
International Journal of Embedded systems and Applications (IJESA) Vol.6, No.1/2, June 2016

10.5121/ijesa.2016.6201 1

DEVELOPING SCHEDULER TEST CASES TO VERIFY

SCHEDULER IMPLEMENTATIONS IN TIME-
TRIGGERED EMBEDDED SYSTEMS

Mouaaz Nahas
1
 and Ricardo Bautista-Quintero

2

1
 Department of Electrical Engineering, College of Engineering and Islamic Architecture,

Umm Al-Qura University, Makkah, KSA
mmnahas@uqu.edu.sa

2
 Department of Mechanical Engineering, Instituto Tecnólogico De Culiacán, Sinaloa,

México
r.bautista@unb.ca

ABSTRACT

Despite that there is a “one-to-many” mapping between scheduling algorithms and scheduler

implementations, only a few studies have discussed the challenges and consequences of translating between

these two system models. There has been an argument that a wide gap exists between scheduling theory

and scheduling implementation in practical systems, where such a gap must be bridged to obtain an

effective validation of embedded systems. In this paper, we introduce a technique called “Scheduler Test

Case” (STC) aimed at bridging the gap between scheduling algorithms and scheduler implementations in

single-processor embedded systems implemented using Time-Triggered Co-operative (TTC) architectures.

We will demonstrate how the STC technique can provide a simple and systematic way for documenting,

verifying (testing) and comparing various TTC scheduler implementations on particular hardware.

However, STC is a generic technique that provides a black-box tool for assessing and predicting the

behaviour of representative implementation sets of any real-time scheduling algorithm.

KEYWORDS

Scheduler algorithm, scheduler implementation, cyclic executive, time-triggered co-operative scheduler,

resource-constrained embedded system, scheduler test cases, predictability, jitter, task overrun.

1. INTRODUCTION

There are numerous ways in which we can describe (and distinguish) the different architectures

employed in embedded computer systems. The architecture which forms the focus of this paper is

usually described as “time triggered” (TT); as opposed to “even-triggered” (ET) [1]. For an

embedded system with a time-triggered architecture, we are supposed to know in advance how

the system will behave exactly at every instance during its running time. Knowing the complete

behaviour of the system and hence determining whether the system is capable of meeting all its

timing constraints can be referred to as “predictability” [2], [3].

Such an ideal TT behaviour is inevitably hard to achieve in real world. However, approximations

of this model have been developed and widely used in practice. The best approximation of an

ideal TT architecture contains a set of periodic tasks running in a co-operative (or simply “non-

pre-emptive”) manner. Such a design is referred to as “time-triggered co-operative” (TTC)

architecture [4]–[8]. Early versions of this architecture used to be called a “cyclic executive” [9]–

[11]. Unlike time-triggered pre-emptive algorithms (e.g. “rate monotonic”), systems with TTC

architectures have high predictability in their timing behaviour, i.e. they demonstrate very low

levels of task jitter [10] and have the ability to maintain such low-jitter characteristics even when

mailto:mmnahas@uqu.edu.sa
mailto:r.bautista@unb.ca

International Journal of Embedded systems and Applications (IJESA) Vol.6, No.1/2, June 2016

2

modern techniques are integrated to improve system performance or minimise power

consumption (e.g. “dynamic voltage scaling” (DVS) technique [12]).

The principal aim of this paper is to ensure that accurate timing predictions made at the design

phase are maintained during the process of implementing (and also maintaining) a practical

system. It has been argued that there is a “one-to-many” mapping between scheduling algorithms

and scheduler implementations ([9], [13]–[15]). However, the process of transforming between

these two system representations has not received widespread attention. In an effort to facilitate a

systematic approach for validating an implementation of TT system, we introduce an empirical

approach which we call a “scheduler test case” (STC). Such a technique is not intended to test all

features of the system (by any means): instead, it is intended to be used with “dummy tasks”

solely as a practical means for assessing the scheduler implementation employed in a given

system. In this way, we aim to allow those implementing the system to gain a better

understanding (during system construction, testing or maintenance) of the way in which a given

TTC implementation is expected to behave under a range of normal and abnormal operating

conditions. Our objective is that the developed STC method can provide a “black box” evaluation

of a given scheduler implementation without the necessity to access (or even comprehend) the

underlying source code by the system developer (or user).

Predictability is an important design parameter in real-time resource-constrained embedded

systems, particularly in those employing TTC architectures. Thus, it is used here as the essential

criteria for assessing the behaviour of a scheduler. To be able to express predictability using

qualitative and quantitative measures, the following three criteria are considered: (1) task

execution sequence; (2) timing jitter; and (3) the capability of the scheduler to handle unexpected

errors. In addition, computational, memory and power overheads resulted from the

implementation of each scheduler are used to allow a practical comparison between the various

studied schedulers.

The remainder of the paper is organised as follows. In Section 2, we provide a detailed literature

review of the work conducted in the same field of this study. In Section 3, we introduce what we

call “Scheduler Test Cases” (STCs). In Section 4, we demonstrate how the STC technique is

employed in TTC algorithm. In Section 5, the methodology used to attain the empirical results of

this study is described. In Section 6, we report the results obtained when the STC is applied to a

set of representative TTC scheduler implementations collected from the literature. Finally, we

present our conclusions in Section 7.

2. LITERATURE REVIEW

In this section, a detailed literature review of the work carried out in this area is provided.

2.1. Automated code generation

One way to bridge the gap between scheduler algorithms and scheduler implementation is by

means of automated code generation. Such techniques help to reduce the time and effort

consumed in the implementation process of safety-critical systems, while removing errors that are

likely to arise during this stage of development [16], [17]. Various industries – such as aerospace

and automotive – have extensively used automatic code generation tools for control and signal

processing systems [18]–[20]. TTC systems considered in this study are typically used in such

application arenas. It is believed that hundreds of thousands of modern cars rely on codes

generated using automatic code generation [18], [21].

Previous work on the “automatic” generation of systems using TTC architecture are presented in

[22], [23]. This kind of work helps the developer to utilise a collection of “design patterns” for

International Journal of Embedded systems and Applications (IJESA) Vol.6, No.1/2, June 2016

3

creating a complete code (with the underlying scheduler) of a TTC system. In addition, even with

TTC architectures, the user still needs to “hand tune” some task parameters (like the offset) and

scheduler parameters (like the tick interval). Incorrect tuning of these parameters may result – at

worst – in unschedulability of tasks. However, even if all tasks are ensured to be scheduled,

incorrect decisions may still cause degradation to the system performance (e.g. introducing high

levels of task jitter) or an increase in the implementation costs (e.g. increasing CPU overhead or

system power consumption). To conclude, automated code generation techniques – despite their

important role in validating embedded software – do not take into account the possible runtime

behaviour that can be resulted from a particular implementation of software code. For example,

no feedback process is incorporated in such techniques which allows the designer to examine the

consequence of using a particular code on the runtime behaviour of their system and hence

modify the source code accordingly.

