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INTRODUCTION  
 

5-Fluorouracil (5-FU) is a drug that inhibits thymidylate 

synthase, which disrupts the intracellular deoxynucleo-

tide pools necessary for DNA replication (Diasio & Har-

ris, 1989; Longley et al., 2003). 5-FU is used in treating 

several cancers, including skin, liver, stomach, colorec-

tal, and cancers of the genitourinary system (Longley et 

al., 2003). Unfortunately, its clinical application is con-

strained due to the accompanying adverse effects of 5-

FU, including nephrotoxicity, hepatotoxicity, and cardio-

toxicity (Papanastasopoulos & Stebbing, 2014). Taken 

into consideration, that oxidative injury, inflammation, 

and apoptosis play a key role in chemotherapy-evoked 

nephrotoxicity. Several studies have focused on utilizing 

antioxidative and antiapoptotic agents to lessen or com-

pletely eradicate the nephrotoxicity associated with 

chemotherapy (Ali, Hassanein, et al., 2021; Hassanein et 

al., 2021; Rashid et al., 2014).Interestingly, the nuclear 

factor erythroid 2-related factor2 (Nrf-2)-Kelch ECH as-

sociating protein 1 (Keap-1) signal is activated as a result 
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of free radicals disrupting the oxidant-antioxidant bal-

ance (Bellezza et al., 2018).  

 

This pathway is crucial for protecting against ROS-in-

duced stress insults and has a vital role in renal protection 

(Ali, Sayed, et al., 2021; Hassanein et al., 2019; Kamel et 

al., 2022). In addition, when there is an increase in free  

radicals, Nrf-2 separates from Keap-1 and moves into the 

nucleus binds to the ARE, and starts the transcription of  

detoxifying genes like heme oxygenase-1 (HO-1) (Lu et 

al., 2016). An excess of ROS can activate several signals,  

such as NF-κB (Zhang et al., 2016), which evokes cyto-

kines release, including IL-1β, IL-6, and TNF-α. Accord-

ing to earlier research, some natural substances can safe-

guard the liver and kidney by suppressing the NF-κB and 

upregulating the Nrf2 signal (Caglayan et al., 2018; Has-

sanein et al., 2020). 

 

Pyroptosis is a form of pro-inflammatory programmed 

cell death triggered by a member of the caspase family 

involved in inflammation (Galluzzi et al., 2018). Most 
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myeloid-derived phagocytes experience pyroptosis 

(Vande Walle & Lamkanfi, 2016). With the growth of 

pyroptosis research in recent years, academics have com-

mitted attention to studying pyroptosis in kidney disor-

ders. Pyroptosis likely contributes to kidney disorders. 

Additionally, some researchers have produced drugs that  

target kidney-related disorders from the perspective of 

pyroptosis, which might serve as a suggestion for diag-

nosis, focused therapy, and prognosis of renal disorders 

(Zhang et al., 2021). 

 

Vinpocetine (VNP) is a derivative of vincamine alkaloid, 

an ethyl ester of apovincamine used to treat cerebrovas-

cular illnesses (Bagoly et al., 2007). Through an increase 

in cerebral blood flow and oxygen consumption, VNP en-

hances brain metabolism and peripheral circulation (Ab-

delzaher et al., 2021; Alkuraishy et al., 2014; Khalil et al., 

2022). VNPs possess anti-inflammatory and antioxidant 

properties in different models (Tashkandi et al., 2023; 

Zhang & Yang, 2014). Consequently, this investigation 

aims to explore the antioxidant, anti-inflammatory, and 

anti-pyroptotic activities of VNP in 5-FU-induced renal 

intoxication. 

 

 

MATERIALS AND METHODS 
 
Experimental animals  

 

Adult male Wistar rats were acclimatised in the animal 

facility for two weeks before starting the experiments. 

