Electrical Engineering Department

Signal Analysis (802321) - G1

Dr. Mouaaz Nahas

First Term (1435-1436), Final Exam, Saturday 12/03/1436 H

	الأسم:	
	للللللللللللللللة الرقم الجامعي: لللللللللللللل	Engineering
Start from here \rightarrow		Accreditation Commission

21 Marks, 1 Each Q 1. Choose the correct answer: 1. A signal with infinite energy has a finite power if: a) The signal amplitudes approaches zero as b) The signal is periodic or has a statistical the time goes to infinity regularity c) The signal is aperiodic d) None of the above 2. The unit step function is classified as: a) Energy signal b) Neither energy nor power signal c) Power signal d) Cannot decide 3 The power value of the sinusoidal signal $g(t) = C \sin(\omega t + \theta)$ depends on: a) The maximum amplitude only b) The maximum amplitude and phase angle c) The maximum amplitude and frequency d) The maximum phase angle and frequency 4. If $g_2(t) = k g_1(t)$, the energy of the signal $g_2(t)$ equals:

- b) The energy of $g_1(t)$ multiplied by 2ka) The energy of $g_1(t)$ c) The energy of $g_1(t)$ multiplied by k^2 d) The energy of $g_1(t)$ multiplied by k
- 5. If $g_2(t) = -g_1(-t+3)$, the energy of the signal $g_2(t)$ equals: a) The energy of $g_1(t)$ b) The energy of $g_1(t)$ plus 3 c) The energy of $g_1(t)$ multiplied by -1d) The energy of $g_1(t)$ multiplied by 3 The signal g(-2t+5) is: 6. a) g(t) advanced by 5, then time-inverted, b) g(t) inverted in time, then compressed by 2, then compressed by 2.

c) g(t) inverted in time, then compressed by 2, then advanced by 5.

- then delayed by 5/2. d) a) and b)
- 7. If the complex exponential signals $x_1(t)$ (with the frequency ω_1) and $x_2(t)$ (with the frequency ω_2) are harmonically related, which relationship is correct for ω_1 and ω_2 :

a) $\omega_1 = \omega_2$	b) $\omega_1 = 5/2 \omega_2$
c) $\omega_1 = 6/2 \omega_2$	d) $\omega_1 = 2/6 \omega_2$

The complex number (1 - i) / (1 + i) equals: 8.

a) $e^{j\pi/2}$	b) <i>e</i> ^{<i>j</i>π/4}
c) <i>e</i> ^{-j\pi/4}	d) $e^{-j\pi/2}$

Accredited

9.	Which one of the following systems is nonlinear:				
	a) $y(t) = 2 x(t) + 3$ c) $y(t) = (t - 1) x(t)$	b) $y[n] = n x[n]$ d) $y(t) = 2 x(t)$			
10.	The system $y[n + 1] = x^3[1 - n]$ is:				
	a) Linear and time-invariantc) Nonlinear and time-invariant	b) Linear and time-variant d) Nonlinear and time-variant			
11.	The system given in Q.10 is:				
	a) Memoryless and causalc) Non-memoryless and causal	b) Memoryless and non-causal d) Non-memoryless and non-causal			
12.	In the parallel interconnection of systems:				
	a) The total output is the output of the last system	b) The input is processed by all systems simultaneously			
	c) The output of the second system is fed back and added to external input	d) b) and c)			
13.	For the signal $x(t) = 4 \cos \omega_0 t$, the Fourier series coefficients are:				
	a) $a_0 = 0$, $a_1 = 2$, $a_{-1} = 2$ c) $a_0 = 0$, $a_1 = 4$, $a_{-1} = 4$	b) $a_0 = 0$, $a_1 = 2 / j$, $a_{-1} = -2 / j$ d) $a_0 = 0$, $a_1 = 2$, $a_{-1} = -2$			
14.	Which one of the following periodic signals is	s absolutely integrable:			
	a) $x(t) = 1/(2t)$, $0 \le t \le 1$ c) $x(t) = \ln t$, $\frac{1}{2} \le t \le 1$	b) $x(t) = t^{-2}, 0 \le t \le 1$ d) $x(t) = \ln t, 0 \le t \le 1$			
15.	Given a periodic square wave which is defined over one period as: $x(t) = rect\left(\frac{t}{2}\right), -2 \le t \le 2$				
	The Fourier series coefficients a_k are:				
	a) $a_0 = \frac{1}{2}$, $a_k = (1/k\pi) \sin(k\pi/2)$ for $k \neq 0$ c) $a_0 = 1$, $a_k = (1/k\pi) \sin(k\pi/2)$ for $k \neq 0$	b) $a_0 = \frac{1}{2}$, $a_k = (1/k\pi) \sin(k\pi)$ for $k \neq 0$ d) $a_0 = 1$, $a_k = (1/k\pi) \sin(k\pi)$ for $k \neq 0$			
16.	Fourier series is expressed using the formula $x(t) = a_0 + 2\sum_{k=1}^{\infty} \frac{a_{-k}}{i} \sin k\omega_0 t$, when:				
	 a) x(t) is real but {a_k} are complex c) x(t) is complex but {a_k} are real 	b) $x(t)$ is complex but $\{a_k\}$ are imaginary d) $x(t)$ is real but $\{a_k\}$ are imaginary			
17.	Given the impulse train signal $\delta_{T_0}(t)$ where $T_0 = \frac{1}{2}$ sec, the Fourier series coefficients of $\delta_{T_0}(t)$ are:				
	a) $a_k = 1/2$ for all values of k c) $a_k = 2$ for all values of k	b) $a_0 = 2$, $a_k = 4$ for $k \neq 0$ d) $\delta_{To}(t)$ does not have Fourier series			
18.	Inverse Fourier transform is calculated as:				
	a) $x(t) = \int_{-\infty}^{\infty} X(f) e^{j2\pi f t} df$	b) $x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(f) e^{j2\pi g t} df$			
	c) $x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{-j\omega t} d\omega$	d) $x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} dt$			

