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What is a Tree?
� A tree is a collection of nodes with the following properties: 

◦ The collection can be empty. 

◦ Otherwise, a tree consists of a distinguished node r, called root, and 
zero or more nonempty sub-trees T1, T2, … , Tk, each of whose roots 

are connected by a directed edge from r.

� The root of each sub-tree is said to be child of r, and r is the 
parent of each sub-tree root. 

� If a tree is a collection of N nodes, then it has N-1 edges. 

root

T1
T2 Tk

...
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Preliminaries

◦ Node A has 6 children: B, C, D, E, F, G. 

◦ B, C, H, I, P, Q, K, L, M, N are leaves in the tree above.

◦ K, L, M are siblings since F is parent of all of them. 

A

B C D E F G

H I J K L M N

P Q
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Preliminaries (continued)
� A path from node n1 to nk is defined as a sequence of nodes 

n1, n2, …, nk such that ni is parent of ni+1 (1 ≤i < k)
◦ The length of a path is the number of edges on 

that path. 
◦ There is a path of length zero from every node to 

itself. 
◦ There is exactly one path from the root to each 

node. 
� The depth of node ni is the length of the path from root to 

node ni

� The height of node ni is the length of longest path from node 
ni to a leaf.

� If there is a path from n1 to n2, then n1 is ancestor of n2, and n2
is descendent of n1. 
◦ If n1 ≠ n2 then n1 is proper ancestor of n2, and n2 is 

proper descendent of n1. 
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� The subtree of T rooted at a node v is the tree 

consisting of all the descendents of v in T (including v 

itself). 

� An edge of tree T is a pair of nodes (u, v) such that u is 

the parent of v, or vice versa. 
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Figure 1
A tree, with height and depth information
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� Recursive definition
1. An empty tree is a binary tree

2. A node with two child subtrees is a binary tree

3. Only what you get from 1 by a finite number 
of applications of 2 is a binary tree.

Is this a binary tree?

56

26 200

18 28 190 213

12 24 27

binary tree
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What is a binary tree?
� Property 1: each node can have up to two 

successor nodes.
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� Property 2: a unique path exists from the 
root to every other node

What is a binary tree? (cont.)

Not a valid binary tree!
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Some terminology
� The successor nodes of a node are called its children

� The predecessor node of a node is called its parent

� The "beginning" node is called the root (has no parent)

� A node without children is called a leaf

10



Some terminology (cont’d)
� Nodes are organize in levels (indexed from 0).

� Level (or depth) of a node: number of edges in the 

path from the root to that node.

� Height of a tree h: #levels = L

� Full tree: every node has exactly 

two children and all the 

leaves are on the same level.
not full!
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Types of Binary Trees
� Degenerate – only one child

� Complete – always two children

� Balanced – “mostly” two children 

Degenerate 
binary tree

Balanced 
binary tree

Complete  
binary tree
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Binary Trees Properties

� Degenerate
◦ Height = O(n) for n 

nodes

◦ Similar to linked list

� Balanced
◦ Height = O( log(n) ) 

for n nodes

◦ Useful for searches

Degenerate 
binary tree

Balanced 
binary tree 13

Traversals of Binary Trees
Preorder Traversal of a Binary Tree

◦ visit the root

◦ traverse in preorder the children (subtrees)

Algorithm preorder(T,v):

Perform the “visit” action for node v

for each child w of v in T do

Preorder(T,w)

� Preorder traversal can be applied to any binary tree as following:

Algorithm binaryPreorder(T,v):

if v has a left child u  in T then   

binaryPreorder(T,u)       { recursively traverse left subtree}

if v has a right child w in T then

binaryPreorder(T,w)
14



Traversals of Binary Trees

Postorder Traversal of a BinaryTree

◦ traverse in postorder the children (subtrees)

◦ visit the root

Algorithm binaryPostorder(T,v):

if v has a left child u in T then

binaryPostorder(T,u)

if v has a right child w in T then

binaryPostorder(T,w)

perform the “visit” action for node v
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Traversals of Binary Trees
InorderTraversal of a BinaryTree

� An additional traversal method for a binary tree is the inorder traversal.