The animal home was maintained at a humidity level of 

50% and a temperature of 25 degrees Celsius. There was 

a 12-hour cycle of light and dark. There was plenty of 

normal food and drink. This study's protocol was 

approved by the Umm Al-Qura University Ethical 

Committee – under Approval No. (HAPO-02-K-012-

2023-12-1919). 

 

Experimental design 
 

In this experiment, 40 adult male Wistar rats were 

randomised into five groups of eight rats each. They were 

utilised to administer one of the following daily regimens 

throughout the study’s first ten days:  

-Group I: Administered the vehicle (control).  

-Group II:  Administered VNP (20 mg/kg/day) (Sharma 

et al., 2022) by gavage.  

-Group III: Injected by 5-FU (30 mg/kg/day) (Lokman et 

al., 2022) for 5 consecutive days and started on the 5th 

day of the experiment.  

-Group IV (5-FU + VNP 10mg): Injected by 5-FU as 

previously indicated plus VNP (10 mg/kg/day) by 

gavage.  

-Group V (5-FU + VNP 20mg): Injected by 5-FU as 

previously indicated plus VNP (20 mg/kg/day) by 

gavage.  

 

Samples and tissue preparation 

 

The drug administration, the rats were sacrificed at the 

end of the study under ketamine (100 mg/kg i.p.) 

anaesthesia. Thereafter, one of the two kidneys was 

homogenised in PBS to yield a 10% w/v homogenate for 

the biochemical tests. The other one was processed for 

histological and immunohistochemical examinations. 

 

Kidney function biomarkers 

 

Creatinine, urea, and albumin levels in serum were 

measured using commercial vendor kits (Spectrum 

Company, Egypt) to look for nephrotoxicity markers. 

The renal content of the NGAL was measured using 

ELISA kits (Elabscience Company, USA) according to 

the manufacturer's instructions. The developed colour for 

the assay was read at 450 nm. 

 

Assessment of renal cytokines 

 

Following the manufacturer's instructions, ELISA kits 

were employed to assess the renal IL-1β, TNF-α, and IL-

6 levels. 

 

Measurement of renal oxidative injury parameters 

 

The levels of GSH, MDA, and NO in the kidneys were 

measured using the techniques outlined by Mihara and 

Uchiyama (Mihara & Uchiyama, 1978), Ellman (Ellman, 

1959), and Montgomery and Dymock (Montgomery & 

Dymock, 1961), respectively. SOD, GST, and MPO renal 

enzymatic activities were performed following the 

procedures previously reported (Keen et al., 1976; 

Krawisz et al., 1984; Marklund, 1985). 

 

Histopathological assessments 

 

A standard histology protocol was used to fix the kidney 

specimen in 10% buffered formalin and embed it in 

paraffin. H&E was used to stain five-micron slices. After 

that, histopathological examination of kidney tissue 

lesions was carried out under a light microscope (Inoue 

et al., 2009). 

 

Immunohistochemical analysis 

 

Paraffin-embedded blocks that were 4-μm thick were 

used. Blocking was carried out for two hours using 5% 

BSA in TBS. The sections were then incubated with 

primary antibodies for TLR4 and NF-κB in TBS at 4°C. 

After applying a secondary antibody treatment, the 

sections were washed in TBS. Before incubating in a 

solution containing DAB and H2O2, the slides were also 

washed with TBS. Light microscopy was used to 

examine the sections (Ramos-Vara, 2005). 

 

qRT-PCR analysis 

 

qRT-PCR was used to evaluate Keap-1, Nrf2, HO-1, and 

GAPDH mRNA levels. Thermo Fisher Scientific’s 

TRIzol reagent was used to isolate total RNA from the 

kidney tissues (USA). A commercial kit from Vivantis 

Technologies (Malaysia) was used to create the cDNA, 

and the SYBR Green master mix was used for the 

amplification. Normalisation with the housekeeping gene 
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GAPDH was applied. For data calculations of the 

expression, the 2−ΔΔCt method was used (Livak & 

Schmittgen, 2001). The primers used for qRT-PCR are 

listed in Table 1. 

