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Estimating WCET using prediction models to compute 
fitness function of a genetic algorithm
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Abstract
Genetic algorithms can be used to generate input data in a real-time system that 
produce the worst-case execution time of a task. While generating the test data, the 
fitness function is normally evaluated using a cycle-accurate simulator of the proces-
sor architecture, which consumes a significant computational effort and time. We 
propose to replace the simulator-based actual execution with a predictive model that 
is trained using the samples acquired on the simulator. The feasibility of this pro-
posal was evaluated using four distinct predictive models, namely artificial neural 
networks, generalized linear regression, gaussian process regression and support 
vector regression. The results obtained on the four benchmarks Bubble sort, Inser-
tion Sort, Gnome sort and Shaker sorts indicate that the proposed use of predic-
tion models can significantly reduce the temporal verification time. The time gain 
achieved is up to 17.7 times and the best accuracy achieved is 98.5%.

Keywords Temporal verification · Real-time systems · Genetic algorithm · 
Prediction models · Worst-case execution time · Test data

1 Introduction

Real-time systems (RTS) are conditioned to satisfy stringent timing constraints 
and their temporal verification is of paramount importance. Nevertheless, RTS do 
exhibit a certain variation of execution times to accomplish a certain task (Abella 
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et al. 2015). In this regard, the main factors influencing the execution times are: (a) 
the underlying hardware complexity (e.g., modern processors incorporating specula-
tive components, shared caches and out-of-order executions), (b) the real-time soft-
ware system architecture (i.e., the structure of application) and (c) the input data. In 
a given system setup with fixed hardware and software, the input test data becomes 
the critical factor for variations in execution time (Kozyrev 2016). Therefore, the 
generation of input test data that can estimate the worst-case execution time (WCET) 
plays a vital role for the temporal verification of real-time systems.

Traditionally, WCET estimation is performed by using static analysis or measure-
ment-based analysis. Static analysis employs some formal methods to analytically 
estimate the WCET and thus suffers from over estimations (Reineke and Wilhelm 
2016). On the other hand, the measurement-based analysis requires an extensive 
testing of the RTS to ensure the worst-case scenario. Therefore, various evolutionary 
techniques, such as genetic algorithms (GAs), are being incorporated in measure-
ment-based analysis (Surendran and Samuel 2016). In GAs, the problem of search-
ing the worst-case input data from a huge input space is tackled as an optimization 
problem. Initial random input data points are evolved to worst-case execution-time 
data, based on certain fitness evaluation criteria (Kudjo et al. 2017).

The GA-evolution process requires several fitness evaluations, which implies the 
repeated executions of the real-time systems software under test (RTS-SUT). The 
execution of an RTS-SUT is an expensive activity in terms of time and resources. 
Moreover, the actual execution is only possible when the target hardware system is 
finalized and available. In the absence of a target hardware, a cycle-accurate simu-
lator is used. Nevertheless, the timing cost is further multiplied when the simula-
tors are used. The time and resource intensive nature of GA-evolution process pro-
vides the motivation for prediction models (Haftka et al. 2016). A prediction model 
replaces the actual execution of an RTS-SUT for fitness evaluation with an instanta-
neous prediction of the fitness value against a given input. As a result, the temporal 
verification time can be reduced drastically by using prediction models.

Various prediction models can be used to assist the GA-evolution process 
(Agresti 2013). In this article, we present a framework in which an appropriate pre-
diction model can be used to predict the execution time of a problem in hand. Selec-
tion of an appropriate model depends on the complexity and type of the application 
problem. Some typical examples of prediction model are: Artificial Neural Network 
(ANN) (Hagan et al. 2014; Hagan and Menhaj 1994), Generalized Linear Regres-
sion Model (GLM) (Fahrmeir and Tutz 2013), Gaussian Process Regression Model 
(GPR) (Rasmussen and Williams 2006) and Support Vector Regression Model 
(SVR) (Vapnik 2000; Smola and Scholkopf 2004). The initial results for ANN as a 
prediction model, in a GA-based test data generation methodology, are presented in 
Shah (2017). However, a detailed study of prediction models, to assist the GA-evo-
lution process for temporal verification of real-time systems, has not been performed 
yet. Moreover, the use of prediction models in GA-based timing analysis is a novel 
idea and thus requires a detailed evaluation of prediction models.

This article performs a detailed study of various prediction models for temporal 
verification of real-time systems by using certain defined performance measures. The 
defined performance measures in this article are: prediction performance, isolated 



timing performance, evolution performance, integrated timing performance and the 
quality of test data. All the aforementioned target prediction models (ANN, GLM, GPR 
and SVR) are required to be trained through a cycle-accurate simulator of the hardware. 
The training of a model requires some adequate input-output data, which are obtained 
by running the simulator with the randomly selected set of input data. Once the predic-
tion model is trained through a simulator, it can be used for the computation of the fit-
ness function during the GA-evolution process. The prediction of the fitness function, 
during the GA-evolution process, eliminates the need for actual execution of the appli-
cation program, either on a simulator or hardware.

We evaluate our proposal of estimating execution times using prediction models for 
fitness evaluation in GAs using four sorting algorithms as benchmarks. Sorting algo-
rithms are used because of their deterministic critical-path and their common applica-
tions in real-time systems (Puschner 1999). For example, task schedulers, which are 
important components of hard real-time systems, employ sorting for reliable schedul-
ing of tasks (Alghamdi et al. 2017; Bambagini et al. 2016). Energy-aware schedulers 
and multiprocessor schedulers are among other common applications of sorting in real-
time systems (Zhang et al. 2019; Baruah et al. 2015). The other reason for our selec-
tion of sorting algorithms as benchmarks for this study is that their execution paths 
are impacted by the input data (Puschner 1999), which has the potential to generate 
patterns in execution times (Puschner 1999). Those patterns in execution times can be 
used to train the prediction models. This reason renders the sorting algorithms as suit-
able candidates for the investigation of WCET estimation in our study. Although the 
experimentation in this study is limited to the sorting tasks, the proposed approach can 
be extended through further investigation on other benchmarks.

In our study, two benchmarks Bubble sort and Insertion sort are used from Mälard-
arlen benchmarks suite (Gustafsson et  al. 2010). Mälardarlen benchmarks are com-
monly used in the research community to evaluate various WCET analysis methods 
and tools. Mälardarlen benchmarks classify both, Bubble sort and Insertion sort, into 
input dependent loops category (Gustafsson et  al. 2010). In addition to Mälardarlen 
benchmarks, two more sorting algorithms with similar complexity, Gnome sort and 
Shaker sort, are used (Dharmajee Rao and Ramesh 2012). The key characteristic of all 
the selected benchmarks is to exhibit the influence of input data on execution time of 
the program.

The paper is organized as follows: Sect. 2 overviews the temporal verification tech-
niques for real-time systems. Section  3 describes the methodology, target prediction 
models and benchmarks. Section 4 elaborates the selection of certain specific parame-
ters during experiments. Section 5 evaluates the performance of target prediction mod-
els using the defined performance measures. Finally, we conclude the article in Sect. 6.

2  Related work

This section overviews state-of-the-art methods and techniques for the process of 
temporal verification. First, Sect. 2.1 summarizes the static and measurement-based 
analysis methods. Then, Sect.  2.2 briefly describes the use of evolutionary tech-
niques for the testing of real-time systems.



Finally, Sect. 2.3 highlights the novelty of the proposed approach.

2.1  Basic analysis methods

The comprehensive reviews of the WCET analysis problem, describing the basic 
analysis methods as well as stat-of-the-art tools, have been performed in Abella 
et  al. (2015), Kozyrev (2016), Nélis et  al. (2015). Generally speaking, the main 
methods in any timing analysis tool are: static analysis, measurement-based analysis 
and hybrid analysis.

2.1.1  Static analysis

The basic principle is to combine the abstract timing model of the target hardware 
(low level analysis) with the structural representation of the application program 
(high level analysis). The execution of an application program on the target hard-
ware is not required. Therefore, the major activities in static methods are: creation of 
control flow graphs (CFGs), analysis of CFGs, combining CFGs with some abstract 
model of the target hardware architecture, and finally the estimation of upper bounds 
for WCET. The significance of a static technique is that it provides safe WCET with-
out executing the program. Furthermore, it removes the need for complex equipment 
to simulate the hardware and peripherals of the target system. However, the abstract 
timing models are becoming more complex due to the increasingly advanced hard-
ware features (Sha et  al. 2016). Furthermore, a high level analysis of the applica-
tion program, requiring structural representation of the program for flow analysis, 
may require some manual annotations (Kelter et  al. 2014). To summarize, static 
analysis techniques are considered as more trustworthy when the target hardware 
and application programs are sufficiently simple. In other words, when the hardware 
features get more complex, the scope for issues in the static model increases which 
ultimately decreases the confidence in static techniques.

2.1.2  Measurement‑based analysis methods

The basic principle in measurement-based analysis methods is to execute the appli-
cation program on the target hardware or a simulator using some input data. Here, 
the analysis of processor behavior is not required, which is a critical ingredient of 
static techniques (Kozyrev 2016). The proposed work in this article is also based 
on the execution of an application program (similar to measurement-based analy-
sis) for the training of a prediction model. However, the presented work is not pure 
measurement-based in a sense that it utilizes a GA along with a prediction model. 
Furthermore, due to the huge number of required executions in a pure measurement-
based analysis, underestimation of WCET may result. As a consequence, a measure-
ment-based analysis method/technique is usually combined with a static technique. 
It has resulted in various hybrid approaches, integrating measurement-based analy-
sis methods with the information of all possible execution paths (Rapita 2017).



