
Data Structures

Instructor Maher Hadiji

hdiji.maher@gmail.com

2015-2016

Computer Science Department

College of Computer at Al-Lith

Chapter 6: Priority Queue

1

2

Queues and Priority Queues

� A queue is a first-in/first-out data structure.

� Elements are appended to the end of the
queue and are removed from the beginning
of the queue.

� In a priority queue, elements are assigned
priorities.

� When accessing elements, the element with
the highest priority is removed first.

26-
3

Priority Queues

� A priority queue is a data structure for
temporary storage that delivers the
stored items in order of their priority: an
item with higher priority is delivered first.

� The objects in a priority queue are
Comparable (or a comparator is
provided).

� According to a convention, the smaller
item has higher priority.

Priority Queues

� Works like an ordinary queue
� However, the order of how things are

removed depend on a priority key
� Ascending Priority Queue – The item

with the smallest key has the highest
priority

� Descending Priority Queue – The item
with the largest key has the highest
priority

26-
5

Heaps

� A heap is a particular kind of a binary
tree.

� Heaps provide a way to implement
priority queues in such a way that both
add and remove take O(log n) time.

� A heap can be stored in an array (or in an
ArrayList).

26-
6

Full and Complete Binary Trees

Full tree:
all levels are filled; a
full tree with h levels
holds 2h - 1 nodes.

Complete tree:
all levels are filled,
except perhaps the
bottom one

●

● ●

● ● ● ●

●●●● ●●●●

●

● ●

● ● ● ●

●●●● ●

26-
7

1

2 3

4 5 6 7

 8 9 10 11 12

●

● ●

● ● ● ●

●●●● ●

Complete Trees

� Nodes can be numbered
in level-by-level order:

The parent of the i-th
node is the node i / 2

The left child of the i-th
node is the node 2*i
and the right child is
the node 2*i + 1

26-
8

Complete Trees (cont’d)

� It is convenient to store a complete
binary tree in an array in the order of
nodes, starting at index 1:

Argentina

Brazil Chile

Egypt Dominica Greece Italy

items[0]: <null>

items[1]: Argentina

items[2]: Brazil

items[3]: Chile

items[4]: Egypt

items[5]: Dominica

items[6]: Greece

items[7]: Italy

items[8]: Haiti

items[9]: France

Haiti France

1

2 3

4 5 6 7

8 9

26-
9

Heaps (cont’d)

� A (min) heap is a complete binary tree
� The value in each node does not exceed

any of the values in that node’s left and
right subtrees.

� In a heap, the root holds the smallest value.

3
/ \

12 8
/ \

12 20

3
/ \

12 20
/ \

12 8

A heap: Not a heap:

26-
10

Heaps (cont’d)

� The algorithm for add
uses the reheap-up
procedure.

� The algorithm for
remove uses the
reheap-down
procedure.

• Either adding or removing an item takes
O(log n) time.

Remove the root and place
the last leaf at the root.
Starting at the root, swap
the node with its smaller
child, as many times as
needed to repair the heap.

Add a leaf. Starting at the
last leaf, swap the node with
its parent as many times as
needed to repair the heap.

26-
11

The Algorithm for add
Step 1: the new value is added as the rightmost leaf

at the bottom level, keeping the tree complete

Step 2: “reheap up”: the new value keeps swapping
places with its parent until it falls into place

Brazil

Dominica Chile

Egypt France Greece Italy

Haiti

1

2 3

4 5 6 7

8
China

9

Brazil

Dominica Chile

China France Greece Italy

Haiti

1

2 3

4 5 6 7

8
Egypt

9

Brazil

China Chile

Dominica France Greece Italy

Haiti

1

2 3

4 5 6 7

8
Egypt

9

26-
12

The Algorithm for remove

France

Brazil Chile

Egypt Dominica

Greece Italy

Haiti

1

2 3

4 5 6 7

8

Brazil Chile

Egypt

Dominica Greece Italy

Haiti France

1

2 3

4 5 6 7

8 9

Argentina

Brazil

France Chile

Egypt Dominica Greece Italy

Haiti

1

2 3

4 5 6 7

8

Brazil

Dominica Chile

Egypt France Greece Italy

Haiti

1

2 3

4 5 6 7

8

Step 1: the root
is removed

Step 2: the rightmost leaf from the
bottom level replaces the root

Step 3: “reheap down”: the new root value keeps swapping
places with its smaller child until it falls into place

26-
13

boolean isEmpty ();
void add (E obj);
E remove ();
E peek ();

java.util.PriorityQueue<E>

� Implements java.util.Queue<E> with
methods:

� The implementation is a heap.
� add and remove are O(log n); peek is
O(1).