� We visit a node between the recursive traversals of its left and right subtrees.

� The inorder traversal of the subtree rooted at a node v in a binary tree T is given:

Algorithm inorder(T,v):

if v has a left child u in T then

inorder(T,u)

perform the “visit” action for node v

if v has a right child w in T then

inorder(T,w)

� The inorder traversal of a binary tree T is visiting the nodes of T “from left to

right”

� Indeed, for every node v, the inorder traversal visits v after all the nodes in the

left subtree of v and before all the nodes in the right subtree of v. 16



The nodes are visited in the order A, B, D, H, I, E, J, K, C, F, L, M, G, N, O.

The nodes are visited in the order H, I, D, J, K, E, B, L, M, F, N, O, G, C, A.

Figure  The postorder traversal of a binary tree

Figure  The preorder traversal of a binary tree
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The nodes are visited in the order H, D, I, B, J, E, K, A, L, F, M, C, N, G, O.

Figure 11.18 The inorder traversal of a binary tree
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Example Preorder Traversal
� A traversal visits the nodes of a tree in a systematic manner

� In a preorder traversal, a node is visited before its descendants 

� Application: print a structured document

Become Rich

1. Motivations 3. Success Stories2. Methods

2.1 Get a 
CS PhD

2.2 Start a 
Web Site 

1.1 Enjoy 
Life

1.2 Help 
Poor Friends

2.3 Acquired 
by Google

1

2

3

5

4 6 7 8
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Algorithm preOrder(v)

visit(v)

for each child w of v

preorder (w)
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Example Postorder Traversal

� In a postorder traversal, a node is visited 

after its descendants

� Application: compute space used by files in a 

directory and its subdirectories

Algorithm postOrder(v)

for each child w of v

postOrder (w)

visit(v)

cs16/

homeworks/
todo.txt

1K
programs/

DDR.java
10K

Stocks.java
25K

h1c.doc
3K

h1nc.doc
2K

Robot.java
20K

9

3

1

7

2 4 5 6

8
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Example Traversing Trees

� Preorder: Root, then Children

◦ + A * B / C D

� Postorder: Children, then Root

◦ A B C D / * +

� Inorder: Left child, Root, Right 
child

◦ A + B * C / D

+

A *

B /

C D
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void print_preorder ( TreeNode T)
{ 
TreeNode P;
if  ( T == NULL ) return;                             
else  {  print_element(T.Element);

P = T.FirstChild;
while (P != NULL) { 

print_preorder ( P );
P = P.NextSibling; }

}
}

Example Code for Recursive 
Preorder

What is the running time for a tree with N nodes?

22



Tree searches

� A tree search starts at the 

root and explores nodes 

from there, looking for a 

goal node (a node that 

satisfies certain conditions, 

depending on the problem)

� For some problems, any goal 

node is acceptable (N or J); 

for other problems, you 

want a minimum-depth goal 

node, that is, a goal node 

nearest the root (only J)
L M N O P

G

Q

H JI K

FED

B C

A

Goal nodes
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Depth-first searching

� A depth-first search (DFS) 

explores a path all the way to 

a leaf before backtracking and 

exploring another path

� For example, after searching 

A, then B, then D, the search 

backtracks and tries another 

path from B

� Node are explored in the 

order A B D E H L M N I 

O P C F G J K Q

� N will be found before J

L M N O P

G

Q

H JI K

FED

B C

A
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How to do depth-first searching

� Put the root node on a stack;
while (stack is not empty) {

remove a node from the stack;
if (node is a goal node) return success;
put all children of node onto the stack;

}
return failure;