2.1.3  Hybrid methods

A comprehensive survey on hybrid methods is recently presented in Cazorla et al. 
(2019). Hybrid methods enhance the confidence level as compared to measurement-
based analysis techniques. Hybrid techniques may indicate which execution paths 
lead to the highest execution times. Therefore, static analysis and dynamic measure-
ments are used together to achieve safe WCET bounds. Model checking techniques 
can be employed for the effective path coverage during the generation test suites 
(Bunte et al. 2011). To assure the execution of each path, feasible paths analysis can 
be performed before the identification of test vectors using search algorithms (Wen-
zel et al. 2008). Generating an input that can lead to the desired execution path is a 
complex task even if the execution path for the maximum execution time is known 
(Law and Bate 2016). The required input search space is too large to exhaustively 
explore all the possible executions. Taking measurements for the huge search space, 
from the target hardware or performing simulations, is computationally expensive 
and time-consuming. Similarly, determining the worst-case input data analytically is 
a daunting task for the engineers as the application program under analysis may be 
legacy code developed by a third party. It is quite possible that the legacy applica-
tions may not have the required test cases to validate its functionality. The absence 
of required test cases may complicate the code when new features are added in the 
existing code. It is particularly true when the legacy code is employed on a new 
hardware architecture. Therefore, a method is required to generate the worst-case 
input test data in an affordable time.

2.2  GA‑based techniques for temporal verification

GAs have been frequently employed  to handle the huge search space (Surendran 
and Samuel 2016; Kudjo et al. 2017). Section 2.2.1 overviews the GA-based tem-
poral testing techniques. Shortcomings of GA-based techniques are presented in 
Sect. 2.2.2. Finally, Sect. 2.2.3 describes that a prediction model-based solution can 
be effectively utilized to mitigate the problems of existing techniques.

2.2.1  GA‑based temporal testing techniques for real‑time systems

The initial guidelines for using GAs in the context of real-time systems are provided 
in Wegener et  al. (1996). Based on these guidelines, an automated test data gen-
eration framework for the testing of safety-critical software systems is presented in 
Tracey et  al. (2002). The authors of Tracey et  al. (2002) concluded that even the 
GA-search process is not sufficient for a thorough and comprehensive test of real-
time systems and a combination with other test procedures is essential to develop an 
effective test strategy. As a result, the test data generation mechanism is further opti-
mized in Bunte et al. (2011) by using a combination of model checking and GAs.

The requirement of model checking support, presented in Bunte et al. (2011), is 
replaced by extending the GAs with context information Buret et al. (2014) such as 



kernel details, other tasks and hardware states. A GA with complex contexts builds 
a library of valid constructs which are used during the execution of the GA to find 
interesting solution candidates. The limitation of this solution is its scalability. Pro-
viding the context information for large industrial scale projects is expensive in 
terms of processing power and required engineering effort. Another approach for 
enhancing the optimization process is presented in Bate and Khan (2011), where 
the computations are performed for more than one fitness function. The newly intro-
duced fitness functions in Bate and Khan (2011) include cache misses and loop iter-
ations. However, it is found in Bate and Khan (2011) that no single fitness function 
provides better results across all the test code items, and that the selection of fitness 
function is dependent on the target environment. The work in Bate and Khan (2011) 
is further extended for an industrial scenario using a commercial tool (Law and Bate 
2016). It investigates the use of search algorithms for the generation of test cases 
so that the appropriate execution traces are available to support measurement-based 
timing analysis.

2.2.2  Limitation of existing GA‑based techniques

In all the aforementioned research (Rapita 2017; Law and Bate 2016; Wegener et al. 
1996; Tracey et al. 2002; Bunte et al. 2011; Buret et al. 2014; Bate and Khan 2011), 
it is assumed that there exists a means for evaluating the fitness value of all the indi-
viduals in a population during the GA-evolution computations. Generally, the fitness 
value of an individual is computed using an analytical fitness function, a compu-
tational simulation, or an experiment (using hardware). In practice, however, com-
puting fitness values for multiple individuals during the GA-evolution process may 
become non-trivial. Particularly, such non-trivial situations occur when either the 
computational simulations for each fitness estimation are highly time-consuming, 
or the experiments for fitness evaluation are prohibitively costly, or an explicit ana-
lytical function for fitness computations does not exist. It provides the motivation 
to assist the GA-evolution process with prediction models. In other words, predic-
tion models will prune the search space of measurement-based analysis by predict-
ing fitness to generate a set of test data for which the execution time is near to the 
worst-case.

2.2.3  Prediction models in GA‑based solutions

The shortcomings of existing GA-based temporal testing techniques, mentioned 
in Sect.  2.2.2, sets the stage for the integration of prediction models. The objective 
of model integration in a GA-based solution is to predict the worst-case input data. 
The employment of a prediction model reduces the need for required simulation runs 
and thus the overall temporal testing time is decreased. Prediction models are being 
used in the literature to facilitate the optimization of expensive computer simula-
tions, by approximating the fitness function(s) for at least two decades (Haftka et al. 
2016). The use of prediction models to assist GAs in various industries to solve diverse 
nature of problems is getting popular (Koopialipoor et al. 2019; Moayedi et al. 2019; 
Armaghani et al. 2018; Rodriguez-Roman 2018). For example, in Koopialipoor et al. 



(2019), overbreaking in tunnel construction induced by drilling and blasting operation 
is approximated using a hybrid neuro-genetic (GA-ANN) predictive model. Moayedi 
et al. (2019) use multiple evolutionary and neural network models, including genetic 
algorithm optimized with ANN (GA-ANN), to predict ultimate bearing capacity of 
shallow footing on soil. In Armaghani et al. (2018), airblast prediction is done through 
a hybrid genetic algorithm with ANN model. Similarly, the work in Rodriguez-Roman 
(2018) uses surrogate model assisted genetic algorithms in project designs for highway 
safety and travel time improvement. The use of prediction models to assist GAs in mul-
tiple areas have shown promising results.

2.3  Novelty of the proposed approach

The execution of benchmarks is a major bottleneck in time-complexity reduction of 
state-of-the-art GA-based temporal testing techniques (Law and Bate 2016; Wegener 
et al. 1996; Tracey et al. 2002; Bunte et al. 2011; Buret et al. 2014; Bate and Khan 
2011; Aziz and Shah 2015) for real-time embedded systems. Our study eliminates this 
bottleneck by forecasting the execution time of benchmarks using prediction models, 
hence saving the execution time during GA-evolution. In other words, a computation-
ally expensive simulation model is replaced with a cheaper-to-run prediction model. 
We have achieved 10 to 21 times efficiency, as presented in Table 6. Moreover, with 
the higher execution time complexities of benchmarks and with more number of GA 
generations, the significance of this efficiency gets more pronounced because the time 
complexity of our approach only scales up linearly.

3  Materials and methods

This section presents the target prediction models, the methodology used for their eval-
uation and the benchmarks used for their validation. The block diagram of employed 
methodology in Fig. 1 shows that it consists of two main components: a genetic algo-
rithm (GA) and a prediction model.

A GA is an evolutionary search algorithm where the initial population of random 
data is evolved, using certain parameters and fitness values, to find the optimal solu-
tion of an optimization problem (Surendran and Samuel 2016). The fitness values used 
in this methodology are execution times. The working phenomenon of GAs is briefly 
described in Sect. 3.1. On the other hand, the prediction model is first trained with the 
training data. The trained model then takes the input data from the GA to provide the 
corresponding fitness values through predictions. Sections 3.2 and 3.3 provide the brief 
description of prediction models and the training mechanism respectively. Finally, 
Sect. 3.4 briefly describes the benchmarks, used for the evaluation of various prediction 
models.



3.1  Genetic algorithm

Figure  2 shows a flow chart representation of the GA. It can be sub-divided into 
two parts: initialization phase and evolution phase. The initialization phase starts 
with the generation of initial population and the corresponding fitness values. The 
initial population, consisting of individual solutions to the given optimization prob-
lem, is generated randomly. The individual solutions in the initial population rep-
resent the input test data to a real-time application. The fitness values (execution 
times) of these individual solutions (input test data) are required to be determined. 
The employed methodology uses a trained prediction model for the determination of 
fitness values, instead of the actual execution of the target application on a simulator 
or real hardware. The trained prediction model provides an estimate of the execution 
time (fitness value) through predictions. Consequently, the predicted fitness values 
of a randomly generated initial population are used to determine if more genera-
tions of the GA are required or the stopping criteria is met. If the stopping criteria is 
not satisfied, the GA enters into the evolution phase. Finally, the evolution phase is 
repeated over generations until the stopping criteria is satisfied.

Fig. 1  Block diagram of 
employed methodology
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Fig. 2  Flow chart representation of GA



Evolution phase, consisting of a GA loop, starts with the selection of parents 
from initial population. There are various selection strategies. Typical examples of 
selection strategies are rank-based and roulette-based (Sastry et al. 2014). Once the 
parents are selected, they produce offsprings through crossover and the mutation is 
applied on the offsprings (Srinivas and Patnaik 1994). Thereafter, the fitness evalua-
tion of offsprings is performed through a prediction model. Finally, a selection strat-
egy is applied on offsprings and parents to form a new population.

