.g., DCT and entropy coding). While the MVs are of small volume, uploading the
current frames essentially makes no difference as compared to upload the raw video.

19.4.3 Case Study: Cloud-AssistedMotion Estimation

It is necessary to ensure that a minimum amount of data (not all the reference frame
data) are to be uploaded to the cloud and yet allow estimation to be done accurately.
Cloud-Assisted Motion Estimation (CAME) [16] addresses this issue by using mesh-
based motion estimation, which partitions a frame into a coarse-grained mesh sketch
and estimates one MV for each mesh node [17].

Regular triangular or rectangular meshes [18] have been commonly used given
their simplicity, and both encoder and decoder can agree upon a mesh structure
in advance. Unlike standard mesh-based motion estimation (see [17] for details),
CAME applies a reversed mesh node selection and motion estimation, in which the
mesh nodes are sampled on the P-frames and the MVs are calculated from the mesh
nodes and the reference frame. As illustrated in Fig. 19.13, a set of regular mesh
nodes are sampled on the P-frames of the macro block (MB). Only the sampled
mesh nodes and the reference frame are uploaded to the cloud. The MVs are then
calculated on the cloud, and the result, to be sent back to the mobile terminal, is a
set of MVs that describe the movements of the mesh nodes. Using this design, the
most computation-intensive part of mesh-based motion estimation is offloaded to the
cloud, while the local motion estimation for individual macro-blocks within the mesh
becomes much simpler. Compared to the standard mesh-based motion estimation,
CAME loses the advantage of tracking the same set of mesh nodes over successive
P-frames. It, however, saves more data transmission.

664 19 Cloud Computing for Multimedia Services

Foreman Mother Flower
0

5

10

15

20

25

30

35

40

45

50
AoM
Raw Uploading
CAME

Foreman Mother Flower
0

2

4

6

8

10

12

14

16
AoM
CAME

(a) (b)

Fig. 19.14 Simulation results. a Total transmission volume (MB), b Total energy consumption in
CPU cycles (billion cycle)

Figure 19.14a compares the total amount of transmitted data for three standard
video sequences (Foreman, Mother, and Flower) with two baselines—AoM (All
on Mobile), which executes the entire video encoding on mobile terminal, and raw
uploading, which simply uploads all the data to the cloud for compression. For
fair comparison, the transmission energy is converted into equivalent CPU cycles.
Though Flower’s original video size is smallest, both AoM and CAME incur the
highest transmission cost as compared with other two videos, because Flower has
higher spatial details. It is not surprising that the transmission cost of AoM is the
lowest among all three and raw uploading has the largest cost. Compared to AoM,
CAME introduces more transmission because of the extra data transmission for mesh
node uploading and mesh motion vectors downloading. On the other hand, compared
to raw uploading, the CAME method still saves approximately 60 % on total data
transmission.

Although CAME consumes more energy on transmission than AoM does, it saves
on total energy consumption through offloading the most computation-intensive task,
motion estimation, to cloud servers. It spends nearly 40 % less energy on computation
than AoM. Further, Fig. 19.14b confirms the expectation that CAME can achieve
up to 30 % total energy savings on video encoding and transmission as compared
to AoM.

In summary, although it is very tempting and promising to leverage the much
cheaper and more powerful resources on the cloud, the interaction between a mobile
terminal and the cloud needs careful examination to avoid excessive transmission
overhead. As such, partitioning tailored to specific applications is often expected,
as the example of motion estimation shows. The trade-off between the energy for
computation and that for transmission can be found in many other applications that
rely on computation offloading to extend the battery lifetime.

The closed loop design with the remote cloud also introduces extra delays between
mobile user and the cloud. As we will see in the next section, such extra delays are
generally acceptable in practice, even for interactive applications.

19.5 Interactive Cloud Gaming 665

Video
Encoder

Cloud Gaming
Platform

GPU
Rendering

Game
Logic

Rendered
Scene

Thin Client
Interaction

Game World
Changes

Video
Streaming

 Game
Actions

Encoded
Video

 Thin Client

 User
Comands

 Video
StreamVideo

Decoder

User
Interaction

Fig. 19.15 A generic framework of cloud gaming

19.5 Interactive Cloud Gaming

Recently, advances in cloud technology have expanded to allow offloading not only
of traditional computation but also of such more complex tasks as high definition
3D rendering, which turns the idea of Cloud Gaming into a reality [19, 20]. Cloud
gaming, in its simplest form, renders an interactive gaming application remotely in
the cloud and streams the scenes as a video sequence back over the Internet to the
player. A cloud gaming player interacts with the application through a thin client,
which is responsible for displaying the video from the cloud rendering server as well
as collecting the player’s commands and sending the interactions back to the cloud.
Figure 19.15 shows a high-level architectural view of such a cloud gaming system
with thin clients and cloud-based rendering.

Cloud gaming can bring great benefits by expanding the user base to the vast
number of less-powerful devices that support thin clients only, particularly smart-
phones and tablets. As such, mobile users can enjoy high-quality video games
without performing the computation-intensive image rendering locally. For example,
the recommended system configuration for Battlefield 3, a highly popular first person
shooter game, is a quad-core CPU, 4 GB RAM, 20 GB storage space, and a graphics
card with at least 1 GB RAM (e.g., NVIDIA GEFORCE GTX 560 or ATI RADEON
6950), which alone costs more than $500. Even the newest tablets can hardly meet the
minimum system requirements that need a dual-core CPU over 2.4 GHz, 2 GB RAM,
and a graphics card with 512 MB RAM, not to mention smartphones of which the
hardware is limited by their smaller size and thermal control. Furthermore, mobile
devices have different hardware/software architecture from PCs, e.g., ARM rather

666 19 Cloud Computing for Multimedia Services

than x86 for CPU, lower memory frequency and bandwidth, and limited battery
capacities. As such, the traditional console game model is not always feasible for
such devices, which in turn become targets for cloud gaming. It also masks the
discrepancy among different operating systems through such standard web devel-
opment tools as HTML5, Flash, and JavaScript. It further reduces customer support
costs since the computational hardware is now under the cloud gaming provider’s
full control, and offers better Digital Rights Management (DRM) since the codes are
not directly executed on a customer’s local device.

19.5.1 Issues and Challenges of Cloud Gaming

As shown in Fig. 19.15, in cloud gaming, a player’s commands must be sent over
the Internet from its thin client to the cloud gaming platform. Once the commands
reach the remote cloud, they are converted into appropriate in-game actions, which
are interpreted by the game logic into changes in the game world. The game world
changes are processed by the cloud system’s GPU into a rendered scene. The rendered
scene is then compressed by the video encoder, and sent to a video streaming module,
which delivers the video stream back to the thin client. Finally, the thin client decodes
the video and displays the video frames to the player.

To ensure interactivity, all of these serial operations must happen in the order of
milliseconds. Intuitively, this amount of time, which is defined as the interaction
delay, must be kept as short as possible in order to provide a rich experience to the
cloud game players. There are however tradeoffs: the shorter the player’s tolerance
for interaction delay, the less time the system has to perform such critical operations
as scene rendering and video compression. Also, the lower this time threshold is, the
more likely a higher network latency can negatively affect a player’s experience of
interaction.

Interaction Delay Tolerance
Studies on traditional gaming systems have found that different styles of games have
different thresholds for maximum tolerable delay [21]. Table 19.2 summarizes the
maximum delay that an average player can tolerate before the Quality-of-Experience
(QoE) [19] begins to degrade. As a general rule, the games that are played in the
first person perspective, such as the shooter game Counter Strike, become
noticeably less playable when actions are delayed by as little as 100 ms. This low
delay tolerance is because such first person games tend to be action-based, and players
with a higher delay tend to have a disadvantage [22]. In particular, the outcome
of definitive game changing actions such as who “pulled the trigger” first can be
extremely sensitive to the delay in an action-based First Person Shooter (FPS) game.

Third person games, such as Role Playing Games (RPG), and many massively
multiplayer games, such as World of Warcraft, can often have a higher delay
tolerance of up to 500 ms. This is because a player’s commands in such games, e.g.,
use item, cast spell, or heal character, are generally executed by the player’s avatar;
there is often an invocation phase, such as chanting magic words before a spell is
cast, and hence the player does not expect the action to be instantaneous. The actions

19.5 Interactive Cloud Gaming 667

Table 19.2 Delay tolerance
in traditional gaming Example game type Perspective Delay threshold (ms)

First person shooter (FPS) First person 100
Role playing game (RPG) Third-person 500
Real-time strategy (RTS) Omnipresent 1000

must still be registered in a timely manner, since the player can become frustrated
if the interaction delay causes them a negative outcome, e.g., they healed before an
enemy attack but still died because their commands were not registered by the game
in time.

The last category of games are those played in an “omnipresent” view, i.e., a top-
down view looking at many controllable entities. Examples are Real-Time Strategy
(RTS) games like Star Craft and such simulation games as The Sims. Delays
of up to 1000 ms can be acceptable to these styles of games since the player often
controls many entities and issues many individual commands, which often take sec-
onds or even minutes to complete. In a typical RTS game, a delay of up to 1000 ms
for a build unit action that takes over a minute will hardly be noticed by the player.

Although there is much similarity between interaction delay tolerance for tra-
ditional gaming and cloud gaming, it is useful to stress the following critical dis-
tinctions. First, traditionally, the interaction delay was only an issue for multiplayer
online gaming systems, and was generally not considered for single player games.
Cloud gaming drastically changes this: now all games are being rendered remotely
and streamed back to the player’s thin client. As such, we must be concerned with
interaction delay even for a single player game. Also, traditional online gaming sys-
tems often hide the effects of interaction delay by rendering the action on a player’s
local system before it ever reaches the gaming server. For example, a player may
instruct the avatar to move and it immediately begins the movement locally; however,
the gaming server may not receive the update on the position for several millisec-
onds. Since cloud gaming offloads its rendering to the cloud, the thin client no
longer has the ability to hide the interaction delay from the player. Such visual cues
as mouse cursor movement can be delayed by up to 1000 ms, making it impractical to
expect the player will be able to tolerate the same interaction delays in cloud gaming
as they do in traditional gaming systems. The maximum interaction delay for all
games hosted in a cloud gaming context should be no more 200 ms. Other games,
specifically such action-based games as first person shooters likely require less than
100 ms interaction delay in order not to affect the players’s QoE.

Video Streaming and Encoding
Cloud gaming’s video streaming requirements are quite similar to live video stream-
ing. Both cloud gaming and live video streaming must quickly encode/compress
incoming video and distribute it to end users. In both cases, only a small set of the
most recent video frames are of interest, and there is no need or possibility to access
future frames before they are produced, implying encoding must be done with respect
to very few frames.

668 19 Cloud Computing for Multimedia Services

Yet conventional live video streaming and cloud gaming have important differ-
ences. First, compared to live video streaming, cloud gaming has virtually no capacity
to buffer video frames on the client side. This is because, when a player issues a com-
mand to the local thin client, the command must traverse the Internet to the cloud,
be processed by the game logic, rendered by the processing unit, compressed by the
video encoder and streamed back to the player. Given that this must all be done in
under 100–200 ms, it is apparent that there is not much margin for a buffer. Live
video streaming on the other hand can afford a buffer of hundreds of milliseconds
or even a few seconds with very little loss to the QoE of the end user.

The sensitive real-time encoding needs of cloud gaming make the choice of video
encoder of paramount importance for any cloud gaming provider. Currently, major
cloud gaming providers, such as Gaikai and Onlive, use versions of the H.264/MPEG-
4 AVC encoder. Gaikai uses a software based approach for encoding whereas Onlive
is using specialized hardware to compress its cloud gaming video streams. In either
case, the choice of the H.264/MPEG-4 AVC encoder is motivated by the fact that the
encoder not only has a very high compression ratio but also that it can be configured
to work well with stringent real-time demands.

19.5.2 Real-World Implementation

Onlive and Gaikai are two industrial pioneers of cloud gaming. Boosting resource-
limited users to play the games that used to be exclusive for high-end PCs and gaming
consoles, both of them have seen great success with multimillion user bases. The
Sony’s new Playstation 4 game console will also uses Gaikai’s cloud platform.

Gaikai is implemented using two public clouds, namely Amazon EC2 and Lime-
light. Figure 19.16 offers a practical view of Gaikai’s work flow. When a user selects
a game on Gaikai (Step1 in Fig. 19.16), an EC2 virtual machine will first deliver
the Gaikai game client to the user (Step2). After that, it forwards the IP addresses
of game proxies that are ready to run the selected games to the user (Step3). The
user will then select one game proxy to run the game (Step4). The game proxy starts
to run the game and the game screens will be streamed to the user via UDP (Step5
and Step6). For multiplayer online games, these game proxies will also forward user
operations to game servers (mostly deployed by the game companies) and send the
related information/reactions back to the users (Step7).

Onlive’s workflow is quite similar, but is implemented with a private cloud envi-
ronment. Using public clouds enables lower implementation costs and higher scala-
bility; yet a private cloud may offer better performance and customization that could
fully unleash the potentials of cloud for gaming.

For a popular game,Batman Arkham Asylum, which is streamed at 1, 280 ×
720 pixels (720p) by Onlive, Table 19.3 illustrates the effect of Onlive’s compression
taken from a single frame of the opening sequence. As compared to the image quality
from the local game console, the effect of compression is noticeable, especially when
the amount of available bandwidth decreases. Although the image quality is fine with
high bandwidth (10 Mbps), given today’s limited Internet access bandwidth, there is
still a room for cloud gaming to improve.

19.5 Interactive Cloud Gaming 669

Limelight Cloud

Video Encoder Game Console

EC2 Cloud

Game Client
Delivery Tracking Proxy Info

User
Clients

Game
Servers

Cloud Proxy

Load-Balancers

1 2 3

4

6

7

5

Fig. 19.16 The workflow of the Gaikai cloud gaming platform

Table 19.3 Image quality
comparison Measurement PSNR (dB) SSIM

Master image n/a n/a
Local capture 33.85 0.97
Onlive (10 Mbps) 26.58 0.94
Onlive (6 Mbps) 26.53 0.92
Onlive (3 Mbps) 26.03 0.89

The video frames are analyzed using two classical metrics, namely Peak Signal-
to-Noise Ratio (PSNR) and Structural Similarity (SSIM) [23]. The SSIM method cal-
culates the similarities in image structures (features) between the two video frames.
As can be seen, the local capture scored a high PSNR and SSIM; however it is not
perfect, indicating some difference in the recorded video and the master file. Much
of this difference is likely due to slightly different brightness and color settings used
by the internal video player in the Batman game engine. When the local capture
is compared to Onlive running at any connection rate, it can be seen that there is
large drop in terms of both PSNR and SSIM. Since PSNR and SSIM are not on a
linear scale, the drops actually indicate a considerable degradation in image quality.
Generally, a PSNR of 30 dB and above is considered good quality, however 25 dB
and above is considered acceptable for mobile video streaming. Not surprisingly,
as the amount of available bandwidth decreases the image quality begins to suffer
considerable degradation as well.

Figure 19.17 shows the extra latency brought by Onlive. For example, Onlive
(+20 ms) indicates that an extra 20 ms is added on the network delay, bringing the total
to 50 ms. The locally rendered copy has an average interaction delay of approximately

670 19 Cloud Computing for Multimedia Services

Fig. 19.17 Interaction delay
in Onlive

 0

 50

 100

 150

 200

 250

 300

Local Render

Onlive Base

Onlive (+10 ms)

Onlive (+20 ms)

Onlive (+50 ms)

Onlive (+75 ms)

M
ill

is
ec

on
ds

Processing Time

Interaction Delay
Network RTT

37 ms, whereas the Onlive baseline takes approximately four times longer at 167 ms
to register the same game action. As is expected, for higher network latencies, the
interaction delay increases. Impressively, the Onlive system manages to keep its
interaction delay below 200 ms in many of our tests. This indicates that, for many
styles of games, Onlive could provide acceptable interaction delays. However, when
the network latency exceeds 50 ms, the interaction delays may begin to hinder the
users’ experience. Also, even with the baseline latency of only 30 ms, the system
could not provide an interaction delay of less than 100 ms, the expected threshold
for first person shooters.

Table 19.4 further gives the detailed breakdown for interaction processing and
cloud overhead. The processing time is the amount of interaction delay caused by
the game logic, GPU rendering, video encoding, and etc; that is, it is the components
of the interaction delay not explained by the network latency. The cloud overhead is
the delay not caused by the core game logic or network latency, including the amount
of delay caused by the video encoder and streaming system used in Onlive.

As can be seen, the cloud processing adds about 100–120 ms of delay in Onlive.
This is better than earlier studies that show the cloud overhead is around 200 ms [24],
suggesting that cloud gaming technology improves very fast. On the other hand, local
rendering by the game console needs less than 37 ms. In other words, although the
cloud, powered by data centers, is principally more powerful than any local console,
the current implementation is not very efficient. To reach the optimal interaction
delay threshold, better implementations in terms of game logic, video encoders, and
streaming software remain expected for cloud gaming.

The interaction paths can be further prolonged in a large-scale multiuser game,
where the globally distributed users are served by different cloud data centers. The
cloud providers, however, are often served by better network connections (e.g., near
to the backbone networks and higher bandwidth) or even dedicated high-speed net-
works. If the cloud servers are smartly assigned to user clients, the latency may not
change much and is still acceptable.

19.5 Interactive Cloud Gaming 671

Table 19.4 Processing time
and cloud overhead Measurement Processing time (ms) Cloud overhead (ms)

Local render 36.7 n/a
Onlive base 136.7 100.0
Onlive (+10 ms) 143.3 106.7
Onlive (+20 ms) 160.0 123.3
Onlive (+50 ms) 160.0 123.3
Onlive (+75 ms) 151.7 115.0

Cloud gaming is a rapidly evolving technology, with many exciting possibilities.
Besides software and service providers, hardware manufacturers have also shown
strong interests in cloud gaming, and have begun working on dedicated hardware
solutions to address such prominent issues as fast and concurrent rendering and
encoding of game scenes [25], which certainly sheds lights to the future of cloud
gaming.

19.6 Further Exploration

Cloud computing remains a new field for both industry and research community.
Many of the related materials can be found as white papers from such major cloud
computing providers as Amazon, Google, and Microsoft.

19.7 Exercises

1. Discuss the relations and differences of the following systems: Cloud, Server
Cluster, Content Distribution Network (CDN), and Datacenter.

2. Consider cloud-based video streaming and peer-to-peer video streaming.
(a) For each of them, what are the pros and cons?
(b) Discuss a possible solution that combines these two. Discuss the benefit of

this hybrid design and its potential issues.
3. Consider the cloud-based Netflix Video-on-Demand (VoD) service.

(a) Describe the respective roles of Amazon EC2 and S3 in Netflix.
(b) Netflix uploads the master videos to the cloud for transcoding. Why doesn’t

Netflix transcode the videos locally and then upload them to the cloud?
(c) Why does Netflix still need a CDN service beyond S3?

4. Is it always beneficial to offload computation to the cloud? List two applica-
tion scenarios that simple computation offloading may not be cost-effective, and
suggest possible solutions.

