
Data Structures

Instructor Maher Hadiji

hdiji.maher@gmail.com

2015-2016

Computer Science Department

College of Computer at Al-Lith

Chapter 1: Basics of algorithm analysis

Outline

1.1 Introduction to Algorithms

1.2 Algorithm Design Basics

1.3 Time Complexity of an Algorithm

1.4 Analysis using Asymptotic Notation

1.5 Basic Efficiency Classes

1. 1 Introduction to Algorithms

AlgorithmInput Output

An algorithm is a step-by-step procedure for
solving a problem in a finite amount of time.

1. 1 Introduction to Algorithms

� Algorithms are all around us in everyday
life.

� In the recipe of a cook book.
� In assembling a toy.
� In setting the table.
� In preparing a cup of tea.
� In calling your friend on the phone.
� …. There are countless examples!

1. 2 Algorithm Design Basics

� Guidelines for Algorithm Designing and
Analysis:

1. Understand the Problem (requirement analysis)

2. Select Data structure

3. Write Pseudo Code

4. Analyze Performance

5. Implement using suitable programming language

6. Test to resolve syntax and logic errors

1. 2 Algorithm Design Basics

� Guidelines for Algorithm Designing and
Analysis:

1. Understand the Problem (requirement
analysis)

� Gather data
� Ask users
� Carefully review any written requirements

1. 2. Algorithm Design Basics

� Guidelines for Algorithm Designing and
Analysis:

2. Select Data structure:
To verify the appropriateness of the selected
data structure:

� Judge how well your data structure responds to
user requirements (updates, questions)

� Modify design as necessary

1. 2. Algorithm Design Basics

� Guidelines for Algorithm Designing and
Analysis:

3. Write Pseudo Code
� Use pseudo code or flow chart
� level of details of the pseudo code may vary

1. 2 Algorithm Design Basics

� Guidelines for Algorithm Designing and
Analysis:

4. Analyze Performance
� Determine the feasibility of solution w.r.t.

memory requirements, performance
constraints … etc.

� Manually review and validate pseudo code
� Analyze the complexity of the algorithm

using the big O notation to determine the
complexity w.r.t. to time and storage.

� Other criteria include: Clarity, Maintainability,
Portability

1. 2. Algorithm Design Basics

� Guidelines for Algorithm Designing and
Analysis:

5. Implement using suitable programming
language

1. 2 Algorithm Design Basics

� Guidelines for Algorithm Designing and
Analysis:

6. Test to resolve syntax and logic errors.
Testing is divided into 2 main parts:

� Trying to break the function of the program
by entering unexpected data.

� Debugging: It is concerned with finding out
what is what caused the program to function
in incorrectly.

1. 3 Time Complexity of an
Algorithm

� Time complexity is a main issue in evaluating
an algorithm.

� It reflects how the algorithm responds to the
increase in data size (n) it handles, by
measuring the corresponding increase in
number of instructions to be performed.

� Time complexity is meant to classify
algorithms into categories.

1. 3. Time Complexity of an
Algorithm

� To compare solutions, several points can be
considered
◦ Accuracy programs

◦ Simplicity programs

◦ Convergence and stability of programs

◦ Program efficiency (it is desirable that our solutions
are not slow, do not take considerable memory space)

� The efficiency of algorithms is our concern in
this chapter.

1. 3. Time Complexity of an
Algorithm

1. 3. Time Complexity of an
Algorithm

1. 3. Time Complexity of an
Algorithm

1. 3. Time Complexity of an
Algorithm

1. 3. Time Complexity of an
Algorithm

1.4 The Execution Time of Algorithms 1.4 The Execution Time of Algorithms

A Simple Example

� Linear Search

1.5 A Simple Example
In the simplest terms, for a problem where the input size is n:

� Best case = fastest time to complete, with optimal inputs chosen.

For example, the best case for a sorting algorithm would be data

that's already sorted.

� Worst case = slowest time to complete, with pessimal inputs

chosen. For example, the worst case for a sorting algorithm might be

data that's sorted in reverse order (but it depends on the particular

algorithm).

� Average case = arithmetic mean. Run the algorithm many times,

using many different inputs of size n that come from some

distribution that generates these inputs (in the simplest case, all the

possible inputs are equally likely), compute the total running time (by

adding the individual times), and divide by the number of trials.

Simple Complexity Analysis: Loops

� We start by considering how to count operations
in for -loops.
◦ We use integer division throughout.

� First of all, we should know the number of
iterations of the loop; say it is x.
◦ Then the loop condition is executed x + 1 times.

◦ Each of the statements in the loop body is executed x
times.

◦ The loop-index update statement is executed x times.

Simple Complexity Analysis: Loops (with <)

� In the following for-loop:

The number of iterations is: (n – k) / m

� The initialization statement, i = k , is executed one time.

� The condition, i < n , is executed (n – k) / m + 1 times.

� The update statement, i = i + m , is executed (n – k) / m times.

� Each of statement1 and statement2 is executed (n – k) / m times.

for (int i = k; i < n; i = i + m){
statement1;
statement2;

}

Simple Complexity Analysis : Loops (with <=)

� In the following for-loop:

� The number of iterations is: (n – k) / m + 1

� The initialization statement, i = k , is executed one time.

� The condition, i <= n , is executed (n – k) / m + 2 times.

� The update statement, i = i + m , is executed (n – k) / m + 1 times.

� Each of statement1 and statement2 is executed (n – k) / m + 1
times.

for (int i = k; i <= n; i = i + m){
statement1;
statement2;

}

Simple Complexity Analysis: Loop Example

� Find the exact number of basic operations in the following program
fragment:

� There are 2 assignments outside the loop => 2 operations.
� The for loop actually comprises
� an assignment (i = 0) => 1 operation
� a test (i < n) => n + 1 operations
� an increment (i++) => 2 n operations
� the loop body that has three assignments, two multiplications, and an

addition => 6 n operations
Thus the total number of basic operations is 6 * n + 2 * n + (n + 1) + 3

= 9n + 4

double x, y;
x = 2.5 ; y = 3.0;
for(int i = 0; i < n; i++){

a[i] = x * y;
x = 2.5 * x;
y = y + a[i];

}

Simple Complexity Analysis: Examples
� Suppose n is a multiple of 2. Determine the number of basic operations

performed by of the method myMethod():

� Solution: The number of iterations of the loop:
for(int i = 1; i < n ; i = i * 2)

sum = sum + i + helper(i);
is log 2n (A Proof will be given later)
Hence the number of basic operations is:
1 + 1 + (1 + log2 n) + log2 n[2 + 4 + 1 + 1 + (n + 1) + n[2 + 2] + 1] + 1
= 3 + log2 n + log2 n[10 + 5n] + 1
= 5 n log2 n + 11 log2 n + 4

static int myMethod(int n){
int sum = 0;
for(int i = 1; i < n; i = i * 2)

sum = sum + i + helper(i);
return sum;

}

static int helper(int n){
int sum = 0;
for(int i = 1; i <= n; i++)

sum = sum + i;
return sum;

}

Simple Complexity Analysis:
Loops With Logarithmic Iterations

The Growth of Functions The Growth of Functions