3.2  Prediction models

A prediction model is used to obtain an estimated fitness value of a given input. It 
is first trained and then used with the GA as shown in Fig. 1. Consequently, the use 
of prediction model eliminates the need of a simulator or actual hardware for the 
fitness evaluation. In this article, we have targeted four prediction models. Two of 
them, generalized linear regression model and gaussian regression model (probabil-
istic model) belong to the statistical modeling class (Fahrmeir and Tutz 2013; Ras-
mussen and Williams 2006) and two models are borrowed from machine learning 
literature (Hagan et al. 2014; Vapnik 2000). Artificial neural network and support 
vector regression model are widely addressed  in the literature for modeling of the 
data and successfully used in many real-life applications already (Hagan et al. 2014; 
Smola and Scholkopf 2004). Prediction of  execution times for a problem requires 
proper selection of the model and its architecture to minimize the prediction error. 
Furthermore, prediction model is used to guide the GA-search towards the worst-
case test data. Even in the presence of prediction error, if the model can successfully 
guide the GA towards the worst cases, the model is very useful. As we reach close 
to the worst-case test data, we can always find the actual worst-case execution time 
from the real system or simulator. The in-depth knowledge of these prediction mod-
els is not required to understand the experiments presented here. However, for the 
sake of completeness, a brief description of each prediction model is given in the 
following.

3.2.1  Artificial neural network

An artificial neural network (ANN) is a collection of artificial neurons connected 
together. There can be multiple layers of neurons in an ANN where the first layer 
is the input layer, the last layer is the output layer and the intermediate layers are 
known as the hidden layers (Hagan et al. 2014).

The number of inputs and outputs depends on the design of ANN architecture. 
An ANN architecture can be multiclass (having multiple outputs) or single-class 
(having only one output). Figure 3 presents a typical single-class ANN architecture 
with m inputs. In our study, we use a single-class ANN architecture because there is 
only one desired output, the WCET.

Inside the layered organization of neurons, connected neurons communicate by 
sending and receiving the signals. The applied inputs are transferred to the hid-
den layer(s) for the actual processing. Each neuron has an associated weight that 



influences the value passing through this neuron. The output layer takes the pro-
cessed values from hidden layer before the final output is produced. Let X ∈ ℝ

m is 
an input to the artificial neural network where X = [x1, x2,… , xm] . The output of 
ANN can calculated as follows:

Equation (1) is the analytic form of the neural network in Fig. 3, where vj and wij 
are the weights that are adjusted for optimizations according to appropriate learning 
rules. There are variety of learning mechanism, available in the literature, for the 
weights associated with the neurons in every layer (Hagan and Menhaj 1994). Simi-
larly, f and gj are the activation functions. Based on the requirement of the prediction 
problem, different types of activation functions can be used. A good list of learning 
mechanisms and activation functions can be found in Hagan et al. (2014).

3.2.2  Generalized linear regression model

A generalized linear regression model (GLM) is a linear regression model that is 
flexible and generalized. GLMs were developed by John Nelder and Robert Wedder-
burn Fahrmeir and Tutz (2013) to handle the data distribution which does not follow 
the normal distribution.

Given a vector of predictors X and an outcome Y, the conditional expectation is 
�(Y|X) ; where X ∈ ℝ

m , Y ∈ ℝ , and ℝm is m-dimensional real space for any positive 
integer m, ℝ is the set of real numbers and � is the expected value. The GLM com-
prises of three components: 

1. a random component, specifying the probability density function of the outcome
Y (Lower case y is used to differentiate the random variable Y from its realization 
y): 

 where f is the probability density function, a, b and c are the known functions, 
� is the mean of the outcome Y and is also known as natural parameter. � is the 
standard deviation of the outcome Y and is also known as dispersion parameter.

2. a systematic component, relating the predictors X to a parameter � : 

(1)Output = f

(
n∑

j=1

vjgj

(
m∑

i=1

wijxi

))

(2)f (y;�, �) = exp

{
y� − b(�)

a(�)
+ c(y, �)

}

Fig. 3  An artificial neural net-
work with a single hidden layer
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 where Xj is the jth predictor, � is the linear combination of predictors, i.e., 
� = �TX ; such that, � = [�1, �2, ..., �m] , where �j is a jth linear coefficient and 
� is a vector of linear coefficients. T is the non-linear transform of � from an 
m-dimensional input pattern space ( ℝm ) to a p-dimensional numerical feature 
space ( ℝp).

3. a link function, connecting random and systematic components:

 where g is a function that links (not equate) the probability density function of 
the outcome Y given in Eq. (2) to the linear combination of predictors X given in 
Eq. (3) by equating the �(Y|X) to � . Where �(Y|X) is the expected value of the 
outcome Y when the predictor X is given/known.

Equation (4) can be rewritten as:

For given samples (xi, yi) , where i=1,...,N, for each yi|xi Eq. (5) becomes:

 and

 Hence, GLM is nothing but a linear model with transformed mean of an independ-
ent variable that has distribution from the exponential family (Fahrmeir and Tutz 
2013).

3.2.3  Gaussian process regression model

Suppose we have Xi ∈ ℝ
m as the ith input patterns and yi is the output. A linear 

regression model (Rasmussen and Williams 2006) is defined in Eq. (8), as follows:

In Eq. (8), T represents non-linear input-to-feature transformation, that projects the 
m-dimensional input pattern space ( ℝm ) to p-dimensional numerical feature space ( 
ℝ

p ), � is the linear coefficient, � is the error, tilde ( ∼ ) means “has the distribution”, 
i.e., � has a normal distribution of zero mean and �2 variance. The error variance �2

and linear coefficients � are estimated from the data. A Gaussian process regression 
(GPR) model introduces a latent variable f (Xi) from a Gaussian process and a set of 
basis functions h(x) . These basis functions project the input patterns coming from 
ℝ

m to p-dimensional feature space ( ℝp ). For n input patterns X1,X2,… ,Xn , the 

(3)� =

m∑

j=1

�jXj

(4)g(�(Y|X)) = �

(5)�(Y|X) = g−1(�)

(6)�
(
yi
)
= g−1

(
�i
)

(7)g(�) =

m∑

j=1

�jxj

(8)yi = XT
i
� + � where � ∼ N

(
0, �2

)



joint distribution of n random variables f (X1), f (X2),… , f (Xn) is Guassian. The GPR 
model is of the form of Eq. (9), as shown in the following:

The latent variable f (x) is from a Gaussian process with zero mean and covariance
function k

(
X,X

′ |�
)
 . GPR model is a probabilistic model and output yi is modelled,

as given in Eq. (10).

GPR model estimates the linear basis coefficients � , the noise variance �2 and the 
hyper-parameters � from the training data whereas basis functions and the covari-
ance function are predefined.

3.2.4  Support vector regression model

Suppose we have Xi ∈ ℝ
m as the ith input patterns and yi is the corresponding 

output. Let a linear function takes the form of Eq. (11), as given in the following:

Where � is the linear coefficients and b is the bias term. The objective function J(�) 
(Vapnik 2000; Smola and Scholkopf 2004) including slack variables � and �∗ to han-
dle the feasibility of the solution is defined in Eq. (12), as shown in the following:

Subject to,

The slack variables � and �∗ are used to measure the deviation of the training patterns 
outside �-insensitive zone. A positive numeric constant C in the objective function is 
to penalize the observations outside the margin and is useful in preventing the over-
fitting. The formulation is a convex optimization problem to minimize the objec-
tive function J(�) (Vapnik 2000). This problem can be solved in many ways. One of 
the famous solver is Sequential minimal optimization (SMO) method (Smola and 
Scholkopf 2004) which performs a series of two-point optimizations. Further details 
about the model can be found in Deng et al. (2012).
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3.3  Training of prediction models

In this methodology, a model is trained before its deployment. Figure 4 shows the 
mechanism used for the training of prediction models. The training methodology 
involves passing of random input data to the executing benchmark on the simula-
tor/hardware as well as to the prediction model, to produce the actual and predicted 
execution times, respectively. These execution times are compared and the error 
is determined to fine tune the model until the final input from the pool of random 
inputs is used. Finally, the trained predictor is used in the evolution process of the 
GA.

In this work, training of the prediction model was performed through the Gem5 
simulator (Binkert et al. 2011). However, the proposed approach is equally applica-
ble to any other simulator or hardware. The Gem5 simulator has been used due to 
its wide adoption in the embedded systems research community while its accuracy 
evaluation is provided in Butko et  al. (2012). It is an open source cycle-accurate 
architecture simulator which provides a variety of simulation options with different 
memory systems and CPU choices such as x86, Alpha, Sparc and ARM.

3.4  Benchmarks

In order to analyze different prediction models, we selected two benchmarks from 
Mälardarlen WCET suite (Gustafsson et al. 2010). These two benchmarks are Bub-
ble sort and Insertion sort. In addition to Bubble sort and Insertion sort algorithms, 
two additional sorting algorithms Gnome sort and Shaker sort were selected (Dhar-
majee Rao and Ramesh 2012). The selection of these benchmarks is due to the fact 
that they can best represent the change in their execution times, influenced by the 
input data. Inputs to all the benchmarks (sorting algorithms) in this study are fixed-
sized unsorted arrays of random integers between 0 and 1000. The algorithms used 
in these benchmarks sort those arrays. The number of swaps required for sorting 
the list depends on the algorithm used. However, the number of required swaps also 
depends on the initial order of the list to be sorted. Consequently, the execution time 
of a benchmark, which is directly related to the number of swaps, is heavily influ-
enced by the input data. The worst-case performance for these sorting algorithms is 
O(n2 ) swaps, where n is the size of the given list of integers. The worst-case input in 
these benchmarks is a reverse sorted array of integers.

