
Data Structures

Instructor Maher Hadiji

maher.hdiji@gmail.com

2015-2016

Computer Science Department

College of Computer at Al-Lith

Chapter 2: Linear Data Structure

1

Outline

1 Classification of Data Structure

2 Linear Data Structures

1 Array

2 Linear List

1.Singly-linked lists

2.Doubly-linked lists

3 Queue / stack

1.Queue

2. stack

2

1 Classification of Data Structure

Data structure

Primitive DS Non-Primitive DS

Float Character PointerFloatInteger Float

3

1 Classification of Data Structure

Non-Primitive DS

Linear List Non-Linear List

Array

Link List Stack

Queue Graph Trees

4

Primitive Data Structure

� There are basic structures and directly
operated upon by the machine
instructions.

� In general, there are different
representation on different computers.

� Integer, Floating-point number, Character
constants, string constants, pointers etc,
fall in this category.

5

Non-Primitive Data Structure

� There are more sophisticated data
structures.

� These are derived from the primitive data
structures.

� The non-primitive data structures
emphasize on structuring of a group of
homogeneous (same type) or
heterogeneous (different type) data items.

6

Non-Primitive Data Structure

� Lists, Stack, Queue, Tree, Graph are
example of non-primitive data structures.

� The design of an efficient data structure
must take operations to be performed on
the data structure.

7

Non-Primitive Data Structure
� The most commonly used operation on data

structure are broadly categorized into
following types:
◦ Create
◦ Selection
◦ Updating
◦ Searching
◦ Sorting
◦ Merging
◦ Destroy or Delete

8

Different between them

� A primitive data structure is generally a
basic structure that is usually built into the
language, such as an integer, a float.

� A non-primitive data structure is built out
of primitive data structures linked together
in meaningful ways, such as a or a linked-
list, binary search tree, AVL Tree, graph
etc.

9

2 Linear Data Structures

� Arrays
◦ A sequence of n items of the same data

type that are stored contiguously in
computer memory and made accessible
by specifying a value of the array’s
index.

� Linked List
◦ A sequence of zero or more nodes each

containing two kinds of information:
some data and one or more links called
pointers to other nodes of the linked
list.

◦ Singly linked list (next pointer)

◦ Doubly linked list (next + previous
pointers)

� Arrays
� fixed length (need preliminary

reservation of memory)

� contiguous memory locations

� direct access

� Insert/delete

� Linked Lists
� dynamic length

� arbitrary memory locations

� access by following links

� Insert/delete

10

2.1 Array

� The Array is the most commonly used Data
Storage Structure.

� It’s built into most Programming languages.

Creating an Array
� An array is a sequential data abstrction, its

name is a reference to an array.

int[] intArray; //defines a reference to an
array

intArray = new int[100]; //creates the array
11

INITIALIZATION
� In Java, an array of integers is automatically

initialized to 0.
� Unless you specify otherwise,
� You can initialize an array to something

beside 0 using this syntax:
int[] intArray ={0,1,2,3,4,5,6,7,8,9};

Accessing Array Elements

� Array elements are accessed using an index number.

temp = intArray[3]; //get 4th element content

intArray[7] = 66; //insert 66 in eighth cell

12

class ArrayApp

{ public static void main(String[] args)

{ long[] arr; // reference to array

arr = new long[100]; // make array

int nElems = 0; // number of items

int j; // loop counter

long searchKey; // key of item to search for

//---

arr[0] = 77; // insert 10 items

arr[1] = 99;

arr[2] = 44;

arr[3] = 55;

arr[4] = 22;

arr[5] = 88;
arr[6] = 11;
arr[7] = 00;
arr[8] = 66;
arr[9] = 33;
nElems = 10;

// now 10 items in array

Example

13

//--

for(j=0; j<nElems; j++) // display items

System.out.print(arr[j] + " ");

System.out.println("");

//--

searchKey = 66; // find item with key 66

for(j=0; j<nElems; j++) // for each element,

if(arr[j] == searchKey) // found item?

break; // yes, exit before end

if(j == nElems) // at the end?

System.out.println("Can't find " + searchKey); // yes

else

System.out.println("Found " + searchKey); // no

14

//---

searchKey = 55; // delete item with key 55

for(j=0; j<nElems; j++) // look for it

if(arr[j] == searchKey)

break;

for(int k=j; k<nElems; k++) // move higher ones down

arr[k] = arr[k+1];

nElems--; // decrement size

//--

for(j=0; j<nElems; j++) // display items

� System.out.print(arr[j] + " ");

� System.out.println("");

� } // end main()

� } // end class ArrayApp

15

Array of n elements

Singly linked list of n elements

Double linked list of n elements

16

17

Anatomy of a linked list

� A linked list consists of:
◦ A sequence of nodes

a b c d

Each node contains a value
and a link (pointer or reference) to some other node

The last node contains a null link

The list may have a header

myList

2.2 Linked Lists

18

More terminology

� A node’s successor is the next node in the
sequence
◦ The last node has no successor