672 19 Cloud Computing for Multimedia Services

5. In this question, we try to quantify the cost savings of using cloud services.
Without the cloud, a user has to purchase his or her own PC, say of price $X . The
value of the machine depreciates at a rate of p % per month, and when the value
is below V %, the machine is considered out-dated and the user has to purchase a
new machine. On the other hand, using the cloud, the user doesn’t have to buy his
or her own machine, but leases from the cloud service provider with a monthly
fee of $C .
(a) To make the cloud service cost-effective, how much should the provider set

for the monthly lease fee $C for a comparable cloud machine instance?
(b) Are there any other real-world costs that can be included in the model,

associated either with local machine or with the cloud?
6. Considering the energy consumption of a task with local computing at a mobile

terminal and with offloading to the cloud. We assume the task needs C CPU
cycles for computation. Let M and S be the computing speeds, in CPU cycles
per second, of the mobile terminal and of the cloud machine, respectively. The
local computing at the mobile terminal has energy consumption of PM watts, and
incurs no data exchange over the wireless interface. For offloading to the cloud,
D bytes of data are to be exchanged over the wireless interface. We assume that
the network bandwidth is B bps and the energy consumption of the air interface
during transmitting or receiving is PT watts.
(a) Assume that the CPU of the mobile terminal consumes no energy when it is

idle, nor does the wireless interface of the terminal. What is the energy con-
sumption of the mobile terminal if the task is executed locally, or offloaded to
the cloud? Note that we don’t consider the energy consumption in the cloud
because the energy bottleneck of interest here is at the mobile terminal.

(b) Under what condition does offloading to the cloud save energy?
(c) What are other potential benefits with computation offloading, and under

what conditions?
7. Besides the cost or energy savings, list two other advantages when using a cloud,

as compared to building and maintaining a local infrastructure. Also list two
disadvantages.

8. Consider cloud gaming, in which game scenes are rendered in the cloud and then
streamed back to a thin client.
(a) What are the benefits of using a cloud for gaming?
(b) What types of games are most suitable for cloud gaming?
(c) Discuss the requirements for live video streaming and those for cloud gam-

ing. How are they similar? What special requirements of cloud gaming make
it more difficult?

(d) Suggest some solutions that can reduce the delay in cloud gaming.

References 673

References

1. M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson,
A. Rabkin, I. Stoica, M. Zaharia, A view of cloud computing. Commun. ACM 53(4), 50–58
(2010)

2. P. Mell, T. Grance, The nist definition of cloud computing. Technical Report Special Publication
800–145, National Institute of Standards and Technology (NIST) (2011)

3. W. Zhu, C. Luo, J. Wang, S. Li, Multimedia cloud computing. IEEE Signal Process. Mag.
28(3), 59–69 (2011)

4. D. Niu, Z. Liu, B. Li, S. Zhao, Demand forecast and performance prediction in peer-assisted
on-demand streaming systems. In Proceedings of the IEEE INFOCOM Mini-Conference, 2011

5. Y. Huang, T. Fu, D. Chiu, J. Lui, C. Huang, Challenges, design and analysis of a large-scale
P2P-VoD system. In Proceedings of the ACM SIGCOMM, 2008

6. K. Xu, H. Li, J. Liu, W. Zhu, W. Wang, PPVA: a universal and transparent peer-to-peer accel-
erator for interactive online video sharing. In Proceedings of the IEEE IWQoS, 2010

7. F. Liu, P. Shu, H. Jin, L. Ding, D. Niu, B. Li, Gearing resource-poor mobile devices with
powerful clouds: architectures, challenges, and applications. IEEE Wirel. Commun. 20(3),
14–22 (2013)

8. X. Ma, Y. Zhao, L. Zhang, H. Wang, L. Peng, When mobile terminals meet the cloud: compu-
tation offloading as the bridge. IEEE Network 27(5), 28–33 (2013)

9. K. Kumar, Y.-H. Lu, Cloud computing for mobile users: can offloading computation save
energy? IEEE Comput 43(4), 51–56 (2010)

10. E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu, R. Chandra, P. Bahl, Maui:
making smartphones last longer with code offload. In Proceedings of the 8th international
conference on Mobile systems, applications, and services, MobiSys ’10, (ACM, New York,
NY, USA, 2010), pp. 49–62

11. B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, A. Patti, Clonecloud: elastic execution between
mobile device and cloud. In Proceedings of the sixth conference on Computer Systems,
EuroSys ’11, (ACM, New York, NY, USA, 2011), pp. 301–314

12. K. Kumar, J. Liu, Y.-H. Lu , B. Bhargava, A survey of computation offloading for mobile
systems. Mob. Networks Appl. 18(1), 129–140 (2013)

13. H.T. Dinh, C. Lee, D. Niyato, P. Wang, A survey of mobile cloud computing: architecture,
applications, and approaches. Wirel. Commun. Mob. Comput (in press)

14. A.P. Miettinen, J.K. Nurminen, Energy efficiency of mobile clients in cloud computing. In
Proceedings of the 2nd USENIX conference on Hot Topics in Cloud Computing, HotCloud’10,
(USENIX Association, Berkeley, CA, USA, 2010), pp. 4–4

15. N. Imran, B.-C. Seet, A.C.M. Fong, A comparative analysis of video codecs for multihop
wireless video sensor networks. Multimedia Syst. 18(5), 373–389, (2012)

16. Y. Zhao, L. Zhang, X. Ma, J. Liu, H. Jiang, CAME: cloud-assisted motion estimation for mobile
video compression and transmission. In Proceedings of the 22nd international workshop on
Network and Operating System Support for Digital Audio and Video, NOSSDAV ’12, (ACM,
New York, NY, USA, 2012), pp. 95–100

17. Y. Wang, J. Ostermann, Y.-Q. Zhang, Video Processing and Communications, vol. 5 (Prentice
Hall, Upper Saddle River, 2002)

18. M. Sayed, W. Badawy, A novel motion estimation method for mesh-based video motion track-
ing. In IEEE International Conference on Acoustics, Speech, and Signal Processing, 2004
Proceedings (ICASSP’04), (IEEE, vol. 3, 2004), pp. iii–337

19. M. Jarschel, D. Schlosser, S. Scheuring, T. Hossfeld, An evaluation of qoe in cloud gaming
based on subjective tests. In Fifth International Conference on Innovative Mobile and Internet
Services in Ubiquitous Computing (IMIS), pp. 330–335, 2011

20. R. Shea, J. Liu, E.C.-H. Ngai, Y. Cui, Cloud gaming: architecture and performance. IEEE
Network 27(4), 16–21 (2013)

674 19 Cloud Computing for Multimedia Services

21. M. Claypool, K. Claypool, Latency and player actions in online games. Commun. ACM 49(11),
40–45 (2006)

22. M. Claypool, K. Claypool, Latency can kill: precision and deadline in online games. In Pro-
ceedings of the First Annual ACM SIGMM Conference on Multimedia Systems, MMSys’10,
(ACM, New York, NY, USA, 2010), pp. 215–222

23. Z. Wang et al., Image quality assessment: from error visibility to structural similarity. IEEE
Trans. Image Process. 13(4), 600–612 (2004)

24. K.-T. Chen, Y.-C. Chang, P.-H. Tseng, C.-Y. Huang, C.-L. Lei, Measuring the latency of cloud
gaming systems. In Proceedings of the 19th ACM International Conference on Multimedia,
MM ’11, pp. 1269–1272, 2011

25. Z. Zhao, K. Hwang, J. Villeta, Game cloud design with virtualized cpu/gpu servers and initial
performance results. In Proceedings of the 3rd Workshop on Scientific Cloud Computing Date,
ScienceCloud ’12, (ACM, New York, NY, USA, 2012), pp. 23–30

20Content-BasedRetrieval inDigital
Libraries

20.1 How ShouldWe Retrieve Images?

Consider the image in Fig. 20.1 of a small portion of The Garden of Delights by
Hieronymus Bosch (1453–1516), now in the Prado museum in Madrid. This is
a famous painting, but we may be stumped in understanding the painter’s intent.
Therefore, if we are aiming at automatic retrieval of images, it should be unsur-
prising that encapsulating the semantics (meaning) in the image is an even more
difficult challenge. A proper annotation of such an image certainly should include
the descriptor “people.” On the other hand, should this image be blocked by a “Net
nanny” screening out “naked people” (as in [1])?

We know very well that web browsers have a web search button for multimedia
content (usually images, or video for YouTube and its competitors), as opposed to
text. For Bosch’s painting, a text-based search will very likely do the best job, should
we wish to find this particular image. Yet we may be interested in fairly general
searches, say for scenes with deep blue skies and orange sunsets. By pre-calculating
some fundamental statistics about images stored in a database, we can usually find
simple scenes such as these.

In its inception, retrieval from digital libraries began with ideas borrowed from
traditional information retrieval disciplines (see e.g., [2]). This line of inquiry con-
tinues [3]. For example, in [4], images are classified into indoor or outdoor classes
using basic information-retrieval techniques. For a training set of images and cap-
tions, the number of times each word appears in the document is divided by the
number of times each word appears over all documents in a class. A similar measure
is devised for statistical descriptors of the content of image segments, and the two
information-retrieval-based measures are combined for an effective classification
mechanism.

However, many multimedia retrieval schemes have moved toward an approach
favoring multimedia content itself, either without regard to or reliance upon accom-
panying textual information, or at least textual-based search bolstered by multime-
dia evidence. This is commonly known as CBIR (Content-Based Image Retrieval).

Z.-N. Li et al., Fundamentals of Multimedia, 675
Texts in Computer Science, DOI: 10.1007/978-3-319-05290-8_20,
© Springer International Publishing Switzerland 2014

676 20 Content-Based Retrieval in Digital Libraries

Fig. 20.1 How can we best characterize the information content of an image?

Only recently has attention once more been placed on the deeper problem of address-
ing semantic content in images, of course also making use of accompanying text
(possibly inserted when the media is archived). If data consist of statistical features
built from objects in images and also of text associated with the images, each type of
modality—text and image—provides semantic content omitted from the other. For
example, an image of a red rose will not normally have the manually added keyword
“red” since this is generally assumed. Hence, image features and associated words
may disambiguate each other (see [5]).

In this chapter, however, we shall focus only on techniques and systems that make
use of image features themselves, without text, to retrieve images from databases or
from the web. The types of features typically used are such statistical measures as
the color histogram for an image. Consider an image that is colorful—say, a Santa
Claus plus sled. The combination of bright red and flesh tones and browns might be
enough of an image signature to allow us to at least find similar images in our own
image database (of office Christmas parties).

Recall that a color histogram is typically a three-dimensional array that counts
pixels with specific red, green, and blue values. The nice feature of such a structure is
that is does not care about the orientation of the image (since we are simply counting
pixel values, not their orientation) and is also fairly impervious to object occlusions.
A seminal paper on this subject [6] launched a tidal wave of interest in such so-called
“low-level” features for images.

Other simple features used are such descriptors as color layout, meaning a simple
sketch of where in a checkerboard grid covering the image to look for blue skies and

20.1 How ShouldWe Retrieve Images? 677

orange sunsets. Another feature used is texture, meaning some type of descriptor
typically based on an edge image, formed by taking partial derivatives of the image
itself—classifying edges according to closeness of spacing and orientation. An inter-
esting version of this approach uses a histogram of such edge features. Texture layout
can also be used. Search engines devised on these features are said to be content-
based: the search is guided by image similarity measures based on the statistical
content of each image.

Typically, we might be interested in looking for images similar to our current
favorite Santa. A more industry-oriented application would typically be seeking
a particular image of a postage stamp, say. Subject fields associated with image
database search include art galleries and museums, fashion, interior design, remote
sensing, geographic information systems, meteorology, trademark databases, crim-
inology, and an increasing number of other areas.

A more difficult type of search involves looking for a particular object within
images, which we can term a search-by-object model. This involves a much more
complete catalog of image contents and is a much more difficult goal. Generally,
users will base their searches on search by association [7], meaning a first cut search
followed by refinement based on similarity to some of the query results. For general
images representative of a kind of desired picture, a category search returns one
element of the requested set, such as one or several trademarks in a database of
such logos. Alternatively, the query may be based on a very specific image, such
as a particular piece of art—a target search. Lately, there are also efforts to retrieve
three-dimensional shapes and objects [8,9].

Another axis to bear in mind in understanding the many existing search systems
is whether the domain being searched is narrow, such as the database of trademarks,
or wide, such as a set of commercial stock photos.

For any system, we are up against the fundamental nature of machine systems
that aim to replace human endeavors. The main obstacles are neatly summarized in
what the authors of the summary in [7] term the sensory gap and the semantic gap:

The sensory gap is the gap between the object in the world and the information in
a (computational) description derived from a recording of that scene.

The semantic gap is the lack of coincidence between the information that one can
extract from the visual data and the interpretation that the same data have for a
user in a given situation.

Image features record specifics about images, but the images themselves may
elude description in such terms. And while we may certainly be able to describe
images linguistically, the message in the image, the semantics, is difficult to capture
for machine applications.

678 20 Content-Based Retrieval in Digital Libraries

20.2 Synopsis of Early CBIR Systems

The following provides examples of some early CBIR systems. It is by no means a
complete synopsis. Most of these engines are experimental, but all those included
here are interesting in some way. A good summary appears in [7].

• QBIC

Query by Image Content (QBIC), developed by Niblack and colleagues [10] at
IBM’s Almaden Research Center in San Jose, was arguably the most famous early
search engine.

One interesting feature in QBIC is the metric it uses for color histogram difference.
The basic metric used for histogram difference is histogram intersection, basically
an L1-norm based measure. Instead of simple histogram intersection, the QBIC
metric recognizes that colors that are similar, such as red and orange, should not
have a zero intersection. Instead, a color-distance matrix A is introduced, with
elements

ai j = (1 − di j/dmax) (20.1)

Here, di j is defined as a three-dimensional color difference (using Euclidean dis-
tance, or any other likely distance—sum of absolute values, say).

Then a histogram-difference D2 is defined as follows [11]:

D2 = zT A z (20.2)

Vector z is a histogram-difference vector (for vectorized histograms). For example,
the histogram-difference vectors z would be of length 256 if we compared two-
dimensional chromaticity histograms of size 16 × 16.

• Chabot

Chabot was an early system from UC-Berkeley that aimed to include 500,000
digitized multiresolution images. Chabot uses the relational database management
system POSTGRES to access these images and associated textual data. The system
stores both text and color histogram data. Instead of color percentages, a “mostly
red” type of simple query is acceptable.

• Blobworld

Blobworld [12] was also developed at UC-Berkeley. It attempts to capture the idea
of objects by segmenting images into regions. To achieve a good segmentation, an
expectation maximization (EM) algorithm derives the maximum likelihood for a
good clustering in the feature space. Blobworld allows for both textual and content-
based searching. The system has some degree of feedback, in that it displays the
internal representation of the submitted image and the query results, so the user
can better guide the algorithm.

20.2 Synopsis of Early CBIR Systems 679

• WebSEEk

A team at Columbia University developed several search engines, of which Web-
SEEk was better known. It collects images (and text) from the web. The emphasis
is on making a searchable catalogue with such topics as animals, architecture, art,
astronomy, cats, and so on. Relevance feedback is provided in the form of thumb-
nail images and motion icons. For video, a good form of feedback is also inclusion
of small, short video sequences as animated GIF files.

• Photobook and FourEyes

Photobook [13] was one of the earlier CBIR systems developed by the MIT Media
Laboratory. It searches for three different types of image content (faces, two-
dimensional shapes, and texture images) using three mechanisms. For the first two
types, it creates an eigenfunction space—a set of “eigenimages”. Then new images
are described in terms of their coordinates in this basis. For textures, an image is
treated as a sum of three orthogonal components in a decomposition denoted as
Wold features [14].

With relevance feedback added, Photobook became FourEyes [15]. Not only does
this system assign positive and negative weight changes for images, but given a
similar query to one it has seen before, it can search faster than previously.

• Informedia

The Informedia (and later Informedia-II) Digital Video Library project at Carnegie
Mellon University centers on “video mining.” It was funded by a consortium
of government and corporate sponsors. It uniquely combines speech recogni-
tion, image understanding, and natural language processing technologies. Features
include video and audio indexing, navigation, video summarization and visualiza-
tion, and search and retrieval of the video media.

• UC Santa Barbara Search Engines

The Alexandria Digital Library (ADL) was a seasoned image search engine devised
at the University of California, Santa Barbara. The ADL is concerned with geo-
graphical data: “spatial data on the web.” The user can interact with a map and
zoom into a map, then retrieve images as a query result type that pertain to the
selected map area. This approach mitigates the fact that terabytes, perhaps, of
data need to be stored for LANDSAT satellite images, say. Instead, ADL uses a
multiresolution approach that allows fast browsing by making use of image thumb-
nails. Multiresolution images means that it is possible to select a certain region
within an image and zoom in on it.

680 20 Content-Based Retrieval in Digital Libraries

• MARS

MARS (Multimedia Analysis and Retrieval System) [16] was developed at the
University of Illinois at Urbana-Champaign. The idea was to create a dynamic
system of feature representations that could adapt to different applications and
different users. Relevance feedback, with changes of weightings directed by the
user, is the main tool used.

• Virage

The Visual Information Retrieval (VIR) image search engine [17] operates on
objects within images. Image indexing is performed after several preprocessing
operations, such as smoothing and contrast enhancement. The details of the feature
vector are proprietary; however, it is known that the computation of each feature is
made by not one but several methods, with a composite feature vector composed
of the concatenation of these individual computations.

20.3 C-BIRD:A Case Study

Let us consider the specifics of how image queries are carried out. To make the
discussion concrete, we underpin our discussion by using the image database search
engine devised by one of the authors of this text (see [18]). This system is called
Content-Based Image Retrieval from Digital libraries (C-BIRD), an acronym devised
from content-based image retrieval, or CBIR.

The C-BIRD image database contains approximately 5,000 images, many of them
keyframes from videos. The database can be searched using a selection of tools: text
annotations, color histograms, illumination-invariant color histograms, color density,
color layout, texture layout, and model-based search.

Although the system was developed in early years, it still serves as a good example
in illustrating the common techniques in CBIR based on image similarity. Moreover,
it offers some unique features such as Search by Illumination Invariance, Feature
Localization, and Search by Object Model.

Let’s step through these options.

20.3.1 Color Histogram

In C-BIRD, features are precomputed for each image in the database. The most
prevalent feature that is utilized in image database retrieval is the color histogram
[6], a type of global image feature, that is, the image is not segmented; instead, every
image region is treated equally.

20.3 C-BIRD:A Case Study 681

A color histogram counts pixels with a given pixel value in red, green, and blue
(RGB). For example, in pseudocode, for images with 8-bit values in each of R, G,
B, we can fill a histogram that has 2563 bins:

int hist[256][256][256]; // reset to 0
//image is an appropriate struct
//with byte fields red,green,blue

for i=0..(MAX_Y-1)
for j=0..(MAX_X-1)
{
R = image[i][j].red;
G = image[i][j].green;
B = image[i][j].blue;
hist[R][G][B]++;

}

Usually, we do not use histograms with so many bins, in part because fewer bins
tend to smooth out differences in similar but unequal images. We also wish to save
storage space.