Fig. 4  Training of prediction 
models Random Input Data Simulator or 

Hardware
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Predicted 
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4  Experimental setup

This section elaborates the experimental setup for the evaluation of prediction 
models, described in Sect. 3.2, with the benchmarks presented in Sect. 3.4. It first 
describes the particular settings for target architecture and prediction models in 
Sect. 4.1. Then, the required parameters for models training as well as benchmark 
algorithms are presented in Sect. 4.2. The parameters and the stopping criteria for 
GA-evolution are described in Sects.  4.3 and 4.4, respectively. While keeping the 
main focus on the use of various prediction models, experimentation in this work 
has been performed with single tasked (sole function) benchmarks. However, the 
same setup can be applied for multi-functions, multi-threading, and multi-tasking 
applications.

4.1  Target architecture and prediction models

The ARM v7-A instruction set architecture-based micro-architectural model is used 
as target platform, available in Gem5 simulator. The selected architecture model is a 
single core processor, clocked at a frequency of 2 GHz with 512 MB physical mem-
ory. Furthermore, the memory model used is simple classic memory and the mode 
of simulator used is system call emulation mode. All this experimentation, includ-
ing the running of simulator, was performed on a Dell precision workstation having 
Xeon processor with twelve logical cores and 48 GB of physical memory.

The prediction models employed in this work are based on ANN, GLM, GPR 
and SVR. All the prediction models are realized in the Matlab. The Matlab version 
9.1.0.441655 (R2016b) is used for the application of these prediction models. The 
implementation of ANN is provided in Neural Network Toolbox, whereas the imple-
mentations of GLM, GPR and SVR are available in Statistics and Machine Learning 
Toolbox in the Matlab. The architecture of ANN is 16-10-1 having 16 input neu-
rons, 10 hidden neurons in a single hidden layer and one output neuron.

Two key parameters impact the configuration of ANN-architecture: (i) number of 
neurons in the hidden layer, (ii) choice of the activation function (AF). Both these 
parameters are explained as follows: Test experimentation with varying number of 
neurons in the hidden layer can be conducted to decide the most suitable number 
for the ANN-architecture. In this study, the experimentation is conducted with 6, 8, 
10, 12, 16 and 20 neurons in the hidden layer. Best accuracy for most of the bench-
marks is achieved with 10 neurons. Hence, the number of neurons in the hidden 
layer is set to 10. The second consideration is the choice of AF. Literature analysis 
suggests four closest choices: Sigmoid, Hyperbolic Tangent, Rectified Linear Unit 
and Softmax (Njikam and Zhao 2016; Nwankpa et al. 2018). Sigmoid is a popular 
choice in shallow networks because it is easy to apply and compute (Nwankpa et al. 
2018). Although it can be argued that the other three AFs can be better choices than 
Sigmoid because of sharp deep gradients during back propagation from deep hidden 
layers to input layers, slow convergence and non-zero centered output (Glorot and 
Bengio 2010); but, this study uses neither deep hidden layers, nor a zero-centered 



output is required, nor slow convergence is relevant in the shallow ANN-architec-
ture. Hence, Sigmoid is selected as AF.

Levenberg-Marquardt training method is used for the learning of weights and 
bias (Hagan and Menhaj 1994). Maximum number of epochs for training is set 
to 1000 but learning will stop if the gradient becomes smaller than a pre-defined 
value. In GLM, normal distribution is used and the link function is identity function 
(Fahrmeir and Tutz 2013). In GPR model, squared exponential function is used as 
the kernel function, basis function is constant and quasi-Newton optimizer is used 
(Rasmussen and Williams 2006). Sequential minimal optimization (SMO) is used 
for optimizing the regression parameters in the SVR prediction model with linear 
kernel function (Vapnik 2000; Smola and Scholkopf 2004).

4.2  Parameters for models training and benchmark algorithms

For each of the four benchmarks (described in Sect. 3.4), four best-trained prediction 
models (described in Sect. 3.2) are used. Hence, in total, 16 best-trained prediction 
models are achieved. Each best-trained prediction model is used in a GA-evolution 
for a fixed size of array. Thus, 16 GA-evolutions are performed in an experiment. 
This entire experiment is repeated for array sizes of 16, 24, 32 and 40.

In order to evaluate the performance of various prediction models, Mean Abso-
lute Percentage Error (MAPE) was used. It is a measure of prediction accuracy of a 
model. MAPE is calculated as:

In Eq. (13), ETtrue(i) is the true execution time when the sorting algorithm is applied 
on the ith data on the simulator, ETpred(i) is the execution time predicted by the pre-
diction model for ith data point and N is the total number of data points. A low value 
of MAPE means small error and good quality of prediction model.

The training of every {Prediction model, Benchmark} set is performed five times: 
each time on a distinct instance of a prediction model, using 1000 randomly gener-
ated data points (each data point is a fixed-sized unsorted array of random integers 
between 0 and 1000). The purpose of running a training multiple times is to identify 
the best-trained instance of the prediction model, which will later be used in GA for 
fitness evaluation. A MAPE value is calculated on the results generated from testing 
of each of the five instances of a prediction model on the training data. The best-
trained model is the one having the minimum MAPE value. The minimum MAPE 
values on the training data for each of the 16 {Prediction model, Benchmark} sets is 
shown in Table 2.

Similarly, the testing of every {Prediction model, Benchmark} set is performed 
five times: each time on a distinct instance of a prediction model, using 2000 ran-
domly generated data points. As in the training, the prediction model instance having 
the minimum MAPE value from the 5 testing (of models) experiments is selected as 
the best-trained instance for later use in GA for fitness evaluation. The minimum 

(13)MAPE =
1

N

N∑

i=1

|||
ETtrue(i) − ETpred(i)

ETtrue(i)

||| × 100



MAPE values on the testing data for each of the 16 {Prediction model, Benchmark} 
sets is shown in Table 3. Once the training is complete, the GA is evolved for each 
prediction model.

The worst-case input data is the reverse sorted list of integers that causes the 
maximum possible end-to-end execution time. Worst-case execution times for Bub-
ble sort, Insertion sort, Gnome sort and Shaker sort are 616134, 310192, 813812, 
and 1234331 nanoseconds, respectively, when run on the Gem5 simulator.

4.3  Parameters for GA‑evolution

The GA-parameters are kept constant throughout the experiments. Initial input to 
the GA is unsorted, fixed-sized arrays of randomly generated integers between 0 and 
1000 which forms initial population of random input data-points. For each genera-
tion of the GA, population size is kept constant at 50. Table 1 presents a fixed set 
of GA-parameters, used in all of our experiments. The convergence of a GA toward 
the required outcome is highly dependent on the probabilities used in crossover and 
mutation (Sastry et  al. 2014; Srinivas and Patnaik 1994). The new solutions (off-
springs), produced through crossover, occur in the vicinity of old solutions (parents). 
The higher crossover probability means decreased exploitation and increased explo-
ration while the lower value of this probability may results in an early convergence 
which is inadequate. Standard values of crossover probabilities are between 0.6 and 
1.0. Mutation is just like flavoring and hence the mutation probability is relatively 
small as compared to the probability value used in crossover. Mutation of newly 
generated population through crossover is needed to search the un-revealed areas 
of the search space. However, a large value of mutation can change the GA-search 
into a pure random search. The value of mutation probability is typically considered 
between 0.005 and 0.05. In this work, GA-parameters are evaluated based on the 
methodology of Pongcharoen et al. (2002) for the determination of optimum GA-
parameters. They consider the most efficient Genetic Algorithm parameters which 
achieve minimum total cost and minimum spread. The procedure considers various 
levels of the GA-parameters, population size, number of generations and the prob-
ability of crossover and mutation. The values which we determined using this meth-
odology are presented in Table 1.

Table 1  GA-parameters 
and their values used during 
GA-evolution

GA-parameters Methods/values

Population size 50
Parent selection Roulette wheel selection
Crossover Arithmetic crossover
Crossover srobability 0.8
Mutation Single point random mutation
Mutation srobability 0.05
Population selection Elitism, 2 best individuals
Maximum number of generations 1000



4.4  Stopping criteria for the GA

In GAs, as the generation progresses, the maximum and/or average fitness of a pop-
ulation increases. Fitness of a member of population or a data point corresponds to 
the quality of the data point according to a user defined measure which is the execu-
tion time of a sorting algorithm. Once it reaches near to a solution or trapped in some 
local optima, improvement in the fitness values becomes minimal with the generation. 
Therefore, it is not useful to run the GA for further generations and it is better to stop 
the GA. Different types of stopping criteria are defined in the literature (Jain et al. 2001; 
Bhandari et al. 2012). Therefore, we defined a stopping criteria to stop early if there is 
no or minimal improvement in the fitness values of the population.

