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Chapter 7: Graph
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What’s a Graph?
� A bunch of vertices connected by edges.
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Basic Concepts

� A graph is an ordered pair (V, E).
� V is the set of vertices. (You can think of 

them as integers 1, 2, …, n.)
� E is the set of edges. An edge is a pair of 

vertices: (u, v).
� Note: since E is a set, there is at most one 

edge between two vertices. (Hypergraphs
permit multiple edges.)

� Edges can be labeled with a weight:
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Concepts: Directedness

� In a directed graph, the edges are “one-
way.” So an edge (u, v) means you can go 
from u to v, but not vice versa.

� In an undirected graph, there is no 
direction on the edges: you can go either 
way. (Also, no self-loops.)

a self-loop



Concepts: Adjacency

� Two vertices are adjacent if there is an 
edge between them.

� For a directed graph, u is adjacent to v iff 
there is an edge (v, u).

u w

v

u is adjacent to v. 
v is adjacent to u and w.
w is adjacent to v.

u w

v

u is adjacent to v. 
v is adjacent to w.

Concepts: Degree
� Undirected graph: The degree of a vertex 

is the number of edges touching it.

� For a directed graph, the in-degree is the 
number of edges entering the vertex, and 
the out-degree is the number leaving it. The 
degree is the in-degree + the out-degree.

degree 4

in-degree 2, out-degree 1



Concepts: Path

� A path is a sequence of adjacent vertices. The 
length of a path is the number of edges it 
contains, i.e. one less than the number of 
vertices.

� We write u ⇒ v if there is path from u to v. 
We say v is reachable from u.
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Is there a path from 1 to 4?

What is its length?

What about from 4 to 1?

How many paths are there from 2 
to 3? From 2 to 2? From 1 to 1?

Concepts: Cycle

� A cycle is a path of length at least 1 from a 
vertex to itself.

� A graph with no cycles is acyclic.
� A path with no cycles is a simple path.

� The path <2, 3, 4, 2> is a cycle.
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Connectivity

� Undirected graphs are connected if there is a path between 

any two vertices

� Directed graphs are strongly connected if there is a path from 

any one vertex to any other

� Directed graphs are weakly connected if there is a path 

between any two vertices, ignoring direction

� A complete graph has an edge between every pair of vertices

Concepts: Trees

� A free tree is a connected, 
acyclic, undirected graph.

� To get a rooted tree, designate some vertex 
as the root.

� If the graph is disconnected, it’s a forest.
� Facts about free trees:

• |E| = |V| -1

• Any two vertices are connected by exactly one path.

• Removing an edge disconnects the graph.

• Adding an edge results in a cycle.



Graph Size

� We describe the time and space 
complexity of graph algorithms in terms 
of the number of vertices, |V|, and the 
number of edges, |E|.

� |E| can range from 0 (a totally 
disconnected graph) to |V|2 (a directed 
graph with every possible edge, including 
self-loops).

� we write Θ(V + E) instead of Θ(|V| + |E|).

Representing Graphs

� Adjacency matrix: if 
there is an edge from 
vertex i to j, aij = 1; else, 
aij = 0.

� Space: Θ(V2)

� Adjacency list: Adj[v] 
lists the vertices 
adjacent to v.

� Space: Θ(V+E)
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Adj:

Represent an undirected graph by a directed one:



Depth-first searching
• A depth-first search (DFS) 

explores a path all the way 
to a leaf before 
backtracking and exploring 
another path

• For example, after 
searching A, then B, then D, 
the search backtracks and 
tries another path from B

• Node are explored in the 
order A B D E H L M N I O P 

C F G J K Q

• N will be found before J
L M N O P

G

Q

H JI K

FED

B C

A

Fixing Bad-DFS

� We’ve got to indicate when a node has 
been visited.