How image search proceeds is by matching the feature vector for the sample
image, in this case the color histogram, with the feature vector for every—or at least
many of—the images in the database.

C-BIRD calculates a color histogram for each target image as a preprocessing
step, then references it in the database for each user query image. The histogram is
defined coarsely, with bins quantized to 8 bits, with 3 bits for each of red and green
and two for blue.

For example, Fig. 20.2 shows that the user has selected a particular image—one
with red flowers. The result obtained, from a database of some 5,000 images, is a set
of 60 matching images. Most CBIR systems return as the result set either the top few
matches or the match set with a similarity measure above a fixed threshold value.
C-BIRD uses the latter approach and thus may return zero search results.

How matching proceeds in practice depends on what measure of similarity we
adopt. The standard measure used for color histograms is called the histogram inter-
section. First, a color histogram Hi is generated for each image i in the database.
We like to think of the histogram as a three-index array, but of course the machine
thinks of it as a long vector—hence the term “feature vector” for any of these types
of measures.

The histogram is normalized, so that its sum (now a double) equals unity. This
normalization step is interesting: it effectively removes the size of the image. The
reason is that if the image has, say, resolution 640 × 480, then the histogram entries
sum to 307, 200. But if the image is only one-quarter that size, or 320×240, the sum
is only 76,800. Division by the total pixel count removes this difference. In fact, the
normalized histograms can be viewed as probability density functions (pdfs) . The
histogram is then stored in the database.

682 20 Content-Based Retrieval in Digital Libraries

Fig. 20.2 Search by color histogram results. (Some thumbnail images are from the Corel gallery
and are copyright Corel. All rights reserved)

Now suppose we select a “model” image—the new image to match against all
possible targets in the database. Its histogram Hm is intersected with all database
image histograms Hi , according to the equation [6]

intersection =
n∑

j=1

min(H j
i ,H j

m) (20.3)

where superscript j denotes histogram bin j , with each histogram having n bins. The
closer the intersection value is to 1, the better the images match. This intersection
value is fast to compute, but we should note that the intersection value is sensitive to
color quantization.

20.3.2 Color Density and Color Layout

To specify the desired colors by their density, the user selects the percentage of the
image having any particular color or set of colors, using a color picker and sliders.
We can choose from either conjunction (ANDing) or disjunction (ORing) a simple
color percentage specification. This is a coarse search method.

The user can also set up a scheme of how colors should appear in the image, in
terms of coarse blocks of color. The user has a choice of four grid sizes: 1×1, 2 ×2,
4 × 4 and 8 × 8. Search is specified on one of the grid sizes, and the grid can be
filled with any RGB color value—or no color value at all, to indicate that the cell

20.3 C-BIRD:A Case Study 683

Fig. 20.3 Color layout grid

should not be considered. Every database image is partitioned into windows four
times, once for each window size. A clustered color histogram is used inside each
window, and the five most frequent colors are stored in the database. Each query
cell position and size corresponds to the position and size of a window in the image.
Figure 20.3 shows how this layout scheme is used.

20.3.3 Texture Layout

Similar to color layout search, this query allows the user to draw the desired texture
distribution. Available textures are zero density texture, medium-density edges in four
directions (0◦, 45◦, 90◦, 135◦) and combinations of them, and high-density texture
in four directions and combinations of them. Texture matching is done by classifying
textures according to directionality and density (or separation) and evaluating their
correspondence to the texture distribution selected by the user in the texture block
layout. Figure 20.4 shows how this layout scheme is used.

684 20 Content-Based Retrieval in Digital Libraries

Fig. 20.4 Texture layout grid

20.3.4 Texture Analysis Details

It is worthwhile considering some of the details for a texture-based content analysis
aimed at image search. These details give a taste of typical techniques systems employ
to work in practical situations.

First, we create a texture histogram. A typical set of indices for comprehend-
ing texture is Tamura’s [19]. Human perception studies show that “repetitiveness,”
“directionality,” and “granularity” are the most relevant discriminatory factors in
human textural perception [20]. Here, we use a two-dimensional texture histogram
based on directionality φ and edge separation ξ , which is closely related to “repeti-
tiveness.” φ measures the edge orientations, and ξ measures the distances between
parallel edges.

To extract an edge map, the image is first converted to luminance Y via Y =
0.299R + 0.587G + 0.114B. A Sobel edge operator [21] is applied to the Y -image
by sliding the following 3×3 weighting matrices (convolution masks) over the image:

dx :
−1 0 1
−2 0 2
−1 0 1

dy :
1 2 1
0 0 0

−1 −2 −1
(20.4)

If we average around each pixel with these weights, we produce approximations to
derivatives.

20.3 C-BIRD:A Case Study 685

The edge magnitude D and the edge gradient φ are given by

D =
√

d2
x + d2

y , φ = arctan
dy

dx
(20.5)

Next, the edges are thinned by suppressing all but maximum values. If a pixel
i with edge gradient φi and edge magnitude Di has a neighbor pixel j along the
direction of φi with gradient φ j ≈ φi and edge magnitude D j > Di , then pixel i is
suppressed to 0.

To make a binary edge image, we set all pixels with D greater than a threshold
value to 1 and all others to 0.

For edge separation ξ , for each edge pixel i we measure the distance along its
gradient φi to the nearest pixel j having φ j ≈ φi within 15 degrees. If such a pixel
j doesn’t exist, the separation is considered infinite.

Having created edge directionality and edge separation maps, C-BIRD constructs
a two-dimensional texture histogram of ξ versus φ. The initial histogram size is
193 × 180, where separation value ξ = 193 is reserved for a separation of infinity
(as well as any ξ > 192). The histogram size is then reduced by three for each
dimension to size 65 × 60, where joined entries are summed together.

The histogram is “smoothed” by replacing each pixel with a weighted sum of its
neighbors and is then reduced again to size 7 × 8, with separation value 7 reserved
for infinity. At this stage, the texture histogram is also normalized by dividing by the
number of pixels in the image segment.

20.3.5 Search by Illumination Invariance

Illumination change can dramatically alter the color measured by camera RGB sen-
sors, from pink under daylight to purple under fluorescent lighting, for example.

To deal with illumination change from the query image to different database
images, each color-channel band of each image is first normalized, then compressed
to a 36-vector [22]. Normalizing each of the R, G, and B bands of an image serves as
a simple yet effective guard against color changes when the lighting color changes. A
two-dimensional color histogram is then created using the chromaticity, which is the
set of band ratios {R,G}/(R + G + B). Chromaticity is similar to the chrominance
in video, in that it captures color information only, not luminance (or brightness).

A 128 × 128–bin two-dimensional color histogram can then be treated as an
image and compressed using a wavelet-based compression scheme [23]. To further
reduce the number of vector components in a feature vector, the DCT coefficients
for the smaller histogram are calculated and placed in zigzag order, then all but 36
components are dropped.

Matching is performed in the compressed domain by taking the Euclidean distance
between two DCT-compressed 36-component feature vectors. (This illumination-
invariant scheme and the object-model-based search described next are unique to
C-BIRD.) Figure 20.5 shows the results of such a search.

686 20 Content-Based Retrieval in Digital Libraries

Fig.20.5 Search with illumination invariance. (Some thumbnail images are from the Corel gallery
and are copyright Corel. All rights reserved)

Several of the above types of searches can be done at once by checking multiple
checkboxes. This returns a reduced list of images, since the list is the conjunction of
all resulting separate return lists for each method.

20.3.6 Search by Object Model

The most important search type C-BIRD supports is the model-based object search.
The user picks a sample image and interactively selects a region for object searching.
Objects photographed under different scene conditions are still effectively matched.
This search type proceeds by the user selecting a thumbnail and clicking the Model
tab to enter Object Selection mode. An object is then interactively selected as a
portion of the image; this constitutes an object query by example.

Figure 20.6 shows a sample object selection. An image region can be selected
using primitive shapes such as a rectangle or ellipse, a magic wand tool that is
basically a seed-based flooding algorithm, an active contour (a “snake”), or a brush
tool, where the painted region is selected. All the selections can be combined with
each other using Boolean operations such as union, intersection, or exclusion.

Once the object region is defined to a user’s satisfaction, it can be dragged to the
right pane, showing all current selections. Multiple regions can be dragged to the

20.3 C-BIRD:A Case Study 687

Fig. 20.6 C-BIRD interface, showing object selection using an ellipse primitive. (Image is from
the Corel gallery and is copyright Corel. All rights reserved)

selection pane, but only the active object in the selection pane will be searched on.
The user can also control parameters such as flooding thresholds, brush size, and
active contour curvature.

Details of the underlying mechanisms of this Search by Object Model are set out
in [23] and introduced below as an example of a working system. Figure 20.7 shows a
block diagram for how the algorithm proceeds. First, the user-selected model image
is processed and its features are localized (details are discussed in [18]). Color
histogram intersection, based on the reduced chromaticity histogram described in
the previous section is then applied as a first “screen.” Further steps estimate the
pose (scale, translation, and rotation) of the object inside a target image from the
database. This is followed by verification by intersection of texture histograms and
then a final check using an efficient version of a Generalized Hough Transform for
shape verification.

A possible model image and one of the target images in the database might be
as in Fig. 20.8, where the scene in (b) was illuminated with a dim fluorescent light.
Figure 20.9 shows some search results for the pink book in C-BIRD.

While C-BIRD is an experimental system, it does provide a proof in principle that
the difficult task of search by object model is possible.

688 20 Content-Based Retrieval in Digital Libraries

Fig. 20.7 Block diagram of object matching steps

Fig. 20.8 Model and target images: a Sample model image; b Sample database image containing
the model book. Active Perception (textbook cover courtesy Lawrence Erlbaum Associates, Inc.)

20.4 Quantifying Search Results

Generally speaking, some simple expression of the performance of image search
engines is desirable. In information retrieval, Precision is the percentage of relevant
documents retrieved compared to the number of all the documents retrieved, and
Recall is the percentage of relevant documents retrieved out of all relevant documents.
Recall and Precision are widely used for reporting retrieval performance for image
retrieval systems as well. However, these measures are affected by the database size

20.4 Quantifying Search Results 689

Fig.20.9 Search result for the pink book model with illumination change support: a search results
using pose estimation only; b search results using pose estimation and texture support; c search
results using GHT shape verification. (Some thumbnail images are from the Corel gallery and are
copyright Corel. All rights reserved)

690 20 Content-Based Retrieval in Digital Libraries

and the amount of similar information in the database. Also, they do not consider
fuzzy matching or search result ordering.

In equation form, these quantities are defined as:

Precision = Relevant images returned
All retrieved images

Recall = Relevant images returned
All relevant images

(20.6)

Alternatively, they may also be written as:

Precision = TP
TP + FP

Recall = TP
TP + FN

(20.7)

where TP (True Positives) is the number of relevant images returned, FP (False
Positives) is the number of irrelevant images returned, and FN (False Negatives) is
the number of relevant images not returned.

In general, the more we relax thresholds and allow more images to be returned,
the smaller the Precision, but the larger the Recall; and vice versa. Apparently, it is
not quite meaningful to talk about either the Precision or Recall number by itself.
Instead, they can be combined to provide a good measure, e.g., Precision when Recall
is at 50 %, Recall when Precision is at 90 %, etc.

When multiple queries are involved, the numbers of the Precision and Recall
values will again increase. To measure the overall performance of a CBIR system,
the most common way is to summarize these values into a single value, i.e., the Mean
Average Precision (MAP). The Average Precision (AP) of a single query q is defined
as:

AP(q) = 1
NR

NR∑

n=1

Precision(n), (20.8)

where Precision(n) is the Precision value after the nth relevant image was retrieved,
and NR is the total number of relevant images. The MAP is the mean of Average
Precisions over all query images:

M AP = 1
NQ

∑

q∈Q

AP(q), (20.9)

where Q is the query image set, and NQ is its size. The MAP has the advantage of
reflecting both Precision and Recall oriented aspects and is sensitive to the entire
ranking [24].

In the above definitions of Precision and Recall, one thing is missing: the value of
T N (True Negatives). In the context of CBIR, if we are searching for dogs and the
image database contains 100 relevant dog images, the fact that whether the database
contains another 100 non-dog images or a million non-dog images, i.e., T N = 100
or T N = 1, 000, 000, often matters, because a larger T N tends to yield more
distractions (noise).

20.4 Quantifying Search Results 691

Fig. 20.10 The ROC space

E

False Positive Rate (FPR)
0.2 0.4 0.6 0.8 1.0

0.2

0.6

0.8

1.0

0.4

0

T
ru

e
Po

si
tiv

e
R

at
e

(T
PR

)

perfect

worst

worse

better
A

D

C

B

Many other measures for the performance of CBIR systems have been devised,
and among them a popular one is Receiver Operating Characteristic (ROC). Given
a database containing 100 relevant images (e.g., horses) and 1,000 other images
(i.e., non-horses), if a CBIR system correctly retrieves 70 horse images from the
100 horse images, and incorrectly identified 300 “horse” images from the 1,000
other images, then the True Positive Rate T P R = 70 % and the False Positive Rate
F P R = 30 %. Obviously, T P R = Recall as defined in Eq. 20.7, and F P R =
1 − T N R, where T N R (True Negative Rate) is the percentage (70 %) of the non-
horses correctly identified. Figure 20.10 depicts the so-called ROC space, which
plots T P R against F P R.

The 45-degree diagonal line in Fig. 20.10 indicates the performance of a random
guess. In the above example, if we were to use a (fair) coin-flip to determine the
outcome, then it will return a result of 50 true horse images and 500 false “horse”
images from the two groups of images, i.e., T P R = 50 % and F P R = 50 %, which
is indicated by point A (0.5, 0.5) on the diagonal line in the figure. A biased coin that
is weighted to produce more positive outcomes (e.g., heads) may yield performance
that is indicated by point B (0.8, 0.8). Conversely, it may produce C (0.25, 0.25).

Clearly, we would like to have CBIR systems that will produce results better than
a coin-flip. Namely, their performance should be above the diagonal line. Point D
(0.1, 0.8) is an example of what would be very good performance. In general, we aim
to be as close as possible to the ultimately perfect point (0, 1.0). Point E (0.8, 0.2)
indicates poor performance, and obviously (1.0, 0) would be the worst.

If we measure the CBIR system at multiple T P R (or F P R) values, we will derive
an ROC curve, which often provides a more comprehensive analysis of the system
behavior. The perfect ROC curve would consist of two straight line segments, one

692 20 Content-Based Retrieval in Digital Libraries

vertical from (0, 0) to (0, 1.0) and one horizontal from (0, 1.0) to (1.0, 1.0), which
indicates that there are no false positives or false negatives whatsoever. A normal
ROC curve will be in the area between this ideal performance and the 45-degree
diagonal line.

ROC is a general statistical measure for various classifiers. It has its applications in
many disciplines, e.g., psychology, physics, medicine, and increasingly in machine
learning and data mining.

20.5 Key Technologies in Current CBIR Systems

The field of CBIR has witnessed rapid growth and progress in the new millennium.
Unlike in the early years, users are no longer satisfied with query results returning
scenes containing “blue skies,” or red blobs that may or may not be flowers. They
are more and more looking for objects, people, and often search for human activities
as well. Lew et al. [25] and Datta et al. [26] provide comprehensive surveys of the
CBIR field.

In this section, we will briefly describe some technologies and issues that are key
to the success of current and future CBIR systems.

20.5.1 Robust Image Features andTheir Representation

Many feature descriptors have been developed beyond the ones specified in MPEG-7.
Here, we will only discuss SIFT and Visual Words.

SIFT (Scale Invariant Feature Transform)

In addition to global features such as color and texture histograms, local features
characterized by SIFT (Scale Invariant Feature Transform) [27] have been developed
because they are more suitable for searches emphasizing visual objects. SIFT has
been shown to be robust against image noise; it also has a fair degree of invariance
to translation, rotation, and scale change.

The process of extracting SIFT features from an image starts with building a
multiresolution scale space, as shown in Fig. 20.11. At each scale, stacks of images
are generated by applying Gaussian smoothing (filtering) operations. Each stack (the
so-called octave) has s+3 images—so s = 2 for the example shown in the Fig. 20.11.
The standard deviation of the Gaussian filters in the stack increases by a factor of
21/s . In this example, they are σ ,

√
2σ , 2σ , 2

√
2σ , and 4σ in the first octave. The

third image from the top of the stack is used as the bottom image of the next stack
by reducing its image resolution by half. The same Gaussian filtering process will
continue, and hence at the next octave the Gaussian filters have standard deviations

20.5 Key Technologies in Current CBIR Systems 693

First

_

_

_

_

_

_

_

_

Next
Octave

Key point

Gaussian filtered Difference of Gaussion (DOG)

octave

Fig. 20.11 The scale space and SIFT key point

2σ , 2
√

2σ , 4σ , 4
√

2σ , and 8σ . A simple operation of image subtraction, as indicated
in the figure, generates Difference of Gaussian (DOG) images.

Now we are ready to talk about Key points for SIFT. In the DOG images, if a
pixel’s DOG value is the maximum or minimum when compared to its 26 neighbors
in scale space (see Fig. 20.11), it is considered a possible Key point. Further screening
steps are introduced to make sure that the Key points are more distinct, e.g., are at
the corners rather than distributed over a long edge. Then, the histogram of the edge
(gradient) directions near the Key point are analyzed to yield a dominant direction θ
(the so-called canonical orientation) for the Key point.

The local patch (16×16 pixels) at the Key point is now examined to produce a 128-
dimensional SIFT descriptor. The patch is divided into 4 × 4 subwindows. In each
subwindow, a histogram of edge (gradient) directions is derived. The quantization
is for every 45 degrees, so the histogram in each subwindow produces a vector of
8 dimensions. In total, we obtain a 4 × 4 × 8 = 128 dimensional SIFT descriptor.

694 20 Content-Based Retrieval in Digital Libraries

Here, all the edge directions are calculated relative to the canonical orientation θ.
Hence, this facilitates rotation invariance.

VisualWords

The Bag of Words (BoW) concept was originally a technique for document classifica-
tion and text retrieval. As the name suggests, a mixed bag of words can be extracted
from a query sentence and be used for a query. The stems of the words are used, e.g.,
“talk” for “talk,” “talking,” “talked,” etc. In this way, the details of the word (e.g.,
tense, singular or plural), the word order, and the grammar of the sentence are all
ignored. The advantage is that this tends to be more robust against any variations of
the text.

Analogously, bags of Visual Words can be extracted to represent image features.
Fei-Fei and Perona [28] presented an earlier work in Computer Vision in which a
bag of codewords is used to represent various texture features in images.

In CBIR, a common way of generating Visual Words is to use SIFT because
of its good properties discussed above. This can be (a) object based or (b) video
frame based. If the search is based on a given object model, then clusters of its
SIFT features can be used as the Visual Words describing the object. Commonly, the
vector quantization method as outlined in Chap. 8 can be used to turn these Visual
Words into codewords in a codebook. If the search is aimed at finding similar frames
from a video or movie, then all SIFT features in the query video frame can be used
to generate the Visual Words. Alternatively, Sivic and Zisserman [29] divided the
video frame into dozens (or hundreds) of regions, and each region will produce a
mean SIFT descriptor x̄i and be used as a Visual Word. The clustering and matching
of a large number of SIFT descriptors is shown to be computationally challenging.

