
IT Professional Published by the IEEE Computer Society XXXX-XXXX© 2019 IEEE

A process model for Service-Oriented

Development of Embedded Software

Systems

Muhammad Waqar Aziz

Department of Computer Science, CECOS University of IT

and Emerging Sciences, Peshawar, 25000, Pakistan

Najeeb Ullah

Department of Computer Science, CECOS University of IT

and Emerging Sciences, Peshawar, 25000, Pakistan

Muhammad Rashid

Department of Computer Engineering, College of

Computer and Information Systems, Umm Al-

Qura University, Makkah, 21955, Saudi Arabia

Abstract—The concepts of Service-Oriented Computing (SOC) have previously been used in the embedded

systems domain, mostly at the device level in ad hoc manners to achieve advantages of device integration.

However, SOC has not been used for the development of embedded software systems (ESS), i.e., software

controlling the embedded devices. The lack of attention devoted to the application of SOC concepts during

the analysis and design of ESS not only hampers the benefits of adopting SOC but also reduces the overall

quality of these systems. To fill this gap, a process model is proposed in this paper that allows the

systematic development of embedded software systems based on SOC concepts. The proposed process

consists of analysis and design phases of embedded software development. The analysis phase is concerned

with the collection of system information and preparation for the system design. Based on this, the service-

based software architecture is developed in the design phase. The effectiveness of the proposed process

model is demonstrated through its application in the Smart Home case study. Experimental results show

that the proposed process can reduce coupling and improve cohesion in the software design and, thus,

contribute to improving the overall quality of the ESS.

 AN EMBEDDED SYSTEM is a specialized

computing system, which performs a specific function

and works as a part of a larger system. Unlike general-

purpose computers, embedded systems usually have

limited physical resources and have to work under

tight timing constraints [1]. The use of embedded

systems is increasing in different domains such as

aerospace, building and environmental control, critical

infrastructure, process control, factory automation,

health care and so on [2]. Although an embedded

system may roughly be divided into hardware and

software parts, the amount of the software in these

systems is increasing faster than Moore’s law [1]. To

control the embedded systems, hardware components

are being increasingly replaced by software systems.

Consequently, the application of established software

engineering practices is needed to cope with the

increasing complexity of these software-based

Department: Head

Editor: Name, xxxx@email

Department Head

2 IT professional

embedded systems. In this context, researchers have

been investigating several software engineering

paradigms, such as Model-Based Software

Engineering (MBSE), Component-Based Software

Engineering (CBSE) and Service-Oriented Computing

(SOC), for embedded system development [3].

SOC [4] provides several advantages over other

paradigms, which reduce the development complexity.

For example, SOC provides a higher level of

abstraction, enhanced reusability of code, loose

coupling, autonomy and dynamic reconfiguration [4].

In the embedded system domain, the capabilities of

physical entities can be wrapped as services to enable

the use of SOC concepts [5]. By providing a logical

service-based view of physical devices, SOC can offer

numerous benefits, such as an adaptation of a unifying

technology for all levels of the enterprise (from

sensors/actuators to enterprise business processes) [6],

integration of resources from different levels [7],

replacing traditional vendor-specific solutions with

popular open standards [8]. Based on SOC,

Microservices has recently emerged as an

architectural style that fits perfectly well with the use

of cloud technology and infrastructure [33].

Microservices style allows engineering new software

applications using a set of autonomous small services,

which interoperates through message-based

communication. It creates an application into a set of

conserving and easy-to-test, loosely coupled, reliable

units organized around the business features.

SOC concepts have been previously used in embedded

systems domain at the device-level in ad hoc manners

without any focus on software analysis and design [5,

6, 7, 8]. Consequently, not only the software related

issues such as maintainability and reuse are

compromised, but it may also hamper the benefits of

SOC adoption in this domain. Microservices, in

particular, has not previously been used in the analysis

and design of ESS to the best of authors’ knowledge.