We defined the following stopping criteria: (1) maximum number of generations 
have been reached and (2) the maximum percentage change in predicted fitness 
values, over a certain number of generations, is less than a user-defined constant 
(saturation test). In our experiments, the maximum number of generations in GA-
evolution process is set to 1000 as shown in Table 1. For the maximum percentage 
change, the GA process is first allowed to evolve uninterruptedly (no stopping crite-
ria) for at least 250 generations to avoid any immature halt. Since the 251st genera-
tion, the criteria of maximum percentage change is applied. The criteria of maxi-
mum percentage change is based on the following mathematical formulation:

If we represent the generation with Gi , the input data in each generation with di 
and the associated predicted fitness value of the input data with fi , then:

Where n is the number of data points in each generation, set at 50 in this study. Its 
value can be varied depending on the experiment design. A data point is a pair of an 
input data and the corresponding execution time. The maximum fitness value from 
each generation during the evolution of GA is stored in a FIFO (First In First Out) 
buffer. If the FIFO buffer, filled with maximum fitness values from each generation, 
is represented by FP:

Where s is the size of FIFO buffer  set at 50 in this study.  Its value can be varied 
depending on the experiment design. Therefore, the maximum percentage change in 
the predicted fitness values over s generations (MPCFP) can be determined and com-
pared with the user-defined constant, as follows:

Where the user defined constant, represented by � , sets the bottom line for the per-
centage change in the fitness value required to determine if the saturation is reached 
and hence the evolution of the GA needs to be stopped. The value of � in Eq. (16) is 
taken as 1.0e − 05 . However, if the formulation 16 is not satisfied, the GA continues 
its evolution with another generation. To summarize, we defined the following val-
ues in our experimentation:

(14)G = {(d1, f1), (d2, f2), (d3, f3),… , (dn, fn)}

(15)FP = {fmax(G1), fmax(G2),… , fmax(Gs)}

(16)MPCFP =
Max(FP) −Min(FP)

Max(FP)
× 100 < 𝛾



– Total number of generations = 1000
– Number of data points in each generation = 50
– Size of the FIFO buffer = 50
– The value of � = 1.0e − 05

4.5  Performance measures

Once the prediction models are trained, GA-evolutions are run for each combi-
nation of benchmark and prediction model. As described in Sect. 4.2, one such 
experiment includes 16 GA-evolutions for a fixed input size. The experiment for 
benchmarks with input array size 16 is evaluated using five performance meas-
ures: prediction performance, isolated timing performance, evolution perfor-
mance, integrated timing performance and the quality of test data. The details of 
each performance measure are as following:

– Prediction performance of a model describes its accuracy. It represents the
closeness of the predicted value (obtained from the model) to the actual value 
(obtained from the hardware or simulator).

– Isolated timing performance of a model describes the time required for its
training as well as prediction. It demonstrates the reduction in required time 
with prediction models as compared to the actual execution on the simulator.

– Evolution performance of a model describes its ability to let the GA converge
in minimum possible number of generations.

– Integrated timing performance of a model demonstrates its ability to reduce
the overall time required to reach the final solution.

– The data quality performance of a model shows the deviation of achieved data
from the actual worst-case data.

Moreover, to analyze the impact of various complexities (different array sizes) of 
the problem, subsequent experiments (each experiment consisting of 16 GA-evo-
lutions for 16 {Prediction model, Benchmark} sets) are run for input array sizes 
24, 32 and 40. For these array sizes, the performance of each prediction model is 
evaluated in terms of time saved by using the proposed framework.

5  Results and discussion

This section presents the experimental results with the target predication models 
and the selected benchmarks, described in Sects. 3.2 and 3.4, respectively. Sec-
tions 5.1 to 5.5 present results for benchmarks with input array size 16 using five 
performance measures, defined in Sect.  4.5. Section  5.6 analyzes the impact of 
using array sizes 24, 32 and 40.



5.1  Prediction performance

This performance measure (prediction performance) evaluates the accuracy of a 
trained prediction model before its integration with the GA. The predicted values 
from a trained prediction model are compared with the actual fitness values (com-
puted from simulator) and the results are shown in the form of scatter plots. Fig-
ures 5, 6, 7 and 8 provide the comparison between actual execution time and pre-
dicted execution time for Bubble sort, Insertion sort, Gnome sort and Shaker sort, 
respectively.   

In each figure, the x-axis represents the actual execution time obtained from the 
simulator against a given input, whereas the y-axis shows the execution time pre-
dicted by the model against the same input. Furthermore, each figure (Figs.  5, 6, 
7, 8) consists of four graphs, showing the results for ANN, GLM, GPR and SVR 
prediction models.

Figure 5 shows a worse prediction of the real execution times for Bubble sort, 
than the other sorting algorithms in Figs. 6 and  7. After GA-evolution using the 
same prediction models, Table 7 shows the best results for Bubble sort, except for 
GPR. The reason for this could be the better accuracies of the prediction models for 
bubble sort at higher execution times in Fig. 5 as compared to the uniform predic-
tion accuracies depicted in Figs. 6 and 7.

Tables 2 and 3 present MAPE values (defined in Sect. 4.2) from training and test-
ing data, respectively, using best-trained prediction models. Lower MAPE values on 
both training and testing data indicate better quality of prediction models. 

Fig. 5  A scatter plot of measured vs predicted execution times for bubble sort using different prediction 
models



Fig. 6  A scatter plot of measured vs predicted execution times for Insertion sort using different predic-
tion models

Fig. 7  A scatter plot of measured vs predicted execution times for Gnome sort using different prediction 
models



Comparison of Tables  2 and  3 reveals that the MAPE values obtained on the 
training set are comparable with those obtained on the test data. Hence, the models 
are not suffering from overfittings and good generalizations are achieved. It means 
that the prediction models can be used interchangeably instead of actual execution 
of the benchmarks.

From Table  3, the MAPE values on testing data indicate that for all the sorting 
algorithms the GPR model gives the best quality. The SVR model has shown the 
worst quality except for Insertion sort. The MAPE value of SVR for Shaker sort is 
the highest among all the MAPE values. Similarly, GPR gives the best, and SVR, 
except for Insertion sort, gives the worst quality on the training data in Table 3. The 
exception of Insertion sort in the worst quality of SVR remains the same in Tables  2 
and 3.

Fig. 8  A scatter plot of measured vs predicted execution times for Shaker sort using different prediction 
models

Table 2  MAPE results on 
training data using best-trained 
prediction models

Models Benchmarks (sorting slgorithms)

Bubble Insertion Gnome Shaker

ANN 3.47 2.71 2.96 4.53
GLM 3.28 2.23 2.87 4.06
GPR 1.39 1.69 2.08 3.86
SVR 3.68 2.59 4.38 7.06



From these findings, although GPR seems to be the best choice of a prediction 
model, later results suggest that it is hard to guarantee a single choice of predic-
tion model that retains the best-quality for the entire set of data points or bench-
marks. For example, (i) unlike in Table  3, GPR is not the best-quality prediction 
model in Table 7, Bubble sort being the exception. (ii) Unlike in Table 3, SVR in 
Table 7 is the worst-quality prediction model only for Gnome and Shaker sort, but 
not for Insertion or Bubble sort. This inconsistent quality of prediction models may 
be attributed to multiple possible reasons. Firstly, the prediction models trained on 
random data may not be accurately predicting during the GA-evolution, as the popu-
lation starts getting closer to the worst-case data. Secondly, the intrinsic randomness 
in GA-evolution can be a factor that changes the accuracy patterns of the trained 
prediction models. These arguments need further investigation.

The GA must use the best-quality prediction model for fitness evaluation. Finding 
the best-quality prediction model may involve training multiple prediction models, 
which is the approach followed in this study. The prediction model with minimum 
MAPE value can be selected as the best-quality prediction model for use in the GA.

5.2  Isolated timing performance

In addition to the prediction performance of a trained prediction model, the evalua-
tion of its timing performance is equally important. The isolated timing performance 
evaluates: (1) the time consumed by a prediction model for its training and (2) the 
time taken by a trained prediction model for predicting the fitness values. Therefore, 
training times as well as prediction time for each model should be measured for the 
selected benchmarks. Table 4 shows training as well as prediction times for all the 
target prediction models.

Column 1 of Table 4 lists the selected benchmarks while columns 2 and 3 rep-
resent the training and prediction times for various prediction models, respectively. 
The results in this table reveal that the prediction models require almost negligible 
amount of time for training as well as prediction. Moreover, the ANN prediction 
model takes comparatively larger amount of training and prediction times as com-
pared to other prediction models. Similarly, the Bubble sort algorithm consumes 
more time as compare to other algorithms, as shown in Table 4. Furthermore, it can 
be observed that the training times are large as compared to the prediction times. 
However, the models are trained only once during the entire experiment.

Table 3  MAPE results on 
testing data using best-trained 
prediction models

Models Benchmarks (sorting algorithms)

Bubble Insertion Gnome Shaker

ANN 3.75 3.14 3.85 5.09
GLM 3.57 2.30 2.91 4.23
GPR 2.27 2.36 2.66 4.11
SVR 4.06 2.65 4.41 7.17



5.3  Evolution performance

The previous two performance measures (i.e., prediction performance and isolated 
timing performance) evaluate the performance of a trained prediction models with-
out any interaction with the GA-evolution process. However, the trained prediction 
models are required to be integrated with the GA and their integrated performance 
needs to be measured. Therefore, “evolution performance” is a measure of a predi-
cation model’s integrated performance during the GA-evolution.

The prediction model predicts the fitness values during multiple generations of 
GA-evolution process. In other words, the prediction accuracy of the prediction 
model directly influences the number of the GA generations. Generally speaking, 
lesser the number of generations required in a GA-evolution process, better is the 
prediction model and vice versa.

The GA-evolution performance for Bubble sort, Insertion sort, Gnome sort and 
Shaker sort are shown in Figs.  9, 10, 11 and 12, respectively. Furthermore, each 
figure (Figs. 9, 10, 11, 12) consists of four graphs, showing the results for target pre-
diction models. In each graph, the x-axis represents the number of generations while 
the y-axis provides the predicted fitness values during various GA generations. For 
the comparison of different approaches, the horizontal axis has been standardized 
for all the plots with 0 to 800 generations and the vertical axis have been standard-
ized in quadruplets (for every benchmark) with minimum and maximum predicted 
fitness values. Two curves are used in each graph to represent the maximum and the 
average predicted fitness values during the GA-evolution process.