Visual Words are rich in encapsulating essential visual features. However, com-
pared to words from text, Visual Words are even more ambiguous. In general, a
small-sized codebook will have limited discriminative power, not good enough to
handle CBIR for large image and video databases. On the other hand, a large code-
book also has its own problems, because the same feature contaminated by noise can
easily be quantized to different codewords.

20.5.2 Relevance Feedback

Relevance feedback, a well-known technique from Information Retrieval has been
brought to bear in CBIR systems [16]. Briefly, the idea is to involve the user in
a loop, whereby images retrieved are used in further rounds of convergence onto
correct returns. The usual situation is that the user identifies images as good, bad, or
don’t care, and weighting systems are updated according to this user guidance.

The basic advantage of putting the user into the loop by using relevance feedback is
that this way, the user need not provide a completely accurate initial query. Relevance
feedback establishes a more accurate link between low-level features and high-level

http://dx.doi.org/10.1007/978-3-319-05290-8_8

20.5 Key Technologies in Current CBIR Systems 695

concepts, somewhat closing the semantic gap. As a result, the retrieval performance
of the CBIR system is improved.

20.5.3 Other Post-processing Techniques

Beside Relevance Feedback, other post-processing methods have been developed
after the initial query results are in.

Spatial Verification

The quality of the query results can be verified and improved by Spatial Verification.
Modern cameras often provide information about the location where pictures were
taken, so it is trivial to check for consistency or relevance in certain query results if
the user is only interested in images from certain locations, e.g., Paris or Rome.

In their paper, Philbin et al. [30] go well beyond simple checks on geometric
locations. They aim at verifying that image regions from the query image and the
retrieved images are from the same object or scene region. It is argued that unlike
words in Information Retrieval (e.g., “animal,” “flower”), Visual Words inherently
contain much more spatial information. For example, it is known from the theory of
image geometry that two views of a rigid object are related by epipolar geometry, two
views of a planar patch are related by a homography, etc. They show that verifying
mappings-based geometric transformations can indeed improve the quality of results
by spatial re-ranking.

Zhou et al. [31] describe a spatial coding method that records relative spatial
information (e.g., left or right, above or below) of each pair of image features. A
rotating spatial map is proposed that is more efficient than a simple x- and y-map.

Query Expansion

Another approach is to move the query toward positively marked content. Query
Expansion proposed by Chum et al. [32] is such a method. Query Expansion is again
a well-known method in Information Retrieval in which some combination of high-
ranked relevant documents can be presented as a new query to boost the performance
of the retrieval. The combination could simply be averages (means) of the feature
descriptors from the returned documents. The problem is that if one of the high-
ranked document is a false-positive, then it will immediately harm the performance
of the new query. Some robust statistical methods or even simply taking the median
(instead of the mean) can help.

As mentioned above, the Visual Words used in CBIR often contain useful spatial
information. Hence, high-ranked retrieved images can be verified before being used in
forming a new query image. Chum et al. [32] use recursive average query expansion,
which recursively generates new query images from all spatially verified returned
images.

696 20 Content-Based Retrieval in Digital Libraries

QA Paradigm

Question-answering (QA) tries to replace the large number of images or multimedia
content in general, that is returned by a search query, by making use of media content,
knowledge about the search domain, and also linguistic analysis to return hits based
on users’ natural-language questions. Since QA has traditionally been focused on
text, bridging this technique over to multimedia content is referred to as MMQA [33].
Generally, MMQA attempts to combine traditional QA, based on textual metadata,
with multimedia-oriented approaches if such are indeed more intuitive answers to
users’ queries.

20.5.4 Visual Concept Search

Search by concept is another major step in closing the semantic gap. Typically, after
local features are turned into words, the words are converted to semantic concepts
with the aid of machine learning algorithms.

In an interesting work presented by Wang et al. [34], image similarity is learned
from 103 Flickr image groups on the Internet by adopting a Support Vector Machine
(SVM) classifier, with a histogram intersection kernel. The image groups range from
objects such as Aquarium, Boat, Car, and Penguin, scenes such as Sunset and Urban,
to concepts such as Christmas and Smile. They show that such a system performs
better than others that directly measure image similarity with simple low-level visual
features such as color, texture, etc.

To assist in the development and testing of these systems, researchers and practi-
tioners have developed many multimedia databases and benchmarks. The best known
is perhaps the TREC Video Retrieval Evaluation (TRECVID) benchmark. TRECVID
started in 2003, originally from the conference TREC (Text REtrieval Conference),
co-sponsored by the National Institute of Standards (NIST) and the U.S. Depart-
ment of Defense. Initially, TRECVID provided video data from professional sources
such as broadcast news, TV programs, and surveillance systems, thus having limited
styles and content: for example, the very typical head-shot of a news person, an
overhead view of a variety of indoor scenes, etc. In recent years, the benchmarks
have expanded in terms of test data and objectives. For example, TRECVID 2013
evaluated the following tasks:
• Semantic indexing
• Interactive surveillance event detection
• Instance search
• Multimedia event detection
• Multimedia event recounting

Myers et al. [35] reported good performance for Multimedia Event Detection in
their project, entitled SESAME. To start, multiple event classifiers were developed
based on the bags of words from single data types, e.g., low-level visual features,
motion features, and audio features; and high-level visual (semantic) concepts such as
Birthday-party, Making-a-sandwich, etc. Various fusion methods (Arithmetic Mean,

20.5 Key Technologies in Current CBIR Systems 697

Geometric Mean, MAP (Mean Average Precision) Weighted, Weighted Mean Root,
Conditional Mixture Model, Sparse Mixture Model, etc.) were then tested. It was
shown that some simple fusion methods, e.g., Arithmetic Mean, deliver as good a
performance (or better) than more complex ones.

20.5.5 The Role of Users in Interactive CBIR Systems

Beside mechanisms such as Relevance Feedback, it has been argued that users should
play a more active role in CBIR systems. In the 2012 ICMR (International Confer-
ence on Multimedia Retrieval), the panelists (also the authors of [3]) again raised
the question: Where is the User in Multimedia Retrieval? They pointed out the dom-
inance of MAP, common in evaluations such as TRECVID, may have hindered the
development of better and more useful multimedia retrieval systems. Although MAP
has the merit of being objective and reproducible, it is unlikely that a single number
will meet the needs of most users, who tend to have very different and dynamic tasks
in mind.

One way to comprehend how people view images as similar is to study using
user groups just what forms our basis of perception of image similarity [36]. The
function used in this approach can be a type of “perceptual similarity measure” and is
learned by finding the best set of features (color, texture, etc.) to capture “similarity”
as defined via the groups of similar images identified.

Another way to understand users is to talk to them and carefully analyze their
search patterns. In other words, in addition to content-based, we need to be context-
based, because the user’s interpretation of the content is often influenced (or even
determined) by the context.

20.6 Querying onVideos

Video indexing can make use of motion as the salient feature of temporally changing
images for various types of queries. We shall not examine video indexing in any
detail here but refer the reader to the excellent surveys in [25] and [26].

In brief, since temporality is the main difference between a video and just a
collection of images, dealing with the time component is first and foremost in com-
prehending the indexing, browsing, search, and retrieval of video content. A direction
taken by the QBIC group [37] is a new focus on storyboard generation for automatic
understanding of video—the so-called “inverse Hollywood” problem. In production
of a video, the writer and director start with a visual depiction of how the story pro-
ceeds. In a video understanding situation, we would ideally wish to regenerate this
storyboard as the starting place for comprehending the video.

The first place to start, then, would be dividing the video into shots, where each shot
consists roughly of the video frames between the on and off clicks of the Record but-
ton. However, transitions are often placed between shots—fade-in, fade-out, dissolve,

698 20 Content-Based Retrieval in Digital Libraries

wipe, and so on—so detection of shot boundaries may not be so simple as for abrupt
changes.

Generally, since we are dealing with digital video, if at all possible we would like
to avoid uncompressing MPEG files, say, to speed throughput. Therefore, researchers
try to work on the compressed video. A simple approach to this idea is to uncompress
just enough to recover the DC term, generating a thumbnail 64 times smaller than the
original. Since we must consider P- and B-frames as well as I-frames, even generating
a good approximation of the best DC image is itself a complicated problem.

Once DC frames are obtained from the whole video—or, even better, are obtained
on the fly—many approaches have been used for finding shot boundaries. Features
used have typically been color, texture, and motion vectors, although such concepts
as trajectories traversed by objects have also been used [38].

Shots are grouped into scenes. A scene is a collection of shots that belong together
and that are contiguous in time. Even higher-level semantics exist in so-called “film
grammar” [39]. Semantic information such as the basic elements of the story may
be obtainable. These are (at the coarsest level) the story’s exposition, crisis, climax,
and denouement.

Audio information is important for scene grouping. In a typical scene, the audio
has no break within a scene, even though many shots may take place over the course
of the scene. General timing information from movie creation may also be brought
to bear.

Text may indeed be the most useful means of delineating shots and scenes, making
use of closed-captioning information already available. However, relying on text is
unreliable, since it may not exist, especially for legacy video.

Different schemes have been proposed for organizing and displaying story-
boards reasonably succinctly. The most straightforward method is to display a two-
dimensional array of keyframes. Just what constitutes a good keyframe has of course
been subject to much debate. One approach might be to simply output one frame
every few seconds. However, action has a tendency to occur between longer peri-
ods of inactive story. Therefore, some kind of clustering method is usually used, to
represent a longer period of time that is more or less the same within the temporal
period belonging to a single keyframe.

Some researchers have suggested using a graph-based method. Suppose we have
a video of two talking heads, the interviewer and the interviewee. A sensible rep-
resentation might be a digraph with directed arcs taking us from one person to the
other, then back again. In this way, we can encapsulate much information about the
video’s structure and also have available the arsenal of tools developed for graph
pruning and management.

Other “proxies” have also been developed for representing shots and scenes. A
grouping of sets of keyframes may be more representative than just a sequence of
keyframes, as may keyframes of variable sizes. Annotation by text or voice, of each
set of keyframes in a “skimmed” video, may be required for sensible understanding
of the underlying video.

20.6 Querying on Videos 699

Fig. 20.12 Digital video and associated keyframes, beach video: a frames from a digital video;
b keyframes selected

A mosaic of several frames may be useful, wherein frames are combined into
larger ones by matching features over a set of frames. This results in set of larger
keyframes that are perhaps more representational of the video.

An even more radical approach to video representation involves selecting (or
creating) a single frame that best represents the entire movie! This could be based
on making sure that people are in the frame, that there is action, and so on. In [40],
Dufaux proposes an algorithm that selects shots and keyframes based on measures
of motion-activity (via frame difference), spatial activity (via entropy of the pixel
value distribution), skin-color pixels, and face detection.

By taking into account skin color and faces, the algorithm increases the likelihood
of the selected keyframe including people and portraits, such as close-ups of movie
actors, thereby producing interesting keyframes. Skin color is learned using labeled
image samples. Face detection is performed using a neural net.

Figure 20.12a shows a selection of frames from a video of beach activity (see [41]).
Here, the keyframes in Fig. 20.12b are selected based mainly on color information
(but being careful with respect to the changes incurred by changing illumination
conditions when videos are shot).

A more difficult problem arises when changes between shots are gradual and when
colors are rather similar overall, as in Fig. 20.13a. The keyframes in Fig. 20.13b are
sufficient to show the development of the whole video sequence.

Other approaches attempt to deal with more profoundly human aspects of video,
as opposed to lower-level visual or audio features. Much effort has gone into applying

700 20 Content-Based Retrieval in Digital Libraries

Fig. 20.13 Garden video: a frames from a digital video; b keyframes selected

data mining or knowledge-base techniques to classifying videos into such categories
as sports, news, and so on, and then subcategories such as football and basketball.

20.7 Querying onVideos Based on Human Activity

Thousands of hours of video are being captured every day by CCTV cameras, web
cameras, broadcast cameras, etc. However, most of the activities of interest (e.g., a
soccer player scores a goal) only occur in a relatively small region along the spatial
and temporal extent of the video. In this scenario, effective retrieval of a small
spatial/temporal segment of the video containing a particular activity from a large
collection of videos is very important.

Lan et al.’s work [42] on activity retrieval is directly inspired by the application
of searching for activities of interest from broadcast sports videos. For example,
consider the scene shown in Fig. 20.14. In terms of human activities, there is a variety
of questions one can ask. Who is the attacker? What are the players in the bottom
right corner doing? How many people are running? Which players are defending
(marking) members of the opposing team? What is the overall game situation? Note
that potential queries often involve social roles such as “defender,” “attacker,” or
“man-marking.” Lan et al. [42] present a model toward answering queries such as
these.

The representation of human activity is a challenging, open problem. Much of the
work focuses on recognition of low-level single-person actions (e.g., [43]). Lan et al.
rely on low-level features and representations used by these methods to predict the
actions of individuals, but build higher-level models upon them. It is arguable that
multiple levels of detail and types of labels are required depending on the problem

20.7 Querying on Videos Based on Human Activity 701

Fig.20.14 An example of human activity in realistic scenes. Beyond the general scene-level activity
description (e.g. Free Hit), we can explain the scene at multiple levels of detail such as low-level
actions (e.g., standing and jogging) and mid-level social roles (e.g., attacker and first defenders).
The social roles are denoted by different colors. In this example, we use magenta, blue and white
to represent attacker, man-marking and players in the same team as the attacker respectively

focus. A model is presented that can be used to capture a variety of levels of detail in
a unified framework. In addition to modeling of low-level actions (e.g., running or
standing) and high-level events (“attack play”, “penalty corner”), we model social
roles. Social roles take into account inter-related people and are a complementary
representation to the low-level actions typically used in the activity recognition lit-
erature. For example, a player engaged in the social role of “man-marking” is likely
to have an opponent nearby. Further, the notions of low-level actions, social roles,
and high-level events naturally require a contextual representation—the actions and
social roles of all the people in a scene are interdependent, and related to the high-
level event taking place. The model captures these relationships, and allows flexible
inference of the social roles and their dependencies in a given scene.

20.7.1 Modeling Human Activity Structures

Here we introduce the model in [42]. To illustrate, we describe an instantiation
applicable to modeling field hockey videos.

We first describe the labeling. Assume an image has been pre-processed, so the
location of the goal and persons in the image have been found. We separate the players
into two teams according to their color histograms. Each person is associated with
two labels: action and social role. Let hi ∈ H and ri ∈ R be the action and social
roles of the person i respectively, where H and R are the sets of all possible action
and social role labels, respectively. Each video frame is associated with an event
label y ∈ Y , where Y is the set of all possible event labels.

The model is hierarchical, and includes various levels of detail: low-level actions,
mid-level social roles, and high-level events. The relationships and interactions

702 20 Content-Based Retrieval in Digital Libraries

Fig. 20.15 Graphical
illustration of the model.
Different types of potentials
are denoted by lines with
different colors. Details of the
potential functions are
contained in Eq. 20.10

between these are included in the model. We define the score of interpreting a video
frame I with the hierarchical event representation as:

Fw(x, y, r, h, I) = w⊤$(x, y, r, h, I) =
∑

j

w⊤
1 φ1(x j , h j)

+
∑

j

w⊤
2 φ2(h j , r j)+

∑

j,k

w⊤
3 φ3(y, r j , rk) (20.10)

Now we go over the model formulation using the graphical illustration shown in
Fig. 20.15. The first term denotes standard linear models trained to predict the action
labels of the persons in the scene (indicated by blue lines in Fig. 20.15). The second
term captures the dependence between action labels and social roles (green lines in
Fig. 20.15). The third term explores contextual information by modeling interactions
between people in terms of their social roles under an event y (magenta and dark blue
lines in Fig. 20.15). Social roles naturally capture important interactions, e.g., first
defenders tend to appear in the neighborhood of an attacker, man-marking happens
when there is a player from the opposing team.

The model parameters w are learned in a structured SVM framework [44]; for
details, the reader is referred to [42].

Inference

Given a test video there are a variety of queries one might wish to answer. Using our
hierarchical model, one can formulate queries about any individual variable at any
level of detail. For instance, one can query on the overall event label for the scene,
or the social role label of a particular person. Figure 20.16 shows an overview of the
testing phase.

For a given video and query variable q , the inference problem is to find the best
hierarchical event representation that maximizes the scoring function Fw(x, y, h, r, I)
while fixing the value of q to its possible values. For example, if q is the action of one

20.7 Querying on Videos Based on Human Activity 703

Fig. 20.16 An overview of the testing phase. Given a new video and a query, we first run the
pretrained person detector and tracker to extract the tracklet of each player. Then the tracklet
features are fed into the inference framework. Finally, the retrieval results are obtained based on
the inference scores computed using Eq. 20.10

person (one of the hi), we would compute the maximum value of the scoring function
Fw when fixing q to each possible action. We define the optimization problem as
follows:

max
y,h,r\q

Fw(x, y, h, r, I) = max
y,h,r\q

w⊤$(x, y, h, r, I) (20.11)

The score is used to represent the relevance of the instance (e.g., video frame) to
the query. The goal of an activity retrieval system is to rank the data according to the
relevance scores and return the top-ranked instances.

20.7.2 Experimental Results

The challenging Broadcast Field Hockey Dataset (developed in [42]) that consists
of sporting activities captured from broadcast cameras is used to demonstrate the
efficacy of the model. The model can carry out different inferences based on a user’s
queries. The method is directly applicable to multilevel human activity recognition.
The goal is to predict events, social roles or actions of each person. In this case, the
query doesn’t specify a particular event or social roles, but consists of more general
questions, such as what is the overall game situation, or what are the social roles of
each player. Figure 20.17 shows the visualizations of the predicted events and social
roles.

20.8 Quality-AwareMobile Visual Search

With the increasing popularity of mobile phones and tablets, Mobile Visual Search
has attracted growing interest in the field of content-based image retrieval (CBIR). In
this section, we present a novel framework for quality-aware mobile CBIR by Peng
et al. [45]. On the mobile-client side, a query image is compressed to a certain quality
level to accommodate the network conditions and then uploaded onto a server with its

704 20 Content-Based Retrieval in Digital Libraries

Fig.20.17 Visualization of results on broadcast field hockey dataset. The ground truth event (white)
and the predicted event are shown in the left corner of each image. Correct predictions are visualized
in blue, otherwise yellow. Each bounding box is represented by a color, which denotes the predicted
social roles. We use magenta, yellow, green, blue and white to represent the social roles attacker, first
defenders, defenders defend against space, defenders defend against person and other, respectively.
The cross sign in the middle of a bounding box indicates incorrect predictions, and the ground truth
social roles are indicated by the color of the cross sign

quality level transferred as side information. On the server side, a set of features are
extracted from the query image and then compared against the features of the images
in the database. As the efficacy of different features changes over query quality, we
leverage the side information about the query quality to select a quality-specific

20.8 Quality-Aware Mobile Visual Search 705

similarity function that is learned offline using a Support Vector Machine (SVM)
method.

