

Course Specification (Bachelor)

Course Title: Foundations of Mathematics
Course Code: MTH1201
Program: BSc. in Mathematics
Department: Mathematics
College: Al-Qunfudah University College
Institution: Umm Al-Qura University
Version: 2
Last Revision Date: 17/07/2024

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods	4
C. Course Content	5
D. Students Assessment Activities	6
E. Learning Resources and Facilities	6
F. Assessment of Course Quality	7
G. Specification Approval	7

A. General information about the course:

1. Course Identification

1. Credit hours: (4)

2. Course type

3. Level/year at which this course is offered: (1/1)							
В.	🖾 Required			□Electi	ive		
Α.	□University	□College	🛛 Depa	rtment	□Track	□Others	

4. Course general Description:

Mathematics is closely related to the details and activities of human daily life and activities. Foundations of mathematics is a term sometimes used in some fields of mathematics, such as mathematical logic, sets theory, proof theory and model theory. This course will introduce principles of mathematical logic and define sets, membership, Cartesian product and relations on sets. Mappings (or sometimes called functions) and binary operations will be presented. Primary definitions with examples of groups, rings, and fields will be introduced.

5. Pre-requirements for this course (if any):

6. Pre-requirements for this course (if any):

7. Course Main Objective(s):

This course will provide a common mathematical foundation for students in all of the programs, drawing upon the full range of undergraduate courses in mathematics. In addition, it will permit students to build upon and share knowledge already acquired while pointing out areas in which additional study may be needed. In addition, it will develop the communication skills and understanding of the process of doing mathematics necessary for graduate-level study.

2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	4	100 %
2	E-learning	0	0
3	Hybrid	0	0

No	Mode of Instruction	Contact Hours	Percentage
	Traditional classroom		
	• E-learning		
4	Distance learning	0	0

3. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	36
2.	Laboratory/Studio	0
3.	Field	0
4.	Tutorial	0
5.	Others (Exam, Quizzes, Activities)	4
Total		40

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knov	vledge and und	erstanding	
1.1	Identify statements, negation and De Morgan's laws	К3	Lecture and Tutorials	Exams, quizzes
1.2	Identify different methods of proofs that can be applied to prove many mathematical problems.	К3	Lecture and Tutorials	Exams, quizzes
1.3	Present basic concepts of sets and their operations.	K3, K5	Lecture and Tutorials	Exams, quizzes
1.4	State the basic rules of logical equivalence	<i>K1</i>	Lecture and Tutorials	Exams, quizzes
1.5	Describe Cartesian product of sets and the concept of relations	К3	Lecture and Tutorials	Exams, quizzes
1.6	Define mappings and their types.	<i>K1</i>	Lecture and Tutorials	Exams, quizzes
1.7	State groups, rings and fields.	K1, K3	Lecture and Tutorials	Exams, quizzes
2.0		Skills		
2.1	Compare between relations on sets (reflexive, symmetry and transitive).	<i>S1, S5</i>	Lecture and Tutorials	Exams, quizzes

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
2.2	Use methods of proofs for solving many mathematical problems.	<i>S3, S9</i>	Lecture and Tutorials	Exams, quizzes
2.3	Apply algebraic structures on sets.	S3, S	Lecture and Tutorials	Exams, quizzes
3.0	Values, a	autonomy, and	responsibility	
3.1	Prepare for success in disciplines which rely on foundations of mathematics, which is the key to understand most of mathematical subjects.	V2	Lecture/ Individual or group work	Exams, quizzes
3.2	Interpret graphical and qualitative representations of solutions to problems	V2, V4	Lecture/ Individual or group work	Exams, quizzes
3.3	Evaluate fundamental concepts of sets, Cartesian product, mappings, and the interrelationship between operations, groups, rings and fields.	V2, V4	Lecture/ Individual or group work	Exams, quizzes
3.4	Generalize mathematical concepts in problem-solving through integration of new material and modeling.	V4	Lecture/ Individual or group work	Exams, quizzes

