
Data Structures

Instructor Maher Hadiji

hdiji.maher@gmail.com

2015-2016

Computer Science Department

College of Computer at Al-Lith

Chapter 7: Graph

1

What’s a Graph?
� A bunch of vertices connected by edges.

1

2

3

4

vertex

edge

Basic Concepts

� A graph is an ordered pair (V, E).
� V is the set of vertices. (You can think of

them as integers 1, 2, …, n.)
� E is the set of edges. An edge is a pair of

vertices: (u, v).
� Note: since E is a set, there is at most one

edge between two vertices. (Hypergraphs
permit multiple edges.)

� Edges can be labeled with a weight:

10

Concepts: Directedness

� In a directed graph, the edges are “one-
way.” So an edge (u, v) means you can go
from u to v, but not vice versa.

� In an undirected graph, there is no
direction on the edges: you can go either
way. (Also, no self-loops.)

a self-loop

Concepts: Adjacency

� Two vertices are adjacent if there is an
edge between them.

� For a directed graph, u is adjacent to v iff
there is an edge (v, u).

u w

v

u is adjacent to v.
v is adjacent to u and w.
w is adjacent to v.

u w

v

u is adjacent to v.
v is adjacent to w.

Concepts: Degree
� Undirected graph: The degree of a vertex

is the number of edges touching it.

� For a directed graph, the in-degree is the
number of edges entering the vertex, and
the out-degree is the number leaving it. The
degree is the in-degree + the out-degree.

degree 4

in-degree 2, out-degree 1

Concepts: Path

� A path is a sequence of adjacent vertices. The
length of a path is the number of edges it
contains, i.e. one less than the number of
vertices.

� We write u ⇒ v if there is path from u to v.
We say v is reachable from u.

1

2

3

4

Is there a path from 1 to 4?

What is its length?

What about from 4 to 1?

How many paths are there from 2
to 3? From 2 to 2? From 1 to 1?

Concepts: Cycle

� A cycle is a path of length at least 1 from a
vertex to itself.

� A graph with no cycles is acyclic.
� A path with no cycles is a simple path.

� The path <2, 3, 4, 2> is a cycle.

1

2

3

4

Connectivity

� Undirected graphs are connected if there is a path between

any two vertices

� Directed graphs are strongly connected if there is a path from

any one vertex to any other

� Directed graphs are weakly connected if there is a path

between any two vertices, ignoring direction

� A complete graph has an edge between every pair of vertices

Concepts: Trees

� A free tree is a connected,
acyclic, undirected graph.

� To get a rooted tree, designate some vertex
as the root.

� If the graph is disconnected, it’s a forest.
� Facts about free trees:

• |E| = |V| -1

• Any two vertices are connected by exactly one path.

• Removing an edge disconnects the graph.

• Adding an edge results in a cycle.

Graph Size

� We describe the time and space
complexity of graph algorithms in terms
of the number of vertices, |V|, and the
number of edges, |E|.

� |E| can range from 0 (a totally
disconnected graph) to |V|2 (a directed
graph with every possible edge, including
self-loops).

� we write Θ(V + E) instead of Θ(|V| + |E|).

Representing Graphs

� Adjacency matrix: if
there is an edge from
vertex i to j, aij = 1; else,
aij = 0.

� Space: Θ(V2)

� Adjacency list: Adj[v]
lists the vertices
adjacent to v.

� Space: Θ(V+E)

1
2

3
4

0010

1000

0100

1010

4

3

2

1

4321

2 4

3

4

2

1
2
3
4

Adj:

Represent an undirected graph by a directed one:

Depth-first searching
• A depth-first search (DFS)

explores a path all the way
to a leaf before
backtracking and exploring
another path

• For example, after
searching A, then B, then D,
the search backtracks and
tries another path from B

• Node are explored in the
order A B D E H L M N I O P

C F G J K Q

• N will be found before J
L M N O P

G

Q

H JI K

FED

B C

A

Fixing Bad-DFS

� We’ve got to indicate when a node has
been visited.

