Computer Science Department Gl ol Aol o [E“ i
College of Computer at Al-Lith DR SR U T Qjﬁﬂal},}%ﬁl

Data Structures

Chapter 7: Graph

Instructor Maher Hadiji
hdiji.maher@gmail.com

2015-2016

What’s a Graph!

* A bunch of vertices connected by edges.

; vertex

e R edge

Basic Concepts

» A graph is an ordered pair (V, E).
* V is the set of vertices. (You can think of
them as integers |,2,...,n.)

* E is the set of edges.An edge is a pair of
vertices: (U, v).

e Note:since E is a set, there is at most one
edge between two vertices. (Hypergraphs
permit multiple edges.)

» Edges can be labeled with a weight:
O 10 Q

Concepts: Directedness

e In a directed graph, the edges are “one-
way.” So an edge (u, v) means you can go
from u to v, but not vice versa.

6) a self-loop

* In an undirected graph, there is no
direction on the edges: you can go either
way. (Also, no self-loops.)

Sz

Concepts: Adjacency

» Two vertices are adjacent if there is an
edge between them.

 For a directed graph, u is adjacent to v iff
there is an edge (v, u).

o o

u is adjacent to v. u is adjacent to v.
v is adjacent to u and w. v is adjacent to w.
w is adjacent to v.

Concepts: Degree
* Undirected graph:The degree of a vertex

is the number of edges touching it.
degree 4

 For a directed graph, the in-degree is the
number of edges entering the vertex, and
the out-degree is the number leaving it. The
degree is the in-degree + the out-degree.

7\ in-degree 2, out-degree 1
AN

Concepts: Path

A path is a sequence of adjacent vertices.The
length of a path is the number of edges it
contains, i.e. one less than the number of
vertices.

e Is there a path from 1 to 4?
What is its length?
o e What about from 4 to 1?
e How many paths are there from 2
to 3? From 2 to 2? From 1 to 1?

* We write u = v if there is path from u to v.
We say v is reachable from u.

Concepts: Cycle

* A cycle is a path of length at least | from a
vertex to itself.

* A graph with no cycles is acyclic.
* A path with no cycles is a simple path.

@)
e The path <2, 3,4,2> is a cycle.

Connectivity

Undirected graphs are connected if there is a path between
any two vertices

Directed graphs are strongly connected if there is a path from
any one vertex to any other

Directed graphs are weakly connected if there is a path
between any two vertices, ignoring direction i‘

A complete graph has an edge between every pair of vertices

s

Concepts: Trees

* A free tree is a connected,
acyclic, undirected graph. ‘7?‘
* To get a rooted tree, designate sofne vertex

as the root.
* If the graph is disconnected, it’s a forest.
e Facts about free trees:

[El=V]-1

Any two vertices are connected by exactly one path.

Removing an edge disconnects the graph.

Adding an edge results in a cycle.

Graph Size

* We describe the time and space
complexity of graph algorithms in terms
of the number of vertices, |V|, and the
number of edges, |E|.

* |E| can range from 0 (a totally
disconnected graph) to |V|? (a directed
graph with every possible edge, including
self-loops).

» we write O(V + E) instead of O(|V| + |E|).

Representing Graphs @

e Adjacency matrix: if 1234
there is an edge from 10 1 0 1
vertex i to j,a; = |;else, 200 010
3; = 0. 3000 1

40100

» Space: ©O(V?)

Adj:

* Adjacency list: Adj[v]
lists the vertices
adjacent to v.

* Space: O(V+E)

Represent an undirected graph by a directed one:

O—O= C__ 1

Depth-first searching

» A depth-first search (DFS)
explores a path all the way
to a leaf before
backtracking and exploring
another path

» For example, after
@é @ searching ,then ,then
the search backtracks and
tries another path from

(K) « Node are explored in the
orderABDEHLMNIOP
Q) CFGJIKQ

o N will be found before

Fixing Bad-DFS

* We've got to indicate when a node has
been visited.

e we’ll use a color:
WHITE never seen

GRAY discovered but not finished
(still exploring its descendants)

BLACK finished

A Better DFS

e D> initially, all vertices are WHITE

» Better-DFS(u)

e color[u] « GRAY

* number u with a “discovery time”

e for each v in Adj[u] do

. if color[v] = WHITE then > avoid
looping!