19.	The signum function $sgn(t)$ is shown on the right be defined as:	ght. This function can	sgn(t)
	a) $sgn(t) = u(t) + u(-t)$ c) $sgn(t) = u(t) - u(-t)$	b) $sgn(t) = 2u(t) - 1$ d) b) and c)	→ 1
20.	The Fourier transform of the function sgn(<i>t</i>) is:		
	a) 1 / <i>jω</i> c) 2 / <i>jω</i>	b) $2/j\omega + 2\pi \delta(\omega) - 1$ d) $2/j\omega - \pi \delta(\omega)$	
21.	For the linear time-invariant system, the input and output are related as:		
	a) $Y(j\omega) = H(j\omega) * X(j\omega)$ c) $x(t) = h(t) * y(t)$	b) $y(t) = x(t) * h(t)$ d) $Y(j\omega) = H(j\omega) / X(j\omega)$	

Q 2. Find the Fourier series coefficients a_k of the following two periodic signals:

a) $y_1(t) = t$ $-1 \le t \le 1$

b)
$$y_2(t) = \frac{1}{2}t$$
 $0 \le t \le 2$

Hint: you can use Fourier series integral only or Fourier series integral and Fourier series properties. Solution:

10 Marks

a) See Note "Fourier Series of Triangular & Sawtooth Waves (Examples)" – Pages 6, 7.

If k is odd:
$$e^{jk\pi} = -1$$
 f $e^{jk\pi} = -1$
 $a_{k} = \frac{1}{2} \left[\left(\frac{-1}{-jk\pi} + \frac{-1}{(k\pi)^{k}} \right) - \left(\frac{+1}{-jk\pi} + \frac{-1}{(k\pi)^{k}} \right) \right]$
 $= \frac{1}{2} \left[\frac{-1}{jk\pi} + \frac{-1}{(k\pi)^{2}} \right] = \frac{1}{2} \left(\frac{2}{jk\pi} \right)^{2}$
 $= \frac{1}{2} \left[\frac{-1}{jk\pi} + \frac{-1}{jk\pi} \right] = \frac{-1}{2} \left(\frac{2}{jk\pi} \right)^{2}$
 $= \frac{1}{jk\pi} = -j\frac{1}{k\pi}$
If k is even $\sum_{k} e^{jk\pi} = 1$ f $e^{jk\pi} = 1$
 $\Rightarrow a_{k} = \frac{-1}{2} \left[\left(\frac{-1}{-jk\pi} + \frac{1}{(k\pi)^{k}} \right) - \left(\frac{-1}{-jk\pi} + \frac{1}{(k\pi)^{k}} \right) \right]$
 $= \frac{-1}{2} \left[-\frac{1}{jk\pi} + \frac{1}{(k\pi)^{k}} - \frac{1}{jk\pi} - \frac{1}{(k\pi)^{2}} \right]$
 $= -\frac{1}{jk\pi} = j\frac{1}{k\pi}$
 $\Rightarrow a_{k} = \begin{cases} 0 \qquad (k=0) \\ -j\frac{1}{k\pi} & (k \text{ is odd}) \\ j\frac{1}{k\pi} & (k \text{ is even}) \end{cases}$

$$a_{k} = \begin{cases} \frac{(-1)^{k}}{k\pi}, \quad k \neq 0 \end{cases}$$

b) See Note "Fourier Series of Triangular & Sawtooth Waves (Examples)" – Pages 4, 5.