Mobile Visual Search enables people to look for visually similar products or find
information about movies or CDs online by initiating a search request from a camera
phone. Depending on which part of the visual search is performed on the mobile
devices, there are several possible client-server architectures [46]:
1. A query image is transmitted to the server, and then feature extraction and

retrieval are done on the server.
2. The mobile client extracts some features from the query image and uploads only

the features to the server. The retrieval is performed on the server.
3. The mobile client maintains a cache of the image database. The retrieval is done

locally on the client. Only if no match is found does the client sends a query to
the server.

In each case, the system performance is constrained on the bandwidth, computation,
memory, and power of mobile devices. Recently, there has been work focusing on
designing compact descriptors for visual search. One representative work is the
Compressed Histogram of Gradients (CHoG) descriptor proposed by Chandrasekhar
et al. [47], which is shown to be highly discriminative at a low bitrate. Besides, there
has been exploratory work by the MPEG committee toward defining a standard for
visual search applications since 2011. This standardization initiative is referred to
as “Compact Descriptors for Visual Search (CDVS)” [48]. It is evident that a low-
bitrate descriptor can leads to shorter transmission latency, smaller memory overload,
and potentially faster matching. Therefore, all the three aforementioned client-server
architectures of mobile visual search can benefit from the advancement of compact-
descriptor technology. Besides the great amount of research effort devoted to the
design of visual descriptors, fusion methods for visual search has also attracted lots
of attention in the CBIR community. Given that a descriptor is a set of characteristics
of an image, such as color, shape, and texture, fusion techniques are shown to be
effective in reducing the semantic gap of image retrieval based on feature similarity.

Here, we outline a framework for mobile visual search using a client-server archi-
tecture [45]. Specifically, a query image is compressed to a certain quality level on
the mobile client and then uploaded to the server with its quality level transmitted
as side information at the same time. A query quality-dependent retrieval algorithm
based on fusion of multiple features is then performed on the server. The motivations
behind proposing such a framework are as follows:
• Although the computational capacity of mobile devices has become more and more

powerful, there are several advantages to performing descriptor extraction on the
server. Certainly, it eliminates the waiting time caused by computing descriptors
on a mobile device of limited computing resource. More importantly, given the
abundant computing resources on the server, it greatly relaxes the stringent con-
straint on the complexity and memory usage of the descriptor(s), which make a
fusion method computationally feasible in this framework.

• As bandwidth is also an important concern for visual search on wireless networks,
the framework allows the client to compress a query image at a certain bitrate to
accommodate the network condition.

706 20 Content-Based Retrieval in Digital Libraries

• Since a specific descriptor is not equally important for images of different quality
levels, the side information about the query quality could be leveraged to enhance
the retrieval performance of the fusion method.

20.8.1 RelatedWork

Chatzichristofis et al. investigated the behavior of some compact composite descrip-
tors in early fusion (a new descriptor is constructed based on multiple existing
descriptors), late fusion (the retrieved results with different descriptors are fused
to form a final result list), and distributed image retrieval [49]. The experimental
results show that the fusion methods are able to present better results than individ-
ual descriptors. Singh and Pooja present a fusion image retrieval method using the
global angular radial transform and local polar Hough transform based features [50].
Chen et al. propose an image retrieval method based on similarity score fusion of
color and texture features using a genetic algorithm [51]. All of these methods per-
form query independent fusion. Since a special feature has different importance in
reflecting the content of different images, Huang et al. propose a query-dependent
feature fusion method for medical image retrieval based on a one-class SVM method
[52]. Zhang et al. also propose a graph-based query specific fusion approach where
multiple retrieval sets are merged and reranked by conducting a link analysis on a
fused graph [53]. It is worth mentioning that none of these fusion methods takes into
consideration the quality of the query images.

There are several methods that explicitly deal with distorted query images. For
example, Liao and Chen propose a complementary retrieval method based on fusion
of multiple features to resist various types of processing, such as geometric trans-
formation, compression, changing of illumination, and noise corruption. In their
method, the distortion types of the query image are assumed to be unknown. A com-
plementary analysis is proposed to determine the distortion category for each query
image and the feature resistant to the predicted category is used to retrieve the desired
original image [54]. Unlike the work outlined here, that focuses on the quality levels
of the query images, their method focuses on the distortion type and is designed for
copy detection rather than general visual search. Besides, Singh et al. [55] propose a
method that combines color and shape features to retrieval images with incomplete
or distorted queries. In their studies, query images are categorized into two classes:
“complete” and “incomplete.” The same fusion method is used for all incomplete
queries.

20.8.2 Quality-AwareMethod

We outline a query quality-dependent fusion approach for mobile visual search.
Specifically, it is based on the fusion of five common image features [56]:
• Tiny Images: This is the most trivial descriptor that compares images directly in

color space after reducing the image dimensions drastically.

20.8 Quality-Aware Mobile Visual Search 707

• Color Histograms: The histograms have 16 bins for each component of RGB color
space, yielding a total of 48 dimensions.

• GIST: This descriptor computes the output of a bank of 24 Gabor-like filters tuned
to eight orientations at four scales. The squared output of each filter is then averaged
on a 4 × 4 grid.

• Texton Histograms: For each image build a 512-dimensional histogram using a
512-entry universal texton dictionary.

• SSIM [57]: The self-similarity descriptors are quantized into 300 visual words by
k-means. Unlike the descriptors mentioned before, SSIM provide a complementary
measure of scene layout that is somewhat appearance invariant.
A query quality-dependent method for fusion image retrieval based on the five

descriptors is then employed, as follows.
1. Categorize the query images into different quality levels based on the side infor-

mation. 1

2. For each “query image-retrieved image” pair, compute a 5-dimensional
similarity-score vector x⃗ based on the five descriptors. The C-SVM formula-
tion is adopted to learn the weights w⃗k to map x⃗ into a final score s f = w⃗k · x⃗ .
Specifically, a set of positive (relevant) image pairs P is selected, and also a set
of negative (irrelevant) image pairs N . For each image pair pi ∈ P ∪ N , compute
a vector x⃗i , and assign to x⃗i a label yi (“1” for pi ∈ P , and “-1” for pi ∈ N).
The weights w⃗ can be learned by solving the following optimization problem:

min
w⃗,b,ξ

1
2 w⃗

T w⃗ + C
l∑

i=1
ξi

subject to yi (w⃗
T φ(x⃗i)+ b) ≥ 1 − ξi ,

ξi ≥ 0.

(20.12)

This optimization is run for each quality level k to learn w⃗k using a query dataset
of the corresponding quality.

3. At the test stage, the learned weight vector w⃗k is used to compute the final
similarity score for a “query image-retrieved image” pair, with k being the quality
level of the query image. The retrieved images are returned in decreasing order
of the final similarity scores.

20.8.3 Experimental Results

Datasets

Consider the Wang image database [58] that contains 1,000 images of 10 classes
(100 for each class). Images that belong to the same class are considered to be
relevant. Ten copies of the Wang database are constructed at different quality levels.
Specifically, images are compressed using JPEG compression with quality factor

1 For example, the JPEG standard uses a scalar to adjust a set of well-defined quantization tables.

708 20 Content-Based Retrieval in Digital Libraries

Table 20.1 File size ranges of the images (386 × 256) from the Wang database compressed at
different quality levels

Quality factor 100 75 50 30 20 15 10 8 5 3

Size range (Kb) 7–56 6–38 4–24 4–18 3–14 3–12 3–9 3–8 3–6 3–5

k ∈ {100, 75, 50, 30, 20, 15, 10, 8, 5, 3}. Let Dk be the database containing images
at quality level k. D100 corresponds to the original Wang database, and D3 contains
images of the lowest quality. The file size ranges of the images after compression
are listed in Table 20.1.

In the experiments, the query images can be from any quality level, whereas the
images to be retrieved are always from D100. To learn the weights w⃗k for quality
level k, we selected 500 query images (50 for each class) from Dk , and pair them
with the images in D100 for training. Let (qk,i , r j) be such a pair, where qk,i ∈ Dk
and r j ∈ D100. Let c(·) denote the class of an image. A pair (qk,i , r j) is labeled
positive or “1”, if c(qk,i) = c(r j). Otherwise, it is labeled negative or “−1.” As
there are nine negative classes and only one positive class for each query image, we
randomly select one-ninth of the negative pairs in order to balance the positive and
negative samples during training. The remaining 500 images from each Dk that have
not been selected for training are used for test. In the implementation, the dictionaries
used to compute the descriptors are built using images from the SUN database [56].
We measure the similarity of two descriptors based on the histogram intersection
distance and use a linear kernel for the SVM-based quality-aware fusion method.

Retrieval Metric

Let s f (q, rn) be the final similarity score between a query image q and an image rn
in the database. The database images rn are then sorted according to the similarity
scores such that s f (q, rn) ≥ s f (q, rn+1).

As the Precision and Recall values vary with the query images and the numbers
of returned images, instead use is made of the Mean Average Precision (MAP), as
defined in Eq. 20.9.

Results

The MAP results on the Wang database of 10 different quality levels are shown in
Table 20.2 and also in Fig. 20.18. We can see that the performances of the Color
Histograms, Tiny Images, and GIST do not change drastically as the image quality
drops. On the contrary, the Texton Histograms and SSIM descriptors achieve the
best performance near the higher end of the quality range (level 100, 75, and 50)

20.8 Quality-Aware Mobile Visual Search 709

Table 20.2 MAP results of different quality levels

Query quality 100 75 50 30 20 15 10 8 5 3

Color histograms 0.3874 0.3874 0.3831 0.3835 0.3800 0.3775 0.3746 0.3752 0.3672 0.3626
Tiny images 0.3054 0.3052 0.3052 0.3047 0.3046 0.3043 0.3044 0.3038 0.3021 0.3021
GIST 0.3292 0.3276 0.3279 0.3264 0.3247 0.3228 0.3174 0.3125 0.2990 0.2824
Texton histograms 0.4260 0.4171 0.4256 0.4206 0.4135 0.4056 0.3843 0.3597 0.3119 0.2694
SSIM 0.4804 0.4805 0.4154 0.3656 0.3463 0.3202 0.2949 0.2777 0.2456 0.2178
Quality-aware fusion 0.5730 0.5726 0.5462 0.5330 0.5259 0.5168 0.5081 0.4975 0.4808 0.4701

Fig. 20.18 Map results of different quality levels

and perform poorly near the lower-end of the quality range (level 5 and 3). On these
quality levels, the quality-aware fusion method is able to achieve better retrieval
performance than a mean-based fusion method, which indicates that the quality-
dependent weights learned by the SVM method are better than uniform weights in
fusing the different descriptors. For the medium quality levels, mean-based fusion
is slightly better than the quality-aware fusion, but there is no significant perfor-
mance gap between them. This indicates that the uniform weights are closer to the
optimal weights than the learned quality-dependent weights for the medium quality
levels. This is not surprising considering the relatively smaller performance differ-
ences among the five descriptors. Nevertheless, there is clearly much room left for
improving such a quality-aware fusion method by exploring better ways to estimate
the optimal weights for combination.

It can also be observed that both fusion methods achieve significantly better MAPs
than any individual descriptors on each quality level. Noticeably, the quality-aware

710 20 Content-Based Retrieval in Digital Libraries

fusion algorithm for the lowest-quality query images achieves comparable perfor-
mance with the best-performing individual descriptor SSIM with the highest-quality
query images. This strongly supports the advantages of fusing multiple descriptors
for visual search.

The above discussion presented a quality-aware framework for Mobile Visual
Search based on a query quality-dependent fusion method. The experimental results
demonstrate the potential of taking into consideration the quality of query images to
improve the performance of fusion image retrieval.

Current progressive coding techniques allow a mobile client to upload a bitstream
that successively refines the reconstructed query image. In this case, the server can
perform image retrieval using a query image of reduced quality, and then update the
retrieved results as the query quality gets better and better.

20.9 Exercises

1. Devise a text-annotation taxonomy (categorization) for image descriptions, start-
ing your classification using the set of Yahoo! categories, say.

2. Examine several web site image captions. How useful would you say the textual
data is as a cue for identifying image contents? (Typically, search systems use
word stemming, for eliminating tense, case, and number from words—the word
stemming becomes the word stem.)

3. Suppose a color histogram is defined coarsely, with bins quantized to 8 bits, with
3 bits for each red and green and two for blue. Set up an appropriate structure
for such a histogram, and fill it from some image you read. Template Visual
C++ code for reading an image is on the text web site, as sampleCcode.zip
under “Sample Code.”

4. Try creating a texture histogram as described in Sect. 20.3.4. You could try a
small image and follow the steps given there, using MATLAB, say, for ease of
visualization.

5. Describe how you may find an image containing some two-dimensional “brick
pattern” in an image database, assuming the color of the “brick” is yellow and
the color of the “gaps” is blue. (Make sure you discuss the limitations of your
method and possible improvements.)
(a) Use color only.
(b) Use edge-based texture measures only.
(c) Use color, texture, and shape.

6. The main difference between a static image and video is the availability of motion
in the latter. One important part of CBR from video is motion estimation (e.g.,
the direction and speed of any movement). Describe how you could estimate
the movement of an object in a video clip, say a car, if MPEG (instead of
uncompressed) video is used.

20.9 Exercises 711

7. Color is three-dimensional, as Newton pointed out. In general, we have made
use of several different color spaces, all of which have some kind of brightness
axis, plus two intrinsic-color axes.

Let’s use a chromaticity two-dimensional space, as defined in Eq. (4.7). We’ll use
just the first two dimensions, {r, g}. Devise a two-dimensional color histogram
for a few images, and find their histogram intersections. Compare image sim-
ilarity measures with those derived using a three-dimensional color histogram,
comparing over several different color resolutions. Is it worth keeping all three
dimensions, generally?

8. Suggest at least three ways in which audio analysis can assist in video retrieval-
system-related tasks.

9. Implement an image search engine using low-level image features such as color
histogram, color moments, and texture. Construct an image database that con-
tains at least 500 images from at least 10 different categories. Perform retrieval
tasks using a single low-level feature as well as a combination of features. Which
feature combination gives the best retrieval results, in terms of both Precision
and Recall, for each category of images?

10. Another way of combining Precision and Recall is the F-score measure. The
F-score is the harmonic mean of Precision P and Recall R, defined as

F = 2(P ∗ R)/(P + R)

Experiment and determine how F behaves as P and R change.

References

1. M.M. Fleck, D.A. Forsyth, C. Bregler, in Finding Naked People, European Congress on Com-
puter Vision, vol 2 (1996), pp. 593–602

2. C.C. Chang, S.Y. Lee, Retrieval of similar pictures on pictorial databases. Pattern Recognit.
24, 675–680 (1991)

3. M. Worring, P. Sajda, S. Santini, D. Shamma, A.F. Smeaton, Q. Yang, Where is the user in
multimedia retrieval? IEEE Multimedia 19(4), 6–10 (2012)

4. S. Paek, C.L. Sable, V. Hatzivassiloglou, A. Jaimes, B.H. Schiffman, S.-F. Chang, K.R.
McKeown, in Integration of visual and text based approaches for the content labeling and clas-
sification of photographs, ACM SIGIR’99 Workshop on Multimedia Indexing and Retrieval,
(1991), pp. 423–444

5. K. Barnard, D.A. Forsyth, in Learning the semantics of words and pictures, Proceedings of
International Conference on Computer Vision, vol 2 (2001), p. 408–415

6. M.J. Swain, D.H. Ballard, Color indexing. Int. J. Comput. Vision 7, 11–32 (1991)
7. A.W.M. Smeulders, M. Worring, S. Santini, A. Gupta, R. Jain, in Content-based image retrieval

at the end of the early years, IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol 22 (2000), pp. 1349–1380

8. J.W.H. Tangelder, R.C. Veltkamp, A survey of content based 3d shape retrieval methods.
Multimedia Tools Appl. 39, 441–471 (2008)

http://dx.doi.org/10.1007/978-3-319-05290-8_4

712 20 Content-Based Retrieval in Digital Libraries

9. P. Huang, A. Hilton, J. Starck, Shape similarity for 3d video sequences of people. Int. J. Comput.
Vision 89(2–3), 362–381 (2010)

10. M. Flickner et al., Query by image and video content: the qbic system. IEEE Comput. 28(9),
23–32 (1995)

11. J. Hafner, H.S. Sawhney, W. Equitz, M. Flickner, W. Niblack, in Efficient color histogram
indexing for quadratic form distance functions, IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol 17 (1995), pp. 729–736

12. C. Carson, S. Belongie, H. Greenspan, and J. Malik. Blobworld: image segmentation using
expectation-maximization and its application to image querying. IEEE Trans. Pattern Anal.
Mach. Intell. 24(8), 1026–1038 (2002)

13. A. Pentland, R. Picard, S. Sclaroff, in System One, Photobook: tools for content-based manip-
ulation of image databases, Proceedings of SPIE, Storage and Retrieval for Image and Video
Databases, vol 2185 (1994), pp. 34–47

14. F. Liu, R.W. Picard, Periodicity, directionality, and randomness: wold features for image mod-
eling and retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 18, 722–733 (1996)

15. R.W. Picard, T.P. Minka, M. Szummer, Modeling user subjectivity in image libraries. IEEE
Int. Conf. Im. Proc. 2, 777–780 (1996)

16. Y. Rui, T.S. Huang, M. Ortega, S. Mehrotra, Relevance feedback: a power tool for interactive
content-based image retrieval. IEEE Trans. Circ. Sys. Video Tech. 8(5), 644–655 (1998)

17. A. Hampapur, A. Gupta, B. Horowitz, C.F. Shu, in The Virage Image Search Engine: an open
framework for image management, Proceedings of SPIE, Storage and Retrieval for Image and
Video Databases, vol 3022 (1997), pp. 188–198

18. Z.N. Li, O.R. Zaïane, Z. Tauber, Illumination invariance and object model in content-based
image and video retrieval. J. Vis. Commun. Image Rep. 10, 219–244 (1999)

19. H. Tamura, S. Mori, T. Yamawaki, Texture features corresponding to visual perception. IEEE
Trans. Syst. Man Cybern. 8(6), 460–473 (1978)

20. A.R. Rao, G.L. Lohse, in Towards a Texture Naming System: identifying relevant dimensions
of texture, IEEE Conference Visualization, (1993), pp. 220–227

21. R. Jain, R. Kasturi, B.G. Schunck, Machine Vision (McGraw-Hill Inc, New York, 1995), p.
549

22. M.S. Drew, J. Wei, Z.N. Li, Illumination-invariant image retrieval and video segmentation.
Pattern Recognit. 32, 1369–1388 (1999)

23. M.S. Drew, Z.N. Li, Z. Tauber, Illumination color covariant locale-based visual object retrieval.
Pattern Recognit. 35(8), 1687–1704 (2002)

24. T. Deselaers, D. Keysers, H. Ney, Features for image retrieval: an experimental comparison.
Inf. Retrieval 11(2), 77–107 (2008)

25. M.S. Lew, N. Sebe, C. Djeraba, R. Jain, Content-based multimedia information retrieval: state
of the art and challenges. ACM Trans. Multimedia Comput. Commun. Appl. 2(1), 1–19 (2006)

26. R. Datta, D. Joshi, J. Li, J.Z. Wang, Image retrieval: ideas, influences, and trends of the new
age. ACM Comput. Surveys, 40(2), 5:1–5:60 (2008)