 

Western blotting 

 

Bradford method was used to determine protein 

concentration (Bradford, 1976). SDS-PAGE was used to 

separate the proteins, and they were then transferred to 

PVDF membranes and blocked with TBST. Antibodies 

against NLRP3, ASC, cleaved caspase-1, and β-actin 

were used. The membranes were rinsed three times with 

TBST before incubation with an ALP-conjugated 

secondary antibody. The BCIP/NPT kit was used to 

identify the protein expression after multiple washes. 

Image J® was used for the quantification of the protein 

bands. The β-actin was used for normalisation. 

 
Table 1:  qRT-PCR Primers Used for Gene Expression 

 
 

Statistical analysis 

 

The data were analysed using GraphPad Prism 7.0 and 

presented as mean ± SEM. A one-way ANOVA was used 

to evaluate group differences, with P ≤ 0.05. 

 

 

RESULTS 
 

VNP protects against 5-FU-induced renal injury 

 

In 5-FU-induced kidney injury, creatine (Figure 1A), 

urea (Figure 1B), and NGAL (Figure 1C) levels were re-

markably elevated by 2.62, 2.8, and 9.32-fold, respec-

tively, while the albumin (Figure 1D) level significantly 

decreased compared to control groups. Intriguingly, VNP 

in both doses significantly decreased creatine, urea, and 

NGAL and markedly restored albumin levels relative to 

the 5-FU-control group dose-dependently (Figure 1). 

 

VNP mitigates 5-FU-induced histological alteration in 

the kidneys 

 

Kidney sections from the normal control group and VNP 

(20mg) displayed the normal architecture of renal corpus-

cle with intact glomerulus and bowman’s capsule, proxi-

mal convoluted tubules, as well as distal convoluted 

tubules, as well as distal convoluted tubules. On the other 

side, kidney sections from rats injected with 5-FU high-

lighted severe degenerative changes along the renal 

cortex area. The renal corpuscle presented with a deteri-

orated bowman’s capsule and a vacuolated glomerulus. 

Renal tubules suffered from seri ous degeneration, loss of 

their normal structure, necrobiotic changes, and epithelial 

desquamation. 

 
Figure 1: VNP protects against 5-FU-induced renal impair-

ment. VNP significantly decreased creatine (A), urea (B), and 

NGAL (C) and markedly restored albumin (D) dose-de-

pendently. The significant differences from the normal, 5-FU, 

and 5-FU+VNP (10mg) groups are shown in letters a, b, and c, 

respectively. 

Also, interstitial oedema, haemorrhage, and infiltrated in-

flammatory cells were noticed. In contrast, kidney sec-

tions from rats treated with a small dose of VNP empha-

sised moderate progress along tissue structure. Renal cor-

puscle existed in normal assembly. Some renal tubules 

demonstrated obvious necrotic and degenerative changes 

and epithelial desquamation. Interstitial haemorrhage and 

aggregated inflammatory cells were detected in a few 

amounts. A larger dose of VNP underlined great en-

hancement along tissue structure. Renal corpuscle existed 

with intact bowman’s capsule, RBCs inside glomerulus, 

and increased area of glomerular space. Renal tubules are 

marked mostly in normal appearance except for a few 

with degenerated structures and renal cast inside tubules. 

Interstitial haemorrhage was also observed (Figure 2). 
 

VNP mitigates oxidative deteriorations induced 

by 5-FU  

 

5-FU induced lipid peroxidation and decreased the anti-

oxidant status in renal tissues, as evidenced by increasing 

MDA (Figure 3A) content by 2.01-fold and depleting 

GSH (Figure 3B), GST (Figure 3C) and SOD (Figure 3D) 

levels by 50.08%, 53.18%, and 68.57%, respectively. On 

the contrary, VNP reverted the depletion effect of 5-FU 

on the antioxidants GSH, GST, and SOD, and VNP in-

hibited lipid peroxidation, evidenced by lowering MDA 

contents. Significantly, VNP antioxidant effects in a 

dose-dependent manner (Figure 3). Impressively, Keap-

1 (Figure 4A) was dramatically upregulated by 2.58-fold 

in the 5-FU-treated group, while Nrf-2 (Figure 4B) and 

HO-1 (Figure 4C) levels were significantly downregu-

lated by 60.5% and 60.67, respectively. 
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Figure 2: VNP attenuates 5-FU-induced histological alteration 

in the kidneys.  

