

Electrical Engineering Department

Digital Communication Systems (802421) - G1

Dr. Mouaaz Nahas Term 2 (1435-1436) First Exam, Sunday 16/06/1436 H

الأسم:

Q1. Choose the correct answer:

الرقم الجامعي:

(21 Marks, 1 Each)

	At each regenerative repeater station in digital communication system, the received signal is:	a) Filtered and then amplified.		
1.		b) Amplified and then filtered.		
		c) Detected, corrected and retransmitted.		
		d) Detected and a clean signal is transmitted.		
	Given the two signals $m_1(t)$ and $m_2(t)$ with bandwidths B_1 and B_2 (respectively). The bandwidth of the signal $m_1(t)*m_2(t)$ is:	a) The maximum of B_1 and B_2 .		
2.		b) The minimum of B_1 and B_2 .		
		c) The sum of B_1 and B_2 .		
		d) The difference between B_1 and B_2 .		
3.	The signal shown in the figure is sampled at a rate 20% above the Nyquist rate. The bandwidth <i>B</i> of the signal shown (in Hz) is:	a) 3		
		b) 2.5		
		c) 6		
		d) 5		
	time (sec)			
	In the following figure, Aliasing is appointed by the letter:	a) A		
4		b) B		
ч.		c) C		
	0	d) D		
	The solution to aliasing problem is to use antialiasing filter with cutoff frequency equals:	a) $f_{s}/2$		
5.		b) f_s		
		c) 2B		
		d) B		
6.	Given an audio signal used for intelligibility	a) $20000 \times 2 \times [\log_2(518)]$		
	application. If the signal is sampled at Nyouist rate and	b) $3500 \times 2 \times \log_2(518)$		
	quantized using 518 levels, the data rate of the	c) $7000 \times \log_2(1024)$		
	transmitted signal is calculated as:	d) 20,000 x 2 x 10		
	~			

Commented [m1]: No of samples per second is 6. This is the actual sampling rate in Hz. $R_A = 6$ Hz = 1.2 R_N $\Rightarrow R_N = 6 / 1.2 = 5$ Hz $\Rightarrow B = R_N / 2 = 2.5$ Hz

7.	In the block diagram of digital communication system, the input to the Source Encoder is:	 a) Continuous-time message signal. b) 11000111010100. c) PCM code. d) PAM signal. 		
8.	Given the two signals $m_1(t)$ and $m_2(t)$ with bandwidths 100 and 40 Hz, respectively. The bandwidth of the signal $m_1^3(t) \times m_2^2(t)$ is:	b) 380 c) 140 d) 340		
9.	In PPM modulation technique, which parameter of a periodic pulse train is varied (modified) by the sample values?	a) Amplitude b) Width c) Period d) Location		
10.	The dotted lines in the figure illustrates: $\tau_{t} = \frac{1}{2\theta}$	 a) Impulse response of the anti-aliasing filter at each signal sample. b) Sampled signal at the receiver. c) Reconstructed signal at the receiver. d) Impulse response of the reconstruction filter at each signal sample. 		
11.	In communication system, as the distance increases from the transmitter:	 a) The amplitude attenuation increases and noise power increases. b) The amplitude attenuation decreases and noise power increases. c) The amplitude attenuation increases and noise power decreases. d) The amplitude attenuation decreases and noise power decreases. 		
12.	Which one of the following noises can be eliminated?	 a) Interference from signals transmitted on nearby channels. b) Random emissions. c) Thermal motion of electrons in conductors. d) Internal noise. 		
13.	A signal $m(t)$ is sampled using Nyquist rate, then quantized into 64 levels. If the quantizer accepts 5 mV maximum amplitude, the maximum possible quantization error is:	a) 0 mV b) 0.156 mV c) 0.078 mV d) 2.5 mV		
14.	By studying the advantages of digital communication, every two or three years, the cost of digital hardware:	 a) Halves while performance doubles. b) Doubles while performance halves. c) Halves while performance also halves. d) Doubles while performance also doubles. 		
15.	When using pulse modulation in digital communication, we can transmit several baseband signals simultaneously by using:	 a) TDM & FDM (as in analog communication) b) Only TDM (unlike analog communication) c) Only FDM (as in analog communication) d) TDM & FDM (unlike analog communication). 		