2.2. Scheduler implementation

It is noticed that a great deal of work has been carried out in developing, assessing and modifying

(enhancing) scheduling algorithms. Despite that, only a limited amount of work has been found

on the process of scheduler implementation and its vulnerability to the decisions made at early

stages of the development lifecycle (namely, during scheduler design). The relationship between

any scheduling algorithm and its possible implementation options is usually viewed as “one-to-

many” [4], [9], [14], [24]–[26], which simply means that the output behaviour of the system

would entirely depend on the implementation decisions. To elaborate more on this point, if the

source code of a scheduler is implemented using an appropriate collection of “software design

patterns” which is a common practice [4], the relationship between a design pattern and its

implementation is typically described as “one pattern, many implementations” [27]. This would

inevitably cause the scheduling algorithm to have a wide range of scheduler implementations;

each corresponds to a different pattern. Figure 1 shows the implementation of a simple TTC

algorithm based on a set of different software design patterns, where each pattern represents a

different scheduler implementation (e.g. TTC-1, TTC-2, etc.) and uses various Pattern

Implementation Examples (PIEs) corresponding to different processor platforms (e.g. 8-bit 8051,

16-bit c167 or 32-bit ARM microprocessor). This figure helps to explain the concept behind the

“one-to-many” relationship between a particular scheduling algorithm and its practical

implementations in real-time, resource-constrained embedded systems (see [27] for more details).

Abstract Pattern

TTC algorithm

(Pattern)

TTC-1 scheduler

(Pattern)

TTC-2 scheduler

(Pattern)

TTC-n scheduler

(PIE)

TTC-1 for 8051

(PIE)

TTC-1 for c167

(PIE)

TTC-1 for ARM

Hardware

implementation

Software

implementation

Figure 1. The “one-to-many” mapping between the TTC scheduler and its practical

implementations using software design patterns (This figure is reproduced from [27]).

Scheduler implementation is a key problem which faces the developers of real-time embedded

systems. To understand this, it is necessary to make a clear distinction between the two terms

“scheduling” and “scheduler implementation”. The former term describes the process in which

International Journal of Embedded systems and Applications (IJESA) Vol.6, No.1/2, June 2016

4

the optimum schedule for a set of real-time tasks is determined. In contrast, the latter term

describes the process in which the scheduler is physically implemented – either in software or

hardware – to execute the designed task-schedule at the system operating time [28]. An early

work considering the implementation of TTC architectures using the Ada programming language

was conducted in [9]. Later, the work in [29] considered the issues of implementing forms of

cyclic executive (i.e. a simple TTC algorithm) in Assembly language. The work outlined in [12]

developed techniques to maintain low task jitter when dynamic voltage scaling is applied in TTC

algorithm to reduce power consumption of the system. In our previous work [30], [31], we

developed various low-jitter TTC schedulers aimed at highly-predictable embedded applications.

In [6], [32], [33], we developed and evaluated low-jitter TTC schedulers for multi-processor

distributed real-time embedded systems built using Controller Area Network (CAN) protocol.

Various ways in which TTC algorithm is implemented in multi-processor embedded systems

were described in detail in [34]. The potential impact of scheduler implementation on task jitter

for TTC algorithm in both single- and multi-processor designs was studied in detail in [15]. In

[35], [36], TTC schedulers with “task guardian” mechanisms were introduced to address the task

overrunning problem.

In trying to link scheduling algorithm and scheduler implementation, Katcher et al. [13] argued

that a wide gap exists between the theory of scheduling and its practical implementation in

operating system cores running on specific hardware platforms. Moreover, they asserted that

bridging such a gap is imperative if a meaningful validation of real-time systems is sought to be

achieved. The same argument was made by other researchers (e.g. [37], [38]). For example, [13]

stated that the implementation of a particular scheduler may introduce costs that must not be

overlooked if the timing behaviour of a real-time system is to be validated.

2.3. Software verification and testing

Since our focus is to link scheduling algorithms and scheduler implementations, we should think

of a way to ensure a complete matchup (i.e. compliance) between the design and implementation

processes of the scheduler (with a particular focus on software implementation). Software

engineers refer to this process as “software verification”. We have found evidence that confusion

exists in using the terms “validation” and “verification” by many people concerned with the

development and evaluation of software applications. For example, some people think that

“validation” is a synonym to “verification” and vice versa [39], and hence use the two terms

interchangeably. Based on a wide range of definitions collected from various dictionaries, a

system is considered to be validated (or valid) if its final software product fulfils the requirements

of the user (or the customer who pays for it). Therefore, any process involved in testing such a

fulfilment is called “validation process”. In contrast, verification requires checking each

component in the system to ensure that its output matches the specifications of its input and hence

maintains the integrity of the user’s initial requirements [2]. In [40], it is noted that “validation

usually takes place at the end of the development cycle, and looks at the complete system as

opposed to verification, which focuses on smaller sub-systems”. Figure 2 shows one possible way

in which we attempt to integrate validation and verification processes in the general model of

software development life cycle as illustrated by [39].

Validation process

Requirement

definition
ImplementationDesign

Integration

and Testing

Operation and

Maintenance

Verification

process

Verification

process

Verification

process

Verification

process

Verification

process

Figure 2. Inserting validation and verification processes in the software development life cycle

International Journal of Embedded systems and Applications (IJESA) Vol.6, No.1/2, June 2016

5

For system verification, there are two main approaches: “static” and “dynamic”. Static approach

involves software inspections and formal methods, while dynamic one mainly involves software

testing [39]. Among these techniques, software testing scores the best in verifying the

implementation of a given real-time scheduler, since it allows testing dynamic features which

only manifest when the system is operational (this is an important requirement in real-time system

where correct timing of results is crucial). A detailed comparison between the various verification

techniques is provided in [2]. For any testing process, an appropriate set of test cases has to be

designed. In fact, only an effective subset of possible test cases is used. A general model for

software testing process is illustrated in Figure 3. The figure reveals the basic elements of any

testing process which are: (1) test cases; (2) test data (i.e. test input); and (3) test output. The test

output has to be compared with the output estimated at the design process of the test case by

developers who possess a complete knowledge about the system and its expected operation at

real-time.

Design test

cases
Test cases

Prepare test

data

Test data

(itest input)

Run software

with test data
test output

Compare

output with

test cases

Figure 3: Model of testing process (reproduced from [39])

2.4. Test cases and test-case generation

Many researchers have argued that testing may consume almost half of the total development cost

[39], [41]–[46]. Lots of studies have therefore demonstrated that test process automation holds the

promise to reduce time, effort and costs (e.g. [47]–[49]). As mentioned in the introduction, the

focus in our paper is on a form of test cases.

There has been a great deal of previous work on both test cases and test-case generation. For

example, Beck’s work on “extreme programming” has at heart a view that test cases for the

system should be produced early in the product life cycle [50]. In [51], it is argued that the most

challenging phase in the test process is the selection and execution of test cases. Many studies

have, therefore, proposed techniques for automatic test-case generation (see for instance, [43],

[47], [49], [51]). Test cases may be created directly from the source code, or other sources such as

control flow graphs, design representations and specifications [52]. Many studies have considered

the process of generating test cases for real-time computing systems (e.g. [47], [51], [53]–[57]).

In this section, only a small collection of literature has been reviewed to show the interest of

researchers in this area. In effect, previous work on testing considered the examination of

software functionality or software quality attributes (features). The authors of this paper are not

aware of any extensive work which considered the development of test cases solely to study the

impact of using a particular source code (i.e. scheduler software) on the output behaviour of the

system executing the code, especially when algorithms such as TTC schedulers are implemented.