 

Kidney sections from the normal control group (A & B) 

and VNP (20mg) (C & D) displayed the normal architec-

ture of renal corpuscle with intact glomerulus and bow-

man’s capsule (thick arrows), proximal convoluted tu-

bules (arrowheads) as well as distal convoluted tubules 

(wave arrows). On the other side, kidney sections from 

rats injected with 5-FU highlighted severe degenerative 

changes along the renal cortex area. The renal corpuscle 

presented with a deteriorated bowman’s capsule and vac-

uolated glomerulus (thick arrows). Renal tubules suffered 

from serious degeneration with loss of their normal struc-

ture (circle), necrobiotic changes (cube), and epithelial 

desquamation (arrowhead). Also, interstitial oedema 

(star), haemorrhage (thin arrow), and infiltrated inflam-

matory cells (wave arrow) were noticed. In contrast, kid-

ney sections from rats given small doses of VNP empha-

sised moderate progress along tissue structure. Renal cor-

puscle existed in normal assembly (thick arrow). Some 

renal tubules demonstrated obvious necrotic and degen-

erative changes (circle) and epithelial desquamation (ar-

rowhead). Interstitial haemorrhage (thin arrow) and ag-

gregated inflammatory cells (wave arrow) were detected 

in a few amounts. A larger dose of VNP underlined great 

enhancement along tissue structure. Renal corpuscle 

existed with intact bowman’s capsule, RBCs inside 

glomerulus, and increased area of glomerular space (thick 

arrow). Renal tubules are marked mostly in normal ap-

pearance except a few with degenerated structure (circle) 

and renal cast inside tubules (arrowhead). Interstitial haem-

orrhage was also observed (thin arrow). (H&E, Scale 

Bar=100μm & 50μm). 

 
Figure 3: VNP dampens oxidative deteriorations induced by 5-

FU. VNP inhibited lipid peroxidation, evidenced by lowering 

MDA (A) contents and increased antioxidants GSH (B), GST 

(C), and SOD (D).  The significant differences from the normal, 

5-FU, and 5-FU+VNP (10mg) groups are shown in letters a, b, 

and c, respectively. 

However, VNP significantly downregulated Keap-1 

dose-dependently while upregulating Nrf-2 and HO-1 ex-

pression levels compared to rats given 5-FU alone (Fig-

ure 4).   

 

VNP dampens 5-FU-induced inflammation 

 

Additionally, we investigated the anti-inflammatory ef-

fect of VNP. 5-FU significantly increased MPO and 

NO2, by 2.91 and 2.63-folds, respectively, along with 

higher levels of TNF-α, IL-1β, and IL-6 by 6.67, 7.53, 

and 4.41-folds, respectively. However, co-treatment with 

VNP caused a dose-dependent decrease in the renal levels 

of these biomarkers (Figure 5).  

To explore the anti-inflammatory underlying mechanism 

of VNP, the TLR4 and NF-κB were assessed using im-

munohistochemistry. The TLR4 (Figure 6A) and NF-κB 

(Figure 6B) were highly upregulated in renal tissue in the 

5-FU control group by 3.27 and 3.54-folds, respectively, 

while the administration of VNP resulted in a significant 

and dose-dependent reduction. These data proved the 

anti-inflammatory activity of VNP by regulating 

TLR4/NF-κB signal (Figure 6). 

