Electrical Engineering Department

Solution: Signal Analysis (802321) - G1

First Term (1436-1437), Final Exam Tuesday 18/03/1437 H

CLO#:

CLO 1 -

Start from here

Start from here	7 <u> </u>					
CLO:					-	Mark:
Classify signals in te	rms of thei	r properti	es, and	calculate	the energ	, and

Q1. Choose the correct answer.

5

- 1. A signal with infinite energy has a finite power if:
 - a) The signal amplitudes approaches zero as the time goes to infinity
 - c) The signal is aperiodic

- (b) The signal is periodic or has a statistical regularity
- d) None of the above
- 2. The power value of the sinusoidal signal $g(t) = C \sin(\omega t + \theta)$ depends on:

power for a wide range of continuous-time signals.

(a) C only

b) C and θ

c) C and ω

- d) ω and θ
- 3. Given the signal $x(t) = C_1 \cos \omega_1 t + C_2 \cos \omega_2 t + C_3 \cos \omega_3 t$. The power of x(t) is calculated as:

(a)
$$\frac{1}{2} [C_1^2 + C_2^2 + C_3^2]$$

c) $\frac{1}{2} [C_1 + C_2 + C_3]^2$

b)
$$\frac{1}{2} [C_1 + C_2 + C_3]$$

d) $[C_1^2 + C_2^2 + C_3^2]$

c)
$$\frac{1}{2} [C_1 + C_2 + C_3]^2$$

d)
$$[C_1^2 + C_2^2 + C_3^2]$$

- If $g_2(t) = k g_1(t)$, the energy of the signal $g_2(t)$ equals: 4.
 - a) The energy of $g_1(t)$

- b) The energy of $g_1(t)$ multiplied by 2k
- © The energy of $g_1(t)$ multiplied by k^2
- d) The energy of $g_1(t)$ multiplied by k

5. A signal is a power signal if:

a)
$$0 < \int_{-\infty}^{\infty} |g(t)|^2 dt < \infty$$

b)
$$0 \le \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} |g(t)|^2 dt < \infty$$
d) $0 < \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} |g(t)|^2 dt < \infty$

c)
$$\lim_{T\to\infty} \frac{1}{T} \int_{-T/2}^{T/2} |g(t)|^2 dt < \infty$$

(1)
$$0 < \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} |g(t)|^2 dt < \infty$$

CL	O #:	CLO:		Mark:
CL	22	Apply some time operations to signals exponential and simusoidal functions.	and analyze the unit impulse, unit step,	
Q2.	Choos	se the correct answer.		
1.	20 W.O. C.	signal is time-shifted, scaled and invert	ed, which order can be followed?	8
		Scaling → shifting → inversion. nversion → shifting → scaling.	b Shifting → inversion → scaling.d) All the above.	
2.	If g	$g_2(t) = -g_1(-t+3)$, the energy of the sig	nal $g_2(t)$ equals:	
		The energy of $g_1(t)$ The energy of $g_1(t)$ multiplied by -1	b) The energy of $g_1(t)$ plus 3 d) The energy of $g_1(t)$ multiplied by 3	
3.	Wh	ich relation is correct?		V.
	a) ∫	$\int_{-\infty}^{\infty} \delta(t)dt = u(t)$		
	c) d	$\frac{\delta(t)}{dt} = u(t)$	d) a) and b)	
4.	The	continuous-time unit step function is cl	assified as:	
		Energy signal Power signal	b) Neither energy nor power signald) Cannot decide	
5.	Whi	ich relation is correct?		
	,	$d[n] = \delta[n] + \delta[n-1]$ $d[n] = \delta[n] - \delta[n-1]$	b) $\delta[n] = u[n] + u[n-1]$ d) $\delta[n] = u[n] - u[n-1]$	
6.	Whi	ch one of the following signals is comp	lex?	
	a)	$7e^{-j5000\pi t}$	b) $j\left(\frac{1}{i}t+jt^2\right)$	
		$\left[e^{j50\pi t}+e^{j50\pi t}\right]$	d) $\frac{1}{2} \left[e^{j50\pi t} + e^{-j50\pi t} \right]$	
7.	If th	e complex exponential signals $x_1(t)$ (with narmonically related, which relationship	th the frequency ω_1) and $x_2(t)$ (with the free is correct for ω_1 and ω_2 :	equency ω_2)
	10000	$ \begin{aligned} \phi_2 &= \omega_1 \\ \phi_2 &= 6/2 \ \omega_1 \end{aligned} $	b) $\omega_2 = 5/2 \ \omega_1$ d) $\omega_2 = 2/3 \ \omega_1$	
8.	The	signal $\sin \omega_0 t$ can be expressed in term	as of complex exponential signal as:	
	a) $\frac{1}{2}$	$[e^{j\omega_0t}-e^{-j\omega_0t}]$	$ \bigcirc \frac{1}{j2} [e^{j\omega_0 t} - e^{-j\omega_0 t}] $	
		$[e^{j\omega_0t}+e^{-j\omega_0t}]$	d) $\frac{1}{j2} [e^{j\omega_0 t} + e^{-j\omega_0 t}]$	