. Better-DFS(v)

e color[u] — BLACK

e number u with a “finishing time”

Depth-First Spanning Tree

» As we'll see, DFS creates a tree as it
explores the graph. Let’s keep track of the
tree as follows (actually it creates a forest
not a tree):

* When v is explored directly from u, we
will make u the parent of v, by setting the
predecessor, aka, parent (T7) field of v to u:

oI =

mv] ~ u

DFS(G)
for each vertex u € V[G]
do color[u] < WHITE
mu] < NIL
time < 0
for each vertex u € V[G]
do if color[u] = WHITE
then DFS-VISIT (1)

NN R W -

color[u] < GRAY > White vertex u has just been discovered
time <« time +1
dlu] < time
for each v € Adj[u] > Explore edge (u, v).
do if color[v] = WHITE
then 7w [v] < u
DFS-VISIT(v)

color[u] < BLACK > Blacken u; it is finished.
flu] < time <« time +1

O 01O\ Ut

Directed Depth First Search

Adjacency Lists

A F G
B: Al
C AD
DD CF
EE CDG
F. E

G

H:

| :

I @

Directed Depth First Search

dfs(A)
A-F A-G
Function call stack:

Directed Depth First Search

A-F A-G

Function call stack:

visit(F)
F-E

Directed Depth First Search

dfs(E)
E-C E-D E-G

A-F A-G

e

Function call stack:

Directed Depth First Search

)
/

{

dfs(C)
C-A C-D

¢

E-C E-D E-G

{

Function call stack:

Directed Depth First Search

L

dfs(C)
C-A C-D

E-C E-D E-G

F-E

A-F A-G
Function call stack:

Directed Depth First Search

dfs(D)
D-C D-F

C-A C-D

E-C E-D E-G

F-E

A-F A-G
Function call stack:

Directed Depth First Search

<\ A
>

— dfs(D)
D-C D-F

C-A C-D ’
E-C E-D E-G ’

F-E

A-F A-G
Function call stack:

Directed Depth First Search

dfs(D)

D-C D-F

C-A C-D ,
E-C E-D E-G /

F-E

A-F A-G
Function call stack:

Directed Depth First Search

dfs(C)
C-A C-D

E

E-C E-D E-G

{

Function call stack:

Directed Depth First Search

)
/

{

dfs(E)
E-C E-D E-G

Function call stack:

d

Directed Depth First Search

dfs(E)
E-C E-D E-G

F-E

A-F A-G

d

Function call stack:

Directed Depth First Search

)
/

E-C E-D E-G

{

F-E

Function call stack:

Directed Depth First Search

dfs(E)

Function call stack:

Directed Depth First Search

dfs(F)
F-E

A-F A-G
Function call stack:

Directed Depth First Search

dfs(A)
A-F A-G
Function call stack:

Directed Depth First Search

dfs(A)
A-F A-G
Function call stack:

Directed Depth First Search
[A]

Nodes reachable from A: A,C,D,E,F, G

Breadth First Search

Breadth first %

&

¥

O 0O

Breadth-First Search

» Breadth-first search
(BFS) is a general
technique for traversing
a graph

 ABFS traversal of a
graph G
> Visits all the vertices and

edges of G

o Determines whether G is
connected

o Computes the connected
components of G

- Computes a spanning
forest of G

« BFS on a graph with n
vertices and m edges takes
O(n + m) time

» BFS can be further extended
to solve other graph
problems

> Find and report a path with the
minimum number of edges

between two given vertices

> Find a simple cycle, if there is

one

BFS Algorithm

» The algorithm uses a
mechanism for settin
and getting “labels” o
vertices and edges

Algorithm BFS(G)

Algorithm BFS(G, s)

«—

«—

while =
Input -
Output for all v0O
for all e
if =
forall v O -
if =

for all =0
for all vO dse

if =

» Expands the frontier between discovered and
undiscovered vertices uniformly across the
breadth of the frontier.

o Avertex is the first time it is encountered
during the search.
o Avertex is if all vertices adjacent to it have

been discovered.