International Journal of Embedded systems and Applications (IJESA) Vol.6, No.1/2, June 2016

6

3. SCHEDULER TEST CASE (STC) TECHNIQUE

As noted before, testing here is not aiming to check the correct functionality of the application

software or evaluate its quality attributes. Instead, it is mainly used to evaluate the runtime

behaviour of the system as a result of employing a particular software implementation of TTC

scheduler using commonly-used processor platforms. As in all testing processes, a suitable

collection of test cases are required. Such test cases typically determine the system inputs,

predicted outputs, and execution conditions, and aimed to verify the system conformity with

specific requirements. Again, note that only a selective subset of possible test cases can be used

since inclusive testing is not possible. The feature of the system to be tested must be selected

along with the inputs that will execute that feature, and the expected outputs of the test cases must

be known in advance. All abovementioned test case components have been integrated in the

process of developing the STCs presented here. This is further described as follows.

The STC is a simple technique which employs a collection of test cases to examine the output

behaviour of a wide range of TTC scheduler implementations. The STCs developed here are

created manually depending on previous experience and full comprehension of the characteristics

and constraints of the TTC algorithm [4]. The STC technique employs various scheduling

examples using non-real (dummy) tasks where those examples show a different set of behaviour

patterns as the scheduler implementation varies. Such task sets represent the test inputs (i.e. test

data). Each STC contains a different collection of tasks with different properties. The test item

here is the TTC scheduler to which the tasks in each STCs are entered. The scheduler will then

execute on the target microcontroller hardware for a sufficient period of time during which the

system response is monitored. Then, the output behaviour will be recorded and compared to the

predicted behaviour (which was fully documented at the test case design stage). Figure 4 shows

the detailed process of STC testing developed in this study.

Design STCs STCs

Prepare STCs

tasks
STCs tasks

Run software

with STCs

tasks

Task

sequence &

task jitter

Compare

results with

STCs

Figure 4. Testing process model for the STC technique (this is extracted from the process

illustrated in Figure 3)

The STC technique tests the system performance under normal and abnormal operating

conditions. By normal conditions, we mean that the scheduler operates in non-existence of errors.

In contrast, abnormal conditions refer to the situation where errors occur. The main criterion to

define an error mode is that it should represent a recognised problem facing the developers of the

system under verification. For example, TTC systems (which form the key focus of this study)

suffers from “task overrunning” problem which can deteriorate the overall system performance if

not addressed immediately (sometimes, it can spoil the system’s functionality) [35], [36].

Accordingly, task overrunning problem has been selected to represent the error mode in TTC

schedulers.

International Journal of Embedded systems and Applications (IJESA) Vol.6, No.1/2, June 2016

7

As noted above, the key criteria used to assess the behaviour of each TTC scheduler are: task

sequencing, jitter levels and the ability to address task overrunning problem. You can look at

these criteria as the main tested features of the TTC scheduling algorithm. Such criteria are used

to reflect the level of predictability in the TTC algorithm. The task sequencing criterion checks if

the scheduler runs tasks in the required order as determined in the schedule design process. Jitter

in the task timing is used to assess the timing performance of the system. In our study, the jitter is

measured at the release time of all tasks running in the TTC scheduler. Release jitter describes the

deviation of the start time of a task from its release time. It can easily be shown that – in many

real-time embedded system designs – reducing jitter on all (or some) tasks has the potential to

increase the overall system’s predictability.

4. THE SCHEDULER TEST CASES (STCS) FOR TTC ALGORITHM

In this section we present the various “scheduler test cases” (STCs) developed in this study to

analyse and test the behaviour of different implementation classes of the TTC scheduler.

4.1 STC A (Task-induced jitter)

STC A investigates the impact of variations in the task execution time on the jitter levels. Figure 5

illustrates the way in which a particular TTC implementation might be expected to execute the set

of tasks which we consider in STC A. In this figure (and others in this paper) the vertical arrows

represent the points at which periodic timer interrupts (or “ticks”) occur. The interval between

successive timer interrupts is known as “tick interval”. In Figure 5, all tasks execute with a “tick

offset” value of 0. This simply means that each task runs for the first time in tick interval number

zero.

Task characteristics for this STC are detailed in Table 1. Considering STC A in more detail, the

figure illustrates how Task B (and Task C) may suffer from release jitter (since the execution

duration of Task A varies from one tick to another).

A1 C2

Task B

Period

C3B3C1B1 A2 B2 A4 C4B4

Task B

Period

Task B

Period

t (ms)

A3

t = 0 1 2 3

Figure 5. Graphical representation of Example schedule A1

Table 1: Task set for STC A (Major cycle = 1 Tick).

Task

Name

Period

(Ticks)

Offset

(Ticks)

Priority

(1 = High)
ET1 Allowable

jitter in start

time of task

A 1 0 1 ET(A) – variable (0.01 – 0.4 Ticks) Low

B 1 0 2 ET(B) – variable (0.01 – 0.2 Ticks) Low

C 1 0 3 ET(C) – variable (0.01 – 0.2 Ticks) High

1 ET denotes the actual execution time of a task on a given run (this figure will vary between runs in most

cases).

International Journal of Embedded systems and Applications (IJESA) Vol.6, No.1/2, June 2016

8

Examples of possible schedules obtained with this task set are given in Table 2 and Table 3.

Table 2: Example schedule A1.

 Start time (after Tick) Jitter (Ticks)

Ax 0 Low (related to Tick jitter & scheduler overhead)

Bx ET(Ax) Potentially high (varies with ET of previous task)

Cx ET(Ax) + ET(Bx) Potentially high (varies with ET of previous tasks)

Comment:
In a simple scheduler implementation, it is expected to see high levels of jitter in the start times of

tasks executed later in the tick interval, if the execution time of the earlier tasks is variable. This

is illustrated in Figure 5. Note that such a scheduler implementation is not suitable for use with

jitter-sensitive tasks.

Table 3: Example schedule A2.

 Start time (after tick) Jitter (Ticks)

Ax 0 Low (may be related to scheduler overhead)

Bx WCET2(A) Low (may be related to scheduler overhead)

Cx WCET(Ax) + WCET(Bx) Low (may be related to scheduler overhead)

Comment:
In a scheduler with low-jitter characteristics, the scheduler can compensate for variations in the

execution time of tasks. Thus, tasks with lower priorities will not suffer from high jitter at their

release times. This is illustrated in Figure 6.

A1 C2

Task B

Period

C3B3C1B1 A2 B2 A4 C4B4

t (ms)

A3

t = 0 1 2 3

Task B

Period

Task B

Period

Figure 6. Graphical representation of Example schedule A2

4.2 STC B (Schedule-induced jitter)

Unlike STC A, STC B investigates the impact of variations in the schedule on the jitter levels of

tasks. A summary of the task characteristics for this STC is presented in Table 4.

Table 4: Task set for STC B (Major cycle = 2 Ticks).

Task

Name

Period

(Ticks)

Offset

(Ticks)

Priority

(1 =

High)

ET Allowable jitter

in start time of

task

A 2 0 1 ET(A) – variable (0.01 – 0.4 Ticks) Low

B 1 0 2 ET(B) – variable (0.01 – 0.2 Ticks) Low

C 1 0 3 ET(C) – variable (0.01 – 0.2 Ticks) High

2 WCET denotes the worst-case (longest) execution time of a task during the period in which it was

observed. Estimating the WCET of a program (or function) is a challenging problem that has been

under investigation for many years. For more details about the available techniques, refer to [58].

