SURA UNITE

Electrical Engineering Department

Digital Communication Systems (802421) - G2

Dr. Mouaaz Nahas Term 1 (1435-1436) First Exam, Thursday 20/01/1436 H

الأسم:

==

==

الرقم الجامعي:

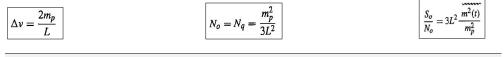
Q1.	Choose the correct answer:	(21 Marks, 1 Each)		
	If a sinusoidal signal $m(t)$, band-limited to B Hz is sampled at B Hz, the reconstructed (recovered) signal at	a) DC signal.		
1.	the receiver will be:	b) Same as <i>m</i> (<i>t</i>) waveform but with different amplitude.		
		c) Same as <i>m</i> (<i>t</i>) waveform but with different frequencies.		
		d) Non-sinusoidal AC signal.		
	In the PCM system shown, the missing block is:	a) A/D converter.		
~		b) Bit encoder.		
2.	→ Sampler → Quantizer → Bit- encoder	c) Antialiasing filter.		
	encoder 1 0 1 1	d) Time-division multiplexer.		
	The bandwidth of the signal	a) 50 Hz		
3.	$m(t) = \operatorname{sinc}^2 (100\pi t) + \operatorname{sinc} (60\pi t)$ is:	b) 60 Hz		
5.		c) 100 Hz		
		d) 120 Hz		
	At each regenerative repeater station in digital	a) Filtered and then amplified.		
	transmission, the signal is:	b) Amplified and then filtered.		
4.		c) Detected and corrected before re-		
		transmission. d) Detected and a new signal is generated.		
		d) Detected and a new signal is generated.		
	Given that the number of quantization levels used in an	a) 19		
5.	A/D conversion is 1,048,581. The minimum number of binary bits that can be used to encode each sample is:	b) 20		
5.	binary bits that can be used to encode each sample is.	c) 21		
		d) None of the above		
	In Analog-to-Digital (A/D) conversion, the PWM signal	a) Analog and continuous.		
~	is:	b) Analog and discrete.		
6.		c) Digital and continuous.		
		d) Digital and discrete.		
	In the Compact Disk (CD) application where the audio	a) $R_A = 40$ kHz, Data Rate = 1.28 Mbps.		
7.	signal bandwidth B is 20 kHz and the number of	b) $R_A = 44.1$ kHz, Data Rate = 1.4 Mbps.		
1.	quantization levels is 65,536:	c) $R_A = 40$ kHz, Data Rate = 640 kbps.		
		d) $R_A = 44.1$ kHz, Data Rate = 705.6 kbps.		

Commented [m1]: The higher bandwidth.

B1 = 100 Hz. B2 = 30 Hz.

Page

	Given the two signals:	a) 80]	
8.	$m_1(t) = \sin((200\pi t))$	b) 100		
ð.	$m_2(t) = \operatorname{sinc}^2 (80\pi t)$	c) 180		Commented [m2]:
	The bandwidth of $m_1(t) m_2(t)$ in Hz is:	d) 280		The sum of the two bandwidths.
				B1 = 100 Hz.
-	For the two signals given in Q.8, the bandwidth of	a) 80		<i>B</i> 2 = 80 Hz.
	$m_1(t) * m_2(t)$ in Hz is:	b) 100		→ B1 + B2 = 180 Hz.
9.		c) 180		Commented [m3]: The lower bandwidth.
		d) 280		
	In practical digital communication systems, the signal	a) $\sum m(kT_s) \operatorname{sinc}(2\pi t - k\pi)$		
	obtained at the receiver output is:			
	L L	b) $\sum \hat{m}(kT_s) \operatorname{sinc}(2\pi t - k\pi)$		
10.	Hint: recall the interpolation formula used at the			
	receiver to recover the original message.	c) $\sum \overline{m}(kT_s)\operatorname{sinc}(2\pi t - k\pi)$		
	-	k		
		d) $\overline{m}(t) * \operatorname{sinc}(2\pi B t)$		
	The signal shown in the figure is sampled at Nyquist			
	rate, the sampling rate used (in Hz) is:	a) 1		
	2		_	
	1.5	b) 2		
		b) 2		
11.			-	
		c) 3		
		-) -		
	-1.5			
	-2 0 0.5 1 1.5 2 2.5 3 3.5 4 time (sec)	d) <mark>6</mark>		Commented [m4]: In each second, we have 6 samples. So
	· ,		-	Nyquist rate is 6 samples/sec (or 6 Hz).
			_	
	In Q.8, the bandwidth B of the signal shown (in Hz) is:	a) 1	_	
12.		b) 2	_	
		c) 3		Commented [m5]: Since Nyquist rate is 6 samples/sec (or 6 Hz), <i>B</i> is half this value which is 3 Hz.
		d) 6	_	<i>D</i> is half this value which is 5 Hz.
	×		-	Note that B here is the highest sinusoidal frequency.
	In the figure shown:	a) $T_s < 1/2B$		
	ān	b) $T_s > 1/2B$]	
13.				
	(6)	c) $G(f)$ is sampled at a rate above Nyquist rate	-	
		d) a) and c)		
			1	
	A PCM signal with 1 mV amplitude is to travel along	2) 50	1	
	3000 km. If the amplitude is attenuated by 0.2 mV	a) 50		
	every 10 km, find the minimum number of regenerative	b) 100		Commented [m6]:
14.	repeaters required to withstand this distortion (given			Min. amplitude allowed is 0.4 mV
	that the minimum amplitude which can be interpreted	c) 200		Every 10 km, amplitude is attenuated by 0.2 mV
	by the receiver as high voltage is 0.4 mV).	·		→Every 30 km, amplitude is attenuated by 0.6 mV and amplitude becomes 0.4 mV.
	- • ·	d) 300		→ No. of repeaters = $3000 / 30 = 100$
	A signal $m(t)$ with maximum amplitude 5 mV is	a) 64		
15.	sampled, quantized and digitally transmitted. If each	b) 128	-	
	quantization interval is 0.039 mV, the number of	c) 256		Commented [W7]:
	quantization interval is 0.059 mV, the number of quantization levels used is:	d) 257		$L = 2m_p / \Delta v = 10m / 0.039m = 256.4 \approx 256$
	1	uj 251	-	Here, no ceiling function is used. The ceiling function is used when finding n only.


