

Course Specification (Bachelor)

Course Title: Ordinary differential equations
Course Code: MTH1201
Program: BSc. in Mathematics
Department: Mathematics
College: Al-Qunfudah University College
Institution: Umm Al-Qura University
Version: 2
Last Revision Date: 17/07/2024

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods	4
C. Course Content	5
D. Students Assessment Activities	5
E. Learning Resources and Facilities	6
F. Assessment of Course Quality	6
G. Specification Approval	7

A. General information about the course:

1. Course Identification

1. Credit hours: (4)

2. Course type

Α.	□University	□College	🛛 Depar	rtment	□Track	□Others
Β.	🛛 Required			□Electi	ve	
3. Level/year at which this course is offered: (1/1)						

4. Course general Description:

Differential equations are an important branch of mathematics. They have a rich mathematical Formalization, as well as a very successful history of being applied to important problems in physics, chemistry, engineering, and biology. This course will introduce primarily linear, first and second order differential equations. Solution techniques for such equations will be presented. The application of Laplace transforms to differential equations will be introduced.

5. Pre-requirements for this course (if any):

6. Pre-requirements for this course (if any):

7. Course Main Objective(s):

The course objective is to achieve an elementary knowledge of ordinary differential equations and to become more familiar with rigorous proofs in analysis. The objectives are summarized mainly in the competence in solving linear differential equations, employing different techniques namely integrating factors, substitution, and variation of parameters and reduction of order.

2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	4	100 %
2	E-learning	0	0
3	HybridTraditional classroomE-learning	0	0

No	Mode of Instruction	Contact Hours	Percentage
4	Distance learning	0	0

3. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	36
2.	Laboratory/Studio	0
3.	Field	0
4.	Tutorial	0
5.	Others (Exam, Quizzes, Activities)	4
Total		40

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowled	dge and und	erstanding	
1.1	Identify linear and nonlinear equations	K1, K5	Lecture and Tutorials	Exams, quizzes
1.2	Examine higher order differential equations	K3, K5	Lecture and Tutorials	Exams, quizzes
1.3	Present an account of basic concepts and definitions for differential equations	K1, K3, K5	Lecture and Tutorials	Exams, quizzes
1.4	Describe exact equations and its solutions	K1, K3	Lecture and Tutorials	Exams, quizzes
2.0		Skills		
2.1	Compare the methods of solution developed in higher order and solution in second/first order equations	<i>S1, S5</i>	Lecture and Tutorials	Exams, quizzes
2.2	Use methods for obtaining exact solutions of linear homogeneous and nonhomogeneous differential equations	S3, S5, S9	Lecture and Tutorials	Exams, quizzes
2.3	Apply elementary Laplace transform techniques	<i>S3, S5</i>	Lecture and Tutorials	Exams, quizzes
3.0	Values, autonomy, and responsibility			

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
3.1	Prepare for success in disciplines which rely on differential equations, and in more advanced mathematics which incorporate these topics, such as Partial Differential Equations	V2	Lecture/ Individual or group work	Exams, quizzes
3.2	Interpret graphical and qualitative representations of solutions to problems	V4	Lecture/ Individual or group work	Exams, quizzes
3.3	Evaluate fundamental concepts of differential equations, and the interrelationship between differential equations and linear algebra	V2, V4	Lecture/ Individual or group work	Exams, quizzes
3.4	Generalize mathematical concepts in problem-solving through integration of new material and modeling	V4	Lecture/ Individual or group work	Exams, quizzes

C. Course Content

No	List of Topics	Contact Hours
1.	Definition of a differential equation: degree and order. Elimination of arbitrary constants	2
2.	First Order Differential Equations: Existence theorem, separation of variables, homogeneous equations, exact equations, linear equations, method of integrating factors, non-exact equations and Bernoulli equation.	12
3.	Homogeneous higher order linear Equations with constant coefficients	8
4.	Non-homogeneous linear Equations: undetermined coefficients, variation of parameters, Inverse differential operator	10
5.	The Laplace Transform	8
	Total	40

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Midterm exam	6th	30 %
2.	Quizzes and homework's	During semester	20 %
3.	Final exam	End of semester	50 %

*Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	 Elementary Differential Equations, 8th edition, 1997, Earl D.Rainville, Phillip E. Bedient William E. Boyce and Richard C. DiPrima: Elementary Differential Equations and Boundary Value Problems, 10th edition.
Supportive References	Polking, Boggess and Arnold, Differential Equations with BoundaryValue Problems, second edition, Pearson Prentice-Hall
Electronic Materials	None
Other Learning Materials	None

2. Required Facilities and equipment

Items	Resources
facilities	Classrooms
(Classrooms, laboratories, exhibition rooms,	
simulation rooms, etc.)	
Technology equipment	Data Show, Smart Board
(projector, smart board, software)	
Other equipment	None
(depending on the nature of the specialty)	

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Students	Courses Assessment survey
Effectiveness of Students assessment		Courses Assessment survey
Quality of learning resources	Students	Courses Assessment survey
The extent to which CLOs have been achieved	Faculty Member	Post-Rubric and Course report
Periodically reviewing course effectiveness and planning for improvement	Course committee	Annual report

Assessors (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods (Direct, Indirect)

G. Specification Approval		
COUNCIL /COMMITTEE	Curriculum Committees	
REFERENCE NO.	1	
DATE	17/07/2024	