International Journal of Embedded systems and Applications (IJESA) Vol.6, No.1/2, June 2016

9

Examples of possible schedules obtained with this task set are given in Table 5 and Table 6.

Table 5: Example schedule B1 (Basic scheduler).

 Start time (after tick) Jitter (Ticks)

Ax 0 Low (related to Tick jitter & scheduler overhead)

Bx 0 or ET(Ax) High (start time of task varies on alternate Ticks)

Cx ET(Bx) or ET(Ax) + ET(Bx) High (start time of task varies on alternate Ticks)

Comment:
Here, the release jitter in Task B is expected to be high as it executes immediately after Task A,

where Task A has a variable duration time. This is shown in Figure 7.

A1 C2

Task B

Period

C3B3C1B1 B2 C4B4

Task B

Period

Task B

Period

t (ms)

A2

t = 0 1 2 3

Figure 7. Graphical representation of Example schedule B1

Table 6: Example schedule B2 (TTC scheduler with gap insertion).

 Start time (after tick) Jitter (Ticks)

Ax 0 Low (related to Tick jitter & scheduler overhead)

Bx WCET(Ax) Low (if WCET estimates are accurate)

Cx WCET(Ax) + WCET (B) Low (if WCET estimates are accurate)

Comment:
This scheduler implementation fulfils the jitter requirements for Task B and Task C by

compensating for the variation in the schedule itself (see Figure 8).

A1 C2

Task B

Period

C3B3C1B1 B2 C4B4

t (ms)

A2

t = 0 1 2 3

Task B

Period

Task B

Period

Figure 8. Graphical representation of Example schedule B2

4.3 STC C (Long tasks)

TTC scheduler is typically based on the use of timer interrupt that overflows periodically to

generate tick intervals. In STC A and STC B, we assume that all tasks which begin execution in a

given tick interval are intended to complete their execution before the next tick occurs. Such a

restriction is not a fundamental requirement in TTC systems3, but may cause a limitation in some

TTC scheduler implementations. Therefore, we test the scheduler ability to handle “long tasks” in

3 A TTC design is co-operative in nature. So task pre-emption is not allowed at all. In case of “long

tasks” whose execution time is longer than the tick interval, the task is interrupted by the scheduler (at

the arrival of the next tick) but not by another task.

International Journal of Embedded systems and Applications (IJESA) Vol.6, No.1/2, June 2016

10

STC C. A summary of the task characteristics for this test is presented in Table 7. Examples of

possible schedules obtained with this task set are given in Table 8 to Table 12.

Table 7: Task set for STC C (Major cycle = 4 Ticks).

Task

Name

Period

(Ticks)

Offset

(Ticks)

Priority

(1 = High)

ET Allowable jitter in

start time of task

A 2 1 1 ET(A) – fixed (0.2 Ticks) Low

B 4 0 2 ET(B) – fixed (2.4 Ticks) Low

C 2 1 3 ET(C) – fixed (0.2 Ticks) High

Comment
In this sequence, Task B runs for 2.4 ticks. While executing Task B, Task A (which has a low-jitter

requirement) becomes ready to execute. With STC C, we can check how the scheduler will deal

with tasks which are deliberately set to run beyond the tick interval. This test also checks how the

scheduler will manage the task priorities; for example, Task A has a higher priority than Task C

so once Task B finishes executing, Task A should be executed prior to Task C.

Table 8: Example schedule C1 (Basic scheduler).

 Start time

(after tick)

Jitter (Ticks)

Ax 0 or 0.4 Ticks High (start time of task varies on alternate Ticks)

Bx 0 Low (related to Tick jitter & scheduler overhead)

Cx ET(Ax) or

ET(Ax) + 0.4 Ticks

High (start time of task varies on alternate Ticks)

Comment
In a basic TTC implementation, all delayed tasks will execute in their predefined order upon the

completion of the long task; that is Task B in our case (Figure 9).

C1B1 A1 C2

t (ms)t = 0 1 2 3

A2

Figure 9. Graphical representation of Example schedule C1

Table 9: Example schedule C2.

 Start time

(after tick)

Jitter (Ticks)

Ax 0 or ET(Cx) + 0.4 Ticks High (start time of task varies on alternate Ticks)

Bx 0 Low (related to Tick jitter & scheduler overhead)

Cx ET(Ax) or 0.4 Ticks High (start time of task varies on alternate Ticks)

Comment
In many TTC implementations, the schedule checks the status of the task next to the long one in

the task sequence. If it is due to run, the schedule will execute it regardless of whether higher

priority tasks are waiting to execute or not. In the example shown in Figure 10, Task C will be

executed immediately after Task B and before Task A (which has the highest priority in the whole

task list).

International Journal of Embedded systems and Applications (IJESA) Vol.6, No.1/2, June 2016

11

C1B1 A1 C2

t (ms)t = 0 1 2 3

A2

Figure 10. Graphical representation of Example schedule C2

Table 10: Example schedule C3.

 Start time

(after tick)

Jitter (Ticks)

Ax 0 Low (related to Tick jitter & scheduler overhead)

Bx 0 Low (related to Tick jitter & scheduler overhead)

Cx ET(Ax) Low (since ET(Ax) is fixed)

Comment
In each major cycle, the first execution of both Task A and Task B is omitted (see Figure 11).

B1 C1

t (ms)t = 0 1 2 3

A1

Figure 11. Graphical representation of Example schedule C3

Table 11: Example schedule C4.

 Start time

(after tick)

Jitter (Ticks)

Ax 0 or ET(Ax) High (task runs twice in the same Tick at different start times)

Bx 0 Low (related to Tick jitter & scheduler overhead)

Cx 0.4 Tick or 2ET(Ax) High (start time of task varies on alternate Ticks)

Comment
Here, Task A will be first executed in the last tick of the whole cycle, as depicted in Figure 12.

B1 C2

t (ms)t = 0 1 2 3

A2C1 A1

Figure 12. Graphical representation of Example schedule C4

Table 12: Example schedule C5.

 Start time

(after tick)

Jitter (Ticks)

Ax 0 Low (related to Tick jitter & scheduler overhead)

Bx 0 Low (related to Tick jitter & scheduler overhead)

Cx ET(Ax) Low (since ET(Ax) is fixed)

Comment
The scheduler enforces any long task to shut down as soon as the next tick arrives (Figure 13).

International Journal of Embedded systems and Applications (IJESA) Vol.6, No.1/2, June 2016

12

B1 C2

t (ms)t = 0 1 2 3

A2C1A1

Figure 13. Graphical representation of Example schedule C5

4.4 STC D (Task overruns)

All previous STCs assume that the system operates normally without errors. STC D is specifically

designed to investigate the impact of unplanned task overruns. Task characteristics for this test

are presented in Table 13. Examples of possible schedules obtained with this task set are given in

Table 14.

Table 13: Task set for STC D (Major cycle = 20 Ticks).

Task

Name

Period

(Ticks)

Offset

(Ticks)

Priority

(1 =

High)

ET Overrun

duration (in

Ticks)

A 20 0 1 ET(A) – fixed (0.2 Ticks) 10

B 1 0 2 ET(B) – fixed (0.2 Ticks) 0

Comment
In this sequence, Task A is designed to run for the duration of 0.2 Tick. Due to an error, Task A

overruns by 10 Ticks. This is illustrated in Figure 14.