� A node’s predecessor is the previous node in
the sequence
◦ The first node has no predecessor

� A list’s length is the number of elements in it
◦ A list may be empty (contain no elements)

19

Pointers and references

◦ In Java, a reference is more of a “black box,” or
ADT

� Available operations are:

� dereference (“follow”)

� copy

� compare for equality

� There are constraints on what kind of thing is
referenced: for example, a reference to an array of
int can only refer to an array of int

20

Creating references

� The keyword new creates a new object,
but also returns a reference to that object

� For example, Person p = new
Person("John")
◦ new Person("John") creates the object and

returns a reference to it

◦ We can assign this reference to p, or use it in
other ways

21

Creating links in Java

class Cell { int value;
Cell next;

Cell (int v, Cell n) { // constructor
value = v;
next = n;

}

}

Cell temp = new Cell(17, null);

temp = new Cell(23, temp);

temp = new Cell(97, temp);

Cell myList = new Cell(44, temp);

44 97 23 17

myList:

22

2.2.1Singly-linked lists

� Here is a singly-linked list (SLL):

� Each node contains a value and a link to its
successor (the last node has no successor)

� The header points to the first node in the list (or
contains the null link if the list is empty)

a b c d

myList

23

Singly-linked lists in Java

public class SLL {

private SLLNode first;

public SLL() {

this.first = null;

}

// methods...

}

� This class actually describes

the header of a singly-linked list

� However, the entire list is

accessible from this header

� Users can think of the SLL as

being the list

◦ Users shouldn’t have to worry

about the actual implementation

24

SLL nodes in Java

public class SLLNode {

protected Object element;

protected SLLNode succ;

protected SLLNode(Object elem, SLLNode succ) {

this.element = elem;

this.succ = succ;

}

}

25

Creating a simple list

� To create the list ("one", "two", "three"):
� SLL numerals = new SLL();
� numerals.first =

new SLLNode("one",
new SLLNode("two",

new SLLNode("three",
null)));

threetwoone

numerals

26

Traversing a SLL

� The following method traverses a list (and
prints its elements):
public void printFirstToLast() {

for (SLLNode curr = first;
curr != null;
curr = curr.succ) {

System.out.print(curr.element + " ");
}

}

� You would write this as an instance method
of the SLL class

27

Traversing a SLL (animation)

threetwoone

numerals

curr

28

Inserting a node into a SLL

� There are many ways you might want to
insert a new node into a list:
◦ As the new first element

◦ As the new last element

◦ Before a given node (specified by a reference)

◦ After a given node

◦ Before a given value

◦ After a given value

� All are possible, but differ in difficulty

29

Inserting as a new first element

� This is probably the easiest method to
implement

� In class SLL (not SLLNode):
void insertAtFront(SLLNode node) {

node.succ = this.first;

this.first = node;

}

� Notice that this method works correctly
when inserting into a previously empty
list

30

Inserting a node after a given value

void insertAfter(Object obj, SLLNode node) {

for (SLLNode here = this.first;

here != null;

here = here.succ) {

if (here.element.equals(obj)) {

node.succ = here.succ;

here.succ = node;

return;

} // if

} // for

// Couldn't insert--do something reasonable!

}

Inserting after (animation)

threetwoone

numerals

2.5node

Find the node you want to insert after
First, copy the link from the node that's already in the
listThen, change the link in the node that's already in the list

32

Deleting a node from a SLL

� In order to delete a node from a SLL, you
have to change the link in its predecessor

� This is slightly tricky, because you can’t
follow a pointer backwards

� Deleting the first node in a list is a special
case, because the node’s predecessor is
the list header

Deleting an element from a SLL

threetwoone

numerals

threetwoone

numerals

• To delete the first element, change the link in the header

• To delete some other element, change the link in its predecessor

• Deleted nodes will eventually be garbage collected

34

Deleting from a SLL

public void delete(SLLNode del) {

SLLNode succ = del.succ;

// If del is first node, change link in header

if (del == first) first = succ;

else { // find predecessor and change its link

SLLNode pred = first;

while (pred.succ != del) pred = pred.succ;

pred.succ = succ;

}

}

35

2.2.2Doubly-linked lists

� Here is a doubly-linked list (DLL):

� Each node contains a value, a link to its successor (if any),

and a link to its predecessor (if any)

� The header points to the first node in the list and to the

last node in the list (or contains null links if the list is

empty)

myDLL

a b c

36

DLLs compared to SLLs

� Advantages:

◦ Can be traversed in either

direction (may be essential

for some programs)

◦ Some operations, such as

deletion and inserting

before a node, become

easier

� Disadvantages:

◦ Requires more space

◦ List manipulations are

slower (because more links

must be changed)

◦ Greater chance of having

bugs (because more links

must be manipulated)

37

Constructing SLLs and DLLs

public class SLL {

private SLLNode

first;

public SLL() {

this.first = null;

}

// methods...