» Colors the vertices to keep track of progress.
o White — Undiscovered.
o — Discovered but not finished.
> Black — Finished.

Colors are required only to reason about the algorithm. Can
be implemented without colors.

Breadth First Search
® O]

front

FIFO Queue

Breadth First Search

enqueue source node front A

FIFO Queue

Breadth First Search

dequeue next vertex front A

FIFO Queue

Breadth First Search

visit neighbors of A front

FIFO Queue

Breadth First Search

visit neighbors of A front

FIFO Queue

_Breadth FirstA Search

R

B discovered front B

FIFO Queue

Breadth FirstA Search

R

visit neighbors of A ¢.0n+ B

FIFO Queue

Breadth FirstA Search

I discovered front B |

FIFO Queue

Breadth FirstA Search

finished with A front B |

FIFO Queue

Breadth FirstA Search

dequeue next vertex foont B |

FIFO Queue

Breadth FirstA Search

visit neighbors of B ¢pont |

FIFO Queue

Breadth FirstA Search

visit neighbors of B fpont |

FIFO Queue

Breadth FirstA Search

B
A
F discovered front | F

FIFO Queue

Breadth FirstA Search

visit neighbors of B f.ont | F

FIFO Queue

Breadth FirstA Search

A already discovered fnont | F

FIFO Queue

Breadth FirstA Search

finished with B front | F

FIFO Queue

Breadth FirstA Search

B
A
dequeue next vertex fpont | F

FIFO Queue

Breadth FirstA Search

visit neighbors of I .00t F

FIFO Queue

Breadth FirstA Search

visit neighbors of I .00t F

FIFO Queue

Breadth FirstA Search

A already discovered f.ont F

FIFO Queue

Breadth FirstA Search

visit neighbors of I .0t F

FIFO Queue

Breadth FirstA Search

E discovered front F E

FIFO Queue

Breadth FirstA Search

visit neighbors of I ¢.,nt F E

FIFO Queue

Breadth FirstA Search

F already discovered ¢ront F E

FIFO Queue

Breadth FirstA Search

I finished front F E

FIFO Queue

Breadth FirstA Search

dequeue next vertex f.ont F E

FIFO Queue

Breadth FirstA Search

visit neighbors of F fpont E

FIFO Queue

Breadth FirstA Search
4]

G discovered front E G

FIFO Queue

Breadth FirstA Search

B F
A
F finished front E G

FIFO Queue

Breadth FirstA Search

dequeue next vertex ¢ ont E G

FIFO Queue

Breadth FirstA Search

visit neighbors of E ¢ront G

FIFO Queue

Breadth FirstA Search

E finished front G

FIFO Queue

Breadth FirstA Search

dequeue next vertex front G

FIFO Queue

Breadth FirstA Search
4]

visit neighbors of G fnont

FIFO Queue

Breadth FirstA SearchG

C discovered front C

FIFO Queue

Breadth FirstA SearchG

visit neighbors of 6 font C

FIFO Queue

Breadth FirstA SearchG

H discovered front C H

FIFO Queue

Breadth FirstA SearchG

B
A
6 finished front C H

FIFO Queue

Breadth FirstA SearchG

dequeue next vertex frony C H

FIFO Queue

Breadth FirstA SearchG
4]

visit neighbors of € ¢ont H

FIFO Queue

Breadth FirstA SearchG
(4]

D discovered front H D

FIFO Queue

Breadth F|rst Search

%I N

C finished front HD

FIFO Queue

Breadth F|rst Search

/) N

get next vertex front H D

FIFO Queue

Breadth F|rst Search

%I N

visit neighbors of H ¢.ont D

FIFO Queue

Breadth F|rst Search

/) N

finished H front D

FIFO Queue

Breadth F|rst Search

%I N

dequeue next vertex fpont D

FIFO Queue

Breadth F|rst Search

/) N

visit neighbors of D fpont

FIFO Queue

Breadth F|rst Search

%I N

FIFO Queue

Breadth F|rst Search

/) N

dequeue next vertex fnont

FIFO Queue

Breadth FirstA SearchG

STOP front

FIFO Queue

