Electrical Engineering Department Signal Analysis (802321) – G1

Bigliai Analysis (802321

Q 1. Choose the correct answer:

Total 26 Marks

Accredited

<u>Part A - CLO 2: Apply some time operations to signals and analyze the unit impulse, unit step, exponential and sinusoidal functions.</u>

1. Which statement is correct?

1 Mark

- All signals observed in real life are energy signals
- c) All signals observed in real life are power signals
- b) Both energy and power signals exist in real life.
- d) A power signal must necessarily have finite duration.
- 2. In communication systems, message signal and noise signals are classified as:

1 Mark

- a) Message is random but noise is deterministic
- c) Noise is random but message is deterministic
- b) Noise is random but message is either random or deterministic.
- d Both message and noise are probabilistic
- 3. If $g_2(t) = -g_1(-\frac{1}{2}t + 3)$, the <u>energy</u> of the signal $g_2(t)$ equals:

1 Mark

- a) The energy of $g_1(t)$ multiplied by -2
- \bigcirc The energy of $g_1(t)$ multiplied by 2

Expansion by 2

- b) The energy of $g_1(t)$ divided by 2
- d) The energy of $g_1(t)$ multiplied by $-\frac{1}{2}$
- 4. The signal g(-2t+3) is: = 9[-2(t-3/2)]

1 Mark

- a) g(t) delayed by 2, then time-inverted, then compressed by 3
- © g(t) time-inverted, then compressed by 2, then right-shifted by 3/2
- b) g(t) left-shifted by 3, then time-inverted, then expanded by 2
- d) g(t) time-inverted, then compressed by 2, then left-shifted by 3
- 5. If a signal is time-shifted, scaled and inverted, which order can be followed?

1 Mark

- a) Scaling → inversion → shifting
- c) Inversion → scaling → shifting

- b) Shifting → inversion → scaling
- (d) All the above

(as long as shifting is

not in the middle).

6. Given the signal g(t) shown in the figure. Sketch the signal -g(1-2t).

2 Marks

- Method (2): O Left_shift by 1.
 - @ Invert.
 - @ Compress by 2.

Finally, invert the signal around the t-axis.

① (g(t+1)) = (-t+1)