The aim of this research work is to systematically

develop embedded software systems using

microservices. This article presents a service-oriented

process model for developing embedded software

systems (SOPES). The proposed process model

provides descriptive guidance for the systematic

development of embedded software systems solely in

terms of software services. To be precise, SOPES

defines the analysis and design phases of the

development of ESS, based on the features and

concepts of microservices. The analysis phase deals

with the identification of the group of services to be

built, whereas the design phase is mainly concerned

with building the software architecture using the

identified services.

The applicability of the proposed process model is

demonstrated via the Smart Home case study. The

MBSE [9] approach is followed for accomplishing

platform-independent development to reduce the

amount of reengineering required by the fast-changing

hardware. MBSE allows the development of a system

using abstract models [10, 11]. Similarly, SOPES

allows the development of high-level design models

of ESS, which can be transformed into low-level

models and executable code for a specific platform.

The details of model transformation and code

generation are considered outside the scope of this

article. Since service is treated as an “analysis and

design concept” in this work, it is intended that

SOPES would produce high-quality software systems

compare to the ad hoc use of SOC concepts in

embedded systems domain. In addition, the definition

of systematic analysis and design process and

following the MBSE practice would reduce the

development complexity of embedded systems.

The remainder of this article is organized as follows:

The next section presents a review of different

methods used for embedded systems development.

Section 3 explains the proposed SOPES and its

phases, which is followed by the application of

SOPES in Section 4. The results and discussion are

provided in Section 5, followed by the conclusion in

the last section.

2 RELATED WORK

The development of embedded software is complex

and different from enterprise software development

due to the specialized characteristics of embedded

systems, e.g., hard to change, safety, long operation

required, short time-to-market, work in real-time and

resource-constrained in terms of memory, bandwidth

and power. Furthermore, in recent years the increasing

shift of functionality and complexity from hardware to

software, have made embedded software development

as one of the biggest challenges in the embedded

systems domain. As a consequence, a lot of research

has been carried for engineering of these software

systems. Based on the software development

approaches used, we have classified existing methods

as component-based, model-driven and service-

oriented methods.

With respect to CBSE, some component technologies

for embedded systems exist for quite a long time, such

July/August 2019 3

as PECOS, Koala, and ROBOCOB [12]. There also

exist some component models for embedded systems

development, such as ProCom (PROGRESS

Component model) [13], SOFA HI [14] and BlueArX

[15]. ProCom addresses explicit separation of

concerns at different levels of granularity. SOFA HI,

an extension of SOFA 2 component model, is targeted

at high integrity real-time embedded systems. SOFA 2

is an advance distributed component system that

provides complete support for all the stages of

application development and deployment [12].

BlueArX has been developed for the traditional

automotive domain that focuses on design time

component models to support resource constraints and

non-functional requirements. This also provides

different views of a developed system [12].

Regarding model-driven development, Harmony/

ESWTM [16] is an effective MBSE process for the

development of embedded real-time applications.

Harmony is an incremental development process,

consisting of analysis and design phases. Besides

providing several advantages, the Harmony process is

focused on solving the process and management

issues of embedded real-time system development and

does not provide the advantages offered by SOC.

Similarly, the UML MARTE profile [17] is proposed

as model-based description method of embedded real-

time systems. MARTE provides support for modeling

of time, resources, NFP and concepts for software and

hardware resources. Some other research works on

model-driven development for embedded systems are

also based on UML, for instance [18].

Both CBSE and MBSE approaches lack in providing

features like loose coupling, automatic discovery and

dynamic composition that SOC provides.

Additionally, SOC offers other advantages that are

missing from the previous development paradigms,

such as, commonality of functionality among several

clients, publish/discover paradigm, dynamic

composition, and exchange of documents between

services. Due to providing these advantages, SOC has

been applied in embedded systems development [8,

19, 20], for producing intelligent manufacturing

systems [5, 6, 7, 21] and in developing robotic

systems [22]. Additionally, SOC has been used in

several European research projects related to industry

automation, such as SIRENA [23] and SOCRADES

[24]. But, in all of these works, service is used as an

implementation concept either to achieve the

interoperability between the devices or integrating

devices with the enterprise software.