A comparison of quadruplets reveals variations in the maximum fitness values 
of the same benchmark for different prediction models. For example, GLM shows 
highest maximum predicted fitness value. Since these values are higher than the 
WCET, it clearly shows that this model has an added bias in its predicted value. 
Similarly, with negative biases in prediction values GPR, ANN, and SVR have the 
lowest maximum fitness values for Bubble, Insertion and Gnome, and Shaker sort, 
respectively.   

It can be observed from Figs. 9, 10, 11 and 12 that the gamma-based stopping 
criteria causes the simulation to  stop at different generations in each experiment. 
As explained in Sect. 4.4, gamma-based stopping criteria stops the GA once there 
is a very small improvement in the maximum fitness value. Figure  9 shows that 
for Bubble sort algorithm, SVR converges faster as compared to all other three 

Table 4  Training and prediction times in seconds

Benchmarks Training times (s) Prediction times (s)

ANN GLM GPR SVR ANN GLM GPR SVR

Bubble sort 6.2639 4.5841 3.4283 1.9239 0.2852 0.0125 0.0806 0.1076
Insertion sort 0.6347 0.2742 3.2103 0.0684 0.0469 0.0086 0.0759 0.0077
Gnome sort 0.4883 0.1395 4.4501 0.0950 0.0456 0.0023 0.0753 0.0186
Shaker sort 0.2912 0.0903 1.8007 0.0607 0.0221 0.0022 0.0625 0.0189



Fig. 9  Predicted maximum and average fitness values in GA-evolution for bubble sort using different 
prediction models

Fig. 10  Predicted maximum and average fitness values in GA-evolution for Insertion sort using different 
prediction models



Fig. 11  Predicted maximum and average fitness values in GA-evolution for Gnome sort using different 
prediction models

Fig. 12  Predicted maximum and average fitness values in GA-evolution for Shaker sort using different 
prediction models



prediction models, whereas GPR converges faster for Insertion sort and Shaker sort 
algorithms. However, GLM performs better for Gnome sort algorithm. An early 
stoppage of a GA means that its evolution has matured and the fitness value has 
reached to its highest level. Hence further generations are not needed. The best time 
gain achieved is 17.7 times and the best accuracy achieved is 98.5% across the used 
prediction models, benchmarks and the investigated complexities of the bench-
marks. The best overall results are achieved for bubble sort with array size 40 using 
the GPR model. The time gain is 17.6 times and the accuracy achieved is 98.35%.

While the experiments show that the time gain in WCET analysis is considerable, 
the accuracy in different cases still needs to be improved. Hence, for the best accu-
racy for a particular task, a focused research is need on the choice of a best perdic-
tion model and its parameters according to the nature and the complexity of a task.

5.4  Integrated timing performance

This performance measure evaluates the integrated timing performance of a predic-
tion model. In order to do this, the total time taken by a prediction model-based 
solution is compared with the simulator-based solution. The total time in a predic-
tion model-based solution consists of two components: (1) the time required to gen-
erate the training data using simulator and (2) the time required to train the predic-
tion model as well as to evolve the GA successfully.

Table  5 shows the timing analysis of a prediction model-based solution. In 
Table  5, column 1 lists the benchmarks whereas column 2 represents the train-
ing data generation time on the simulator, required to train the prediction models. 
Remaining columns show the training and evolution time of different models for 
the benchmarks. It can be observed from Table 5 that the GLM model have taken 
the least time for training and evolution by the GA as compared to other models 
whereas the GPR model is slowest as compared to other models.

Table 6 compares the total time taken by a model-based solution (computed in 
Table 5) with the pure simulator-based solution. Column 1 lists the selected bench-
marks whereas column 2 and column 3 represent the total time required in predic-
tion and simulator-based solutions, respectively. It can be observed from Table  6 
that the total required time to reach the final solution has been reduced drastically in 
the prediction model-based solutions as compared to the simulator-based solution.

Table 5  Timing analysis of a 
prediction model-based GA 
simulation (all values are in 
seconds, bold signifies the best 
integrated timing performance 
value for each benchmark)

Benchmarks Total time using prediction models

Training data 
generation 
time

Training and evolution time

ANN GLM GPR SVR

Bubble sort 449.892 221.05 10.888 43.665 43.892
Insertion sort 447.321 33.09 5.012 36.837 4.292
Gnome sort 438.951 21.516 1.065 48.297 8.089
Shaker sort 439.697 9.299 0.811 46.173 9.49



The advantage of using a prediction model in GA-evolution process is twofold: 
When a pure GA is used to evolve the population, the data points in the population 
proceed towards good solutions corresponding to the higher execution time and ulti-
mately approach near to the worst-case execution time. Hence, as the GA evolves, 
achievement of the desired solutions or data points takes a longer time. On the other 
hand, prediction model-based GA-evolution process takes constant time per genera-
tion. Prediction of execution time by the prediction model is faster than running the 
benchmark on the simulator for any data point.

5.5  Data quality performance

As described in Sect. 4.4, the process of GA-evolution halts on either the maximum 
number of generations are reached or the stopping criteria in Eq.  (16) is satisfied. 
In either case, the last generation of GA-evolution process is considered as the final 
test data. The last generation of every benchmark is then run on the simulator to 
get the actual execution time ( ETObtained

i
 ). The salient feature of the generated test 

data is that the execution time of the corresponding benchmark for this test data 
is near to the maximum possible execution time for the benchmark. The descrip-
tion of maximum possible execution time for each sorting algorithm is given in Sec-
tion  4.3. Consequently, the data quality performance shows the ability of trained 
model to generate the test data using a GA for which the execution time is near to 
the maximum.

Table  7 presents 20 best data points for each experiment, determined by the 
employed methodology, where the execution time is near to the maximum possible 
execution time. Percentage deviation of the actual execution time ( ETObtained

i
 ) in the 

last generation of the GA from the true worst-case execution time WCETTrue is cal-
culated as follows:

Consequently, the following observations can be recorded from Table 7:

(17)PDi =

(
|WCETTrue − ETObtained

i
|

WCETTrue

)
× 100

Table 6  Comparison of time spent by the prediction model-based GA simulation and pure GA-based 
simulation (all values are in seconds, bold signifies the best integrated timing performance value for 
each benchmark)

Benchmarks Time for training data generation, training and GA-evolution Time for 
simulator-based 
simulationANN GLM GPR SVR

Bubble sort 670.942 460.78 493.557 493.784 8007.751
Insertion sort 480.411 452.333 484.158 451.613 9331.768
Gnome sort 460.467 440.016 487.248 447.04 7783.08
Shaker sort 448.996 440.508 485.87 449.187 6847.275
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– For bubble sort, both the highest (8.49%) and the lowest (3.95%) deviations have
been generated by ANN model.

– For the rest of sorting algorithms, the GPR model provides comparatively better
results in terms of percent deviations (PDi) of measured times from maximum 
possible execution times.

– The least deviation has been observed in the data generated for bubble sort algo-
rithm

– The maximum deviation has been observed in the data generated for insertion
sort algorithm

To summarize, the employed methodology in this article can generate the test data 
with the minimum deviation of 1.5% (GPR model for Gnome experiment) and the 
maximum deviation of 18.86% (GLM for Insertion sort).

5.6  Changing array size for sorting algorithms

This section analyzes the effects of various complexities of the problem (different 
array sizes) on the performance of proposed framework. The performance of the 
four prediction models as well as the time saved by using the proposed framework 
are analyzed for array sizes 24, 32 and 40.

For each benchmark, “ GenANN ,GenGLM ,GenGPR ” and “ GenSVR ” are the number 
of generations after the gamma stopping criteria. Pure simulator-based GA is run 
for the number of generations “ GenSim ”, which is the minimum value in all the four 
models and calculated as follows:

Consequently, the time spent in seconds is plotted in Fig. 13 for a pure simulator-
based GA-evolution. In Fig.  13, it can be noted that as the array size is increas-
ing, the time spent by a pure simulator-based GA is also increasing for all sorting 
benchmarks.

Gain in time spent by the model is defined as follows:

Where “ TimeSim ” is the time spent by a pure simulator-based GA for the minimum 
number of generations “ GenSim ”. On the other hand, ” Timemodel ” is the time spent 
by the model-based GA-evolution with gamma stopping criteria. Hence, (Ratiotime) 
gives the ratio of the time consumed by the simulator in actual execution of a bench-
mark to the time consumed in the estimation of execution time using the predic-
tion models. Gain in time (Ratiotime) for each model is shown in Table  8, where 
each value is the mean of Ratiotime achieved by all the four benchmarks. The val-
ues are aggregated by using a representative value (mean and the standard devia-
tion) because the time gain is almost the same across the benchmarks, evidenced 
by the small standard deviation values. It can be noted from Table 8 that the time 

(18)GenSim = min
(
GenANN ,GenGLM ,GenGPR,GenSVR

)

(19)Ratiotime =
TimeSim

Timemodel



gain (Ratiotime) for model-based GA-evolution increases as the array size increases, 
which supports our claim of time efficiency by using the prediction model-based 
GA-evolution.

In the following, Tables  9, 10, 11 and 12 show the performance of all four mod-
els for different array sizes. For Bubble sort algorithm, GPR prediction model has 
outperformed other prediction models and predicted the data points which are near 
to the true worst-case execution time. For the benchmark of Insertion sort algo-
rithm, GPR performance is better than other prediction models whereas GLM has 
performed better than GPR in case of array size of 24. All prediction models could 
not perform better for Insertion sort and percentage deviation from the true WCET 
is higher in all cases. May be, some other prediction model (not targeted in this arti-
cle) can perform better for Insertion sort. Table 11 shows that the ANN prediction 
model has provided better results than other prediction models for Gnome sort algo-
rithm for array sizes of 24 and 32. However, for array size of 40, SVR has performed 
better than others. Further tuning of different parameters of the prediction models 
may reduce the percentage deviation. Finally, it is interesting to observe in Table 12 
that GLM has performed better than other prediction models in case of Shaker sort 
algorithm.