Task A

overruns

Task A

overruns
B1

t (ms)t = 0 1 2 10

A1 B2 B3

20

B21A2B11 B12 B13

11 12

Figure 14. Summary of STC D (Task A overruns by 10 ticks)

Table 14: Example schedule D1a, D1b, D2a, D2b, D3a and D3b.

Schedule

Name

Shut down

time (from

Ticks)

Backup

task

Comment

D1a --- Not

applicable

Overrunning task is not shut down, and the number of

elapsed ticks - during overrun - is not counted, hence tasks

due to run in these ticks are ignored completely.

D1b --- Not

applicable

Overrunning task is not shut down, but the number of

elapsed ticks - during overrun - is counted. The due tasks

in these ticks are run immediately after overrun ends.

D2a 1 Tick Not

available

Overrunning task is detected at the arrival of the next tick

and hence shut down.

D2b 1 Tick Available –

BK(A)

Overrunning task is detected at the arrival of the next tick

and hence shut down. Moreover, a backup task is inserted

in the schedule to replace the overrunning task.

D3a WCET(Ax) Not

available

Overrunning task is shut down immediately after it

exceeds its estimated WCET.

D3b WCET(Ax) Available –

BK(A)

Overrunning task is shut down immediately after it

exceeds its estimated WCET. A backup task is inserted in

the schedule to replace the overrunning task.

International Journal of Embedded systems and Applications (IJESA) Vol.6, No.1/2, June 2016

13

4.5 CPU, memory and power overheads

This paper is concerned with the type of embedded systems that can be built on “commercial off-

the-shelf” (COTS) microcontrollers. Such small and cheaply-available hardware usually have

limited resources (i.e. CPU, memory and power). We will therefore report CPU, memory and

power requirements (overheads) for all schedulers considered in this paper. Note that in many

embedded system applications, average power consumption is a key concern, as this is related to

the system battery lifetime.

5. METHODOLOGY

In this section, we provide an overview of the methodology used to obtain the empirical results

presented in this paper.

5.1 Representative examples of TTC implementations

In fact, it is impossible to cover all possible implementation options for a simple TTC scheduler

in a single study. Hence, we apply the proposed STC technique on a range of TTC schedulers

which form representative examples of the broad range of TTC implementations developed

previously. The selected implementations are all based on the use of periodic timer interrupts4

and have been gathered from a wide range of different projects carried out in the Embedded

Systems Laboratory (ESL) at the University of Leicester, UK. Such TTC implementations are:

TTC-ISR [4], TTC-Dispatch [4], [32], TTC-DVS [12], TTC-TG [36], TTC-ISR [30] and TTC-

Adaptive [60] schedulers. For further details about these schedulers, please refer to the references

listed in this section.

5.2 Hardware platform

As noted before, the work conducted here is based on the use of low-cost embedded systems

based on small microcontroller hardware such as: 8051, Infineon C16x, Philips LPC2xxx, or PH

Processor. For programming the hardware (i.e. writing the software program including the

scheduler code), the C programming language has been found to be competitive among many

other surveyed languages (see [61] for more details).

The empirical studies presented here were carried out using Ashling LPC2000 evaluation board

with built-in Philips LPC2106 processor [62]. The LPC2106 is 32-bit microcontroller with an

ARM7 core that uses an on-chip “phase-locked loop” (PLL) to run the processor at frequencies

ranging from 12 MHz to 60 MHz [63]. The oscillator and CPU frequencies used throughout this

study (except for TTC-DVS) are 12 MHz and 60 MHz, respectively. The compiler used is the

GCC ARM 4.1.1 where the used simulator is the Keil ARM development kit (v3.12).

5.3 Scheduler behaviour test

In each scheduler implementation, the scheduler behaviour (e.g. task sequencing) was measured

directly from the simulator by using breakpoints in each task to observe the order (and the time)

at which the tasks execute. The measurements were made over a number of successive major

cycles. The results obtained when executing each STC were then reported and compared with the

example schedules discussed in Section 4.

4 See [30], [31], [59] for some further implementation options.

International Journal of Embedded systems and Applications (IJESA) Vol.6, No.1/2, June 2016

14

5.4 Jitter tests

To obtain a meaningful set of task jitter results, Task A, Task B and Task C had variable

durations in STC A and STC B. This is in order to facilitate a detailed study of the impact of

varying task duration on the release jitter of other tasks scheduled in the same ticks. In STC C, we

explored the impact of long tasks on the tick and tasks jitter. It should be noted that the jitter

levels were only considered when the scheduler operates in normal conditions (i.e. jitter levels

were not assessed with STC D which is originally designed to test the system under abnormal

conditions).

To measure the jitter on the tick and tasks using practical means, we set a pin high at the start of

the tick or task (for a short period of time) and then measured the periods between each two

consecutive rising edges. We recorded 5000 samples in each experiment. The periods were

measured using a National Instruments data acquisition card ‘NI PCI-6035E’ [64] along with

LabVIEW 7.1 software [65]. To assess the jitter levels, two values can be considered: “average

jitter” and “difference jitter”. The difference jitter is the difference between the maximum and the

minimum period in the measurements. This kind of jitter is also described as “absolute jitter”

[66]. The average jitter is taken as the standard deviation from the average period. Here, we

reported the difference jitter only. Of course, there can be many other ways to measure jitter in

practice, but such methods have been found to be appropriate for our study.

5.5 CPU, memory and power test

The CPU overhead is one of the cost parameters that have been used here to differentiate between

the various scheduler forms. To get practical CPU overhead measurements for each scheduler, we

ran the STC A for the interval of 25 seconds and measured the total time required to run the

scheduler by the performance analyser tool in the Keil simulator. The CPU overhead results were

then presented in percentages of the total computational resources.

For memory requirements, we recorded the code (ROM) and data (RAM) memory values

required to implement STC A for each scheduler considered in this study. We performed this task

by using the “.map” file created when the STC is compiled. For data memory overhead (i.e. RAM

requirements), we also measured the STACK usage by filling the data memory with a dummy

code and recording the number of changed (overwritten) bytes after the system is executed for a

sufficient period of time.

In order to obtain representative results of power consumption, we measured the input current and

voltage to the LPC2106 CPU core while executing STC A and STC B. The sampling frequency

of 10 kHz was used over 5000 major cycles (the need for this specific frequency is explained

more in [12]). The values of currents and voltages were then multiplied and averaged out.

6. RESULTS

In this section, we provide the output results from the application of the STC technique on all

selected TTC implementations. As we have attempted to make clear, even the small (and by no

means exhaustive) selection of TTC scheduler implementations demonstrate a wide range of

different patterns of behaviour, and a “one size fits all” implementation does not exist. We

suggest that the results obtained by applying the scheduler test cases (summarised in Table 15)

provide a simple, concise way of distinguishing between the different implementation options.

The first column in the results table shows the list of TTC scheduler implementations which have

been tested in this study. The second four columns summarise the output task sequencing results

from all STCs in each TTC implementation. The sixth column then contains CPU overheads in

percentages. Columns 7 to 9 include: Tick jitter levels from STC C, the release jitter levels for

Task A and the release jitter levels for Task B, respectively, using STC B. It is worth noting that

International Journal of Embedded systems and Applications (IJESA) Vol.6, No.1/2, June 2016

15

these are the most appropriate measures for showing the impact on jitter as a result of using

various scheduler structures. Finally, the last three columns present the memory and power

overhead results for comparison purposes.

