

Chapter 1

Measurement

Units of Chapter 1: Measurements

- The Physical Quantities, Standards and Units
- The international System of units
 - The standard of time
 - The standard of length
 - The standard of mass
- Dimensional Analysis

Learning goals of this chapter

- On completing this chapter, the student will be able to :
- Differentiate between the fundamental quantities and the derivative quantities .
- Express the physical quantities using the international system of units.
- Differentiate between the international system of units and the British system of unit.
- Defined The standard of time
- Defined The standard of length
- Defined The standard of mass
- Convert the units of the physical quantities from system to another.
- Determine the dimensions of the physical quantity.
- Check the physical formula using of Dimensional analysis .

1-1 The Physical Quantities, Standards and Units

- To describe the physical quantities we need to choose a unit that does not differ from a corresponding quantity physically but has a quite definite dimension.
- Every Physical quantity (Y) can be defined as the product of a (unit) multiplied by an abstract number (x):
 - □ Y = X (unit)
 - □ For example:
 - Mass = 5 Kg
- Physical Quantities
 - Basic (Length, Mass, Time)
 - Derived (area, speed, density,)

1-2 The international System of units

length	meter	m
mass	kilogram	kg
time	second	S
electric current	ampere	A
thermodynamic temperature	kelvin	K
amount of substance	mole	mol
luminous intensity	candela	cd

Other System of Units

- Gaussian System of Units
- **Length in (cm):** $1 \text{ cm} = 10^{-2} \text{ m}$
- □ Mass in (g) : $1 g = 10^{-3} kg$
- □ Time in (s)
- British System of Units
- Length in feet (ft): 1 foot (ft) = 12 in = 30.48 cm
- Mass in Pound (lb): 1 pound (lb) = 453.59 g
- □ Time in second (s)

Prefixes

 The standard prefixes are used to designate common multiples in powers of ten.

□ 1 angstrom=10⁻¹⁰ m

TABLE 1-4 Common Prefixes		
Power	Prefix	Abbreviation
10 ¹⁵	peta	Р
10 ¹²	tera	Т
10 ⁹	giga	G
10^{6}	mega	М
10 ³	kilo	k
10 ²	hecto	h
10^{1}	deka	da
10 ⁻¹	deci	d
10^{-2}	centi	с
10^{-3}	milli	m
10 ⁻⁶	micro	μ
10 ⁻⁹	nano	n
10^{-12}	pico	р
10^{-15}	femto	f

1-3 The Standard of Time

- Unit of Time is second (s)
- Before 1960, the second was originally defined as $\left(\frac{1}{60}\right) \cdot \left(\frac{1}{60}\right) \cdot \left(\frac{1}{24}\right)$ of the mean solar day.
- Now: the second (s) is defined as the time required for Cesium (Cs-133) atom to undergo 9,192,631,770 vibration .

An atomic Clock

Typical Time Intervals

TABLE 1–3 Typical Times

Age of the universe	$5 imes 10^{17}{ m s}$
Age of the Earth	$1.3 imes 10^{17} \mathrm{s}$
Existence of human species	$6 imes 10^{13}\mathrm{s}$
Human lifetime	$2 imes 10^9 s$
One year	$3 \times 10^7 \mathrm{s}$
One day	$8.6 \times 10^4 \mathrm{s}$
Time between heartbeats	0.8 s
Human reaction time	0.1 s
One cycle of a high- pitched sound wave	$5 imes 10^{-5}\mathrm{s}$
One cycle of an AM radio wave	$10^{-6} { m s}$
One cycle of a visible light wave	$2 imes 10^{-15} m s$

1-4 The Standard of Length

□ SI Unit of Length: the meter (m)

in October 1983, the meter (m) was redefined as the distance traveled by light in vacuum during a time of 1/299 792 458 second.

Converting Units of length

- □ 1 inch (in)= 2.54 cm
- □ 1 foot (ft) = 12 in = 30.48 cm
- 1 yard (yd) = 3 feet = 36 in= 0.9144 m
- □ 1 miles (mi) =1760 yards = 5280 feet = 1,609.344 m
- □ 1 m = 3.281 ft

Typical Length

TABLE 1–1 Typical Distances

Distance from Earth to the nearest large galaxy (the Andromeda galaxy, M31)	$2 imes 10^{22} \text{m}$
Diameter of our galaxy (the Milky Way)	$8 imes 10^{20}\mathrm{m}$
Distance from Earth to the nearest star (other than the sun)	$4 imes 10^{16}\mathrm{m}$
One light year	$9.46 imes10^{15}\mathrm{m}$
Average radius of Pluto's orbit	$6 \times 10^{12} \mathrm{m}$
Distance from Earth to the Sun	$1.5 imes10^{11}\mathrm{m}$
Radius of Earth	$6.37 \times 10^6 \mathrm{m}$
Length of a football field	10 ² m
Height of a person	2 m
Diameter of a CD	0.12 m
Diameter of the aorta	0.018 m
Diameter of a period in a sentence	$5 imes 10^{-4}~{ m m}$
Diameter of a red blood cell	$8 imes 10^{-6}~{ m m}$
Diameter of the hydrogen atom	$10^{-10} {\rm m}$
Diameter of a proton	$2 imes 10^{-15}\mathrm{m}$