}

public class DLL {

private DLLNode

first;

private DLLNode

last;

public DLL() {

this.first = null;

this.last = null;

}

// methods...

}

38

DLL nodes in Java

public class DLLNode {

protected Object element;
protected DLLNode pred, succ;

protected DLLNode(Object elem,
DLLNode pred,
DLLNode succ) {

this.element = elem;
this.pred = pred;
this.succ = succ;

}
}

39

Deleting a node from a DLL

� Node deletion from a DLL involves changing two links

� Deletion of the first node or the last node is a special case

� Garbage collection will take care of deleted nodes

myDLL

a b c

40

Other operations on linked lists

� Most “algorithms” on linked lists—such as
insertion, deletion, and searching—are
pretty obvious; you just need to be
careful

� Sorting a linked list is just messy, since
you can’t directly access the nth

element—you have to count your way
through a lot of other elements

2.3 Stacks, Queues (1)

� Stacks

◦ A stack of plates

� insertion/deletion can be done only at the top.

� LIFO/FILO

◦ Two operations (push and pop)

� Queues

◦ A queue of customers waiting for services

� Insertion/enqueue from the rear and
deletion/dequeue from the front.

� FIFO

◦ Two operations (enqueue and dequeue)

Application: recursive
function to save parameters

41

2.3.Stacks, Queues

� Priority queues (implemented using heaps)

� A data structure for maintaining a set of elements,
each associated with a key/priority, with the
following operations

� Finding the element with the highest priority

� Deleting the element with the highest priority

� Inserting a new element

� Scheduling jobs on a shared computer.

42

2.3.1Queues
� A queue is a list that adds items only to the rear of the

list and removes them only from the front

� It is a FIFO data structure: First-In, First-Out

� Analogy: a line of people at a bank teller’s window

43

2.3.1Queues

� Classic operations for a queue

◦ enqueue - add an item to the rear of the queue

◦ dequeue (or serve) - remove an item from the front
of the queue

◦ empty - returns true if the queue is empty

� Queues often are helpful in simulations or any
situation in which items get “backed up” while
awaiting processing

44

2.3.1Queues

� A queue can be represented by a singly-
linked list; it is most efficient if the
references point from the front toward the
rear of the queue

� A queue can be represented by an array,
using the remainder operator (%) to “wrap
around” when the end of the array is
reached and space is available at the front
of the array

45

2.3.2Stacks
� A stackADT is also linear, like a list or a

queue

� Items are added and removed from only
one end of a stack

� It is therefore LIFO: Last-In, First-Out

� Analogies: a stack of plates or a stack of
books

46

2.3.2Stacks
� Stacks often are drawn vertically:

47

2.3.2 Stacks
� Clasic stack operations:

◦ push - add an item to the top of the stack

◦ pop - remove an item from the top of the stack

◦ peek (or top) - retrieves the top item without removing it

◦ empty - returns true if the stack is empty

� A stack can be represented by a singly-linked list, with the first

node in the list being to top element on the stack

� A stack can also be represented by an array, with the bottom of

the stack at index 0

48

2.3.2Stacks
� The java.util package contains a Stack

class

� The Stack operations operate on Object
references

� Suppose a message has been encoded by
reversing the letters of each word

� See Decode.java

49

//*** *******************
// Decode.java Author: Lewis/Loftus
//
// Demonstrates the use of the Stack class.
//*** *******************

import java.util.*;

public class Decode
{

//--- ----------------
// Decodes a message by reversing each word in a string.
//--- ----------------
public static void main (String[] args)
{

Scanner scan = new Scanner (System.in);

Stack word = new Stack();

String message;
int index = 0;

System.out.println ("Enter the coded message:");
message = scan.nextLine();
System.out.println ("The decoded message is:");

continue

50

continue

while (index < message.length())
{

// Push word onto stack
while (index < message.length() && message.charAt(index) != '

')
{

word.push (new Character(message.charAt(index)));
index++;

}

// Print word in reverse
while (!word.empty())

System.out.print (((Character)word.pop()).charValue());
System.out.print (" ");
index++;

}

System.out.println();
}

}

51

continue

while (index < message.length())
{

// Push word onto stack
while (index < message.length() && message.charAt(index) != ' ')
{

word.push (new Character(message.charAt(index)));
index++;

}

// Print word in reverse
while (!word.empty())

System.out.print (((Character)word.pop()).charValue());
System.out.print (" ");
index++;

}

System.out.println();
}

}

Sample Run
Enter the coded message:
artxE eseehc esaelp
The decoded message is:
Extra cheese please

52