Fig. 13  Time spent by pure simulator-based GA evolution for different array sizes

Table 8  Gain in time (Ratio
time

) 
for different models against 
different array sizes

Prediction Model Array sze 24 Array size 32 Array size 40

ANN 7.8 ± 0.2 14.2 ± 1.6 17.4 ± 2.6
GLM 7.9 ± 0.3 14.8 ± 1.6 17.8 ± 2.6
GPR 7.7 ± 0.3 13.5 ± 1.6 17.6 ± 2.5
SVR 7.8 ± 0.3 13.3 ± 1.6 17.7 ± 2.5



As evident from Tables   9, 10, 11 and 12, it can be concluded that differ-
ent prediction models can perform better than others for different benchmarks. 
Hence, the selection of a prediction model for a benchmark or real-life prob-
lem is very important to obtain good performance for generating good solutions 
(solutions showing highest execution time). Furthermore, prediction models are 
not limited to just four models, presented in this article, and there are variety of 
prediction models available in the literature (Agresti 2013; Vapnik 2000). Con-
sequently, a better understanding of the problem (mapping of input data to exe-
cution time) can lead to an appropriate selection of the prediction model.

Table 9  Percentage deviation 
of the best obtained data point 
from True worst-case execution 
time (benchmark: bubble sort)

Array size Prediction models

ANN GLM GPR SVR

24 7.84 4.62 2.16 5.14
32 6.98 5.51 4.76 5.02
40 3.18 1.98 1.65 1.91

Table 10  Percentage deviation 
of the best obtained data point 
from True worst-case execution 
time (benchmark: insertion sort)

Array size Prediction models

ANN GLM GPR SVR

24 14.93 13.92 15.52 14.54
32 19.00 18.86 16.95 18.73
40 20.17 19.64 18.90 20.12

Table 11  Percentage deviation 
of the best obtained data point 
from True worst-case execution 
time (benchmark: gnome sort)

Array size Prediction models

ANN GLM GPR SVR

24 14.38 15.36 15.95 14.82
32 13.81 17.50 18.19 15.28
40 10.69 10.05 9.62 8.32

Table 12  Percentage deviation 
of the best obtained data point 
from True worst-case execution 
time (benchmark: shaker sort)

Array size Prediction models

ANN GLM GPR SVR

24 8.86 8.22 9.08 8.37
32 15.61 9.65 10.02 10.26
40 9.00 5.75 5.24 5.26



5.7  Limitations and future directions

This study evaluates the performance from the perspectives of prediction accu-
racy, isolated timing, evolution performance, integrated time and data quality. 
However, this section indicates the limitations of the current research and pro-
vides future directions for more focused investigation.

The choice of a prediction model is a factor that needs to be considered here. 
Researchers have previously worked on finding the best choice of prediction mod-
els using Information Theory to optimise the accuracy and complexity (Akaike 
1998; Burnham and Anderson 2004). A best choice prediction model can avoid 
overfitting and generalise beyond the sample data by balancing the model fit 
versus complexity (Myung 2000). Hence, the selection of model for a particu-
lar problem has as an impact on the prediction performance. It is a challenge to 
guarantee a single choice of prediction model which retains the best-quality for 
the entire set of data points or benchmarks. Multiple models were used in previ-
ous works in an effort to improve accuracy and reduce the complexity (Kim et al. 
2019; Zhang and Shen 2019). However, developing the criteria for selection of 
the best-quality prediction model was beyond the scope of this study, and can be 
a worth-investigating area in future.

Although the experimentation in this study is limited to the sorting tasks, the pro-
posed approach is general. However, its application on other benchmarks needs fur-
ther investigations. Another future research direction could be investigation of the 
impact of different hardware platforms and prediction models on the performance 
of the proposed methodology. Similarly, to achieve the best prediction accuracy for 
a given task, the impact of different parametric choices for a prediction model needs 
to be investigated further. For example, tailored training of ANN by changing its 
architecture parameters for a specific task. Moreover, our results show that the time 
gain increases with the increase in the complexity of a task. However, more research 
is needed to make sure that the accuracy is still acceptable.

This article has explored the performance of various prediction models, in a GA-
based temporal verification process, for real-time systems. The employed prediction 
models are Artificial Neural Network, Generalized Linear Regression Model, Gauss-
ian Process Regression Model and Support Vector Regression Model. A cycle-accu-
rate simulator is used to train the model so that the trained model can predict the 
execution time without executing the software. The performance has been explored, 
for various complexities of the problem, in terms of their prediction performance, 
timing performance, evolution performance, integrated timing performance and the 
quality of generated test data. It has been revealed that the time required to generate 
the worst-case execution-time test data has been reduced up to 17.7 times, and the 
accuracy achieved ranges from 79.83% to 98.5% across the used prediction models, 
benchmarks and the investigated complexities of the benchmarks.



Acknowledgements This research was primarily conducted at Science and Technology Unit, Umm Al-
Qura University, Makkah. The first author worked on the revisions while being affiliated with the Uni-
versity of South Australia. We acknowledge the funding support of KACST (King Abdul Aziz City for 
Science and Technology) and NSTIP (National Science Technology, Innovative Plan), Kingdom of Saudi 
Arabia for this project (12-INF2281-10).

References

Abella J, Hernandez C, Quinones E, Cazorla FJ, Conmy PR, Azkarate-askasua M, Jon P, Enrico M, 
Tullio V (2015) WCET analysis methods: pitfalls and challenges on their trustworthiness. In: 
10th IEEE International Symposium on Industrial Embedded Systems, Siegen, Germany, pp 1–5

Agresti A (2013) Categorical Data Analysis, 3rd edn. Wiley, New York, p 744
Akaike H (1998) Information theory and an extension of the maximum likelihood principle. In: 

Selected papers of hirotugu akaike. Springer, pp 199–213
Alghamdi MI, Jiang X, Zhang J, Zhang J, Jiang M, Qin X (2017) Towards two-phase scheduling of 

real-time applications in distributed systems. J Netw Comput Appl 84:109–117
Armaghani DJ, Hasanipanah M, Mahdiyar A, Majid MZ, Anieh HB, Tahir MM (2018) Airblast pre-

diction through a hybrid genetic algorithm-ANN model. Neural Comput Appl 29(9):619–629
Aziz MW, Shah SAB (2015) Test-data generation for testing parallel real-time systems. In: IFIP Inter-

national conference on testing software and systems. Springer, pp 211–223
Bambagini M, Marinoni M, Aydin H, Buttazzo G (2016) Energy-aware scheduling for real-time sys-

tems: a survey. ACM Trans Embed Comput Syst 15(1):1–34
Baruah S, Bertogna M, Buttazzo G (2015) Multiprocessor scheduling for real-time systems. Springer, 

New York
Bate I, Khan U (2011) WCET analysis of modern processors using multi-criteria optimisation. Empir 

Softw Eng 16(1):5–28
Bhandari D, Murthy CA, Pal SK (2012) Variance as a stopping criterion for genetic algorithms with 

Elitist model. Fundam Inform 120(2):145–164
Binkert N, Beckmann B, Black G, Reinhardt SK, Saidi A, Basu A, Hestness J, Hower DR, Krishna T, 

Sardashti S, Sen R, Sewell K, Shoaib M, Vaish N, Hill MD, Wood DA (2011) The gem5 simula-
tor. ACM SIGARCH Comput Archit News 39(2):1–7

Bunte S, Zolda M, Kirner R (2011) Let’s get less optimistic in measurement-based timing analysis. In: 
6th IEEE international symposium on industrial and embedded systems, Vasteras, pp 204–212

Bunte S, Zolda M, Tautschnig M, Kirner R (2011) Improving the confidence in measurement-based 
timing analysis. In: 14th International symposium on object/component/service-oriented real-
time distributed computing. IEEE, pp 144–151

Buret P, Iguchi-Cartigny J, Grimaud G (2014) Genetic algorithm for DWCET evaluation on complex 
platform. In: Proceedings of the 9th IEEE international symposium on industrial embedded sys-
tems, Pisa, pp 1–4

Burnham KP, Anderson DR (2004) Model selection and multi-model inference, vol 63, 2nd edn. 
Springer-Verlag, New York

Butko A, Garibotti R, Ost L, Sassatelli G (2012) Accuracy evaluation of GEM5 simulator system. 
In: 7th International workshop on reconfigurable and communication-centric systems-on-chip 
(ReCoSoC), pp 1–7

Cazorla FJ, Kosmidis L, Mezzetti E, Hernandez C, Abella J, Vardanega T (2019) Probabilistic worst-
case timing analysis: taxonomy and comprehensive survey. ACM Comput Surv 52(1):1–35

Deng N, Tian Y, Zhang C (2012) Support vector machines: optimization based theory, algorithms, 
and extensions. Data Mining and Knowledge Discovery Series. Chapman & Hall/CRC, Taylor & 
Francis, London, p 363

Dharmajee Rao DTV, Ramesh B (2012) Experimental based selection of best sorting algorithm. Int J 
Mod Eng Res 2(4):2908–2912

Fahrmeir L, Tutz G (2013) Multivariate statistical modelling based on generalized linear models. 
Springer Science & Business Media, Berlin, p 426



Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks. 
In: Proceedings of the thirteenth international conference on artificial intelligence and statistics, 
pp 249–256