Table 15: Summary of results obtained in this paper.

Scheduler
STC

A

STC

B

STC

C

STC

D

CPU

%

Tick

Jitter

(µs)

Task

A

Jitter

(µs)

Task

B

Jitter

(µs)

ROM

(Bytes)

RAM

(Bytes)

Power

(mW)

TTC-ISR A1 B1 C1 D1a 39.5 9999.5 0.1 4016.7 2256 127 36.4

TTC

Dispatch
A1 B1 C1 D1b 39.7 0.5 0.1 4022.7 4012 325 35.7

TTC-DVS A1 B1 C1 D1b 40.6 0.6 0.1 4192.9 17460 767 16.6

TTC-TG A1 B1 C5 D2b 39.8 0.3 0.1 4026.2 4296 446 35.7

TTC-MTI A1 B2 C5 D3a 39.6 0.3 0.1 0.0 3620 514 36.3

TTC-

Adaptive
A2 B2 C6 D3b 39.8 0.3 0.1 0.0 5364 510 36.5

Jitter in Task A has been included in the table to allow a comparison with the jitter levels in low-

priority tasks. Key jitter results are shown in Figure 15 for comparison purposes. It can be clearly

noticed that the TTC-MTI and TTC-Adaptive schedulers had the ability to eliminate release jitter

in all tasks running in the system regardless of their order or position (see [30], [60] for further

details). The results for CPU, memory and power requirements are presented in Figure 16 to

Figure 19 to facilitate a graphical comparison between all schedulers with respect to hardware

resource utilisation.

From the presented graphs, we can make the following observations. The CPU overheads in all

compared schedulers are approximately the same. However, such results have been presented in

the paper to demonstrate that the improvement achieved by some schedulers is not compromised

by their computational costs. On the other hand, it can be seen that the code memory required to

implement (for example) the TTC-MTI scheduler was even smaller than was used for the

majority of other schedulers. Particularly for the TTC-Adaptive scheduler, the little increase in

the code memory as compared to other schedulers is outweighed by the significant improvement

achieved in the scheduler predictability [60]. Moreover, it is so clear that the TTC-DVS has an

advantage over all other implementations in term of power requirement. This is due to the

incorporation of DVS technique which was intended to reduce the CPU power consumption in

TTC scheduler [12].

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

TTC-ISR TTC-Dispatch TTC-DVS TTC-TG TTC-MTI TTC-Adaptive

9999.5

0.5 0.5 0.3 0.3 0.30 0 0 0 0 0

4016.7 4022.7 4192.9 4026.2

0 0

D
if

f.
 ji

tt
e

r
(µ

s)

Tick Task A Task B

Figure 15. Key jitter results in all TTC implementations

International Journal of Embedded systems and Applications (IJESA) Vol.6, No.1/2, June 2016

16

38.8

39

39.2

39.4

39.6

39.8

40

40.2

40.4

40.6

39.5

39.7

40.6

39.8

39.6

39.8

Sc
h

e
d

u
le

r
o

ve
rh

e
ad

 (%
)

Figure 16. CPU requirements in all TTC

implementations

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

2256
4012

17460

4296 3620
5364

R
O

M
 (B

yt
e

s)

Figure 17. ROM requirements in all TTC

implementations

0

100

200

300

400

500

600

700

800

127

325

767

446
514 510

R
A

M
 (B

yt
e

s)

Figure 18. RAM requirements in all TTC

implementations

0

5

10

15

20

25

30

35

40 36.4 35.7

16.6

35.7 36.3 36.5

P
o

w
e

r
(m

W
)

Figure 19. Power requirements in all TTC

implementations

7. CONCLUSIONS

While there has been a great deal of interest in the development, assessment and refinement of

real-time scheduling algorithms, only limited amount of work has considered ways for bridging

the gap between scheduling algorithms and scheduler implementations in real-time, resource-

constrained embedded systems. This is unfortunate because there is always a “one-to-many”

mapping between scheduler algorithms and practical scheduler implementations. Therefore, it is

expected that decisions made at the implementation stage will have a measurable impact on the

runtime behaviour of the embedded application.

In the study presented in this paper, we first sought to identify a set of representative

implementation classes for a TTC scheduler and then introduced the concept of “scheduler test

cases” (STCs) as a means of assessing the behaviour of these different scheduler forms. The aim

with these STCs was to facilitate empirical “black box” comparisons of the different scheduler

implementations and be able to distinguish the behaviour of such implementations without

necessitating access to (or understanding of) the underlying source code. Through the

employment of these STCs, we were able to fully document and compare the behaviour of TTC

implementations against some empirical measures: i.e. task behaviour (under normal conditions

and in the event of errors), tick and tasks release jitter, CPU and memory overheads, and finally

the CPU power consumption.

Please note that, while we believe that STCs provide a useful way of making quantitative

empirical comparisons of different TTC scheduler implementations, further work remains to be

done in this area. For example, our current STCs consider only system behaviour and do not take

into account factors such as ease of use. It may be that empirical techniques – such as the Small

Group Methodology [67] – could be integrated with STCs in order to take such factors into

account. Despite this limitation, we still believe that the STC approach has the great potential to

International Journal of Embedded systems and Applications (IJESA) Vol.6, No.1/2, June 2016

17

apply on a wide range of scheduling algorithms other than TTC. Certainly, if the complexity of an

algorithm grows, the number of possible implementation options of that algorithm would

naturally grow. This would simply imply that the developed STC technique is more required to

verify (and possibly compare) the behaviour of the various implementations of the tested

algorithm. For example, alternative real-time scheduling algorithms such as rate monotonic,

earliest deadline first, least laxity first and priority ceiling protocol can be considered as potential

targets for the proposed STC technique. Since such algorithms are generally more complicated

than the TTC, designing (hence implementing) an appropriate set of test cases would inevitably

be a challenging process. Moreover, considering the application of STC technique in multi-

processor embedded systems employing TTC scheduling algorithms (along with shared-clock

protocol for message scheduling) can be a good suggestion for future publication.

ACKNOWLEDGEMENTS

Authors of this paper would like to thank Professor Michael Pont for supervising this project,

performed in the Embedded Systems Laboratory (ESL) research group, University of Leicester,

United Kingdom.

REFERENCES

[1] H. Kopetz, Real-Time Systems. Boston, MA: Springer US, 2011.

[2] M. Nahas, “Bridging the gap between scheduling algorithms and scheduler implementations in time-

triggered embedded systems.,” Thesis, University of Leicester, 2009.

[3] B. Sun, X. Li, B. Wan, C. Wang, X. Zhou, and X. Chen, “Definitions of predictability for Cyber

Physical Systems,” Journal of Systems Architecture, vol. 63, pp. 48–60, Feb. 2016.

[4] M. J. Pont, Patterns for time-triggered embedded systems: building reliable applications with the

8051 family of microcontrollers. Harlow: Addison-Wesley, 2001.

[5] M. Short, “Analysis and redesign of the ‘TTC’ and ‘TTH’ schedulers,” Journal of Systems

Architecture, vol. 58, no. 1, pp. 38–47, Jan. 2012.