� we’ll use a color:
� WHITE never seen
� GRAY discovered but not finished

(still exploring its descendants)
� BLACK finished



A Better DFS

� > initially, all vertices are WHITE
� Better-DFS(u)
� color[u] ← GRAY
� number u with a “discovery time”
� for each v in Adj[u] do
� if color[v] = WHITE then > avoid 

looping!
� Better-DFS(v)
� color[u] ← BLACK
� number u with a “finishing time”

Depth-First Spanning Tree
� As we’ll see, DFS creates a tree as it 

explores the graph. Let’s keep track of the 
tree as follows (actually it creates a forest 
not a tree):

� When v is explored directly from u, we 
will make u the parent of v, by setting the 
predecessor, aka, parent (π) field of v to u:

u

v

u

v

π[v] ← u



Directed Depth First Search

Adjacency Lists

A:  F G
B:  A I
C:  A D
D:  C F
E:  C D G
F:  E:
G:  :
H:  B:
I:  H:

F

A

B C G

D

E

H

I



Directed Depth First Search

F

A

B C G

D
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H

I

dfs(A)

A-F  A-G

Function call stack:

Directed Depth First Search
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B C G

D

E

H

I

dfs(A)

A-F  A-G

Function call stack:

visit(F)

F-E



Directed Depth First Search
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dfs(A)

A-F  A-G

Function call stack:

dfs(F)

F-E

dfs(E)

E-C  E-D  E-G

Directed Depth First Search
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Function call stack:
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Directed Depth First Search
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Directed Depth First Search
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Function call stack:

dfs(F)
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Directed Depth First Search
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Directed Depth First Search
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Directed Depth First Search
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Directed Depth First Search
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Directed Depth First Search

F
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B C G

D

E

H
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Nodes reachable from A:   A, C, D, E, F, G  

Breadth First Search



Breadth-First Search

� Breadth-first search 
(BFS) is a general 
technique for traversing 
a graph

� A BFS traversal of a 
graph G 
◦ Visits all the vertices and 

edges of G
◦ Determines whether G is 

connected
◦ Computes the connected 

components of G
◦ Computes a spanning 

forest of G

� BFS on a graph with n

vertices and m edges takes 

O(n + m ) time

� BFS can be further extended 

to solve other graph 

problems

◦ Find and report a path with the 

minimum number of edges 

between two given vertices 

◦ Find a simple cycle, if there is 

one

BFS Algorithm

� The algorithm uses a 
mechanism for setting 
and getting “labels” of 
vertices and edges

Algorithm BFS(G, s)
L0 ← new empty sequence
L0.insertLast(s)
setLabel(s, VISITED)
i ← 0
while ¬Li.isEmpty()

Li +1 ← new empty sequence
for all v ∈ Li.elements() 

for all e ∈ G.incidentEdges(v)
if getLabel(e) = UNEXPLORED

w ← opposite(v,e)
if  getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
setLabel(w, VISITED)
Li +1.insertLast(w)

else
setLabel(e, CROSS)

i ← i +1

Algorithm BFS(G)
Input graph G
Output labeling of the edges 

and partition of the 
vertices  of G 

for all u ∈ G.vertices()
setLabel(u, UNEXPLORED)

for all e ∈ G.edges()
setLabel(e, UNEXPLORED)

for all v ∈ G.vertices()
if getLabel(v) = UNEXPLORED

BFS(G, v)



� Expands the frontier between discovered and 
undiscovered vertices uniformly across the 
breadth of the frontier.
◦ A vertex is “discovered” the first time it is encountered 

during the search.
◦ A vertex is “finished” if all vertices adjacent to it have 

been discovered.

� Colors the vertices to keep track of progress.
◦ White – Undiscovered.
◦ Gray – Discovered but not finished.
◦ Black – Finished.

� Colors are required only to reason about the algorithm. Can 
be implemented without colors.

Breadth First Search
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Breadth First Search
A B

F

I

E H

DC

G

A

FIFO Queue

-

frontenqueue source node

Breadth First Search
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FIFO Queue

-

frontdequeue next vertex



Breadth First Search

frontvisit neighbors of A
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Breadth First Search
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Breadth First Search

B I frontI discovered 
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Breadth First Search
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Breadth First Search
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Breadth First Search
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Breadth First Search
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Breadth First Search
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Breadth First Search

F front

F

I

E H

DC

G

- A

A

visit neighbors of I

B

FIFO Queue

BA

Breadth First Search

F front

F

I

E H

DC

G

- A

A

visit neighbors of I

B

FIFO Queue

BA



Breadth First Search
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Breadth First Search
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Breadth First Search
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Breadth First Search
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Breadth First Search
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Breadth First Search
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Breadth First Search
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Breadth First Search
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