� we’ll use a color:
� WHITE never seen
� GRAY discovered but not finished

(still exploring its descendants)
� BLACK finished

A Better DFS

� > initially, all vertices are WHITE
� Better-DFS(u)
� color[u] ← GRAY
� number u with a “discovery time”
� for each v in Adj[u] do
� if color[v] = WHITE then > avoid

looping!
� Better-DFS(v)
� color[u] ← BLACK
� number u with a “finishing time”

Depth-First Spanning Tree
� As we’ll see, DFS creates a tree as it

explores the graph. Let’s keep track of the
tree as follows (actually it creates a forest
not a tree):

� When v is explored directly from u, we
will make u the parent of v, by setting the
predecessor, aka, parent (π) field of v to u:

u

v

u

v

π[v] ← u

Directed Depth First Search

Adjacency Lists

A: F G
B: A I
C: A D
D: C F
E: C D G
F: E:
G: :
H: B:
I: H:

F

A

B C G

D

E

H

I

Directed Depth First Search

F

A

B C G

D

E

H

I

dfs(A)

A-F A-G

Function call stack:

Directed Depth First Search

F

A

B C G

D

E

H

I

dfs(A)

A-F A-G

Function call stack:

visit(F)

F-E

Directed Depth First Search

F

A

B C G

D

E

H

I

dfs(A)

A-F A-G

Function call stack:

dfs(F)

F-E

dfs(E)

E-C E-D E-G

Directed Depth First Search

F

A

B C G

D

E

H

I

dfs(A)

A-F A-G

Function call stack:

dfs(F)

F-E

dfs(E)

E-C E-D E-G

dfs(C)

C-A C-D

Directed Depth First Search

F

A

B C G

D

E

H

I

dfs(A)

A-F A-G

Function call stack:

dfs(F)

F-E

dfs(E)

E-C E-D E-G

dfs(C)

C-A C-D

Directed Depth First Search

F

A

B C G

D

E

H

I

dfs(A)

A-F A-G

Function call stack:

dfs(F)

F-E

dfs(E)

E-C E-D E-G

dfs(C)

C-A C-D

dfs(D)

D-C D-F

Directed Depth First Search

F

A

B C G

D

E

H

I

dfs(A)

A-F A-G

Function call stack:

dfs(F)

F-E

dfs(E)

E-C E-D E-G

dfs(C)

C-A C-D

dfs(D)

D-C D-F

Directed Depth First Search

F

A

B C G

D

E

H

I

dfs(A)

A-F A-G

Function call stack:

dfs(F)

F-E

dfs(E)

E-C E-D E-G

dfs(C)

C-A C-D

dfs(D)

D-C D-F

Directed Depth First Search

F

A

B C G

D

E

H

I

dfs(A)

A-F A-G

Function call stack:

dfs(F)

F-E

dfs(E)

E-C E-D E-G

dfs(C)

C-A C-D

Directed Depth First Search

F

A

B C G

D

E

H

I

dfs(A)

A-F A-G

Function call stack:

dfs(F)

F-E

dfs(E)

E-C E-D E-G

Directed Depth First Search

F

A

B C G

D

E

H

I

dfs(A)

A-F A-G

Function call stack:

dfs(F)

F-E

dfs(E)

E-C E-D E-G

Directed Depth First Search

F

A

B C G

D

E

H

I

dfs(A)

A-F A-G

Function call stack:

dfs(F)

F-E

dfs(E)

E-C E-D E-G

dfs(G)

Directed Depth First Search

F

A

B C G

D

E

H

I

dfs(A)

A-F A-G

Function call stack:

dfs(F)

F-E

dfs(E)

E-C E-D E-G

Directed Depth First Search

F

A

B C G

D

E

H

I

dfs(A)

A-F A-G

Function call stack:

dfs(F)

F-E

Directed Depth First Search

F

A

B C G

D

E

H

I

dfs(A)

A-F A-G

Function call stack:

Directed Depth First Search

F

A

B C G

D

E

H

I

dfs(A)

A-F A-G

Function call stack:

Directed Depth First Search

F

A

B C G

D

E

H

I

Nodes reachable from A: A, C, D, E, F, G

Breadth First Search

Breadth-First Search

� Breadth-first search
(BFS) is a general
technique for traversing
a graph

� A BFS traversal of a
graph G
◦ Visits all the vertices and

edges of G
◦ Determines whether G is

connected
◦ Computes the connected

components of G
◦ Computes a spanning

forest of G

� BFS on a graph with n

vertices and m edges takes

O(n + m) time

� BFS can be further extended

to solve other graph

problems

◦ Find and report a path with the

minimum number of edges

between two given vertices

◦ Find a simple cycle, if there is

one

BFS Algorithm

� The algorithm uses a
mechanism for setting
and getting “labels” of
vertices and edges

Algorithm BFS(G, s)
L0 ← new empty sequence
L0.insertLast(s)
setLabel(s, VISITED)
i ← 0
while ¬Li.isEmpty()

Li +1 ← new empty sequence
for all v ∈ Li.elements()

for all e ∈ G.incidentEdges(v)
if getLabel(e) = UNEXPLORED

w ← opposite(v,e)
if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
setLabel(w, VISITED)
Li +1.insertLast(w)

else
setLabel(e, CROSS)

i ← i +1

Algorithm BFS(G)
Input graph G
Output labeling of the edges

and partition of the
vertices of G

for all u ∈ G.vertices()
setLabel(u, UNEXPLORED)

for all e ∈ G.edges()
setLabel(e, UNEXPLORED)

for all v ∈ G.vertices()
if getLabel(v) = UNEXPLORED

BFS(G, v)

� Expands the frontier between discovered and
undiscovered vertices uniformly across the
breadth of the frontier.
◦ A vertex is “discovered” the first time it is encountered

during the search.
◦ A vertex is “finished” if all vertices adjacent to it have

been discovered.

� Colors the vertices to keep track of progress.
◦ White – Undiscovered.
◦ Gray – Discovered but not finished.
◦ Black – Finished.

� Colors are required only to reason about the algorithm. Can
be implemented without colors.

