

Course Specification (Bachelor)

Course Title: Multivariable Calculus
Course Code: MTH2104
Program: BSc. in Mathematics
Department: Mathematics
College: Al-Qunfudah University College
Institution: Umm Al-Qura University
Version: 2
Last Revision Date: 17/07/2024

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods	4
C. Course Content	5
D. Students Assessment Activities	5
E. Learning Resources and Facilities	5
F. Assessment of Course Quality	6
G. Specification Approval	6

A. General information about the course:

1. Course Identification

1. Credit hours: (3)

2. Course type

Α.	□University	□College	⊠ Department	□Track	□Others
В.	🛛 Required		□Elect	ive	
3. Level/year at which this course is offered: (4/2)					

4. Course general Description:

Multivariable calculus is the fourth and the final part of the standard three-semester calculus sequence. It represent the extension of calculus in one variable to calculus with functions of several variables. This course treats topics related to differential calculus in several variables, integration in several variables. Multivariable calculus has many applications in various areas such as pure mathematics, engineering and physics.

5. Pre-requirements for this course (if any): MTH1103-4

6. Pre-requirements for this course (if any):

7. Course Main Objective(s):

The aim of this course is to provide students with fundamental concepts and techniques of multivariable calculus and to develop student understanding and skills for its applications to other areas.

2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	4	100 %
2	E-learning	0	0
	Hybrid		
3	Traditional classroom	0	0
	• E-learning		
4	Distance learning	0	0

3. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	36
2.	Laboratory/Studio	0
3.	Field	0
4.	Tutorial	0
5.	Others (Exam, Quizzes, Activities)	4
Total		40

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knov	vledge and und	erstanding	
1.1	Recognize mathematical formulas and methods of derivation of multivariable functions.	K3, K5	Lecture and Tutorials	Exams, quizzes
1.2	State the integration techniques to calculate multiple integrals in different coordinate systems	K1, K3	Lecture and Tutorials	Exams, quizzes
2.0	Skills			
2.1	Perform differential calculus operations on functions of several variables including continuity, partial derivatives and directional derivatives.	<i>S1, S3,S6,S7</i>	Lecture and Tutorials	Exams, quizzes
2.2	Estimate multiple integrals in different coordinate systems including Cartesian, polar, cylindrical and spherical coordinates.	S5, S9	Lecture and Tutorials	Exams, quizzes
3.0	Values, a	autonomy, and	responsibility	
3.1	Apply the computational and conceptual principles of calculus to the solutions of various scientific applications.	V2	Lecture/ Individual or group work	Exams, quizzes

No	List of Topics	Contact Hours
1.	The Derivative in n-space:- Functions of several variables Partial Derivatives- Limits and continuity- Differentiability- Directional Derivatives- The Chain rule- Tangent planes Approximations- Maxima and minima- Lagrange's method	17
2.	The integral in n-space:- Double integrals over rectangles- Double integrals over nonrectangular regions- Double integrals in polar coordinates- Surface area- Triple integrals in Cartesian, cylindrical and spherical coordinates	17
3.	Others Preprimaries, Quizzes, Activities	6
	Total	40

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Midterm exam	6th	30 %
2.	Quizzes and homework's	During semester	20 %
3.	Final exam	End of semester	50 %

*Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	Calculus with analytic geometry (7th Edition), Edwin J. Purcell, and Dale E. Varberg, Prentice Hall (1998).
Supportive References	Advanced engineering mathematics, Stanley I. Grossman, and William R. Derrick, Harper and Row, New York (1988).
Electronic Materials	None
Other Learning Materials	None

2. Required Facilities and equipment

Items	Resources
facilities	Classrooms
(Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	
Technology equipment	Data Show, Smart Board
(projector, smart board, software)	
Other equipment	None
(depending on the nature of the specialty)	

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Students	Courses Assessment survey
Effectiveness of Students assessment		Courses Assessment survey
Quality of learning resources	Students	Courses Assessment survey
The extent to which CLOs have been achieved	Faculty Member	Post-Rubric and Course report
Periodically reviewing course effectiveness and planning for improvement	Course committee	Annual report

Assessors (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods (Direct, Indirect)

G. Specification Approval

COUNCIL /COMMITTEE	Curriculum Committees
REFERENCE NO.	1
DATE	17/07/2024