Commented [W2]: (3 x 100) + (2 x 40) = 380

 $\label{eq:model} \begin{array}{l} \hline \mbox{Commented [m3]: } m_p = 5 \mbox{ mV}, \mbox{ L} = 64 \\ \mbox{Max. quantization error} = \Delta \nu / 2 = m_p / \mbox{ L} \\ = 5 \mbox{m} / 64 \\ = 0.078 \mbox{ mV}. \\ \mbox{Note that:} \\ \mbox{Min. quantization error} = 0. \end{array}$

Page Y

	1			
	The signal $m(t) = \cos(200\pi t) + \sin(100\pi t)$ is to be	a) $f_s \ge 100 \text{ Hz}$		
16	sampled, quantized and digitally transmitted. For	b) $f_s \ge 200 \text{ Hz}$		
10.	complete recovery (reconstruction) of the signal $m(t)$,	c) $f_s > 100 \text{ Hz}$		
	the following condition should be satisfied:	d) $f_c > 200 \text{ Hz}$	_	Commented [m4]:
-		-/ /3		We have two sinusoids with different frequencies. The total
17.	A PCM signal with 1 mV amplitude is to travel along 3000 km. If the amplitude is attenuated by 0.2 mV every 10 km, find the minimum number of regenerative repeaters required to withstand this distortion (given that the minimum amplitude which can be interpreted by the receiver as high voltage is 0.2 mV).	a) 50		bandwidth is the higher frequency which is 200π (rad/s). That is 100 Hz. Since there is an impulse (high power) at $f = 100$ Hz, sampling rate must be larger than (and not equal to) Nyquist rate which is $2B = 200$ Hz. Commented [W5]: Min. amplitude allowed is 0.2 mV Every 10 km, amplitude is attenuated by 0.2 mV \rightarrow Every 40 km, amplitude is attenuated by 0.8 mV and amplitude
		<mark>b)</mark> 75		
		c) 100		
		d) 300		
				becomes 0.2 mV.
	In digital quantization, the relation between the SNR and transmission bandwidth is:	a) SNR α (2) ^{B_T/B}		\rightarrow No. of repeaters = 3000 / 40 = 75
10		b) SNR α (2) ^{2B_T/B}		
18.		c) SNR α (2) ^{B/B} T		
		d) $SNP \propto (2)^{2B/B_T}$		
		d) 5WR u (2)		
	In the blockdingroup shown below, systems A and P	a) A is nonlinear compressor		
	in the blockdiagram shown below, systems A and B	 A is nonlinear compressor. B is uniform quantizer 		
	ale.	b) A is linear compressor		
		D) A is inical compressor.		
19.		B is uniform quantizer.		
	channel Expander	c) A is uniform quantizer.		
		B is nonlinear compressor.		
	Nonuniform quantizer	d) A is uniform quantizer.		
	The second s	B is linear compressor.		
	An ECG signal $m(t)$ band-limited to 100 Hz is sampled at a rate 28% above the Nyquist rate. The maximum	a) 2.304 kHz.		
20.	acceptable uniform quantization error is 0.2% of the peak signal amplitude m_p .	b) 1.152 kHz.		Commented [m6]: $R_N = 2B = 200$ Hz.
	The minimum channel handwidth required to transmit	c) 900 Hz.		$R_A = 1.28 R_N = 256$ Hz. Max. quantization error = $\Delta v / 2$ - $m / L = 0.2 m / 100$
	this signal is:	d) 1.8 kHz.		$ \mathbf{P}_{L} = 500 $ $ \mathbf{P}_{L} = 500 $
		> 200.000		→Data Rate = $n R_A = 9 \times 256 = 2.304$ kbps.
	In Q. 20, If the "mean-square" value of $m(t)$ is a 0.1	a) 300,000		$rac{P}{D_T}$ = Data Kate / 2 = 1.152 KHZ.
21	Watt and the amplitude of each quantization level is 2	b) 54.77		Commented [m7]:
	mV, the "signal-to-quantization-noise" (SQNR) ratio	c) 5.477		$m^2(t) = 0.1 $ W.
	of the quantizer output (in dB) is:	d) None of the above		$\Delta v = 2 \text{ mV} = 2m_p / L \twoheadrightarrow m_p = 500 \text{ mV}.$

Useful relations:

Where W in the right-hand-side is the bandwidth and ω is the frequency variable, both in (rad/s).

GOOD LUCK

→ SQNR in dB = $10 \log_{10} (300,000) = 54.77$

SQNR is:

 $\frac{S_o}{N_o} = 3L^2 \frac{m^2(t)}{m_p^2}$

 $= 3 \times (500)^2 \times 0.1/(0.5)^2 = 300,000$

Page 🖱

 $\frac{S_o}{N_o} = 3L^2 \frac{\overline{m^2(t)}}{m_p^2}$