Despite a large number of studies on using SOC in the

embedded domain, very few have a focus on

proposing a systematic process for service-oriented

development of embedded systems. Ermagan et al.

[25] presented a systematic software development

process for service-oriented development of

distributed embedded systems. Although service is

considered as a first-class modeling concept in [25], it

is defined as the interaction between the entities.

Moreover, the process depends on the underlying

component model for architecture deployment. A

service model is used just to abstract the underlying

component model. Finally, the process is supposed to

be for software engineering in the automotive domain

only. More recently, a software process for designing

software architectures of service-oriented robotic

systems is presented [22]. Yet, all the phases of the

process target the development of software

architecture for robotic systems. It would be difficult

to apply the process to other types of embedded

software systems.

Due to this gap produced by the lack of a systematic

service-oriented process model, the embedded

systems have been developed in an ad hoc manner.

Therefore, a systematic process for service-oriented

development of embedded software systems is still

necessary and can potentially contribute to the

embedded systems domain.

3 PROPOSED PROCESS MODEL

SOPES is a systematic process that allows the service-

oriented development of embedded software systems.

In this research, an embedded system is treated as a

system composed of a variety of physical entities

(called devices in this article) providing diverse

functionalities. These device functionalities are

wrapped (and hence termed) as services, to enable the

use of SOC technologies. The proposed process

consists of two phases to explicitly consider the

analysis and design of the embedded software. The

analysis phase allows identifying the embedded

devices, the services they provide and their

interactions. In design phase using the identified

services the software architecture is built. The details

of these phases are provided as follow:

3.1 Analysis Phase

The analysis phase comprises of the following

activities, as shown in Figure 1.

Department Head

4 IT professional

Figure 1. Activities and products of analysis phase

(left) and design phase (right) of SOPES

SOPES-A 1.1 – Device Identification: All the devices

(and their components) present in the system are

identified, whether they are providing or using the

service(s) or both.

SOPES-A 1.2 – Usage scenario definition: The usage

scenarios of the devices are defined where each

scenario describes the interaction among the physical

entities involved in the usage. The usage scenarios

further specify the order (workflow) in which the

activities would take place.

SOPES-A 1.3 – Service Identification: The services

provided by the devices are identified using the

service identification guideline for embedded systems

[26]. The guideline provides profound descriptions of

identifying the services in embedded systems. The

output of this activity is the list of the identified

services. The resulting identified services not only

portray the devices’ functionalities in terms of

services but also classify them into atomic and

composite types. An atomic service represents a basic

functionality, which can be combined with other

services to build a composite service.

SOPES-A 1.4 – Service Interface Identification: In

this activity, inputs and outputs of the service internal

operations are identified to specify its behavior. In

addition, the requirements of devices that need to be

fulfilled for executing a process (Preconditions) and

the results obtained after process execution (Effects)

are recorded. A service interface is defined in terms of

Inputs, Outputs, Pre-Conditions, and Effects (IOPE)

of the service.

3.2 Design Phase

The design phase of SOPES is aimed at producing the

software architecture of ESS. This software

architecture is basically a Platform Independent

Model – in MBSE jargon, which does not concern

with the platform-specific details. Thus, the focus of

development shifts to function-based instead of code-

based engineering. This phase comprises of the

following activities.

SOPES-D 2.1 – Developing Software Architecture:

The software architecture is developed using the

services identified in the analysis phase. This

development follows the Domain-Specific Modeling

Language (DSML) for cyber-physical systems [28]

that provides the means to model the structure and

behavior of embedded systems in terms of SOC

concepts. In addition, DSML also allows the modeling

of temporal and other quality of service

characteristics. This DSML is defined formally in

terms of a meta-model and implemented as a UML

profile [29]. In this way, it allows using the existing

UML tools to develop the software architecture.