27. D. Lowe, Distinctive image features form scale-invariant keypoints. Int. J. Comput. Vision
20(2), 91–110 (2004)

28. L. Fei-Fei, P. Perona, in A Bayesian Hierarchical Model for Learning Natural Scene Categories,
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, (2005)

29. J. Sivic, A. Zisserman, in Video Google: a text retrieval approach to object matching in videos,
Proceedings of International Conference on Computer Vision (2003)

30. J. Philbin, O. Chum, M. Isard, J. Sivic, A. Zisserman, in Object Retrieval with Large Vocabu-
laries and Fast Spatial Matching, Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition (2007)

31. W. Zhou, Y. Lu, H. Li, Y. Song, Q. Tian, in Spatial Coding for Large Scale Partial-duplicate Web
Image Search, Proceedings of ACM Conference on Multimedia (ACM Multimedia) (2010)

References 713

32. O. Chum, J. Philbin, J. Sivic, M. Isard, A. Zisserman, Total Recall: automatic query expansion
with a generative feature model for object retrieval, Proceedings of International Conference
on Computer Vision (2007)

33. T.-S. Chua, R. Hong, G. Li, J. Tang, in From Text Question-Answering to Multimedia QA on
Web-scale Media Resources, Proceedings of the First ACM Workshop on Large-scale Multi-
media Retrieval and Mining (2009), pp. 51–58

34. G. Wang, D. Hoiem, D. Forsyth, Learning image similarity from flickr group using fast kernel
machines. IEEE Trans. Pattern Anal. Mach. Intell. 34(11)2, 177–2188 (2012)

35. G.K. Meyers et al., Evaluating multimedia features and fusion for example-based event detec-
tion. Mach. Vis. Appl. 25(1), 17–32 (2014)

36. B. Li, E. Chang, C.-T. Wu, in DPF: A perceptual distance function for image retrieval, IEEE
International Conference on Image Processing, (2002), pp. 597–600

37. W. Niblack, X. Zhu, J.L. Hafner, T. Breuel, D. Ponceleon, D. Petkovic, M.D. Flickner, E. Upfal,
S.I. Nin, S. Sull, B. Dom, B.-. Yeo, A. Srinivasan, D. Zivkovic, M. Penner, in Updates to the
QBIC System, Proceedings of SPIE Storage and Retrieval for Image and Video Databases VI,
vol. 3312 (1998), pp. 150–161

38. S.F. Chang et al., Videoq: an automated content based video search system using visual cues.
Proc. ACM Multimedia 97, 313–324 (1997)

39. D. Bordwell, K. Thompson, Film Art: An Introduction, 9th edn. (McGraw-Hill, New york,
2009)

40. F. Dufaux, in Key Frame Selection to Represent a Video, International Conference on Image
Processing (2000), pp. 275–278

41. M.S. Drew, J. Au, Video keyframe production by efficient clustering of compressed chromatic-
ity signatures. ACM Multimedia 2000, 365–368 (2000)

42. T. Lan, L. Sigal, G. Mori, in Social Roles in Hierarchical Models for Human Activity Recog-
nition, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(2012)

43. C. Schuldt, I. Laptev, B. Caputo, in Recognizing Human Actions: a local SVM approach,
Proceedings of the International Conference on Pattern Recognition (2004)

44. T. Joachims, in Training Linear SVMs in Linear Time, Proceedings of ACM International
Conference on Knowledge Discovery and Data Mining (2006)

45. P. Peng, J. Li, Z.N. Li, in Quality-Aware Mobile Visual Search, The 3rd International Conference
on Integrated Information (2013)

46. B. Girod, V. Chandrasekhar, D.M. Chen, N.M. Cheung, R. Grzeszczuk, Y. Reznik, G. Takacs,
S.S. Tsai, R. Vedantham, Mobile visual search. IEEE Signal Process. Mag. 28(4), 61–76 (2011)

47. V. Chandrasekhar, G. Takacs, D.M. Chen, S.S. Tsai, Y. Reznik, R. Grzeszczuk, B. Girod,
Compressed histogram of gradients: a low-bitrate descriptor. Int. J. Comput. Vision 96(3),
384–399 (2012)

48. Y.A. Reznik, in On MPEG Work Towards a Standard for Visual Search, Proceedings of SPIE
Applications of Digital Image Processing XXXIV, vol. 8135 (2011)

49. S.A. Chatzichristofis, A. Arampatzis, Y.S. Boutalis, Investigating the behavior of compact com-
posite descriptors in early fusion, late fusion, and distributed image retrieval. Radioengineering
19(4), 725–733 (2010)

50. C. Singh et al., An effective image retrieval using the fusion of global and local transforms
based features. Opt. Laser Technol. 44(7), 2249–2259 (2012)

51. M. Chen, P. Fu, Y. Sun, H. Zhang, in Image Retrieval Based on Multi-Feature Similarity Score
Fusion Using Genetic Algorithm, 2nd International Conference on Computer and Automation
Engineering, vol 2 (2010) pp. 45–49

52. Y. Huang, D. Ma, J. Zhang, Y. Zhao, S. Yi, A new query dependent feature fusion approach
for medical image retrieval based on one-class svm. J. Comput. Inform. Syst. 7(3), 654–665
(2011)

714 20 Content-Based Retrieval in Digital Libraries

53. S. Zhang, M. Yang, T. Cour, K. Yu, D.N. Metaxas, in Query Specific Fusion for Image Retrieval,
European Conference on Computer Vision, (Springer, 2012) pp. 660–673

54. C.J. Liao, S.Y. Chen, Complementary retrieval for distorted images. Pattern Recogn. 35(8),
1705–1722 (2002)

55. B.K. Singh, A.S. Thoke, K. Verma, A. Chandrakar, Image information retrieval from incomplete
queries using color and shape features. Signal Image Process. 2(4), 213 (2011)

56. J. Xiao, J. Hays, K.A. Ehinger, A. Oliva, A. Torralba, in Sun Database: large-scale scene
recognition from abbey to zoo, IEEE Conference on Computer Vision and Pattern Recognition
(2010), pp. 3485–3492

57. Z. Wang et al., Image quality assessment: from error visibility to structural similarity. IEEE
Trans. Image Process. 13(4), 600–612 (2004)

58. J.Z. Wang, J. Li, G. Wiederhold, Simplicity: semantics-sensitive integrated matching for picture
libraries. IEEE Trans. Pattern Anal. Mach. Intell. 23(9), 947–963 (2001)

Index

Symbols
A-law, 148, 152, 166

compander, 232
µ-law, 148, 152, 166, 435

compander, 232
2D mesh, 375

geometry coding, 376
motion coding, 378
object coding, 375

2D object animation, 379
3D model-based coding, 381
3D percept, 130
3D polygon mesh, 383
3D video and TV, 130
3G, 582, 583, 589

G3G (Global 3G), 583
4G, 584, 589

A
AC (Alternate Current), 236
Access network, 486, 489, 494, 564
Access point (AP), 576, 586–588, 608
Access time, 545
Active pixel, 118
Active video line, 118
AD (analog-to-digital) converter, 149, 175
Adaptive compression algorithms, 196
Adaptive Huffman coding, 196
Adobe Director, 42

3D Sprite, 47
animation, 44
control, 44
Imaging Lingo, 43
Lingo, 43

Lingo script, 46
object, 47
tweening, 44

Adobe Flash, 47
animation, 50
symbol, 49
window, 48

Adobe Flash Video, 619
Adobe Photoshop, 41

alpha channel, 41
magic wand tool, 42

Adobe Premiere, 39
timeline window, 39

ADPCM (adaptive differential pulse code
modulation), 165, 175, 435–437

Affine transform, 380
Alias, 142–144
Amazon web services (AWS), 14, 649, 657,

659
Amazon EBS, 652
Amazon EC2, 647, 650, 660
Amazon machine image (AMI), 651
Amazon S3, 645, 647, 649, 660
AWS region, 649, 651
Cloudfront, 657

AMPS (advanced mobile phone system), 577
Anaglyph 3D, 132
Analog display interface, 126
Analog video, 115
Animation, 18

Autodesk 3ds Max, 19
Autodesk Maya, 19
Autodesk Softimage, 19
DirectX, 18

Z.-N. Li et al., Fundamentals of Multimedia, 715
Texts in Computer Science, DOI: 10.1007/978-3-319-05290-8,
© Springer International Publishing Switzerland 2014

716 Index

Java3D, 18
OpenGL, 18

Anti-aliasing, 143
filter, 143

APC (adaptive predictive coding), 176
Application-layer multicast, 506, 553

end-system multicast (ESM), 555
multi-tree overlay, 556
single tree overlay, 555, 556

Arithmetic coding, 205, 372
adaptive arithmetic coding, 215, 216
basic algorithm, 206
binary arithmetic coding, 214, 413, 415
integer implementation, 214
scaling and incremental coding, 210
tag, 208, 210

Aspect ratio, 118, 123, 125
ATM (asynchronous transfer mode), 496, 511
ATV (advanced TV), 348
Audio compression standard

G.711, 437, 523
G.721, 436
G.722, 523
G.723, 436
G.723.1, 447, 449
G.726, 436, 437
G.727, 436
G.728, 436, 450
G.729, 436, 447, 450

Audio filtering, 150
Autostereoscopic display device, 135

lenticular lens, 135
parallax barrier, 135

AVC (advanced video coding, also see
H.264/AVC), 395

AVCHD (advanced video coding high
definition), 18

AVI (audio video interleave), 39

B
BAB (binary alpha block), 370
Bag of words (BoW), 694
Band-limited signal, 143
Band-limiting filter, 151
Band-pass filter, 151, 158, 166
Bandwidth, 151, 166, 489, 512, 531, 566, 577,

618, 628, 645, 652, 662, 670
Base station (BS), 576, 579, 585, 608
BCH (Bose-Chaudhuri-Hocquenghem) codes,

595

Bi-level image compression standards, also see
JBIG, 309

Bilinear interpolation, 346, 355
Binary tree, 190
Bitmap, 58
Bitplane, 59
Bitrate, 151, 195, 225, 267, 270, 317, 325, 332,

430, 507, 509, 551, 590
Block codes, 594
Block-based coding, 359, 363
Blu-ray, 14
Bluetooth, 589
BMP (bitmap), 75
Broadcast, 503, 550
Buffer management, 514

peak bitrate, 515
prefetch buffer, 515

C
C-BIRD, 680

search by color, 680, 682
search by illumination invariance, 685
search by object model, 686
search by texture, 683

CABAC (context-adaptive binary arithmetic
coding), 396, 419

Cable modem, 486, 492
Cable TV network, 489, 492
CAE (context-based arithmetic encoding), 370
Camera system, 85
CAVLC (context-adaptive variable length

coding), 396
CBIR (content-based image retrieval), 675,

680, 703
3D shapes and objects, 677
early CBIR systems, 678
histogram intersection, 678
human activity, 700, 703
key technologies, 692
quality-aware, 706
quantifying search results, 688
video retrieval, 679, 697

CCIR (consultative committee for international
radio), 122

CCITT (international telegraph and telephone
consultative committee), 168, 325

CDMA (code division multiple access), 578,
609

cdma2000, 583
WCDMA (wideband CDMA), 582, 609

CELP (code excited linear prediction), 444

Index 717

adaptive codebook, 445
LSF (line spectrum frequency), 448
LSP (line spectrum pair), 447
LTP (long time prediction), 445
stochastic codebook, 448
STP (short-time prediction), 445

Checksum, 498, 500, 591
Chroma subsampling, 122, 407, 417, 419
Chromaticity, 90

diagram, 89
Chrominance, 106
CIF (common intermediate format), 123
Circuit switching, 495
Client/server, 531, 532, 540, 567
Cloud computing, 645

cloud gaming, 667
computation offloading, 661
infrastructure as a service (IaaS), 647
platform as a service (PaaS), 648
private cloud, 647
public cloud, 647
software as a service(SaaS), 648

Cloud gaming, 665
Gaikai, 15, 668
Onlive, 668

Clustering, 67
CMY, 102
CMYK, 103
Codec, 186, 477
Coder mapping, 165
Codeword, 186
Coding efficiency, 430
Color

camera-dependent, 100
cycling, 65
density, 682
histogram, 64, 680
HSV, 101
layout, 682
lookup table (LUT), 67
monitor specification, 93
multi-ink printers, 104
multisensor cameras, 100
palette, 65
palette animation, 65
picker, 65
primaries, 88
sRGB, 101
subcarrier, 119

Color science, 81
light and spectra, 81

spectra sensitivity of the eye, 83
visible light, 82

Color-matching function, 88, 89
Commission internationale de L’eclairage

(CIE), 89
Compression

lossless, 62, 74, 186
lossy, 62, 74, 186, 282
ratio, 74, 186
speech, 166

Compressor function, 231
Cones, 83
Constant bit rate (CBR), 501, 515, 546
Content delivery network (CDN), also see

content distribution network (CDN),
539

Content distribution network (CDN), 506, 539,
541, 542, 565, 629, 657

Akamai, 506, 542, 660
Context modeling, 305
Continuous Fourier Transform (CFT), 247
Continuous Wavelet Transform (CWT), 252,

256
Convolutional codes, 596
Coordinated live streaming and storage sharing

(COOLS), 638
CPU (central processing unit), 651, 652, 661,

662, 665
CRC (cyclic redundancy check), 488, 592
CRT (cathode ray tube), 86, 116
CSS (cascading style sheets), 11

D
DA (digital-to-analog) converter, 149
Datagram, 498
DB (decibel), 144
DC (Direct Current), 236
Decoder mapping, 165
Deinterlacing, 116
Delaunay mesh, 377
Dictionary-based coding, 200
Difference of Gaussian (DOG), 693
Differential coding, 168, 218
Differentiated service (DiffServ), 513

diffServ code (DS), 513, 514
per-hop behavior (PHB), 513, 514

Digital audio, 16
Adobe Audition, 16
coding of, 165
quantization and transmission, 164
Sound Forge, 16

718 Index

Digital display interface, 128
Digital library, 185
Digital subscriber line (DSL), 491

ADSL (asymmetrical DSL), 486, 491, 493,
564

Digitization of sound, 139
Discrete Cosine Transform (DCT), 234, 236,

241
1D, 235, 236
2D, 234, 235, 281
2D basis function, 244
2D matrix implementation, 245
2D separable basis, 244
basis function, 236, 242
comparison to DFT, 247
DCT-matrix, 246, 400, 424

Discrete Fourier Transform (DFT), 247
Discrete Sine Transform (DST), 419, 425
Discrete Wavelet Transform (DWT), 252, 259
Disparity, 131

gradient, 136
manipulation, 136
mapping, 136
range, 136
sensitivity, 136
velocity, 136

Dispersion, 82
Distortion measure, 225

MSE (Mean Square Error), 226
PSNR (Peak Signal-to-Noise Ratio), 226
SNR (Signal-to-Noise Ratio), 226

Dithering, 59, 66
dither matrix, 60
ordered dither, 61

DM (delta modulation), 174
adaptive, 175
uniform, 175

DMT (discrete multi-tone), 491
Domain name system (DNS), 496
DPCM (differential pulse code modulation),

165, 168, 171, 289
Dropbox, 645
DV video (digital video), 122
DVB (digital video broadcasting), 544

DVB-MHP (multimedia home platform),
544

DVD, 9, 348, 349, 475, 479, 658
Dynamic adaptive streaming over HTTP

(DASH), 480, 565, 660
media presentation description (MPD), 565

Dynamic range, 168

E
EBCOT (Embedded block coding with

optimized truncation), 270, 295,
298, 301, 303

EDTV (enhanced definition TV), 126
End-to-end argument, 503
Entropy, 186, 187

coding, 187, 189
Epidemic model, 634
Error concealment, 500, 603
Error detection, 590
Error-resilient coding, 597
Error-resilient entropy coding (EREC), 600
Ethernet, 488

CSMA/CD (carrier sense multiple access
with collision detection), 489

Euler’s formula, 247
Excited purity, 93
EXIF (exchangeable image file), 76
Exp-Golomb code, 215, 409, 410, 413
Expander function, 232
Extended Huffman coding, 194
EZW (Embedded Zerotree Wavelet), 270–273

F
F-score, 711
Facebook, 14, 617, 619
Fax standards

G3, 309
G4, 309

FDMA (frequency division multiple access),
577, 578, 580

Firewall, 486, 502, 503
First person shooter (FPS) game, 666
FM (frequency modulation), 152, 154
Forward error correction (FEC), 593
Fourier transform, 251
Frame buffer, 59, 100
Frame-based coding, 359, 363
Free rider, 564
Frequency, 236

frequency response, 236, 244
frequency spectrum, 236
spatial frequency, 236, 244

Frequency hopping (FH), 589
FTTH (fiber-to-the-home), 493
FTTN (fiber-to-the-neighborhood), 493
FTTN (fiber-to-the-node), 493
Fundamental frequency, 140

Index 719

G
Gamma correction, 86, 96, 100
Gamut, 94

printer, 103
Gaussian distribution, 277
Generalized Markup language (GML), 10
GIF (graphics interchange format), 69

color map, 71
GIF87, 72
GIF89, 72
interlacing, 72
screen descriptor, 69

GIF(graphics interchange format)
animation, 19

Global motion compensation, 374
Gossip algorithm, 558, 560
GPRS (general packet radio service), 580
GPS (global positioning system), 589
GPU (graphics processing unit), 652, 661, 666
Granular distortion, 229
Graphics, 17

fireworks editing, 17
freehand editing, 17

Gray-level
image, 219
intensity, 188

Grayscale, 73
Group of pictures (GOP), 399
GSM (global system for mobile communica-

tions), 578, 579
GSTN (general switched telephone network),

523

H
H.261, 317

bitstream, 330
block layer, 332
encoder and decoder, 328
formats supported, 326
GOB (group of blocks) layer, 331
inter-frame (P-frame) coding, 327
intra-frame (I-frame) coding, 326
macroblock layer, 332
picture layer, 331
quantization, 328
step size, 328

H.262, 348
H.263, 317, 332, 619

motion compensation, 333
optional coding mode, 334
PB-frame, 335

H.263+, 336
H.263++, 336
H.264, 395, 620, 668

CABAC, 409, 413
CAVLC, 409, 411
entropy coding, 409
group of pictures (GOP), 399
hierarchical prediction structure, 399
in-loop deblocking filtering, 407, 408
integer transform, 401
intra coding, 404
intra spatial prediction, 404
motion compensation, 396
multiple reference frame, 399
MVC (multiview video coding), 417
profiles, 415

baseline profile, 415
extended profile, 416
high 10 profile, 417
high 4:2:2 profile, 417
high 4:4:4 predictive profile, 417
high profile, 417
main profile, 416

quantization, 402
quarter-pixel precision, 397
scaling, 403
SVC (scalable video coding), 417
transform coding, 396, 399
variable block-size motion compensation,