C. Course Content

No	List of Topics	Contact Hours
1.	Principle of Mathematical Logic: Statements, negation of statements, truth tables and Connectives Methods of proofs (direct proof, proof by contrapositive, proof by contradiction, proof by mathematical induction)	4
2.	Sets, membership and algebra of sets: Method of defining a set (listing method, characteristic property), finite and infinite sets. Membership and inclusion, Universal and existential quantifiers. Power set, Algebra of sets (union, intersection, universal set, complement of a set, symmetric difference, De Morgan's laws, Venn diagrams, Membership tables, membership tables, sets of numbers (N, Z,Q, R and C).	6
3.	<u>Cartesian Product and Relations on Sets</u> Ordered pairs, Cartesian product of sets, Binary relations on sets, reflexive, symmetric, transitive relations, Skew-symmetric (Anti-symmetric), Equivalence relation, ordered relation, Partition of sets and equivalence classes, Partial ordered relation, Inverse of relation, Composition of relations. Diagrams of relations.	6
4.	<u>Mappings (Functions):</u> Definition of mapping, Image of mapping, Inverse image of mapping Special types of mappings (injective (1-1), surjective (onto), bijective (1-1 and onto), Identity mapping, Composition of mappings, Bijection mappings as permutations, inverse of mapping. Equivalence of sets,	6

	<i>Countable sets and non-countable sets, Cardinal numbers, Contour Theorem.</i>	
5.	Binary Operations: Definition and examples of binary operations, closure of a binary operation, commutative and associative operations, Identity element, Inverse of element, Systems of two operations, Homomorphism between two closed algebraic systems.	6
6.	Introduction to Groups: Definition of semigroups and examples, Definition of groups and elementary examples, Definition of subgroups and examples Definition of cyclic groups and examples, Definition of symmetric groups and examples, Partition of groups and cosets.	6
7.	Introduction to Rings and Fields: Definition of rings and elementary examples, Integral domains, Definition of fields and elementary examples, some properties of rings. Ring of polynomials.	6
	Total	40

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Midterm exam	6th	30 %
2.	Quizzes and homework's	During semester	20 %
3.	Final exam	End of semester	50 %

*Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	 1- Guide to Abstract Algebra by: Carol Whitehead, Edited by David Towers Edition 2nd Edition: ISBN:9780333794470. 2- Set Theory and related topics by: Seymour Lipschutz, Schaum's Outlines Series : ISBN:0-07-038159-3 3- Basic Abstract Algebra by: P. B. Bhattacharya, S. K. Jain, S. R. Nagpaul, Cambridge University Press, Jum. II 21, 1415 AH - Mathematics - 487 pages ISBN: 0-521-46081-6 and 0- 521-46629-6
Supportive References	 1- A First Course in Abstract Algebra, 7th Edition 7th edition, by John B. Fraleigh; Publisher: Pearson; 7 edition (November 16, 2002) ISBN-10: 0201763907: ISBN-13: 978-0201763904 2- Modern Algebra: An Introduction 6th Edition, by John R. Durbin; Publisher: Wiley; 6 edition (December 31, 2008) ISBN-10: 0470384433 ISBN-13: 978-0470384435. 3 – Theory and Problems of Abstract Algebra by Frank Ayres and Lloyd R. Jaisingh, Schaum's Outlines Series. Second Edition.
Electronic Materials	https://en.wikipedia.org/wiki/Set_theory

https://en.wikipedia.org/wiki/Map_(mathematics)
https://en.wikipedia.org/wiki/Binary_operation
https://en.wikipedia.org/wiki/Group (mathematics)
https://en.wikipedia.org/wiki/Ring_(mathematics)Other Learning MaterialsNone

2. Required Facilities and equipment

Items	Resources
facilities	Classrooms
(Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	
Technology equipment	Data Show, Smart Board
(projector, smart board, software)	
Other equipment	None
(depending on the nature of the specialty)	

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Students	Courses Assessment survey
Effectiveness of Students assessment		Courses Assessment survey
Quality of learning resources	Students	Courses Assessment survey
The extent to which CLOs have been achieved	Faculty Member	Post-Rubric and Course report
Periodically reviewing course effectiveness and planning for improvement	Course committee	Annual report

Assessors (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods (Direct, Indirect)

G. Specification Approval

COUNCIL /COMMITTEE	Curriculum Committees
REFERENCE NO.	1
DATE	17/07/2024