SOPES-D 2.2 – Multiple Level Modeling: The

software architecture (abstract high-level model) of

the ESS can be detailed into low-level design models

using the multiple levels of abstraction modeling for

embedded systems [30]. The multiple levels consist of

four types of models: Device-Level Design Model

(representing a set of interacting devices only),

Service-Level Model (highlighting the services and

their providers), Interface-Level Model (show the

interfaces of the provided services) and Service-Detail

Model (displaying the elements of the service) [30].

This level-by-level modeling simplifies the design of

embedded systems, as only the relevant information is

exposed at a particular level and reduces the design

complexity by representing the system at different

levels of abstraction.

SOPES-D 2.3 – Static Composition Modeling: Service

composition is a process where different services are

combined together to build a more value-added

complex service [4]. Although service composition is

a vast research topic on its own, SOPES facilitates the

modeling of the static composition just to provide

completeness towards the SOC concepts.

In static composition, the participating services, their

providers and the workflow of activities are known

and based on which atomic services are composed

together at the design time [4]. In SOPES, static

composition can be modeled based on the usage

scenarios of the devices, as defined in the analysis

phase. The atomic services can be composed together

using these usage scenarios and workflows at the

design time. The entire composition process can be

modeled using the service-oriented design models for

embedded systems [30]. Dynamic service composition

July/August 2019 5

is performed at run-time, which is beyond the analysis

and design scope of SOPES.

4 SOPES APPLICATION IN SMART HOME

The Smart Home case study is used, in this work, as

smart homes have emerged as a focused application

area of embedded systems [31]. The case study

consists of heterogeneous embedded devices

distributed across a home, which communicate in real-

time (having hard and soft temporal requirements).

The devices used in the case study were limited to a

certain number in order to have a better understanding

of service-oriented concepts in general and the

proposed approach in particular. The devices include

white goods, consumer electronics, building

automation, and environmental sensors. Each device

in the case study has a built-in micro-controller, flash

program memory, and internal Random Access

Memory (RAM). Most of the actions in the case study

are event-based and involve human interaction.

4.1 Analysis Phase

During this phase, the communicating devices in the

Smart Home and their processes were identified. The

following services were identified by applying the

service identification guideline [26].

 Device Services: Telephone

 Composite Services: Cooking, Food order,

Check Food, Temperature control

 Functional Services: LowHigh Volume,

LowHigh Light, Display, Read cooking

Instructions, Weight Food item, Place Order,

Read expiry date, Check Temperature, LowHigh

Temperature

 External Service: Order Processing and

 Application Services: Send SMS, Send e-mail

The service interfaces were defined in terms of IOPE

of the services. Table 1 presents the inputs and

outputs of each of the identified services. Similarly,

the preconditions and effects of each service were

identified and recorded (as tabulated in Table 2).

4.2 Design Phase

The design models (software architecture and low-

level models) for the Smart Home were developed

using the UML tool Papyrus [32]. The Smart Home

structural model is presented in Figure 2, where the

service design model clearly distinguishes the

composite services.

Contrary to the ad hoc approach, our proposed method

SOPES is a systematic approach. The proposed

approach, using autonomous service identification and

better utilization of service-oriented concepts, helps in

attaining loose coupling. With the help of our

proposed approach SOPES quality attributes are

incorporated in the software. For instance, low

coupling among services and among service

operations are obtained, when SOPES is used.

Because of the loose coupling more service cohesion

is achieved. Consequently maintainability of the

system will be improved. Furthermore, the special

attention given to service identification process (step-

by-step service identification guideline) in SOPES

helps in attaining low complexity. The reason behind

this is the low number of services (as more services

mean more complex system). Hence portability of the

system will be enhanced. Thus, our proposed

approach helps in developing better quality system as

compared to the ad hoc approaches. The proposed

approach may help practitioners in saving a lot of re

work, efforts and resources.

Table 1. Inputs/Outputs of the identified services.