396
H.264/AVC (or H.264/MPEG-4 AVC), 395
H.265, 418, 419, 567

CABAC, 428
discrete sine transform (DST), 425
entropy coding, 428
in-loop deblocking filtering, 419, 427
integer transform, 424
integer transform matrix, 424
intra coding, 425
motion compensation, 419
profiles, 429

main 10 profile, 429
main profile, 429
main still picture profile, 429

quadtree prediction structure, 419
quantization, 425
quarter-pixel precision, 421
SAO (sample adaptive offset), 419, 427
slice, 420, 598
special coding modes, 429

I_PCM, 429

720 Index

lossless, 429
transform skipping, 429

tile, 420
transform coding, 419, 420, 424
variable block-size motion compensation,

419
wavefront parallel processing (WPP), 420

H.26L, 395
Half-pixel precision, 334
Halftone printing, 60
Hamming codes, 594
Hamming distance, 594
Handoff (Handover), 577, 606, 608

soft handoff, 609
vertical handoff, 610

Harmonic, 140
Hartley’s law, 186
HDTV (high definition TV), 124, 126, 417,

430
HEVC (high efficiency video coding), 418
Hidden terminal problem, 586
Hierarchical JPEG, 291, 513
Homogeneous coordinate system, 380
Horizontal parallax, 131
Horizontal retrace, 116
HPLabs media server, 621, 628
HTML (HyperText Markup Language), 10, 52,

69
HTTP (HyperText Transfer Protocol), 486,

502, 516, 564, 649
HTTP-based streaming, 563
Huffman coding, 192, 599

optimality, 193
prefix property, 192
procedure, 196
tree, 198

Human vision, 83
Hybrid coding, 318, 342, 395, 396, 419
Hybrid excitation vocoder, 450

MBE (multiband excitation), 450
MELP (multiband excitation linear

predictive), 447, 452
Hypermedia, 9

I
IDCT (Inverse Discrete Cosine Transform),

235
1D, 235
2D, 235
2D matrix implementation, 246

IETF (Internet Engineering Task Force), 494,
501, 504

IGMP (Internet Group Management Protocol),
504

Image
24-bit, 62
8-bit, 63
data type, 62
descriptor, 680
fireworks editing, 17
formation, 84
high bit-depth, 62
histogram, 188
hyperspectral, 63
monochrome, 57
multispectral, 63
Photoshop editing, 17
quality, 703
resolution, 58
retrieval, 675

Image processing, 64, 236
Information theory, 186
Integer transform, 399, 401, 424
Integral imaging, 135
Intellectual property management and

protection (IPMP), 390
Interaction delay, 666, 670
Interactive TV (ITV), 544
Interlaced scanning, 115
Internet, 13, 485, 494, 516
Internet protocol TV (IPTV), 37
Internet telephony, 522
IP (Internet Protocol), 496, 516

IP address, 496–498, 501, 503, 520, 521,
540, 559, 606, 647, 668

IPv4 (IP version 4), 496, 497, 503
IPv6 (IP version 6), 501, 503
packet fragmentation, 496

IP multicast, 503, 551, 553
MBone, 505

ISDN (integrated services digital network), 579
ISP (Internet service provider), 486, 490, 542
ITU (international telecommunication union),

325, 436, 437, 440, 523, 582, 583,
585, 598

ITU-R (radiocommunication sector), 122
ITU-T (telecommunication standardization

sector), 122, 325, 395, 418, 490

J
Jamming, 580

Index 721

JBIG (joint bi-level image experts group), 310
JBIG2, 310
Jitter, 508, 538, 652
JPEG (joint photographic experts group), 9,

73, 281, 283, 513
baseline, 289
DCT, 283
entropy coding, 289
main steps, 281
mode, 290
zigzag scan, 288

JPEG-LS, 305
JPEG2000, 293

K
KLT (Karhunen-Loève transform), 234

L
LAB color model, 97
LAN (local area network), 486, 489, 495
Latency, 508, 585
Layered multicast, 551

multicast enhanced loss-delay based
adaptation (MLDA), 553

receiver-driven layered congestion control
(RLC), 553

receiver-driven layered multicast (RLM),
551

Line-of-sight (LOS) communication, 573
LOCO-I (low complexity lossless compression

for images), 305
Lookup table (LUT), 63, 65, 67
Lossless image compression, 218
Lossless JPEG, 219, 293

encoder, 220
predictor, 220

Lossy image compression, 225
Low-pass filter, 151
LPC (linear predictive coding), 442, 449

LPC-10, 442
LTE (long term evolution), 15, 585
Luminance, 106
LZW (Lempel-Ziv-Welch), 69, 72, 76, 200

M
Macroblock, 318, 395, 396, 419, 597–600,

602, 603
Macrocell, 577
Mean absolute difference, 320
Mean average precision (MAP), 690, 697
Media-on-demand (MoD), 543, 544

Median-cut algorithm, 67
Medium access control (MAC), 488
Memory, 589, 594, 596, 651, 652, 661, 666
Microcell, 577
MIDI (musical instrument digital interface),

154
banks, 157
channel, 155
channel messages, 160
channel mode, 162
channel pressure, 161
conversion to WAV, 164
key pressure, 161
keyboard, 156
MIDI machine control (MMC), 158
patch, 157
sequencer, 156
system messages, 160, 163
tone modules, 156
velocity, 157, 161
voice messages, 160

MiniDV, 119
MMR (modified modified read) algorithm, 370
Mobile IP, 606

access router (AR), 606
correspondent node (CN), 607
foreign agent (FA), 606
hierarchical mobile IP (HMIP), 608
home address (HoA), 606
home agent (HA), 606
mobile node (MN), 606

Mobile visual search, 703, 705
Mobility management, 605

global mobility, 606
interdomain mobility, 606
intradomain mobility, 606
macromobility, 606
micromobility, 606

Model-based coding, 311
MOS (mean opinion score), 431
Motion compensation (MC), 318, 363

backward prediction, 319
forward prediction, 319

Motion estimation, 318, 662
Motion JPEG, 291
Motion vector, 319, 604

2D logarithmic search, 321
hierarchical search, 322
sequential search, 320

MPEG (moving picture experts group), 341,
435

722 Index

MPEG audio compression, 457
bark, 463
bit allocation, 471
bit reservoir, 474
critical band, 462
equal-loudness curves, 458
frequency masking, 458, 460
MDCT (modified discrete cosine transform),

473
MNR (mask-to-noise ratio), 471
MP3, 9, 466, 473, 474
MPEG layers, 466

Layer 1, 466
Layer 2, 466, 473
Layer 3, 466, 473

psychoacoustics, 458
scale factor band, 474
SMR (signal-to-mask ratio), 471
SNR (signal-to-noise ratio), 471
temporal masking, 464
threshold of hearing, 460

MPEG working model
SM (simulation model), 385
TM (test model), 385
VM (verification model), 385
XM (experimentation Model), 385

MPEG-1, 8, 341
B-frame, 342
bitstream, 346
block layer, 348
D-frame, 347
differences from H.261, 344
Group of pictures (GOPs) layer, 347
I-frame, 342
macroblock layer, 348
motion compensation, 342
P-frame, 342
performance of, 346
picture layer, 347
prediction, 342
quantization, 344
sequence layer, 346
slice, 344
slice layer, 347
transform coding, 342

MPEG-2, 348
alternate scan, 352
data partitioning, 358
differences from MPEG-1, 358
hybrid scalability, 357
interlaced video, 349

level, 349
modes of prediction, 350
profile, 348, 349
program stream, 358
spatial scalability, 355
temporal scalability, 355
transport stream, 358

MPEG-2 AAC (advanced audio coding), 475
low complexity profile, 475
main profile, 475
PQF (polyphase quadrature filter) bank, 476
scalable sampling rate profile, 475
TNS (temporal noise shaping) tool, 475

MPEG-4, 359, 362, 532, 567, 599, 668
audio and visual objects, 360
BAPs (body animation parameters), 383
BDPs (body definition parameters), 383
BIFS (binary format for scenes), 361
binary shape, 370
body object, 381, 382
face object, 381
FAP (face animation parameter), 382
FDP (face definition parameter), 382
grayscale shape, 370
group of video object plane (GOV), 362
level, 383
media objects, 360
part 10, also see H.264, 360, 383, 395
part 2, 360, 383
profile, 383
static texture coding, 373
synthetic object coding, 375
texture coding, 368
uniform mesh, 376
video object (VO), 362
video object layer (VOL), 362
video object plane (VOP), 362
video object-based coding, 362
video-object sequence (VS), 362
video-object-based coding, 360
wavelet coding, 373

MPEG-4 AAC (advanced audio coding), 476
BSAC (bit-sliced arithmetic coding), 476
DAB+ digital radio, 476
digital multimedia broadcasting, 476
digital radio Mondiale, 476
high definition advanced audio coding

(HD-AAC), 476
high efficiency advanced audio coding

(HE-AAC), 476
perceptual coders, 476

Index 723

perceptual noise substitution, 476
SAOL (structured audio orchestra language),

477
SNHC (synthetic/natural hybrid coding), 477
structured coder, 477
TTS (text-to-speech), 477

MPEG-7, 384
description definition language (DDL), 390
description scheme (DS), 387
Descriptor (D), 385

MPEG-7 audio, 479
MPEG-J, 361
MPEGlet, 361
Multi-rate multicast, 550
Multicast, 503, 550
Multimedia, 3

history of, 5
subjects, 20
tools, 15

Multimedia authoring, 19
Director, 19
Dreamweaver, 20
Flash, 19
tools, 39

Multimedia cloud computing, 652
Multimedia messaging service (MMS), 580
Multimedia presentation, 26

graphics style, 26
sprite animation, 29
video transition, 29

Multimedia production, 35
flowchart phase, 36
prototyping and testing, 36
storyboard, 35

Multipath fading, 574
Gilbert-Elliott model, 575
rake receiver, 576
Rayleigh fading model, 575
Rician fading model, 575

Multiple input/multiple output (MIMO), 584,
585, 588

Multiresolution analysis, 252, 253
Multisampling, 158
Munsell color naming system, 99
MUSE (multiple sub-nyquist sampling

encoding), 124
Music sequencing, 16

Cakewalk Pro Audio, 16
Finale, 16
Sibelius, 16

N
Netflix, 15, 645, 658
Netpbm format, 76
NetTube, 631
Network

application layer, 486
connection-oriented, 497
connectionless, 499
data link layer, 486
network layer, 486
physical layer, 485
presentation layer, 486
session layer, 486
transport layer, 486

Network address translation (NAT), 501, 564
NMT (nordic mobile telephony), 577
Non line-of-sight (LOS) communication, 575
NTSC (National Television System

Committee), 87, 93, 342
Nyquist

frequency, 143
rate, 143, 166, 175
theorem, 142

O
Octave, 140
OFDM (orthogonal frequency division

multiplexing), 584, 587
Online social network, 540, 618, 632

free-rider, 634
ordinary user, 634
spreader, 634

ONU (optical networkunit), 492
Orthogonal, 242
Orthonormal, 243

basis, 259
OSI (open systems interconnection), 485, 486,

494
Out-of-gamut color, 94
Overlay network, 506, 554

P
Packet interleaving, 597
Packet switching, 495

datagram, 495
virtual circuit, 495

Padding, 365
extended padding, 367
horizontal repetitive padding, 366
vertical repetitive padding, 366

PAL (phase alternating line), 93, 121, 342

724 Index

Parity checking, 590, 593
Partial, 140

fundamental frequency, 140
harmonic partial, 140
overtone, 140

Path loss, 573
PBM (portable bitmap), 76
PCM (pulse code modulation), 130, 165–167,

435, 436, 513
PDF (portable document format), 76
Peer-to-peer, 14, 506, 557, 631, 656, 657

BitTorrent, 14, 557, 649
buffer map, 560
chunkyspread, 562
CoolStreaming, 14, 558
data-driven overlay, 557
hybrid tree and mesh overlay, 562
mesh overlay, 557, 631
PPLive, 558
PPStream, 558
PPTV, 657
tree overlay, 638
UUSee, 558

Perceptual nonuniformity, 149, 178, 462, 509
Pervasive computing, 586
PGM (portable graymap), 76
Pitch, 140, 156
Pixel, 57
Pixel clock, 119
PNG (portable network graphics), 74

alpha-channel, 75
interlacing, 75

Polyphony, 157
Post compression rate-distortion (PCRD), 300
Postscript, 76
POTS (plain old telephone service), 522, 579
PPM (portable pixmap), 76
Precision, 688
Predictive coding

lossless, 168
lossy, 168

Profile, 383
Progressive JPEG, 291, 513
Progressive scanning, 115
Proxy caching, 532, 629

hit-ratio, 629
prefix caching, 535
rate-split caching, 536
segment caching, 535
sliding-interval caching, 533

PSNR (Peak Signal-to-Noise Ratio), 226, 305,
430

PSTN (Public Switched Telephone Network),
495, 523

PTM (polynomial texture mapping), 77

Q
QA paradigm, 696
QAM (quadrature amplitude modulation), 491,

492
QCIF (Quarter-CIF), 123
QP (quantization parameter), 402, 404, 408,

425
QPSK (quadrature phase-shift keying), 492
Quadrature modulation, 119
Quality

objective assessment, 430
quality factor, 284
subjective assessment, 431
video quality assessment, 430

Quality of service (QoS), 500, 506, 507, 509,
510, 513, 519, 531, 566, 662

Quality-of-experience (QoE), 666–668
Quantization, 142, 283

dead-zone, 228, 296, 404
decision boundary, 165
distortion, 172
error, 145, 172
linear format, 147
noise, 145
nonuniform, 147
nonuniform quantizer, 231

companded quantizer, 231
Lloyd–Max quantizer, 231

reconstruction level, 165
uniform, 147
uniform scalar quantizer, 228

midrise, 228
midtread, 228, 404

vector quantization, 232, 694
codebook, 232

Quantizer
backward adaptive, 437
Jayant, 438
Lloyd-Max, 171

Query expansion, 695

R
Random graph, 623
Rate-distortion, 226, 404

rate-distortion function, 226

Index 725

RCPC (rate compatible punctured convolu-
tional) codes, 596

Real time strategy (RTS) game, 667
Recall, 688
Receiver operating characteristic (ROC), 691,

692
Reed–Solomon (RS) codes, 595
Reference frame, 319, 399, 599, 600, 603, 605,

662
Region of interest (ROI), 294, 303
Regular graph, 623
Relevance feedback, 694
Retina, 83
RFC (request for comments), 494
RGB, 31, 100, 386
RGB to CMY, 102
RLC (run-length coding), 189
Rods, 83
Role playing game (RPG), 666
Round trip time (RTT), 501, 553, 556
RSVP (Resource ReSerVation Protocol), 511
RTCP (RTP Control Protocol), 519, 521, 522,

531, 533, 564
RTP (Real-time Transport Protocol), 518, 522,

531, 533, 564
RTSP (Real-Time Streaming Protocol), 520,

522, 531, 533, 564
Run-length encoding (RLE), 75, 288
RVLC (reversible variable-length code), 599

S
SA-DCT (shape-adaptive DCT), 368
Sampling, 140

alias frequency, 144
fixed rate, 143
folding frequency, 144
frequency, 141
nonuniform, 142
rate, 142
true frequency, 144
uniform, 142

SAP (Session Announcement Protocol), 524
SDP (Session Description Protocol), 524
SDTV (standard definition TV), 125
SECAM (systeme electronique couleur avec

memoire), 93, 121
Sequencer, 159
Sequential JPEG, 291
Set-top box (STB), 126, 544
Shannon–Fano algorithm, 189
Shape coding, 370

binary shape coding, 370
grayscale shape coding, 372

SIF (source input format), 342
SIFT (scale invariant feature transform), 692

canonical orientation, 693
descriptor, 693
key point, 693

Signal processing, 151, 236
SIP (Session Initiation Protocol), 523
Skype, 14
Small world, 623
Smart TV, 544, 545
SMPTE (society of motion picture and

television engineers), 87, 93
SMPTE-170M, 87

SMS (short message service), 579
SNR (signal-to-noise ratio), 144, 491
Social media, 617, 619, 623, 628, 629
Social network, 617, 618
Sound

card, 154
digitization, 140
wave, 139

Spatial
domain, 218
frequency, 73, 107
redundancy, 282, 318

Spectral power distribution (SPD), also see
spectrum, 82

Spectrophotometer, 81
Spectrum, 82

locus, 91
SPIHT (Set Partitioning in Hierarchical Trees),

270, 277
Spread spectrum, 580
Sprite, 373

coding, 373
SQNR (signal to quantization noise ratio), 145
SRGB (standard RGB), 88
Standard Generalized Markup Language

(SGML), 10
Stereopsis, 131
Stream replication, 550
Streaming media, 507, 531, 532, 540, 542
Structural similarity (SSIM), 431, 669, 707
Subband, 262
Support Vector Machine (SVM), 696, 705,

706, 708
Surface spectral reflectance, 84
Susceptible-infectious-recovered (SIR) model,

634

726 Index

Sync skew, 508
Synthesizer, 156, 159
Synthetic sound, 152

T
TACS (total access communication system),

577
Target frame, 319
TCP (Transmission control protocol), 497

acknowledgement (ACK), 498
additive increase and multiplicative decrease

(AIMD), 499, 553
port number, 498, 501, 525, 564
retransmission timeout, 499
window, 497

TDMA (time division multiple access), 578
Television systems

NTSC (National Television System
Committee), 118, 127

PAL (phase alternating line), 121
SECAM (systeme electronique couleur avec

memoire), 121
Temporal redundancy, 318
Texture

analysis, 684
layout, 683

TIFF (tagged image file format), 75
Timbre, 156
Transducer, 140
Transform coding, 233, 399, 424
Tristimulus values, 90
Twitter, 15, 619

tweets, 619
vine, 619

Two-sided geometric distribution (TSGD), 309

U
U-law (also see µ-law), 148, 149, 152
Ubiquitous computing, 573, 586
UDP (User Datagram Protocol), 499, 501, 502,

520, 525, 526, 531, 564, 668
port number, 500

UHDTV (ultra high definition TV), 126, 419,
429

Unicast, 503
URI (Uniform Resource Identifier), 517
URL (Uniform Resource Locator), 496, 517,

523, 540, 566, 580
User-generated content (UGC), 618

V
Variable bit rate (VBR), 507, 515, 522, 536,

539
Variable-length coding (VLC), 185, 189, 335
Vergence-accommodation conflict, 133, 134
Vertical retrace, 116
VESA (video electronics standards associa-

tion), 128–130
Video broadcasting, 545

batching, 545
harmonic broadcasting, 547
pyramid broadcasting, 546
staggered broadcasting, 546
stream merging, 549

Video card, 59
Video conferencing, 325, 332, 415, 504
Video display interfaces, 126
Video editing, 17

after effects, 18
final cut pro, 18
Premiere, 17

Video quality assessment (VQA), 430, 431
Video signals, 126
Video transitions, 40
Video-on-demand (VoD), 507, 543–545
Vocoder, 439

CELP (code excited linear prediction), 444
channel vocoder, 439
formant vocoder, 441
LPC (linear predictive coding), 442
phase insensitivity, 439

Voice-over-IP (VoIP), 493, 507, 522

W
W3C (World Wide Web Consortium), 13, 390
WAN (wide area network), 495
Wave table, 152

data, 158
file, 154
synthesis, 153

Wavelength dominant, 93
Wavelet, 251

admissibility condition, 257
analysis filter, 261
basis, 259
biorthogonal, 261
compact support, 261
mother wavelet, 258
synthesis filter, 261