Interestingly, the co-administration of VNP attenuated 

these effects dose-dependently by downregulating 

NLRP3, ASC, and cleaved caspase-1 (Figure 7). The re-

sults prove VNP's anti-pyroptotic effect in the 5-FU kid-

ney model. 
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VNP attenuates 5-FU-induced pyroptosis 

 

Afterwards, we studied the anti-pyroptotic effect of VNP 

on 5-FU-induced kidney toxicity by measuring caspase-

1, ASC and NLRP3 levels using W.B analysis. In the cur-

rent investigation, the protein expression level of NLRP3, 

ASC, and cleaved caspase-1 was notably upregulated in 

5-FU control rats by 12.07, 2.72, and 12.92-folds, respec-

tively. 

 

 

Figure 4: Effect of VNP on Keap1/Nrf-2/HO-1 signal in kidney 

injury induced by 5-FU. VNP, dose-dependently, significantly 

downregulated Keap-1 (A) while upregulated Nrf-2 (B) and 

HO-1 (C) expression levels. The significant differences from the 

normal, 5-FU, and 5-FU+VNP (10mg) groups are shown in let-

ters a, b, and c, respectively. 

 

 

Figure 5:  VNP mitigates 5-FU-induced inflammation. VNP 

significantly decreased MPO (A) and NO2 (B), along with the 

decline in the levels of TNF-α (C), IL-1β (D), and IL-6 (E). The 

significant differences from the normal, 5-FU, and 5-FU+VNP 

(10mg) groups are shown in letters a, b, and c, respectively. 

 

DISCUSSION 
 

Numerous investigations have shown the key role of 

ROS/RNS, inflammation, and apoptosis in AKI (Al-Ku-

raishy et al., 2019).  VNP reduces oxidative injury, in-

flammation, and renal cell death following AKI (Al-Ku-

raishy et al., 2019; V. Fattori et al., 2017). Hence, the cur-

rent study was conducted to look into the antioxidants, 

 

Figure 6: Effect of VNP on TLR4/NF-κB signal in kidney injury 

induced by 5-FU. VNP decreased TLR4 (A) and NF-κB (B) 

dose-dependently.  The significant differences from the normal, 

5-FU, and 5-FU+VNP (10mg) groups are shown in letters a, b, 

and c, respectively. 

The study explores the anti-inflammatory and anti-pyrop-

totic effects of VNP against 5-FU-induced kidney injury 

and the impact of Nrf2, TLR4/NF-κB, and pyroptosis sig-

nals on these effects. 

 

Figure 7. VNP attenuates 5-FU-induced pyroptosis. VNP 

downregulated NLRP3 (A), ASC (B), and cleaved caspase-1 

(C). The significant differences from the normal, 5-FU, and 5-

FU+VNP (10mg) groups are shown in letters a, b, and c, re-

spectively. 

 

5-Flurouracil is used widely in managing pancreatic, co-

lon, breast, gastrointestinal, head, and neck cancers 

(Longley et al., 2003). However, it has significant ne-

phrotoxicity that limits its usage (Alvarez-Cabellos et al., 

2007; Inoue et al., 2009). The current study showed that 
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5-FU caused significant renal damage, evidenced by high 

urea, creatinine, and NGAL, while the albumin levels 

were decreased. These findings are consistent with sev-

eral earlier studies (El-Sherbiny et al., 2021; Rashid et al., 

2014). NGAL supports renal nephron injury (Paragas et 

al., 2012). Intriguingly, VNP has renoprotective effects, 

which were supported by restoring the level of these bi-

omarkers to near that of the normal control rats. Our data 

are consistent with the VNP’s reported ability to reduce 

acute kidney injury caused by gentamicin (Al-Kuraishy 

et al., 2019). In addition, VNP reduced 5-FU-induced his-

topathological changes and kidney damage induced by 5-

FU, confirming the obtained biochemical findings. 