Gustafsson J, Betts A, Ermedahl A, Lisper B (2010) The Malardalen WCET benchmarks: past, pre-
sent and future. In: International Workshop on Worst-case Execution time Analysis. Brussels, 
Belgium, pp 137–147

Haftka RT, Villanueva D, Chaudhuri A (2016) Parallel surrogate-assisted global optimization with 
expensive functions: a survey. Struct Multidiscip Optim 54(1):3–13

Hagan MT, Menhaj MB (1994) Training feedforward networks with the Marquardt algorithm. IEEE 
Trans Neural Netw 5(6):989–993

Hagan Martin T, Demuth Howard B, Beale Mark H, Jesus Orlando D (2014) Neural Network Design, 
2nd edn. Martin Hagan, Dame

Jain BJ, Pohlheim H, Wegener J (2001) On termination criteria of evolutionary algorithms. In: Pro-
ceedings of the 3rd annual conference on genetic and evolutionary computation. Morgan Kauf-
mann Publishers San Francisco, California, USA, p 768

Kelter T, Falk H, Marwedel P, Chattopadhyay S, choudhury AR (2014) Static analysis of multi-core 
TDMA resource arbitration delays. Real-Time Syst 50(2):185–229

Kim W, Cho W, Choi J, Kim J, Park C, Choo J (2019) A comparison of the effects of data imputation 
methods on model performance. In: 21st international conference on advanced communication 
technology (ICACT). IEEE, pp 592–599

Koopialipoor M, Armaghani DJ, Haghighi M, Ghaleini EN (2019) A neuro-genetic predictive model 
to approximate overbreak induced by drilling and blasting operation in tunnels. Bull Eng Geol 
Environ 78(2):981–990

Kozyrev VP (2016) Estimation of the execution time in real-time systems. Program. Comput. Softw. 
42(1):41–48

Kudjo PK, Ocquaye E, Ametepe W (2017) Review of genetic algorithm and application in software 
testing. Int J Comput Appl 160(2):1–6

Law S, Bate I (2016) Achieving Appropriate test coverage for reliable measurement-based timing 
analysis. In: 28th Euromicro conference on real-time systems (ECRTS), Toulouse, pp 189–199

Moayedi H, Moatamediyan A, Nguyen H, Bui X-N, Bui DT, Rashid AS (2019) Prediction of ultimate 
bearing capacity through various novel evolutionary and neural network models. In: Engineering 
with computers. Springer, pp -17

Myung IJ (2000) The importance of complexity in model selection. J Math Psychol 44(1):190–204
Nélis V, Yomsi PM, Pinho LM (2015) Methodologies for the WCET analysis of parallel applications 

on many-core architectures. In: Proceedings of the 2015 Euromicro conference on digital system 
design, Washington, DC, USA, pp 748–755

Njikam ANS, Zhao H (2016) A novel activation function for multilayer feed-forward neural networks. 
Appl Intell 45(1):75–82

Nwankpa C, Ijomah W, Gachagan A, Marshall S (2018) Activation functions: comparison of trends in 
practice and research for deep learning. In: arXiv preprint arXiv :1811.03378 

Pongcharoen P, Hicks C, Braiden PM, Stewardson DJ (2002) Determining optimum genetic algorithm 
parameters for scheduling the manufacturing and assembly of complex products. Int J Prod Econ 
78(3):311–322

Puschner PP (1999) Real-time performance of sorting algorithms. Real-Time Syst 16(1):63–79
Rapita Systems Ltd. (2017) Rapita verification suite, http://www.rapit asyst ems.com/produ cts/rvs. 

(2017)
Rasmussen CE, Williams CKI (2006) Gaussian processes for machine learning, vol 1. MIT Press, 

Cambridge
Reineke J, Wilhelm R (2016) Static timing analysis: what is special? In: Semantics, Logics, and Cal-

culi, Volume 9560 of the series Lecture Notes in Computer Science, pp 74–87
Rodriguez-Roman D (2018) A surrogate-assisted genetic algorithm for the selection and design of 

highway safety and travel time improvement projects. Saf Sci 103:305–315
Sastry K, Goldberg DE, Kendall G (2014) Genetic algorithms. Springer, Boston, MA, pp 93–117
Sha L, Caccamo M, Mancuso R, Kim J-E, Yoon M-K, Pellizzoni R, Yun H, Kegley RB, Perlman DR, 

Arundale G, Bradford R (2016) Real-Time computing on multicore processors. IEEE Comput 
49(9):69–77

http://arxiv.org/abs/1811.03378
http://www.rapitasystems.com/products/rvs.


Shah SAB, Rashid M, Arif M (2017) A prediction model for measurement-based timing analysis. 
In: Proceedings of 6th ACM International Conference on Software and Computer Applications 
(ICSCA), Thailand, pp 9–14

Smola AJ, Scholkopf B (2004) A tutorial on support vector regression. Stat Comput 14(3):199–222
Srinivas M, Patnaik LM (1994) Adaptive probabilities of crossover and mutation in genetic algo-

rithms. IEEE Trans Syst Man Cybern 24(4):656–667
Surendran A, Samuel P (2016) Evolution or revolution: the critical need in genetic algorithm based 

testing. Artif Intell Rev, pp 1–47
Tracey N, Clark J, McDermid J, Mander K (2002) A search-based automated test-data generation 

framework for safety-critical systems. In: Systems Engineering for Business Process Change, pp 
174–213

Vapnik V (2000) The nature of statistical learning theory, vol 2. Springer-Verlag, New York, p 314
Wegener J, Grimm K, Grochtmann M, Sthamer H, Jones B (1996) Systematic testing of real-time sys-

tems. In: 4th International conference on software testing analysis and review
Wenzel I, Kirner R, Rieder B, Puschner P (2008) Measurement-based timing analysis. In: Interna-

tional symposium on leveraging applications of formal methods, verification and validation. 
Springer, pp 430–444

Zhang P, Shen C (2019) Choice of the number of hidden layers for back propagation neural network 
driven by stock price data and application to price prediction. J Phys 1302(2):022017

Zhang Q, Lin M, Yang LT, Chen Z, Li P (2019) Energy-efficient scheduling for real-time systems 
based on deep Q-learning model. IEEE Trans Sustain Comput 4(1):132–141

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.

Syed Abdul Baqi Shah lives in the beautiful city of Adelaide and 
likes hiking with kangaroos. He was Lecturer at the Science and 
Technology Unit, Umm Al Qura University, Makkah, Kingdom of 
Saudi Arabia. He received a Bachelor of Science in Electronic Engi-
neering from International Islamic University, Pakistan in 2007. He 
completed his Master of Science in Information and Mechatronics 
from Gwnangju Institute of Science and Technology, Republic of 
Korea in 2010. He is pursuing his Ph.D. at the University of South 
Australia as a Commonwealth funded Australian Government 
Research Training Program scholar. His research interests include 
artificial intelligence, embedded systems and real-time systems.

Muhammad Rashid received his Bachelor’s degree in electrical 
engineering from the University of Engineering and Technology, 
Peshawar, Pakistan, in 2000, his Master’s degree in embedded sys-
tems design from the University of Nice, Sophia-Antipolis, France, 
in 2006, and his Ph.D. degree in embedded systems design from the 
University of Bretagne Occidentale, Brest, France, in 2009. He is an 
Assistant Professor with the Computer Engineering Department, 
Umm Al-Qura University, Mecca, Kingdom of Saudi Arabia. Prior 
to joining Umm Al-Qura University, he worked with Thomson 
Research and Development, Paris, France, and the Advanced Engi-
neering Research Organization, Wah Cantt, Pakistan. His research 
interests mainly include electronic design automation for embedded 
systems and engineering education.



Muhammad Arif has done Bachelor of Engineering in 1990 from 
Ned University, Karachi, Pakistan, MS from Quid-e-Azam Univer-
sity, Islamabad, Pakistan in 1993 and Ph.D. in System Information 
Sciences from Tohoku University, Japan in 1999. Currently, he is 
working as Professor in the Department of Computer Science, Col-
lege of Computer and Information systems, Umm Al-Qura Univer-
sity, Kingdom of Saudi Arabia. He has published more than 100 
papers in various journals and conference proceedings. His research 
interests are Intelligent Pattern Recognition, Biometrics, and bio-
medical signal processing.


	Estimating WCET using prediction models to compute fitness function of a genetic algorithm
	Abstract
	1 Introduction
	2 Related work
	2.1 Basic analysis methods
	2.1.1 Static analysis
	2.1.2 Measurement-based analysis methods
	2.1.3 Hybrid methods

	2.2 GA-based techniques for temporal verification
	2.2.1 GA-based temporal testing techniques for real-time systems
	2.2.2 Limitation of existing GA-based techniques
	2.2.3 Prediction models in GA-based solutions

	2.3 Novelty of the proposed approach

	3 Materials and methods
	3.1 Genetic algorithm
	3.2 Prediction models
	3.2.1 Artificial neural network
	3.2.2 Generalized linear regression model
	3.2.3 Gaussian process regression model
	3.2.4 Support vector regression model

	3.3 Training of prediction models
	3.4 Benchmarks

	4 Experimental setup
	4.1 Target architecture and prediction models
	4.2 Parameters for models training and benchmark algorithms
	4.3 Parameters for GA-evolution
	4.4 Stopping criteria for the GA
	4.5 Performance measures

	5 Results and discussion
	5.1 Prediction performance
	5.2 Isolated timing performance
	5.3 Evolution performance
	5.4 Integrated timing performance
	5.5 Data quality performance
	5.6 Changing array size for sorting algorithms
	5.7 Limitations and future directions

	6 Conclusions
	Acknowledgements 
	References