Page Y

	Given an audio signal with bandwidth 3.5 kHz. If the	a) 28 kbps]			
16.	signal is sampled at Nyquist rate and quantized using	<mark>b) </mark> 63 kbps		Commented [m8]:		
10.	340 levels, the data rate of the transmitted signal is:	c) 56 kbps		Nyquist rate = 7 kHz (sample/s). L= $340 \rightarrow n = \text{Ceiling [log_2 (340)]} = 9 \text{ bits/sample}$		
		d) None of the above	-	$L=340 \rightarrow h - Central [10g_2(340)] = 9 bits/sanData rate = 7 k x 9 = 63 kbits/s.$		
	In the following figure, Aliasing is appointed by the letter:	a) A				
17.		b) B	-			
17.		c) C	-			
		d) D				
	The solution to aliasing problem is:	a) Passing the signal $G(f)$ into a low pass filter with	-			
		cutoff frequency $2f_s$ Hz				
		b) Passing the signal $G(f)$ into a low pass filter with	1			
18.		cutoff frequency f_s Hz				
		c) Passing the signal $G(f)$ into a low pass filter with cutoff frequency $f/2$ Hz				
		d) There is no practical solution	-			
		d) There is no practical solution				
	A signal $m(t)$ is sampled using Nyquist rate, then quantized	a) 0 mV				
19.	into 64 levels. If the quantizer accepts 5 mV maximum amplitude, the minimum possible quantization error is:	b) 0.156 mV				
19.		c) 0.078 mV				
		d) 2.5 mV				
	An ECG signal $m(t)$ band-limited to 100 Hz is sampled at a rate 28% above the Nyquist rate. The maximum acceptable uniform quantization error is 0.2% of the peak signal amplitude m_p . The minimum channel bandwidth required to transmit this signal is:	a) 2.304 kHz.				
20.		b) 1.152 kHz.		Commented [m9]: $R_N = 2B = 200$ Hz.		
20.		c) 900 Hz.		$R_A = 1.28 R_N = 256$ Hz. Max. quantization error $= \Delta v / 2$		
		d) 1.8 kHz.	-	$= m_p / L = 0.2 m_p / 100.$ $\Rightarrow L = 500$ $\Rightarrow n = \text{Ceiling [log_2 (500)]} = 9 \text{ bits/sample.}$ $\Rightarrow \text{Data Rate} = n R_A = 9 \times 256 = 2.304 \text{ kbps.}$		
			-	→ B_T = Data Rate = $h R_A$ = 9 x 256 = 2.504 kbps.		
	In Q. 20, If the "mean-square" value of $m(t)$ is a 0.1	a) 300,000	-			
21.	Watt and the amplitude of each quantization level is 2	b) 54.77		Commented [m10]:		
	mV, the "signal-to-quantization-noise" (SQNR) ratio of	c) 5.477		$m^2(t) = 0.1 \text{ W}.$		
	the quantizer output (in dB) is:	d) None of the above]	$\Delta v = 2 \text{ mV} = 2m_p / L \twoheadrightarrow m_p = 500 \text{ mV}.$		

Useful relations:

$\frac{W}{\pi}\operatorname{sinc}(Wt) \longleftrightarrow^{F} \operatorname{rect}(\frac{\omega}{2W})$	$\frac{W}{2\pi}\operatorname{sinc}^{2}(\frac{Wt}{2}) \longleftrightarrow \Delta(\frac{\omega}{2W})$
---	---

Where W in the right-hand-side is the bandwidth and ω is the frequency variable, both in (rad/s).

GOOD LUCK

→ $m_p = 500 \text{ mV}.$ SQNR is: $\frac{S_o}{N_o} = 3L^2 \frac{\frac{m^2(t)}{m_p^2}}{m_p^2}$

 $= 3 \times (500)^2 \times 0.1/(0.5)^2 = 300,000$

→ SQNR in dB = 10 log₁₀ (300,000) = 54.77