Breadth First Search
A B

F

I

E H

DC

G

FIFO Queue

-

front

Breadth First Search
A B

F

I

E H

DC

G

A

FIFO Queue

-

frontenqueue source node

Breadth First Search
A B

F

I

E H

DC

G

A

FIFO Queue

-

frontdequeue next vertex

Breadth First Search

frontvisit neighbors of A

A B

F

I

E H

DC

G

-

FIFO Queue

Breadth First Search

frontvisit neighbors of A

A B

F

I

E H

DC

G

-

FIFO Queue

Breadth First Search

BfrontB discovered

A B

F

I

E H

DC

G

- A

FIFO Queue

Breadth First Search

B frontvisit neighbors of A

A

F

I

E H

DC

G

-

B

A

FIFO Queue

Breadth First Search

B I frontI discovered

A

F

I

E H

DC

G

-

B

A

A

FIFO Queue

Breadth First Search

B I frontfinished with A

A

F

I

E H

DC

G

-

B

A

A

FIFO Queue

Breadth First Search

B I front

F

I

E H

DC

G

-

B

A

A

dequeue next vertex

FIFO Queue

A

Breadth First Search

I front

F

I

E H

DC

G

-

B

A

A

visit neighbors of B

FIFO Queue

A

Breadth First Search

I front

F

I

E H

DC

G

-

B

A

A

visit neighbors of B

FIFO Queue

A

Breadth First Search

I F front

F

I

E H

DC

G

-

B

A

A

F discovered

B

FIFO Queue

A

Breadth First Search

I F front

F

I

E H

DC

G

-

B

A

A

visit neighbors of B

B

FIFO Queue

A

Breadth First Search

I F front

F

I

E H

DC

G

-

B

A

A

A already discovered

B

FIFO Queue

A

Breadth First Search

I F front

F

I

E H

DC

G

-

B

A

A

finished with B

B

FIFO Queue

A

Breadth First Search

I F front

F

I

E H

DC

G

- A

A

dequeue next vertex

B

FIFO Queue

BA

Breadth First Search

F front

F

I

E H

DC

G

- A

A

visit neighbors of I

B

FIFO Queue

BA

Breadth First Search

F front

F

I

E H

DC

G

- A

A

visit neighbors of I

B

FIFO Queue

BA

Breadth First Search

F front

F

I

E H

DC

G

- A

A

A already discovered

B

FIFO Queue

BA

Breadth First Search

F front

F

I

E H

DC

G

- A

A

visit neighbors of I

B

FIFO Queue

BA

Breadth First Search

F E front

F

I

E H

DC

G

- A

A

E discovered

BI

FIFO Queue

BA

Breadth First Search

F E front

F

I

E H

DC

G

- A

A

visit neighbors of I

BI

FIFO Queue

BA

Breadth First Search

F E front

F

I

E H

DC

G

- A

A

F already discovered

BI

FIFO Queue

BA

Breadth First Search

F E front

F

I

E H

DC

G

- A

A

I finished

BI

FIFO Queue

BA

Breadth First Search

F E front

FE H

DC

G

- A

A

dequeue next vertex

BI

FIFO Queue

BA

I

Breadth First Search

E front

FE H

DC

G

- A

A

visit neighbors of F

BI

FIFO Queue

BA

I

Breadth First Search

E G front

FE H

DC

G

- A

A

G discovered

BI F

FIFO Queue

BA

I

Breadth First Search

E G front

FE H

DC

G

- A

A

F finished

BI F

FIFO Queue

BA

I

Breadth First Search

E G front

E H

DC

G

- A

A

dequeue next vertex

BI F

FIFO Queue

I

F

BA

Breadth First Search

G front

E H

DC

G

- A

A

visit neighbors of E

BI F

FIFO Queue

I

F

BA

Breadth First Search

G front

H

DC

G

- A

A

E finished

BI F

FIFO Queue

I

F

BA

E

Breadth First Search

G front

H

DC

G

- A

A

dequeue next vertex

BI F

FIFO Queue

I

F

BA

E

Breadth First Search

front

H

DC

G

- A

A

visit neighbors of G

BI F

FIFO Queue

I

F

BA

E

Breadth First Search

Cfront

H

DC

G

- A

A

C discovered

BI F

G

FIFO Queue

I

F

BA

E

Breadth First Search

Cfront

H

DC

G

- A

A

visit neighbors of G

BI F

G

FIFO Queue

I

F

BA

E

Breadth First Search

C Hfront

H

DC

G

- A

A

H discovered

BI F

G

G

FIFO Queue

I

F

BA

E

Breadth First Search

C Hfront

H

DC

G

- A

A

G finished

BI F

G

G

FIFO Queue

I

F

BA

E

Breadth First Search

C Hfront

H

DC

- A

A

dequeue next vertex

BI F

G

G

FIFO Queue

I

F

BA

E G

Breadth First Search

Hfront

H

DC

- A

A

visit neighbors of C

BI F

G

G

FIFO Queue

I

F

BA

E G

Breadth First Search

H Dfront

H

DC

- A

A

D discovered

BI F

G

G

C

FIFO Queue

I

F

BA

E G

Breadth First Search

H Dfront

H

DC

- A

A

C finished

BI F

G

G

C

FIFO Queue

I

F

BA

E G

Breadth First Search

H Dfront

H

D

- A

A

get next vertex

BI F

G

G

C

FIFO Queue

I

F

BA

E G

C

Breadth First Search

Dfront

H

D

- A

A

visit neighbors of H

BI F

G

G

C

FIFO Queue

I

F

BA

E G

C

Breadth First Search

Dfront

D

- A

A

finished H

BI F

G

G

C

FIFO Queue

I

F

BA

E G H

C

Breadth First Search

Dfront

D

- A

A

dequeue next vertex

BI F

G

G

C

FIFO Queue

I

F

BA

E G H

C

Breadth First Search

front

D

- A

A

visit neighbors of D

BI F

G

G

C

FIFO Queue

I

F

BA

E G H

C

Breadth First Search

front

- A

A

D finished

BI F

G

G

C

FIFO Queue

I

F

BA

E G H

C D

Breadth First Search

front

- A

A

dequeue next vertex

BI F

G

G

C

FIFO Queue

I

F

BA

E G H

C D

Breadth First Search

frontSTOP

E H

D

- A

A

BI F

G

G

C

FIFO Queue

I

F

BA

G

C