Problem 1

Any physical quantity can be multiplied by 1 without changing its value. For example, 1 min = 60 s, so 1 = 60 s/1 min; similarly, 1 ft = 12 in , so 1 = 1 ft/12 in. Using appropriate conversion factors, find

(a) the speed in meters per second equivalent to 55 miles per hour, and(b) the volume in cubic centimeters of a tank that holds 16 gallons of gasoline.

Solution (a) For our conversion factors, we need (see Appendix G) 1 mi = 1609 m (so that 1 = 1609 m/1 mi) and 1 h = 3600 s (so 1 = 1 h/3600 s). Thus

speed =
$$55 \frac{\text{mi}}{\text{k}} \times \frac{1609 \text{ m}}{1 \text{ mi}} \times \frac{1 \text{ k}}{3600 \text{ s}} = 25 \text{ m/s}.$$

(b) One fluid gallon is 231 cubic inches, and 1 in. = 2.54 cm. Thus

volume =
$$16 \text{ gat} \times \frac{231 \text{ in.}^3}{1 \text{ gat}} \times \left(\frac{2.54 \text{ cm}}{1 \text{ in.}}\right)^3 = 6.1 \times 10^4 \text{ cm}^3.$$

Problem 2

A light-year is a measure of length (not a measure of time) equal to the distance that light travels in 1 year. Compute the conversion factor between light-years and meters, and find the distance to the star Proxima Centauri (4.0 X 1.16 m) in light-years.

Solution The conversion factor from years to seconds is

$$1 y = 1 y \times \frac{365.25 d}{1 y} \times \frac{24 h}{1 d} \times \frac{60 min}{1 h} \times \frac{60 s}{1 min}$$

= 3.16 × 10⁷ s.

The speed of light is, to three significant figures, 3.00×10^8 m/s. Thus in 1 year, light travels a distance of

 $(3.00 \times 10^8 \text{ m/s}) (3.16 \times 10^7 \text{ s}) = 9.48 \times 10^{15} \text{ m},$

so that

1 light-year =
$$9.48 \times 10^{15}$$
 m.

The distance to Proxima Centauri is

 $(4.0 \times 10^{16} \text{ m}) \times \frac{1 \text{ light-year}}{9.48 \times 10^{15} \text{ m}} = 4.2 \text{ light-years.}$

1-5 Standard Mass

Unit of Mass: kilogram (kg)

- The kilogram (kg), is defined as the mass of a specific platinum—iridium alloy cylinder kept at the International Bureau of Weights and Measures at Sèvres, France.
- This mass standard was established in 1887 and has not been changed since that time because platinum—iridium is an unusually stable alloy.

Converting Unit of Mass

- The atomic mass unit u is
 - $1 \text{ u} = 1.661 \times 10^{-27} \text{ kg}$
 - 1 pound (lb) = 453.59 g

Typical Mass

TABLE 1-2 Typical Masses

Galaxy (Milky Way)	$4 imes 10^{41}\mathrm{kg}$
Sun	$2 imes 10^{30} \text{kg}$
Earth	$5.97 imes 10^{24} \mathrm{kg}$
Space shuttle	$2 imes 10^{6}\mathrm{kg}$
Elephant	5400 kg
Automobile	1200 kg
Human	70 kg
Baseball	0.15 kg
Honeybee	$1.5 imes10^{-4}\mathrm{kg}$
Red blood cell	$10^{-13} { m kg}$
Bacterium	$10^{-15}{ m kg}$
Hydrogen atom	$1.67\times10^{-27}\mathrm{kg}$
Electron	$9.11\times10^{-31}\rm kg$

1-7 Dimensional Analysis

- The dimension in physics refer to the type of quantity in question regardless of the unit used in the measurement.
- The symbols we use to specify length, mass, and time are L, M, and T, respectively.
- We shall often use brackets [] to denote the dimensions of a physical quantity. For example, the nature of speed v, is length/time, so the dimension of speed [v] = L/T, and nature of the area is length × length, so the dimension of the area [A] = L².
- Any valid physical formula must be dimensionally consistent- each term of the formula must have the same dimensions.
- □ This type of calculation with dimensions is (dimensional analysis).