Service Inputs Outputs

Low Light Intensity Level -

High Light Intensity Level -

Low Volume Volume Level -

High Volume Volume Level -

Display Text Text -

Read RFID Tag - Cooking
Instructions

Cook Food Cooking
Instructions

Food Ready
Message

Send SMS Food Ready
Message

-

Display Teletext Food Ready
Message

-

Weight Food
Item

- Food Weight

Order Item Code;
Quantity

Receipt

Read Expiry
Date

- Expiry Date

Low
Temperature

Temperature Level -

High
Temperature

Temperature Level -

Department Head

6 IT professional

Table 2. Pre-condition/Effects of the identified

services.

Service Inputs Outputs

Low Light Light = ON ; Input
intensity level <
current intensity level

current intensity
level = Input
intensity level

High Light Light = ON ; Input
intensity level >
current intensity level

current intensity
level = Input
intensity level

Low Volume TV = ON ; Input
volume level < current
volume level

current volume
level = Input
volume level

High Volume TV = ON ; Input
volume level > current
volume level

current volume
level = Input
volume level

Display Text TV = ON Text displayed

Read RFID
Tag

Oven = ON ; Food
item at proper place-

RFID tag read
Instructions

Cook Food Oven = ON ;
Temperature set
according to cooking
instruction

Food Ready
Message

Send SMS Food is cooked SMS send

Display
Teletext

Food is cooked Text displayed

Weight Food
Item

Fridge = ON ; Weight
machine is working ;
Food item on weight
machine

Food item
weighted

Order User acceptance Order placed

Read Expiry
Date

Fridge = ON ; Food
item at proper place

Expiry date read

Send SMS Expiry date = current
date + 7

SMS send

Low
Temperature

AC = ON ; Input
temperature < current
Temperature

Current
Temperature =
Input temperature

High
Temperature

AC = ON ; Input
temperature > current
Temperature

Current
Temperature =
Input temperature

5 CONCLUSION

The amount of software and its development

complexity is increasing in embedded systems. To

handle this, a systematic process model for the

development of embedded software systems is

presented in this paper. The proposed process model

(termed as SOPES) is based on service-oriented

computing concepts. SOPES defines the analysis and

design phases of software development in a systematic

way, with details of activities involved. By using the

service concept at system analysis and design level, it

is intended that more benefits of service-oriented

computing would be achieved, compared to its use at

the device level in ad hoc manners only. This would

lead to producing high quality embedded software

systems.

On the other side, the systematic definition of the

analysis and design phases would streamline the

development of embedded software systems and thus

would reduce the development complexity. This

eventually would increase the productivity of

embedded systems and reduce the time-to-market and

the development cost. Although the applicability of

the proposed process model was demonstrated in the

smart home case study to check the soundness of the

presented concepts, it is general enough to be applied

to the development of any embedded software system.

In the future, it is planned to apply SOPES for the

development of more complex embedded systems.

 REFERENCES
1. Oshana R, Software Engineering of Embedded and

Real-Time Systems: Elsevier, 2013.
2. Rajkumar R, Lee I, Sha L, and Stankovic J. “Cyber-

physical systems: The next computing revolution,” 47th
ACM/IEEE Design Automation Conference (DAC), pp.
731–736, 2010.

3. Vyatkin V. “Software engineering in industrial automation:

State-of-the-art review,” IEEE Transactions on Industrial

Informatics, vol. 9, no. 3, pp. 1234–1249, 2013.

4. Erl T. Service-Oriented Architecture: Concepts,
Technology, and Design: Prentice Hall PTR, Upper
Saddle River, NJ, USA, 2005.

5. Jammes F, Smit H. “Service-oriented paradigms in industrial

automation,” IEEE Transactions on Industrial Informatics,

vol. 1, no. 1, pp. 62–70, 2005.