[6] M. Nahas, M. J. Pont, and M. Short, “Reducing message-length variations in resource-constrained

embedded systems implemented using the Controller Area Network (CAN) protocol,” Journal of

Systems Architecture, vol. 55, no. 5–6, pp. 344–354, May 2009.

[7] M. A. Hanif, “Design and evaluation of flexible time-triggered task schedulers for dynamic control

applications,” Thesis, Department of Engineering, 2013.

[8] M. Nahas and A. M., “Ways for Implementing Highly-Predictable Embedded Systems Using Time-

Triggered Co-Operative (TTC) Architectures,” in Embedded Systems - Theory and Design

Methodology, K. Tanaka, Ed. InTech, 2012.

[9] T. P. Baker and A. Shaw, “The cyclic executive model and Ada,” Real-Time Syst, vol. 1, no. 1, pp.

7–25, Jun. 1989.

[10] C. D. Locke, “Software architecture for hard real-time applications: Cyclic executives vs. fixed

priority executives,” The Journal of Real-Time Systems, vol. 4, no. 1, pp. 37–53, Mar. 1992.

[11] G. Langelier, A. Dury, A. Petrenko, S. Ramesh, and T. Assaf, “Building an interactive test

development environment for cyclic executive systems,” in Industrial Embedded Systems (SIES),

2015 10th IEEE International Symposium on, 2015, pp. 1–9.

[12] T. Phatrapornnant and M. J. Pont, “Reducing jitter in embedded systems employing a time-triggered

software architecture and dynamic voltage scaling,” IEEE Transactions on Computers, vol. 55, no. 2,

pp. 113–124, Feb. 2006.

[13] D. I. Katcher, H. Arakawa, and J. K. Strosnider, “Engineering and analysis of fixed priority

schedulers,” IEEE Transactions on Software Engineering, vol. 19, no. 9, pp. 920–934, Sep. 1993.

[14] B. Koch, “The Theory of Task Scheduling in Real-Time Systems: Compilation and Systematization

of the Main Results,” Studies Thesis, University of Hamburg, 1999.

[15] M. Nahas, “Studying the Impact of Scheduler Implementation on Task Jitter in Real-Time Resource-

Constrained Embedded Systems,” Journal of Embedded Systems, vol. 2, no. 3, pp. 39–52, 2014.

[16] M. W. Whalen and M. P. E. Heimdahl, “On the requirements of high-integrity code generation,” in

4th IEEE International Symposium on High-Assurance Systems Engineering, 1999. Proceedings,

1999, pp. 217–224.

International Journal of Embedded systems and Applications (IJESA) Vol.6, No.1/2, June 2016

18

[17] E. Estévez, A. Sánchez-García, J. Gámez-García, J. Gómez-Ortega, and S. Satorres-Martínez, “A

novel model-driven approach to support development cycle of robotic systems,” Int J Adv Manuf

Technol, vol. 82, no. 1–4, pp. 737–751, Jun. 2015.

[18] P. Marsh, “Models of control,” Electronics Systems and Software, vol. 1, no. 6, pp. 16–19, Dec.

2003.

[19] C. O’Halloran, “Issues for the automatic generation of safety critical software,” in ase, 2000, p. 277.

[20] B. Schätz, T. Hain, F. Houdek, W. Prenninger, M. Rappl, J. Romberg, O. Slotosch, M. Strecker, and

A. Wisspeintner, “CASE tools for embedded systems,” Tum-i, TU München, 2003.

[21] K. Michels, “Trends in the Development of Drive Components for Electric and Hybrid Vehicles,”

ATZelektronik worldwide, vol. 10, no. 4, pp. 4–7, 2015.

[22] C. Mwelwa, K. Athaide, D. Mearns, M. J. Pont, and D. Ward, “Rapid software development for

reliable embedded systems using a pattern-based code generation tool,” SAE Technical Paper, 2006.

[23] C. Mwelwa, M. J. Pont, and D. Ward, “Towards a CASE tool to support the development of reliable

embedded systems using design patterns,” in Proceedings of the 1st International Workshop on

Quality of Service in Component-Based Software Engineering, 2003, pp. 67–80.

[24] S. K. Baruah, “The Non-preemptive Scheduling of Periodic Tasks upon Multiprocessors,” Real-Time

Systems, vol. 32, no. 1–2, pp. 9–20, Feb. 2006.

[25] T. Phatrapornnant, “Reducing jitter in embedded systems employing a time-triggered software

architecture and dynamic voltage scaling,” Engineering, 2007.

[26] M. J. Pont, S. Kurian, H. Wang, and T. Phatrapornnant, “Selecting an appropriate scheduler for use

with time-triggered embedded systems.,” in Proceedings of the 12th European Conference on

Pattern Languages of Programs (EuroPLoP ’2007), Irsee, Germany, 2007, pp. 595–618.

[27] C. Mwelwa, “Development and Assessment of a Tool to Support Pattern-Based Code Generation of

Time-Triggered (TT) Embedded Systems,” PhD Thesis, University of Leicester, Leicester, UK,

2006.

[28] Y. Cho, S. Yoo, K. Choi, N.-E. Zergainoh, and A. A. Jerraya, “Scheduler implementation in MP SoC

design,” in Design Automation Conference, 2005. Proceedings of the ASP-DAC 2005. Asia and

South Pacific, 2005, vol. 1, pp. 151–156 Vol. 1.

[29] S. Key, M. J. Pon, and S. Edwards, “Implementing Low-cost TTCS Systems using Assembly

Language.,” in Proceedings of the Eighth European conference on Pattern Languages of Programs

(EuroPLoP 2003), Germany, 2003, pp. 667–690.

[30] M. Nahas, “Employing Two ‘Sandwich Delay’ Mechanisms to Enhance Predictability of Embedded

Systems Which Use Time-Triggered Co-Operative Architectures,” Journal of Software Engineering

and Applications, vol. 04, no. 07, pp. 417–425, 2011.

[31] M. Nahas, “Implementation of highly-predictable time-triggered cooperative scheduler using simple

super loop architecture,” International Journal of Electrical & Computer Sciences, vol. 11, pp. 33–

38, 2011.

[32] M. Nahas, M. J. Pont, and A. Jain, “Reducing task jitter in shared-clock embedded systems using

CAN,” in Proceedings of the UK Embedded Forum 2004, Birmingham, UK, 2004, pp. 184–194.

[33] M. Nahas, “Applying Eight-to-Eleven Modulation to reduce message-length variations in distributed

embedded systems using the Controller Area Network (CAN) protocol,” Canadian Journal on

Electrical and Electronics Engineering, vol. 2, no. 7, pp. 282–293, 2011.

[34] M. Nahas, “Developing a Novel Shared-Clock Scheduling Protocol for Highly-Predictable

Distributed Real-Time Embedded Systems,” American Journal of Intelligent Systems, vol. 2, no. 5,

pp. 118–128, Dec. 2012.

[35] Z. H. Hughes and M. J. Pont, “Design and test of a task guardian for use in TTCS embedded

systems,” in Proceedings of the UK Embedded Forum 2004, Birmingham, UK, 2004, pp. 16–25.

[36] Z. M. Hughes and M. J. Pont, “Reducing the impact of task overruns in resource-constrained

embedded systems in which a time-triggered software architecture is employed,” Transactions of the

Institute of Measurement and Control, vol. 30, no. 5, pp. 427–450, Dec. 2008.