� At each step, the stack contains some nodes 
from each of a number of levels
◦ The size of stack that is required depends on the 

branching factor b
◦ While searching level n, the stack contains 

approximately b*n nodes

� When this method succeeds, it doesn’t give the 
path

25

Recursive depth-first search

� search(node):
if node is a goal,  return success;
for each child c of node {

if search(c) is successful,  return success;
}
return failure;

� The (implicit) stack contains only the 
nodes on a path from the root to a goal
◦ The stack only needs to be large enough to 

hold the deepest search path
◦ When a solution is found, the path is on the 

(implicit) stack, and can be extracted as the 
recursion “unwinds”

print node and

print c and
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Breadth-first searching

� A breadth-first search (BFS) 

explores nodes nearest the 

root before exploring nodes 

further away

� For example, after searching 

A, then B, then C, the search 

proceeds with D, E, F, G

� Node are explored in the 

order A B C D E F G H I J K 

L M N O P Q

� J will be found before N
L M N O P

G

Q

H JI K

FED

B C

A
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How to do breadth-first searching

� Put the root node on a queue;
while (queue is not empty) {

remove a node from the queue;
if (node is a goal node) return success;
put all children of node onto the queue;

}
return failure;

� Just before starting to explore level n, the queue holds 
all the nodes at level n-1

� In a typical tree, the number of nodes at each level 
increases exponentially with the depth

� Memory requirements may be infeasible
� When this method succeeds, it doesn’t give the path
� There is no “recursive” breadth-first search equivalent 

to recursive depth-first search
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Comparison of algorithms

� Depth-first searching:
◦ Put the root node on a stack;

while (stack is not empty) {
remove a node from the stack;
if (node is a goal node) return success;
put all children of node onto the stack;

}
return failure;

� Breadth-first searching:
◦ Put the root node on a queue;

while (queue is not empty) {
remove a node from the queue;
if (node is a goal node) return success;
put all children of node onto the queue;

}
return failure;
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Depth- vs. breadth-first searching

� When a breadth-first search succeeds, it finds a 
minimum-depth (nearest the root) goal node

� When a depth-first search succeeds, the found 
goal node is not necessarily minimum depth

� For a large tree, breadth-first search memory 
requirements may be excessive

� For a large tree, a depth-first search may take an 
excessively long time to find even a very nearby 
goal node

� How can we combine the advantages (and avoid 
the disadvantages) of these two search 
techniques?
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Depth-limited searching

� Depth-first searches may be performed with a

depth limit:

� boolean limitedDFS(Node node, int limit, int depth) {

if (depth > limit) return failure;

if (node is a goal node) return success;

for each child of node {

if (limitedDFS(child, limit, depth + 1))

return success;

}

return failure;

}

� Since this method is basically DFS, if it succeeds then the path to a goal node is in the stack

31

Depth-first iterative deepening

� limit = 0;

found = false;

while (not found) {

found = limitedDFS(root, limit, 0);

limit = limit + 1;

}

� This searches to depth 0 (root only), then if that 
fails it searches to depth 1, then depth 2, etc.

� If a goal node is found, it is a nearest node and the 
path to it is on the stack

◦ Required stack size is limit of search depth (plus 1) 
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Time requirements for depth-first 
iterative deepening on binary tree

Nodes at 
each level

1

2

4

8

16

32

64

128

Nodes searched 
by DFS

1

+2     =   3

+4     =   7

+8     = 15

+16   =  31

+32   =  63

+64   = 127

+128 = 255

Nodes searched 
by iterative DFS

1

+3     =     4

+7     =   11

+15   =   26

+31   =   57

+63   = 120

+127 = 247

+255 = 502
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Time requirements on tree with 
branching factor 4

Nodes at 
each level

1

4

16

64

256

1024

4096

16384

Nodes searched 
by DFS

1

+4         =     5

+16       =    21

+64       =    85

+256     =   341

+1024   =  1365

+4096   =  5461

+16384 = 21845  

Nodes searched 
by iterative DFS

1

+5        =       6

+21      =      27

+85      =    112

+341    =    453

+1365  =   1818

+5461  =   7279

+21845 = 29124

34



Iterative deepening: summary

� When searching a binary tree to depth 7:
◦ DFS requires searching 255 nodes
◦ Iterative deepening requires searching 502 nodes
◦ Iterative deepening takes only about twice as long