6. Cannata A, Gerosa M, and Taisch M. “A Technology
Roadmap on SOA for smart embedded devices:
Towards intelligent systems in manufacturing,” IEEE
International Conference on Industrial Engineering and
Engineering Management (IEEM), Singapore, pp. 762-
767, 8-11 December, 2008.

7. Mendes J M, Bepperling A, Pinto J. Leitão P, Restivo
F, and Colombo A W. “Software Methodologies for the
Engineering of Service-Oriented Industrial Automation:
The Continuum Project,” 33rd Annual IEEE
International Computer Software and Applications
Conference (COMPSAC '09), Seattle, Washington, pp.
452-459, 20-24 July, 2009.

July/August 2019 7

Figure 2. High-level model of embedded software system for Smart Home

8. Shopov M P, Matev H, and Spasov G V. “Evaluation of

Web Services Implementation for ARM-Based
Embedded System,” Proceedings of ELECTRONICS
’07. 19-21 September. Sozopol, Bulgaria, pp. 79-84,
2007

9. Beydeda S, and Book M. Model-driven software

development, vol. 15. Heidelberg: Springer, 2005.
10. Herrera F, Posadas H, Peñil P, Villar E, Ferrero F, Valencia

R, and Palermo G. “The COMPLEX methodology for
UML/MARTE Modeling and design space exploration of

embedded systems,” Journal of Systems Architecture, vol.

60, no. 1, pp. 55-78, January 2014.
11. Rashid M, Anwar M W, and Khan A M. “Towards the

Tools Selection in Model Based System Engineering for

Embedded Systems-A Systematic Literature Review,”

Journal of Systems and Software, vol. 106, pp. 150-163,
August 2015.

12. Hošek P, Pop T, Bureš T, Hnětynka P, Malohlava M.

Comparison of Component Frameworks for Real-Time

Embedded Systems. In Component-Based Software
Engineering 6092, Grunske L, Reussner R, Plasil F (Eds.),

Berlin, Heidelberg: Springer, 2010, pp. 21-36.

13. Bures T, Carlson J, Crnkovic I, Sentilles S, and Vulgarakis

A. ProCom - the Progress Component Model Reference
Manual: Mälardalen Real-Time Research Centre,

Mälardalen University, June 2008.

14. Prochazka M, Ward R, Tuma P, Hnetynka P, and
Adamek J. “A component-oriented framework for
spacecraft on-board software,” Proceedings of the
Data Systems In Aerospace, DASIA. Noordwijk,
Netherlands, August 2008.

15. Kim J E, Rogalla O, Kramer S, and Hamann A.
“Extracting, specifying and predicting software system
properties in component based real-time embedded
software development,” 31st International Conference
on Software Engineering - Companion Volume (ICSE),
Vancouver, BC, pp. 28-38, 16-24 May 2009.

16. Douglass B P. Real-Time Agility: The Harmony/ESW
Method for Real-Time and Embedded Systems
Development (1st ed.): Prentice Hall, 2009.

17. OMG. UML Profile for MARTE: Modeling and Analysis of

Real-Time Embedded Systems (Vol. 1.0): Object
Management Group, Inc. 2009.

18. Ito K, Matsuura S. “Model driven development for
embedded systems,” Proceedings of the 9th WSEAS
international conference on Software engineering,

parallel and distributed systems, Cambridge, UK, pp.
102-108, 20-22 February 2010.

19. Hoang D D, Paik H-Y, Kim C-K. “Service-Oriented

Middleware Architectures for Cyber-Physical Systems,”
International Journal of Computer Science and Network

Security, vol. 12, no. 1, pp. 79-87, 2012.

20. Rodrigues D, de Melo Pires R, Estrella J C, Marconato
E A, Trindade O, Branco K R L J C. “Using SOA in
Critical-Embedded Systems,” International Conference
on Internet of Things and 4th International Conference
on Cyber, Physical and Social Computing
(iThings/CPSCom), Dalian, pp. 733-738, 19-22
October 2011.