 

Emerging evidence indicates that oxidative stress, which 

causes excessive free radicals and ROS production, con-

tributes to the 5-FU renal damage pathogenesis (Raghu 

Nadhanan et al., 2012; Rashid et al., 2014). The present 

data demonstrated that 5-FU induced lipid peroxidation 

and related cellular membrane damage in addition to cel-

lular GSH, SOD, and GST antioxidant depletion. This 

outcome is in line with previously reported studies (Abra-

ham et al., 2010; Rashid et al., 2014). Our data also 

demonstrated that VNP has a crucial role in suppressing 

oxidative stress via restoring Nrf2 and HO-1 levels and 

reducing the levels of Keap-1 (Lakshmi & Subramanian, 

2014).  In line with these findings, Song et al. showed that 

VNP could protect against cisplatin nephrotoxicity via 

Nrf2 activation (Arab et al., 2018). Overall, our results 

indicate that the antioxidant effect of VNP against renal 

oxidative damage is mediated via the upregulation of 

Nrf2.   

 

This study revealed an inflammatory response associated 

with 5-FU injection, proved by increased renal MPO, 

NO2, TNF-α, IL-1β, and IL-6 levels, consistent with a 

recent study (Ragab et al., 2014). Evidence suggests that 

the release of cytokines contributes to the inflammatory 

response in various renal diseases (Liu et al., 2012). In-

terestingly, the current study reports the association of 

NF-κB and TLR4 activation in mediating the damaging 

inflammatory effects of 5-FU on rat kidneys. The role of 

NF-κB activation in 5-FU-associated renal impairment 

has been described in earlier investigations (Arab et al., 

2018; Rashid et al., 2013). Interestingly, our study 

showed that VNP markedly decreased MPO and NO2, as 

well as renal cytokines. Similarly, VNP proved its ability 

to inhibit cytokine release in diclofenac-induced kidney 

injury (Victor Fattori et al., 2017). Furthermore, we dis-

covered that VNP significantly inhibited the TLR4/NF-

κB pathway and its downstream cytokines, demonstrat-

ing its multifaceted anti-inflammatory effects. In line 

with this, VNP decreases inflammatory responses by in-

hibiting the TLR4/NF-κB signal in ischemic brain dam-

age (Wu et al., 2017). As a result, VNP anti-inflammatory 

mechanism by regulating TLR4/NF-κB axis and their 

downstream cytokines. 

Then to emphasise the anti-pyroptotic renoprotective ef-

fect of VNP on 5-FU kidney injury. Our study revealed 

that 5-FU increased ASC, NLRP3, and cleaved caspase-

1. Recent studies revealed that the NF-κB and MAPK sig-

nals involved in acute and chronic inflammation may ac-

tivate the NLRP3 inflammasome (Fann et al., 2018). In-

flammasome NLRP3 expression may be decreased by 

suppressing the NF-κB activity (Shao et al., 2016). Our 

findings revealed that VNP reduced ASC, NLRP3, and 

cleaved caspase 1. Similarly, VNP has proven its ability 

to downregulate NLRP3/NF-κB in ischemic stroke (Han 

et al., 2020). Taken together, VNP may have anti-pyrop-

totic activity via the downregulation of NLRP3, ASC, 

and cleaved caspase 1. 

 

 

CONCLUSION  
 

Vinpocetine effectively attenuated 5-FU-induced renal 

intoxication. VNP restored the oxidant-antioxidant bal-

ance of renal tissues mediated by upregulating Nrf2/HO-

1. VNP suppressed the inflammatory response mediated 

by decreasing TLR4 and NF-κB expression. VNP atten-

uates pyroptosis mediated by downregulating NLRP3, 

ASC, and caspase 1. VNP's Renoprotective effects were 

dose-dependent. This data suggested that co-treatment of 

VNP with 5-FU is a suggesting agent for mitigating 5-

FU-induced nephrotoxicity by NF-κB/TLR4, Nrf2/ARE 

and NLRP3/ASC/Caspase-1 signals. 
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