1-7 Dimensional Analysis

Quantity	The type	Dimension
Distance	Length	L
Area	Length $ imes$ Length	L^2
Volume	(Length) ³	L^3
Velocity	Length/time	L/T
Acceleration	Length/time ²	L/T^2
Force	Mass \times acceleration	ML/T^2
Pressure	Force/area	$ML/T^2L^2 = M/T^2L$
Density	Mass/volume	M/L^3

Problem 4

To keep an object moving in a circle at constant speed requires a force called the "centripetal force". Use the dimensional analysis to predict the formula of centripetal force F, if you know that F depends on its mass m, its speed v, and the radius r of its circular path.

Solution:

- \Box Suppose that $F \alpha ma v^b r^c$
- where the symbol "α" means "is proportional to," and where a, b, and c are numerical exponents to be determined from analyzing the dimensions.
- □ The dimensions of the left hand side: the force $[F] = MLT^{-2}$

Problem 4

- □ The dimension of the right hand side = $[m^a] [v^b] [r^c]$ = $Ma (L/T)^b L^c$
- Therefore, $MLT^2 = M^a L^{b+c} T^{-b}$
- Dimensional consistency means that the fundamental dimensions must be the same on each side. Thus, equating the exponents,

exponent of M: a = 1

exponent of T: b = 2

exponent of L: b + c = 1 so c = -1:

The resulting expression is $F \propto \frac{mv^2}{r}$

Solved problems

- 1- if you know that the acceleration of gravity in SI unit equals g=9.8 ms⁻², find the acceleration in British System of Units.
- Solution:
- \Box Since 1 m = 3.28 ft, then
- □ $g = 9.80665 \ ms^{-2} = 9.80665 \times 3.2808 \ (ft \ s^{-2}) = 32.174 \ ft/s^2$
- 2- if you know that the force is given by Force = Mass × acceleration , Fined the unit , of the force in SI unit and the British system of unit.

Solution:

- □ The force F = ma, the dimension of the force is MLT^{-2} .
- \Box The unit of the force in SI unit is kg.m.s⁻² which is known as Newton (N).
- In Britch system of unit, we use the expression pound-force which is equal to the gravitational force exerted on a mass of one pound, i.e.,
- □ 1 Pound-force (1 lbf) = 1 lb (pound-mass) × gravity
- □ $1 \text{ lbf} = 1 \text{ lb} \times 32.174 (ft/s^2) = 32.174 \text{ lb.} ft/s^2 = 1 \text{ slug} \times ft/s^2$
- $\Box \quad \text{Where 1 } slug = 32.174 \ lb$
- □ 1 lbf = 0.45359 $kg \times 9.8 m/s^2 = 4.4443 N$

Ch.1 Summary

PHYSICS AND THE LAWS OF NATURE

Physics is based on a small number of fundamental laws and principles.

UNITS OF LENGTH, MASS, AND TIME

Length

Was: one ten-millionth of the distance from the North Pole

to the equator

Now: One meter is defined as the distance traveled by the light in vacuum in 1/299,792,458 second.

Mass

One Kilogram is the mass of a metal cylinder kept at the international Bureau of Weights and Standards, Sevres, France.

Time

One second is the time required for a particular type of radiation from Cesium-133 to undergo 9,192,631,770 oscillations.

Ch.1 Summary

DIMENSIONAL ANALYSIS

Dimension:

The dimension of a quantity is the type of quantity it is, for example, Length [L], mass [M], or time [T].

Dimensional Consistency

An equation is dimensionally consistent if each term in it has the same dimensions. All valid physical equations are dimensionally consistent.

Dimensional Analysis:

A calculation based on the dimensional consistency of an equation.

CONVERTING UNITS

Multiply by the ratio of two units to convert from one to another. As an example, to convert 3.5 m t feet, you multiply by the factor (1ft/0.3048 m)

1 yard (yd) = 0.9144 m	1 inch (in)= 2.54 cm
□ 1 miles (mi) = 1,609.344 m	1 yard (yd) = 3 feet (ft)
□ 1 foot (ft) = 30.48 cm	1 m = 3.281 ft

Homework

- The earth is approximately a sphere of radius 6.37×10⁶ m. (a) What is its circumference in kilometers? (b) what its volume in cubic kilometers?
- A room has dimensions of 21 ft × 13 ft × 12 ft. What is the mass of the air it contains? The density of air at room temperature and normal atmospheric pressure is 1.21 Kg/m³.
- 3. Show that $v=v_o+at$ is dimensionally consistent, where v and v_o are velocities and a is the acceleration and t is the time.
- 4. Show that $x=x_o+v_ot+at^2$ is dimensionally consistent, where x and x_o are distances and v_o is a velocity and a is the acceleration.