[37] R. L. Burdett and E. Kozan, “Techniques to effectively buffer schedules in the face of uncertainties,”

Computers & Industrial Engineering, vol. 87, pp. 16–29, 2015.

[38] F. Werner, “Scheduling under uncertainty,” unpublished document, 2012.

[39] I. Sommerville, Software Engineering. Addison-Wesley, 2007.

[40] E. Tran, “Verification/validation/certification,” Topics in Dependable Embedded Systems. Carnegie

Mellon University, 1999.

International Journal of Embedded systems and Applications (IJESA) Vol.6, No.1/2, June 2016

19

[41] Z. Liu, N. Gu, and G. Yang, “An automate test case generation approach: using match technique,” in

Computer and Information Technology, 2005. CIT 2005. The Fifth International Conference on,

2005, pp. 922–926.

[42] P. Pringsulaka and J. Daengdej, “Coverall algorithm for test case reduction,” in Aerospace

Conference, 2006 IEEE, 2006, p. 8–pp.

[43] H. Singh, M. Conrad, and S. Sadeghipour, “Test case design based on Z and the classification-tree

method,” in Formal Engineering Methods., 1997. Proceedings., First IEEE International Conference

on, 1997, pp. 81–90.

[44] K. Tahera, C. Earl, and C. Eckert, “The role of testing in the engineering product development

process,” 2012.

[45] T. Arts, J. Hughes, U. Norell, and H. Svensson, “Testing AUTOSAR software with QuickCheck,” in

Software Testing, Verification and Validation Workshops (ICSTW), 2015 IEEE Eighth International

Conference on, 2015, pp. 1–4.

[46] T. Kos, M. Mernik, and T. Kosar, “Test automation of a measurement system using a domain-

specific modelling language,” Journal of Systems and Software, vol. 111, pp. 74–88, 2016.

[47] S. J. Cunning and J. W. Rozenblit, “Automatic test case generation from requirements specifications

for real-time embedded systems,” in Systems, Man, and Cybernetics, 1999. IEEE SMC’99

Conference Proceedings. 1999 IEEE International Conference on, 1999, vol. 5, pp. 784–789.

[48] H. Do and G. Rothermel, “On the use of mutation faults in empirical assessments of test case

prioritization techniques,” Software Engineering, IEEE Transactions on, vol. 32, no. 9, pp. 733–752,

2006.

[49] W. T. Tsai, L. Yu, X. X. Liu, A. Saimi, and Y. Xiao, “Scenario-based test case generation for state-

based embedded systems,” in Performance, Computing, and Communications Conference, 2003.

Conference Proceedings of the 2003 IEEE International, 2003, pp. 335–342.

[50] K. Beck, Extreme programming explained: embrace change. Addison-Wesley Professional, 2000.

[51] A. Hessel, “Model-based test case generation for real-time systems,” 2007.

[52] A. J. Offutt and S. Liu, “Generating test data from SOFL specifications,” Journal of Systems and

Software, vol. 49, no. 1, pp. 49–62, 1999.

[53] A. Banerjee, S. Chattopadhyay, and A. Roychoudhury, “On Testing Embedded Software,” Advances

in Computers, 2016.

[54] M. M. Jaghoori, F. de Boer, D. Longuet, T. Chothia, and M. Sirjani, “Compositional schedulability

analysis of real-time actor-based systems,” Acta Informatica, pp. 1–36, 2016.

[55] W. Hasanain, Y. Labiche, and S. Gheorghe, “Automated state-based online testing real-time

embedded software with RTEdge,” in Model-Driven Engineering and Software Development

(MODELSWARD), 2015 3rd International Conference on, 2015, pp. 294–302.

[56] M. Z. Iqbal, A. Arcuri, and L. Briand, “Environment modeling and simulation for automated testing

of soft real-time embedded software,” Software & Systems Modeling, vol. 14, no. 1, pp. 483–524,

2015.

[57] J. Guan and J. Offutt, “A model-based testing technique for component-based real-time embedded

systems,” in Software Testing, Verification and Validation Workshops (ICSTW), 2015 IEEE Eighth

International Conference on, 2015, pp. 1–10.

[58] V. P. Kozyrev, “Estimation of the execution time in real-time systems,” Programming and Computer

Software, vol. 42, no. 1, pp. 41–48, 2016.

[59] M. J. Pont, S. Kurian, and R. Bautista-Quintero, “Meeting Real-Time Constraints Using ‘Sandwich

Delays,’” in Transactions on Pattern Languages of Programming I, J. Noble and R. Johnson, Eds.

Springer Berlin Heidelberg, 2009, pp. 94–102.

[60] M. Nahas and R. Bautista-Quintero, “Implementing adaptive time-triggered co-operative scheduling

framework for highly-predictable embedded systems,” American Journal of Embedded Systems and

Applications, vol. 2, no. 4, pp. 38–50, 2014.

[61] M. Nahas and A. Maait, “Choosing Appropriate Programming Language to Implement Software for

Real-Time Resource- Constrained Embedded Systems,” in Embedded Systems - Theory and Design

Methodology, K. Tanaka, Ed. InTech, 2012.

[62] “LPC2100 Datasheet, PDF - Alldatasheet.” [Online]. Available:

http://www.alldatasheet.com/view.jsp?Searchword=Lpc2100. [Accessed: 01-Jun-2016].

[63] I. CIRCUITS, “LPC2106/2105/2104 USER MANUAL,” 2003.

[64] “Multifunction Devices - National Instruments.” [Online]. Available: http://www.ni.com/data-

acquisition/multifunction/. [Accessed: 01-Jun-2016].

International Journal of Embedded systems and Applications (IJESA) Vol.6, No.1/2, June 2016

20

[65] “LabVIEW System Design Software - National Instruments.” [Online]. Available:

http://www.ni.com/labview/. [Accessed: 01-Jun-2016].

[66] G. C. Buttazzo, Hard real-time computing systems: predictable scheduling algorithms and

applications. New York: Springer, 2005.

[67] D. Ayavoo, “The development of reliable x-by-wire systems: assessingt he effectiveness of

a’simulation first’approach,” Engineering, 2006.

Authors

Mouaaz Nahas was born in UK on 1977. He received the B.Sc. degree

(Electrical Engineering) from Jordan University of Science and Technology,

Jordan, in 2001, the M.Sc. degree (Communications Engineering) from

Loughborough University, UK, in 2002, and the Ph.D. degree (Embedded

Systems) from University of Leicester, UK, in 2009. He is currently an Assistant

Professor in the Department of Electrical Engineering at Umm Al-Qura

University, Makkah, Saudi Arabia. His main research interest is in the

development of cost-effective techniques for maximising the reliability of real-

time, resource-constrained embedded systems. He also has research interest in

electromagnetism and wireless communications.

Ricardo Bautista-Quintero was born in Mexico City on 1972. He received the

B.Sc. degree (Electronic Engineering) from Instituto Politécnico Nacional,

Mexico, in 1995, the M.Sc. degree (Microelectronics Engineering) from

Instituto Politécnico Nacional, Mexico in 2001, and the Ph.D. degree

(Embedded Systems) from University of Leicester, UK, in 2009. He is currently

a Researcher Professor in the Department of Mechanical Engineering at Instituto

Tecnológico de Culiacan, Sinaloa, México. His main research interest is in the

development of reliable robust control implementations on resource-constrained

embedded systems.