CLO	#: CLO:		Mark:
CLO	Demonstrate the understanding of orth	ogonal signals	
Q3. Cl	noose the correct answer.		3
1.	The inner product of the two real signals g(t) and $x(t)$ is defined as:	
	a) $\int x(t)dt \int x(t)dt$ c) The area under the curve $g(t) + x(t)$	b) $g(t) x(t)$ The area under the curve $g(t)$:	x(t)
2.	The signals $g(t)$ and $x(t)$ are said to be orthogonal.	gonal over the period [t ₁ : t ₂] if:	
į	a) $\int_{t_1}^{t_2} x(t)g(t)dt = 0$	b) $\int_{t_1}^{t_2} g(t)x(t)dt = 0$	

2	33.71-1-1-4	-:	mat authoromal?
1	w nich two	signals are	not orthogonal?

(a) $\sin t$ and $\cos t$ over the interval $[0, \frac{1}{2}\pi]$

c) Their inner product equals to zero.

- c) $\sin t$ and $\cos t$ over the interval $[0, 2\pi]$
- b) $\sin t$ and $\cos t$ over the interval $[0, \pi]$

(d) All the above

d) sin t and cos t over the interval $[-\pi/2, 3\pi/2]$

CLO	#: CLO:		Mark:
CLO.	Characterize systems in terms of their analyze LTL systems.	interconnections and properties, and	2
	hoose the correct answer.		6
	 a) The total output is the output of the last system only c) The output of the second system is fed back and added to external input 	(b) The input is processed by all syste simultaneously d) a) and b)	ms

2. Which one of the following systems is nonlinear?

back and added to external input

(a) y(t) = 2x(t) + 3

b) y[n] = n x[n]

c) y(t) = (t-1) x(t)

d) y(t) = 2 x(t)

- The system $y[n + 1] = x^3[1 n]$ is: 3.
 - a) Linear and time-invariant

b) Linear and time-variant

c) Nonlinear and time-invariant

- (d) Nonlinear and time-variant
- 4. The system given in the previous question is:

a) Memoryless and causal

b) Memoryless and non-causal

c) Non-memoryless and causal

(d) Non-memoryless and non-causal

5. Which one of the following systems is causal?

a)
$$y(t) = x(-t+2)$$

b)
$$y(t) = x(-2t)$$

c)
$$x(t) = \sum_{n=t-1}^{\infty} x(n)$$

$$d) x(t) = \sum_{n=-\infty}^{t-1} x(n)$$

- 6. In memoryless systems, the output at any instant t depends on input samples at:
 - a) The same and / or past time

b) The same and / or future time

(c) The same time only

d) The past time only

Q5. Show mathematically that the system
$$y(t) = t x(t)$$
 is time-variant (i.e. not time-invariant).