$$J_{4}(t) = \frac{1}{2}t \quad c \leq t \leq 2$$

$$- \frac{1}{2} \quad \int_{-2}^{-2} \frac{1}{6} \int_{-2}^{-2} \frac{1}{6$$

$$\begin{aligned} q_{k} &= \frac{1}{4} \int t e^{-jk\pi t} dt = \frac{1}{4} \left[\frac{+e^{-jk\pi t}}{-jk\pi} + \frac{-jk\pi t}{(k\pi)^{2}} \right]_{0}^{2} \\ &= \frac{1}{4} \left[\left(\frac{2e}{-jk\pi} + \frac{-jk(2\pi)}{(k\pi)^{2}} \right) - \left(0 + \frac{1}{(k\pi)^{2}} \right) \right] \\ &= \frac{1}{4} \left[\frac{2}{-jk\pi} + \frac{1}{(k\pi)^{2}} - \frac{1}{(k\pi)^{2}} \right] \\ &= \frac{1}{-j2k\pi} = j \frac{1}{2k\pi} \\ &= \frac{1}{-j2k\pi} \left\{ \frac{1}{2} , \quad k = 0 \\ j \frac{1}{2k\pi} , \quad k \neq 0 \end{array} \right. \end{aligned}$$

Q 3. <u>Find</u> and <u>sketch</u> the Fourier transform $X(j\omega)$ of the following signals:

8 Marks

a)
$$x_1(t) = rect\left(\frac{t}{2T_1}\right)$$
 b) $x_2(t) = e^{-a/t/}$ $a > 0$

Please simplify your answer as much as you can.

Solution:

a) See Note 12 – Pages 8, 9, 10.

Seluction:

$$x(t) = \begin{cases} 1 & -T_{1} < t < T_{1} \\ \circ & elsewhere \end{cases}$$

$$x(t) = \begin{cases} 1 & -T_{1} < t < T_{1} \\ \circ & elsewhere \end{cases}$$

$$x(t) = \int_{-T_{1}}^{\infty} x(t) e^{-j\omega t} dt$$

$$= \int_{-T_{1}}^{T_{1}} e^{-j\omega t} dt = -\frac{1}{j\omega} \left[e^{-j\omega t} \right]_{-T_{1}}^{T_{1}}$$

$$= -\frac{1}{j\omega} \left(e^{-j\omega T_{1}} - e^{-j\omega T_{1}} \right) = \frac{1}{j\omega} \left(e^{j\omega T_{1}} - e^{-j\omega T_{1}} \right)$$

$$\Rightarrow x(j\omega) = \frac{2}{\omega} \sin(\omega T_{1}) = \frac{2}{2} \sin(\omega T_{1}) = -\frac{1}{j\omega} (m T_{1})$$

$$\Rightarrow X(j\omega) = 2T_{1} \sin c(\omega T_{1})$$

$$QR$$

2

b) See Note 12 – Pages 6, 7.

$$x(t) = e \qquad a > 0$$

$$\Rightarrow x(t) = \begin{cases} e^{at} + t < 0 \\ e^{at} + t \ge 0 \end{cases}$$

$$\xrightarrow{e^{at}} e^{at} + t \ge 0$$

$$\xrightarrow{e^{at}} e^{at} = 0$$

$$\xrightarrow{e^{at}} e^{at} = 0$$

$$\xrightarrow{e^{at}} e^{at} = 0$$

$$\xrightarrow{e^{at}} e^{at} = 0$$

$$X(ju) = \int_{-\infty}^{\infty} x(t) e^{-jut} dt = \int_{-\infty}^{0} e^{at} e^{-jut} dt + \int_{0}^{\infty} e^{-at} e^{-jut} dt$$

$$= \int_{-\infty}^{0} e^{(a-ju)t} dt + \int_{0}^{\infty} e^{-(a+ju)t} dt$$

$$= \frac{1}{a-ju} \left[e^{(a-ju)t} \right]_{-\infty}^{0} - \frac{1}{a+ju} \left[e^{-(a+ju)t} \right]_{0}^{\infty}$$

$$= \frac{1}{a-ju} \left(1-0 \right) - \frac{1}{a+ju} \left(0-1 \right)$$

$$= \frac{1}{a-ju} + \frac{1}{a+ju} = \frac{a+ju+a-ju}{a^{2}+u^{2}} = \frac{2}{a^{2}+u^{2}}$$

Solution:

2

See Note "Properties of Fourier Transform (More Examples)" - Pages 2, 3.