Weber’s law, 147
White point correction, 95

Index 727

WiMAX, 585
Wireless LAN (WLAN), 488, 577, 586

carrier sense multiple access with collision
avoidance (CSMA/CA), 586

IEEE 802.11, 586
IEEE 802.11a, 587
IEEE 802.11ac, 588
IEEE 802.11b, 587
IEEE 802.11g, 587
IEEE 802.11n, 588
Wi-Fi, 488, 586, 610

WMF (windows meta file), 75
Words, 694

visual words, 694
Work-ahead smoothing, 536
WWW (World Wide Web), 69, 359

Web 2.0, 14, 617

X
XML (Extensible Markup Language), 12, 384,

390
XYZ to RGB, 96

Y
YCbCr, 109, 122, 282, 386, 419
YIQ, 105, 107
YouTube, 14, 36, 551, 617, 618, 655

insight analytics, 626
partner program, 625

YUV, 105

Z
Zipf’s law, 633

	Preface
	Contents
	Part IIntroduction and Multimedia Data Representations
	1 Introduction to Multimedia
	1.1 What is Multimedia?
	1.1.1 Components of Multimedia

	1.2 Multimedia: Past and Present
	1.2.1 Early History of Multimedia
	1.2.2 Hypermedia, WWW, and Internet
	1.2.3 Multimedia in the New Millennium

	1.3 Multimedia Software Tools: A Quick Scan
	1.3.1 Music Sequencing and Notation
	1.3.2 Digital Audio
	1.3.3 Graphics and Image Editing
	1.3.4 Video Editing
	1.3.5 Animation
	1.3.6 Multimedia Authoring

	1.4 Multimedia in the Future
	1.5 Exercises

	2 A Taste of Multimedia
	2.1 Multimedia Tasks and Concerns
	2.2 Multimedia Presentation
	2.3 Data Compression
	2.4 Multimedia Production
	2.5 Multimedia Sharing and Distribution
	2.6 Some Useful Editing and Authoring Tools
	2.6.1 Adobe Premiere
	2.6.2 Adobe Director
	2.6.3 Adobe Flash

	2.7 Exercises

	3 Graphics and Image Data Representations
	3.1 Graphics/Image Data Types
	3.1.1 1-Bit Images
	3.1.2 8-Bit Gray-Level Images
	3.1.3 Image Data Types
	3.1.4 24-Bit Color Images
	3.1.5 Higher Bit-Depth Images
	3.1.6 8-Bit Color Images
	3.1.7 Color Lookup Tables

	3.2 Popular File Formats
	3.2.1 GIF
	3.2.2 JPEG
	3.2.3 PNG
	3.2.4 TIFF
	3.2.5 Windows BMP
	3.2.6 Windows WMF
	3.2.7 Netpbm Format
	3.2.8 EXIF
	3.2.9 PS and PDF
	3.2.10 PTM

	3.3 Exercises

	4 Color in Image and Video
	4.1 Color Science
	4.1.1 Light and Spectra
	4.1.2 Human Vision
	4.1.3 Spectral Sensitivity of the Eye
	4.1.4 Image Formation
	4.1.5 Camera Systems
	4.1.6 Gamma Correction
	4.1.7 Color-Matching Functions
	4.1.8 CIE Chromaticity Diagram
	4.1.9 Color Monitor Specifications
	4.1.10 Out-of-Gamut Colors
	4.1.11 White Point Correction
	4.1.12 XYZ to RGB Transform
	4.1.13 Transform with Gamma Correction
	4.1.14 L*a*b* (CIELAB) Color Model
	4.1.15 More Color Coordinate Schemes
	4.1.16 Munsell Color Naming System

	4.2 Color Models in Images
	4.2.1 RGB Color Model for Displays
	4.2.2 Multisensor Cameras
	4.2.3 Camera-Dependent Color
	4.2.4 Subtractive Color: CMY Color Model
	4.2.5 Transformation from RGB to CMY
	4.2.6 Undercolor Removal: CMYK System
	4.2.7 Printer Gamuts
	4.2.8 Multi-ink Printers

	4.3 Color Models in Video
	4.3.1 Video Color Transforms
	4.3.2 YUV Color Model
	4.3.3 YIQ Color Model
	4.3.4 YCbCr Color Model

	4.4 Exercises

	5 Fundamental Concepts in Video
	5.1 Analog Video
	5.1.1 NTSC Video
	5.1.2 PAL Video
	5.1.3 SECAM Video

	5.2 Digital Video
	5.2.1 Chroma Subsampling
	5.2.2 CCIR and ITU-R Standards for Digital Video
	5.2.3 High-Definition TV
	5.2.4 Ultra High Definition TV (UHDTV)

	5.3 Video Display Interfaces
	5.3.1 Analog Display Interfaces
	5.3.2 Digital Display Interfaces

	5.4 3D Video and TV
	5.4.1 Cues for 3D Percept
	5.4.2 3D Camera Models
	5.4.3 3D Movie and TV Based on Stereo Vision
	5.4.4 The Vergence-Accommodation Conflict
	5.4.5 Autostereoscopic (Glasses-Free) Display Devices
	5.4.6 Disparity Manipulation in 3D Content Creation

	5.5 Exercises

	6 Basics of Digital Audio
	6.1 Digitization of Sound
	6.1.1 What is Sound?
	6.1.2 Digitization
	6.1.3 Nyquist Theorem
	6.1.4 Signal-to-Noise Ratio (SNR)
	6.1.5 Signal-to-Quantization-Noise Ratio (SQNR)
	6.1.6 Linear and Nonlinear Quantization
	6.1.7 Audio Filtering
	6.1.8 Audio Quality Versus Data Rate
	6.1.9 Synthetic Sounds

	6.2 MIDI: Musical Instrument Digital Interface
	6.2.1 MIDI Overview
	6.2.2 Hardware Aspects of MIDI
	6.2.3 Structure of MIDI Messages
	6.2.4 General MIDI
	6.2.5 MIDI-to-WAV Conversion

	6.3 Quantization and Transmission of Audio
	6.3.1 Coding of Audio
	6.3.2 Pulse Code Modulation
	6.3.3 Differential Coding of Audio
	6.3.4 Lossless Predictive Coding
	6.3.5 DPCM
	6.3.6 DM
	6.3.7 ADPCM

	6.4 Exercises

	Part IIMultimedia Data Compression
	7 Lossless Compression Algorithms
	7.1 Introduction
	7.2 Basics of Information Theory
	7.3 Run-Length Coding
	7.4 Variable-Length Coding
	7.4.1 Shannon--Fano Algorithm
	7.4.2 Huffman Coding
	7.4.3 Adaptive Huffman Coding

	7.5 Dictionary-Based Coding
	7.6 Arithmetic Coding
	7.6.1 Basic Arithmetic Coding Algorithm
	7.6.2 Scaling and Incremental Coding
	7.6.3 Integer Implementation
	7.6.4 Binary Arithmetic Coding
	7.6.5 Adaptive Arithmetic Coding

	7.7 Lossless Image Compression
	7.7.1 Differential Coding of Images
	7.7.2 Lossless JPEG

	7.8 Exercises

	8 Lossy Compression Algorithms
	8.1 Introduction
	8.2 Distortion Measures
	8.3 The Rate-Distortion Theory
	8.4 Quantization
	8.4.1 Uniform Scalar Quantization
	8.4.2 Nonuniform Scalar Quantization
	8.4.3 Vector Quantization

	8.5 Transform Coding
	8.5.1 Discrete Cosine Transform (DCT)
	8.5.2 Karhunen--Loève Transform*

	8.6 Wavelet-Based Coding
	8.6.1 Introduction
	8.6.2 Continuous Wavelet Transform*
	8.6.3 Discrete Wavelet Transform*

	8.7 Wavelet Packets
	8.8 Embedded Zerotree of Wavelet Coefficients
	8.8.1 The Zerotree Data Structure
	8.8.2 Successive Approximation Quantization
	8.8.3 EZW Example

	8.9 Set Partitioning in Hierarchical Trees (SPIHT)
	8.10 Exercises

	9 Image Compression Standards
	9.1 The JPEG Standard
	9.1.1 Main Steps in JPEG Image Compression
	9.1.2 JPEG Modes
	9.1.3 A Glance at the JPEG Bitstream

	9.2 The JPEG2000 Standard
	9.2.1 Main Steps of JPEG2000 Image Compression*
	9.2.2 Adapting EBCOT to JPEG2000
	9.2.3 Region-of-Interest Coding
	9.2.4 Comparison of JPEG and JPEG2000 Performance

	9.3 The JPEG-LS Standard
	9.3.1 Prediction
	9.3.2 Context Determination
	9.3.3 Residual Coding
	9.3.4 Near-Lossless Mode

	9.4 Bi-level Image Compression Standards
	9.4.1 The JBIG Standard
	9.4.2 The JBIG2 Standard

	9.5 Exercises

	10 Basic Video Compression Techniques
	10.1 Introduction to Video Compression
	10.2 Video Compression Based on Motion Compensation
	10.3 Search for Motion Vectors
	10.3.1 Sequential Search
	10.3.2 2D Logarithmic Search
	10.3.3 Hierarchical Search

	10.4 H.261
	10.4.1 Intra-Frame (I-Frame) Coding
	10.4.2 Inter-Frame (P-Frame) Predictive Coding
	10.4.3 Quantization in H.261
	10.4.4 H.261 Encoder and Decoder
	10.4.5 A Glance at the H.261 Video Bitstream Syntax

	10.5 H.263
	10.5.1 Motion Compensation in H.263
	10.5.2 Optional H.263 Coding Modes
	10.5.3 H.263+ and H.263++

	10.6 Exercises

	11 MPEG Video Coding: MPEG-1, 2, 4, and 7
	11.1 Overview
	11.2 MPEG-1
	11.2.1 Motion Compensation in MPEG-1
	11.2.2 Other Major Differences from H.261
	11.2.3 MPEG-1 Video Bitstream

	11.3 MPEG-2
	11.3.1 Supporting Interlaced Video
	11.3.2 MPEG-2 Scalabilities
	11.3.3 Other Major Differences from MPEG-1

	11.4 MPEG-4
	11.4.1 Overview of MPEG-4
	11.4.2 Video Object-Based Coding in MPEG-4
	11.4.3 Synthetic Object Coding in MPEG-4
	11.4.4 MPEG-4 Parts, Profiles and Levels

	11.5 MPEG-7
	11.5.1 Descriptor (D)
	11.5.2 Description Scheme (DS)
	11.5.3 Description Definition Language (DDL)

	11.6 Exercises

	12 New Video Coding Standards: H.264 and H.265
	12.1 H.264
	12.1.1 Motion Compensation
	12.1.2 Integer Transform
	12.1.3 Quantization and Scaling
	12.1.4 Examples of H.264 Integer Transform and Quantization
	12.1.5 Intra Coding
	12.1.6 In-Loop Deblocking Filtering
	12.1.7 Entropy Coding
	12.1.8 Context-Adaptive Variable Length Coding (CAVLC)
	12.1.9 Context-Adaptive Binary Arithmetic Coding (CABAC)
	12.1.10 H.264 Profiles
	12.1.11 H.264 Scalable Video Coding
	12.1.12 H.264 Multiview Video Coding

	12.2 H.265
	12.2.1 Motion Compensation
	12.2.2 Integer Transform
	12.2.3 Quantization and Scaling
	12.2.4 Intra Coding
	12.2.5 Discrete Sine Transform
	12.2.6 In-Loop Filtering
	12.2.7 Entropy Coding
	12.2.8 Special Coding Modes
	12.2.9 H.265 Profiles

	12.3 Comparisons of Video Coding Efficiency
	12.3.1 Objective Assessment
	12.3.2 Subjective Assessment

	12.4 Exercises

	13 Basic Audio Compression Techniques
	13.1 ADPCM in Speech Coding
	13.1.1 ADPCM

	13.2 G.726 ADPCM, G.727-9
	13.3 Vocoders
	13.3.1 Phase Insensitivity
	13.3.2 Channel Vocoder
	13.3.3 Formant Vocoder
	13.3.4 Linear Predictive Coding (LPC)
	13.3.5 Code Excited Linear Prediction (CELP)
	13.3.6 Hybrid Excitation Vocoders*

	13.4 Exercises

	14 MPEG Audio Compression
	14.1 Psychoacoustics
	14.1.1 Equal-Loudness Relations
	14.1.2 Frequency Masking
	14.1.3 Temporal Masking

	14.2 MPEG Audio
	14.2.1 MPEG Layers
	14.2.2 MPEG Audio Strategy
	14.2.3 MPEG Audio Compression Algorithm
	14.2.4 MPEG-2 AAC (Advanced Audio Coding)
	14.2.5 MPEG-4 Audio

	14.3 Other Audio Codecs
	14.3.1 Ogg Vorbis

	14.4 MPEG-7 Audio and Beyond
	14.5 Further Exploration
	14.6 Exercises

	Part IIIMultimedia Communications and Networking
	15 Network Services and Protocols -13pt for Multimedia Communications
	15.1 Protocol Layers of Computer Communication Networks
	15.2 Local Area Network and Access Networks
	15.2.1 LAN Standards
	15.2.2 Ethernet Technology
	15.2.3 Access Network Technologies

	15.3 Internet Technologies and Protocols
	15.3.1 Network Layer: IP
	15.3.2 Transport Layer: TCP and UDP
	15.3.3 Network Address Translation and Firewall

	15.4 Multicast Extension
	15.4.1 Router-Based Architectures: IP Multicast
	15.4.2 Non Router-Based Multicast Architectures

	15.5 Quality-of-Service for Multimedia Communications
	15.5.1 Quality of Service
	15.5.2 Internet QoS
	15.5.3 Rate Control and Buffer Management

	15.6 Protocols for Multimedia Transmission and Interaction
	15.6.1 HyperText Transfer Protocol
	15.6.2 Real-Time Transport Protocol
	15.6.3 RTP Control Protocol
	15.6.4 Real-Time Streaming Protocol

	15.7 Case Study: Internet Telephony
	15.7.1 Signaling Protocols: H.323 and Session Initiation Protocol

	15.8 Further Exploration
	15.9 Exercises

	16 Internet Multimedia Content Distribution
	16.1 Proxy Caching
	16.1.1 Sliding-Interval Caching
	16.1.2 Prefix Caching and Segment Caching
	16.1.3 Rate-Split Caching and Work-Ahead Smoothing
	16.1.4 Summary and Comparison

	16.2 Content Distribution Networks (CDNs)
	16.2.1 Representative: Akamai Streaming CDN

	16.3 Broadcast/Multicast Video-on-Demand
	16.3.1 Smart TV and Set-Top Box (STB)
	16.3.2 Scalable Multicast/Broadcast VoD

	16.4 Broadcast/Multicast for Heterogeneous Users
	16.4.1 Stream Replication
	16.4.2 Layered Multicast

	16.5 Application-Layer Multicast
	16.5.1 Representative: End-System Multicast (ESM)
	16.5.2 Multi-tree Structure

	16.6 Peer-to-Peer Video Streaming with Mesh Overlays
	16.6.1 Representative: CoolStreaming
	16.6.2 Hybrid Tree and Mesh Overlay

	16.7 HTTP-Based Media Streaming
	16.7.1 HTTP for Streaming
	16.7.2 Dynamic Adaptive Streaming Over HTTP (DASH)

	16.8 Exercises

	17 Multimedia Over Wireless and Mobile Networks
	17.1 Characteristics of Wireless Channels
	17.1.1 Path Loss
	17.1.2 Multipath Fading

	17.2 Wireless Networking Technologies
	17.2.1 1G Cellular Analog Wireless Networks
	17.2.2 2G Cellular Networks: GSM and Narrowband CDMA
	17.2.3 3G Cellular Networks: Wideband CDMA
	17.2.4 4G Cellular Networks and Beyond
	17.2.5 Wireless Local Area Networks
	17.2.6 Bluetooth and Short-Range Technologies

	17.3 Multimedia Over Wireless Channels
	17.3.1 Error Detection
	17.3.2 Error Correction
	17.3.3 Error-Resilient Coding
	17.3.4 Error Concealment

	17.4 Mobility Management
	17.4.1 Network Layer Mobile IP
	17.4.2 Link-Layer Handoff Management

	17.5 Further Exploration
	17.6 Exercises

	Part IVMultimedia Information Sharing and Retrieval
	18 Social Media Sharing
	18.1 Representative Social Media Services
	18.1.1 User-Generated Content Sharing
	18.1.2 Online Social Networking

	18.2 User-Generated Media Content Sharing
	18.2.1 YouTube Video Format and Meta-data
	18.2.2 Characteristics of YouTube Video
	18.2.3 Small-World in YouTube Videos
	18.2.4 YouTube from a Partner's View
	18.2.5 Enhancing UGC Video Sharing

	18.3 Media Propagation in Online Social Networks
	18.3.1 Sharing Patterns of Individual Users
	18.3.2 Video Propagation Structure and Model
	18.3.3 Video Watching and Sharing Behaviors
	18.3.4 Coordinating Live Streaming and Online Storage

	18.4 Further Exploration
	18.5 Exercises

	19 Cloud Computing for Multimedia Services
	19.1 Cloud Computing Overview
	19.1.1 Representative Storage Service: Amazon S3
	19.1.2 Representative Computation Service: Amazon EC2

	19.2 Multimedia Cloud Computing
	19.3 Cloud-Assisted Media Sharing
	19.3.1 Impact of Globalization
	19.3.2 Case Study: Netflix

	19.4 Computation Offloading for Multimedia Services
	19.4.1 Requirements for Computation Offloading
	19.4.2 Service Partitioning for Video Coding
	19.4.3 Case Study: Cloud-Assisted Motion Estimation

	19.5 Interactive Cloud Gaming
	19.5.1 Issues and Challenges of Cloud Gaming
	19.5.2 Real-World Implementation

	19.6 Further Exploration
	19.7 Exercises

	20 Content-Based Retrieval in Digital Libraries
	20.1 How Should We Retrieve Images?
	20.2 Synopsis of Early CBIR Systems
	20.3 C-BIRD: A Case Study
	20.3.1 Color Histogram
	20.3.2 Color Density and Color Layout
	20.3.3 Texture Layout
	20.3.4 Texture Analysis Details
	20.3.5 Search by Illumination Invariance
	20.3.6 Search by Object Model

	20.4 Quantifying Search Results
	20.5 Key Technologies in Current CBIR Systems
	20.5.1 Robust Image Features and Their Representation
	20.5.2 Relevance Feedback
	20.5.3 Other Post-processing Techniques
	20.5.4 Visual Concept Search
	20.5.5 The Role of Users in Interactive CBIR Systems

	20.6 Querying on Videos
	20.7 Querying on Videos Based on Human Activity
	20.7.1 Modeling Human Activity Structures
	20.7.2 Experimental Results

	20.8 Quality-Aware Mobile Visual Search
	20.8.1 Related Work
	20.8.2 Quality-Aware Method
	20.8.3 Experimental Results

	20.9 Exercises

	 Index