3

$$\begin{array}{ccc}
(1) & \chi_1(t) & \longrightarrow & y_1(t) = t \chi_1(t) \\
& \chi_2(t) = \chi_1(t-t)
\end{array}$$

$$\Rightarrow$$
 $y_2(t) = t \times_2(t) = t \times_1(t - t_0)$ (1)

②
$$y_1(t-t_0) = (t-t_0) \times_1 (t-t_0) - (2)$$

 $\Rightarrow y_2(t) \neq y_1(t-t_0) \Rightarrow The system is time-variant$

Q6. Show mathematically that the system $y(t) = x^2(t)$ is nonlinear.

3

Let
$$X_1(t) \longrightarrow Y_1(t) = x_1(t) f$$
 $X_2(t) \longrightarrow Y_2(t) = x_2(t)$
 $\times g(t) = a \times_1(t) + b \times_2(t)$
 $\Rightarrow y_3(t) = x_3^2 = \left[a \times_1(t) + b \times_2(t)\right] = a \times_1(t) + b \times_2(t) + 2ab \times_1(t) \times_2(t)$
 $= ay_1(t) + by_2(t) = a \times_1(t) + b \times_2(t) = ---(1)$

(1)
$$\pm$$
 (2) \Rightarrow The system is nonlinear.

CLO#:	CLO:	Mark:
CLO 6	Express a periodic signal in terms-of Exponential and Trigonometric Fourier Series:	14
 a) The x(t) b) The a₀ = c) The a_k = d) For 	urier series theory: e exponential Fourier series is expressed as: $ \sum_{k=-\infty}^{\infty} a_k e \qquad \sum_{k=-\infty}^{\infty} a_k e \qquad , k=0,\pm1,\dots $ e constant coefficient of the Fourier series is calculated as: $ = \frac{1}{T} \int_{T} x(t) dt $ e other Fourier series coefficients are calculated as: $ = \frac{1}{T} \int_{T} x(t) dt $ real signal $x(t)$ and real coefficients a_k , the Fourier series is simplified to: $ x = a_0 + 2 \sum_{k=-\infty}^{\infty} a_k \cos k \omega_0 t $	4
Q8. Given a) Fin b) Fin	the impulse train signal $\delta_{To}(t)$ where $T_0 = 2$ sec: d the Fourier series constant coefficient a_0 . 1 Mark d the Fourier series coefficients a_k . 2 Mark ite the Fourier series using complex exponential form. 1 Mark	4
a) b) ($a_0 = \frac{1}{T} \int_{T} x(t) dt = \frac{1}{2} \int_{T_0}^{1/2} \delta_{T_0}(t) dt = \frac{1}{2} (1) = \frac{1}{2}$ $a_0 = \frac{1}{T} \int_{T} x(t) dt = \frac{1}{2} \int_{T_0}^{1/2} \delta_{T_0}(t) dt = \frac{1}{2} (1) = \frac{1}{2}$ $a_0 = \frac{1}{T} \int_{T} x(t) dt = \frac{1}{2} \int_{T_0}^{1/2} \delta_{T_0}(t) dt = \frac{1}{2} \int_{T_0}^{1/2} \delta_{T_0}(t) dt = \frac{1}{2}$	
c) ;	$= \frac{1}{2} \int_{-1/2}^{1/2} \delta_{T_0}(t) e^{-jk\omega_0(0)} dt$ $= \frac{1}{2} \int_{-1/2}^{1/2} \delta_{T_0}(t) dt = \frac{1}{2} (1) = \frac{1}{2}$ $= \frac{1}{2} \int_{-1/2}^{1/2} \delta_{T_0}(t) dt = \frac{1}{2} (1) = \frac{1}{2}$ $= \frac{1}{2} \int_{-1/2}^{1/2} \delta_{T_0}(t) dt = \frac{1}{2} (1) = \frac{1}{2}$ $= \frac{1}{2} \sum_{k=-\infty}^{\infty} e^{-jk\omega_0(0)} dt = \frac{1}{2} \sum_{k=-\infty}^{\infty} e^{-jk(1-\omega)} dt = \frac{1}{2} \sum_{k=-\infty}^{\infty} e^{-jk(1-\omega)} dt = \frac{1}{2} \sum_{k=-\infty}^{\infty} e^{-jk(1-\omega)} dt = \frac{1}{2} \sum_{k=-\infty}^{\infty} e^{-jk\omega_0(0)} $	

Q9. Choose the correct answer.