21. Giret A, Garcia E, Botti V. “An engineering framework for

service-oriented intelligent manufacturing systems,”

Computers in Industry, vol. 81, pp. 116-127, 2016.

22. Oliveira L B R, Leroux E, Felizardo K R, Oquendo F,

Nakagawa E Y. ArchSORS: A Software Process for
Designing Software Architectures of Service-Oriented

Robotic Systems. The Computer Journal, 2017, 1-19.

23. Jammes F, and Smit H. “Service-oriented architectures
for devices – the SIRENA view,” 3rd IEEE International
Conference on Industrial Informatics (INDIN '05),
Perth, Australia, pp. 140-147, 10-12 August 2005.

24. Cannata A, Gerosa M, and Taisch M. “SOCRADES: A
framework for developing intelligent systems in
manufacturing,” IEEE International Conference on
Industrial Engineering and Engineering Management
(IEEM), Singapore, pp. 1904-1908, 8-11 December
2008.

25. Ermagan V, Huang T-J, Krüger I, Meisinger M,
Menarini M, and Moorthy P. “Towards Tool Support for
Service-Oriented Development of Embedded
Automotive Systems,” Proceedings of the Dagstuhl
Workshop on Model-Based Development of Embedded
Systems (MBEES), Schloss Dagstuhl, Germany, 15-18
January 2007.

26. Mohamad R, Aziz M, Jawawi D N, et al. “Service

identification guideline for developing distributed embedded
real-time systems,” IET Software, vol. 6, no. 1, pp. 74–82,

2012.

27. Aziz M W. “Service-oriented layered architecture for smart

home,” International Journal of Smart Home, vol. 7, no. 6,
pp. 409–418, 2013.

28. Aziz M W, Rashid M. “Domain Specific Modeling
Language for Cyber Physical Systems,” IEEE
International Conference on Information Systems

Department Head

8 IT professional

Engineering (ICISE), Los Angeles, CA, pp. 29-33, April
2016.

29. Muhammad W A, Radziah M, Dayang N A J.
“SOA4DERTS: A Service-Oriented UML profile for
Distributed Embedded Real-Time Systems,” IEEE
Symposium on Computers & Informatics (ISCI), pp.64-
69, 18-20 March 2012.

30. Aziz M W, Mohamad R, Jawawi D N. “Multiple levels of

abstraction modeling for service-oriented distributed

embedded real-time software design,” Informatics

Engineering and Information Science, Springer, 2011, pp.
517–528.

31. Balta-Ozkan N, Amerighi O, Boteler B. “A comparison of

consumer perceptions towards smart homes in the UK,

Germany and Italy: reflections for policy and future

research,” Technol. Anal. Strat. Manag. 26, 2014, 1176–

1195. http://dx.doi.org/10.1080/

 09537325.2014.975788.
32. Gérard S, Dumoulin C, Tessier P, Selic B. “Papyrus: A

UML2 Tool for Domain-Specific Language Modeling,”

Model-Based Engineering of Embedded Real-Time Systems,
LNCS: Springer, 2010, pp. 361-368.

33. Nadareishvili I., Mitra R., McLarty M., & Amundsen M.
Microservice architecture: aligning principles, practices,
and culture. O'Reilly Media, Inc. 2016.

Muhammad Waqar Aziz is Associate Professor at

CECOS University of IT and Emerging Sciences,

Pakistan. He received his Ph.D. (Computer Science) from

Universiti Teknologi Malaysia in 2013, MS-Software

Engineering from City University of Science and

Technology in 2009 and MSc-Computer Science from

University of Peshawar in 2001. Previously, he has

worked in Umm Al-Qura University, Saudi Arabia for

more than three years, where he was involved in different

research projects and successfully completed them.

Before that, he has almost eight years of teaching

experience as Lecturer at Institute of Management

Studies, University of Peshawar. He published more than

20 research articles in indexed and well reputed journals

and Conference Proceedings. The research areas of his

interest are Real-Time Systems and Smart Environments.

Contact him at waqar@cecos.edu.pk.