� When searching a tree with branching factor of 
4 (each node may have four children):
◦ DFS requires searching 21845 nodes
◦ Iterative deepening requires searching 29124 nodes 
◦ Iterative deepening takes about 4/3 = 1.33 times as 

long
� The higher the branching factor, the lower the 

relative cost of iterative deepening depth first 
search

35

Other search techniques
� Breadth-first search (BFS) and depth-first search (DFS) are the 

foundation for all other search techniques

� We might have a weighted tree, in which the edges connecting a 

node to its children have differing “weights”

◦ We might therefore look for a “least cost” goal

� The searches we have been doing are blind searches, in which we 

have no prior information to help guide the search

◦ If we have some measure of “how close” we are to a goal node, we can 

employ much more sophisticated search techniques

◦ We will not cover these more sophisticated techniques

� Searching a graph is very similar to searching a tree, except that 

we have to be careful not to get caught in a cycle

◦ We will cover some graph searching techniques
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How to search a binary tree?

(1) Start at the root
(2) Search the tree level 

by level, until you find 
the element you are 
searching for or you reach 
a leaf.

Is this better than searching a linked list?         

No � O(N)
37

Binary Search Trees (BSTs)

� Binary Search  Tree Property:
The value stored at 
a node is greater than 
the value stored at its 
left child and less than 
the value stored at its 
right child
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Binary Search Trees (BSTs)

In a BST, the value 
stored at the root of a 
subtree  is greater
than any value in its 
left subtree and less
than any value in its 
right subtree! 

39

Binary Search Trees (BSTs)

Where is the smallest 
element?

Ans: leftmost element

Where is the largest 
element?

Ans: rightmost
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How to search a binary search tree?

(1) Start at the root

(2) Compare the value of 
the item you are 
searching for with 
the value stored at 
the root

(3) If the values are 
equal, then item 
found; otherwise, if it 
is a leaf node, then 
not found
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How to search a binary search tree?

(4) If it is less than the value 
stored at the root, then 
search the left subtree

(5) If it is greater than the 
value stored at the root, 
then search the right 
subtree

(6) Repeat steps 2-6 for the 
root of the subtree chosen 
in the previous step 4 or 5
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How to search a binary search tree?

Is this better than searching a linked list? 

Yes !!  ---> O(logN)
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Binary Tree Implementation

Class Node {
int data; // Could be int, a class, etc
Node *left, *right; // null if empty 

void insert ( int data ) { … }
void delete ( int data ) { … }
Node *find ( int data ) { … }

…
}
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Iterative Search of Binary Tree
Node *Find( Node *n, int key) { 

while (n != NULL) {
if (n->data == key)  // Found it

return n;
if (n->data > key) // In left subtree

n = n->left;
else // In right subtree

n = n->right;
} 

return null;
}
Node * n = Find( root, 5);
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Recursive Search of Binary Tree

Node *Find( Node *n, int key) {
if (n == NULL) // Not found

return( n );
else if (n->data == key) // Found it

return( n );
else if (n->data > key) // In left subtree

return Find( n->left, key );
else // In right subtree

return Find( n->right, key );
}
Node * n = Find( root, 5);
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Example Binary Searches

5

10

30

2 25 45

5

10

30

2

25

45

10 > 2, left

5 > 2, left

2 = 2, found

5 > 2, left

2 = 2, found
root

Find ( root, 2 )
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Example Binary Searches

5

10

30

2 25 45

5

10

30

2

25

45

10 < 25, right

30 > 25, left

25 = 25, found

5 < 25, right

45 > 25, left

30 > 25, left

10 < 25, right

25 = 25, found

Find (root, 25 )
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