6

1. Which diagram is correct to convert a periodic signal x(t) from time-domain to frequencydomain?

a)
$$x(t) \stackrel{F}{\Rightarrow} X(j\omega)$$

c) $x(t) \stackrel{F}{\Rightarrow} \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$

$$\begin{array}{cccc} & \overleftarrow{\mathfrak{D}} & x(t) \stackrel{FS}{\Rightarrow} \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t} \stackrel{F}{\Rightarrow} X(j\omega) \\ & \overset{F}{\Rightarrow} X(j\omega) \stackrel{FS}{\Rightarrow} \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t} \end{array}$$

2. For the signal $x(t) = 4 \cos \omega_0 t$, the Fourier series coefficients are:

(a)
$$a_0 = 0$$
, $a_1 = 2$, $a_{-1} = 2$
c) $a_0 = 0$, $a_1 = 4$, $a_{-1} = 4$

b)
$$a_0 = 0$$
, $a_1 = 2/j$, $a_{-1} = -2/j$
d) $a_0 = 0$, $a_1 = 2$, $a_{-1} = -2$

3. Which one of the following periodic signals is absolutely integrable?

a)
$$x(t) = 1/(2t)$$
, $0 \le t \le 1$
c) $x(t) = \ln t$, $\frac{1}{2} \le t \le 1$

b)
$$x(t) = t^{-2}$$
, $0 \le t \le 1$
d) $x(t) = \ln t$, $0 \le t \le 1$

4. Fourier series is expressed using the formula $x(t) = a_0 + 2\sum_{k=1}^{\infty} \frac{a_{-k}}{i} \sin k\omega_0 t$, when:

a)
$$x(t)$$
 is real but $\{a_k\}$ are complex

b)
$$x(t)$$
 is complex but $\{a_k\}$ are imaginary

c)
$$x(t)$$
 is complex but $\{a_k\}$ are real

$$(\mathbf{d}) x(t)$$
 is real but $\{a_k\}$ are imaginary

5. Given the signal $x(t) = \cos^2 3\pi t$. If the fundamental frequency in radian per second is 3π :

a)
$$a_0 = \frac{1}{2}$$
, $a_1 = 0$, $a_2 = \frac{1}{2}$

b)
$$a_0 = \frac{1}{2}$$
, $a_1 = \frac{1}{4}$, $a_2 = 0$

c)
$$a_0 = 0$$
, $a_1 = \frac{1}{4}$, $a_2 = 0$

b)
$$a_0 = \frac{1}{2}$$
, $a_1 = \frac{1}{4}$, $a_2 = 0$
d) $a_0 = \frac{1}{2}$, $a_1 = 0$, $a_2 = \frac{1}{4}$

If a_k are the Fourier series coefficients of a signal g(t), the Fourier series coefficients of the signal 6. dx(t)/dt are:

a)
$$(1/jk\omega_0) a_k$$

(b)
$$jk\omega_0 a_k$$

c)
$$(-1/jk\omega_0) a_k$$

d)
$$-ik\omega_0 a_k$$

CLO #:	CLO:	Mark:
CLO 7	Determine the Fourier Transform and the Inverse Fourier Transform of periodic and aperiodic signals, and apply some properties of the Fourier Transform to determine FT of complex signals.	14
Q10. The	continuous-time Fourier transform and inverse Fourier transform equations are:	

	~ /	4	-16	ı t
a) $X(j\omega) =$	J	* (f)	e	dt
	- 04			
		66		ا سر
		1	121	J •• •

b)
$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{-j\omega t} d\omega$$

2

Q11. Choose the correct answer.