Recall that
$$x(t) = e^{-a|t|} \in F \times (j\omega) = \frac{2a}{a^{2} + \omega^{2}}$$

For $a = 1 \implies x(t) = e^{-|t|} \in F \implies x(j\omega) = \frac{2}{1 + \omega^{2}}$
 $\Rightarrow x(t) = e^{-|t|} = \frac{1}{2\pi} \int X(j\omega) e^{-b} d\omega$
 $= \frac{1}{2\pi} \int_{-\infty}^{\infty} (\frac{2}{1 + \omega^{2}}) e^{-b} d\omega$
Multiplying both sides by 2π :
 $\Rightarrow 2\pi e^{-|t|} = \int_{-\infty}^{\infty} (\frac{2}{1 + \omega^{2}}) e^{-b} d\omega$
Replacing t by -t (because the signal $x(t)$ is even):
 $\Rightarrow 2\pi e^{-|t|} = \int (\frac{2}{1 + \omega^{2}}) e^{-j\omega t} d\omega$
Interchanging the names of variables t and ω :
 $\Rightarrow 2\pi e^{-|\omega|} = \int_{-\infty}^{\infty} (\frac{2}{1 + t^{2}}) e^{-j\omega t} dt$

 $x(t) = \frac{2}{1+t^2} \leftarrow F \qquad X(j_w) = 2\pi e$

a) $X(j\omega)$. b) $H(j\omega)$. c) $Y(j\omega)$. d) y(t). Solution:

=>

See Note 13 – Pages 4, 5

$$x(t) = e^{-\alpha t} u(t) \xleftarrow{F} X(j\omega) = \frac{1}{\alpha + j\omega} \qquad (Ex. 4.1)$$

$$h(t) = u(t) \xleftarrow{F} H(j\omega) = \frac{1}{j\omega} + \pi \delta(\omega) \qquad (Ex. 4.11)$$

$$Y(j\omega) = H(j\omega) X(j\omega) = \left[\frac{1}{j\omega} + \pi \delta(\omega)\right] \frac{1}{a+j\omega}$$
$$= \frac{1}{j\omega} \left(\frac{1}{a+j\omega}\right) + \pi \delta(\omega) \left(\frac{1}{a+j\omega}\right)$$
$$= \frac{1}{j\omega} \left(\frac{1}{a+j\omega}\right) + \pi \delta(\omega) \left(\frac{1}{a+j\omega}\right)$$
$$= \frac{1}{j\omega} \left(\frac{1}{a+j\omega}\right) + \pi \delta(\omega) \left(\frac{1}{a+j\omega}\right)$$
$$= 0$$
$$G(j\omega)$$

The right-hand side represents the integration of Fourier Series of the integration of the function $F'\left\{\frac{1}{a+ju}\right\}$.

$$\begin{array}{c} -at \\ e \\ u(t) \\ f \\ -at \\ e \\ u(t) \\ dt \\ \end{array} \begin{array}{c} F \\ f \\ f \\ -at \\ f \\ y(t) \end{array} \left(\begin{array}{c} 1 \\ a+jw \\ f \\ y(jw) \end{array} \right) + \pi \\ \delta(w) \\ \left(\begin{array}{c} 1 \\ a+jw \\ a+jw \\ y(jw) \end{array} \right) \right|_{w=0}$$

$$\Rightarrow y(t) = \int_{a}^{t} e^{a\tau} u(\tau) d\tau$$

$$= \int_{a}^{t} e^{a\tau} d\tau = -\frac{1}{a} \begin{bmatrix} -a\tau \\ e^{-a\tau} \end{bmatrix}_{a}^{t}$$

$$= -\frac{1}{a} \left(\frac{-a\tau}{e^{-a\tau}} - 1 \right) = \frac{1}{a} \left(1 - \frac{-a\tau}{e^{-a\tau}} \right)$$
since $t > 0 \Rightarrow y(t) = \frac{1}{a} \left(1 - \frac{-a\tau}{e^{-a\tau}} \right) u(t)$

GOOD LUCK