6

1. The Fourier transform of the signal $x(t) = e^{-at}u(t)$ equals to:

a)
$$F\left\{e^{-a|t|}-e^{at}u(-t)\right\}$$

c)
$$F\{e^{at}u(-t)\} - F\{e^{-a|t|}\}$$

(b)
$$F\{e^{-a|t|}\} - F\{e^{at}u(-t)\}$$

d) $F\{e^{-a|t|}\} + F\{e^{at}u(-t)\}$

d)
$$F\{e^{-a|t|}\}+F\{e^{at}u(-t)\}$$

2. Which Fourier transform pair is correct?

(a)
$$1 \stackrel{F}{\Leftrightarrow} 2\pi\delta(\omega)$$

c)
$$\delta(t) \stackrel{F}{\Leftrightarrow} 2\pi$$

b)
$$\sin 20\pi t \stackrel{F}{\Leftrightarrow} \frac{\pi}{j} [\delta(\omega - 20\pi) + \delta(\omega + 20\pi)]$$

d)
$$\cos 20\pi t \stackrel{F}{\Leftrightarrow} \frac{\pi}{j} [\delta(\omega - 20\pi) + \delta(\omega + 20\pi)]$$

3. The signum function sgn(t) can be defined as:

a)
$$\operatorname{sgn}(t) = u(t) + u(-t)$$

c)
$$\operatorname{sgn}(t) = u(t) - u(-t)$$

b)
$$\operatorname{sgn}(t) = 2u(t) - 1$$

4. The Fourier transform of the function sgn(t) is:

a)
$$1/j\omega$$

c) $2/j\omega$

b)
$$2/j\omega + 2\pi \delta(\omega) - 1$$

d)
$$2/j\omega - \pi \delta(\omega)$$

6. The Fourier transform of the signal $x(t) = e^{3t} u(-t)$ is:

a)
$$X(j\omega) = \frac{1}{3+j\omega}$$

c)
$$X(j\omega) = \frac{6}{9+\omega^2}$$

(b)
$$X(j\omega) = \frac{1}{3-j\omega}$$

d) $X(j\omega) = \frac{3}{9+\omega^2}$

d)
$$X(j\omega) = \frac{3}{9+\omega^2}$$

Q12. Given the signal: $x(t) = rect \left(\frac{t}{2}\right)$

a) Sketch x(t).

(a)

1 Mark

3 Marks

6

b) Find the Fourier transform $X(j\omega)$ in terms of sinc function.

2 Marks

c) Sketch the Fourier transform $X(i\omega)$.

(b)
$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt = \int_{-\infty}^{\infty} e^{-j\omega t} dt = -\frac{1}{j\omega} \left[e^{-j\omega t} \right]^{-1}$$

$$=-\frac{1}{j\omega}\left(\begin{array}{ccc} -j\omega & j\omega \\ e & -e \end{array}\right)=\frac{1}{j\omega}\left(\begin{array}{ccc} j\omega & -j\omega \\ e & -e \end{array}\right)=\frac{2\,\,\text{sin}(\omega)}{\omega}$$

Since
$$sinc\theta = \frac{sin\theta}{\theta} \Rightarrow \left[X(ju) = 2 sinc(w) \right]$$

(c) To sketch
$$X(j\omega)$$
: if $\omega=0 \Rightarrow X(j\omega) = \frac{2 \sin 0}{0} = \frac{0}{0}$

$$\Rightarrow X(j\omega) = \lim_{\omega \to 0} \left[\frac{\frac{d}{d\omega}(2 \sin \omega)}{\frac{d}{d\omega}(\omega)} \right] = \lim_{\omega \to 0} \frac{2 \cos \omega}{1} = \frac{2}{1} = 2$$

For a s b:

$$2 \operatorname{Sinc}(\omega) = 0 \Rightarrow \operatorname{Sin} \omega = 0$$

$$\Rightarrow \omega = \pm \pi, \pm 2\pi, ---$$

Recall that at
$$\omega = 0 \Rightarrow X(j\omega) = 2T$$
, $(T_1 = 1) \Rightarrow X(j\omega) = 2$
 $f(j\omega) = 0$ at $\omega = \pm \pi/T$, $\pm 2\pi/T$, ... $\Rightarrow \omega = \pm \pi$, $\pm 2\pi$,...

GOOD LUCK