Lecture-4

Basic Feasible Solution:

Consider a system of linear equation

$$
A x=b, A=m \times n=\left[a_{i j}\right], b: m \times 1 ; x: n \times 1 . \text { The matrix }[A, b]
$$

is called augumented matrix. The necessary and sufficient condition for a system to be consistent is that $\rho(A)=\rho([A, b])$.
Further, if $\rho(A)=\rho([A, b])=n$ (no. of unknown) then the system has a unique solution, while if $\rho(A)=\rho([A, b])<n$ then the system has infinite solutions.

Example 1.15

$$
\left.\begin{array}{rl}
x_{1}+x_{2}+x_{3} & =1 \\
x_{1}+2 x_{2} & =3 \\
3 x_{1}+x_{2}-x_{3} & =5
\end{array}\right] \begin{aligned}
&=\left[\begin{array}{ccc|c}
1 & 1 & 1 & 1 \\
1 & 2 & 0 & 3 \\
3 & 1 & -1 & 5
\end{array}\right] \\
&= {\left[\begin{array}{ccc|c}
1 & 1 & 1 & 1 \\
0 & 1 & -1 & 2 \\
0 & -2 & -4 & 2
\end{array}\right] } \\
&= {\left[\begin{array}{ll}
R_{2} \rightarrow R_{2}-R_{1}, & R_{3} \rightarrow R_{3}-3 R_{1} \\
R_{3} \rightarrow-\frac{1}{2} R_{3} 1
\end{array}\right.} \\
& {\left[\begin{array}{ccc|c}
1 & 1 & 1 & 1 \\
0 & 1 & -1 & 2 \\
0 & 1 & 2 & 1
\end{array}\right] }
\end{aligned}
$$

Now $\rho(A)=3=\rho([A, b])=n$. So the system has a unique solution i.e.

$$
x_{1}=1, x_{2}=1, x_{3}=-1
$$

Consider a system $A x=b$ of m equations in n unknown $(n>m)$. Let $\rho(A)=\rho([A, b])=$ m, i.e., none of the equations is redundant.

Definition1.13 Basic Solution: A solution obtained by setting exactly $n-m$ variables to zero provided the determinant formed by the columns associated to the remaining m variables is non zero is called Basic Solution.

The remaining m variables are termed as basic variables

$$
\begin{aligned}
& A x=b \Rightarrow[B, N]\left[\begin{array}{l}
x_{B} \\
x_{N}
\end{array}\right]=b,|B| \neq 0(B \text {-basis matrix }) \\
& x_{N}=0 \Rightarrow B x_{B}=b \Rightarrow x_{B}=B^{-1} b\left(x_{N} \text {-non basic variables }\right)
\end{aligned}
$$

Thus a solution in which the vectors associated to m variables are L.I. and remaining $n-m$ variables are zero is called a basic solution. Note that for a solution to be basic, atleast $n-m$ variables must be zero.

Example 1.16 Find(Graphically) basic feasible solution of

$$
\begin{aligned}
& \begin{aligned}
2 x_{1}+3 x_{2} & \leq 21 \\
3 x_{1}-x_{2} & \leq 15 \\
x_{1}+x_{2} & \geq 5 \\
x_{2} & \leq 5 \\
x_{1}, x_{2} & \geq 0
\end{aligned} \\
& (0,5) \rightarrow(0,5,6,20,0,0) \rightarrow \text { degenerate BFS } \\
& (5,0) \rightarrow(5,0,11,0,0,5) \rightarrow \text { degenerate BFS } \\
& (6,3) \rightarrow(6,3,0,0,4,2) \rightarrow \text { nondegenerate BFS } \\
& (3,5) \rightarrow(3,5,0,4,3,0) \rightarrow \text { nondegenerate BFS }
\end{aligned}
$$

Example 1.17 Find all basic solutions of the system

$$
\begin{array}{r}
2 x_{1}+6 x_{2}+2 x_{3}+x_{4}=3 \\
6 x_{1}+4 x_{2}+4 x_{3}+6 x_{4}=2
\end{array}
$$

Solution: $\alpha_{1} x_{1}+\alpha_{2} x_{2}+\alpha_{3} x_{3}+\alpha_{4} x_{4}=b$

$$
\begin{gathered}
\alpha_{1}=\left[\begin{array}{l}
2 \\
6
\end{array}\right], \alpha_{2}=\left[\begin{array}{l}
6 \\
4
\end{array}\right], \alpha_{3}=\left[\begin{array}{l}
2 \\
4
\end{array}\right], \alpha_{4}=\left[\begin{array}{l}
1 \\
6
\end{array}\right], b=\left[\begin{array}{l}
3 \\
2
\end{array}\right] \\
B_{1}=\left(\alpha_{1}, \alpha_{2}\right), \quad\left|B_{1}\right|=-28 \neq 0 \Rightarrow x_{B_{1}}=\left[\begin{array}{l}
0 \\
\frac{1}{2}
\end{array}\right]
\end{gathered}
$$

$B_{2}=\left(\alpha_{1}, \alpha_{3}\right), \quad\left|B_{2}\right|=-4 \neq 0 \Rightarrow x_{B_{2}}=\left[\begin{array}{c}-2 \\ \frac{7}{2} \\ B_{3}=\left(\alpha_{1}, \alpha_{4}\right), \quad\left|B_{3}\right|=6 \neq 0\end{array}\right] x_{B_{3}}=\left[\begin{array}{c}\frac{8}{3} \\ \frac{-7}{3} \\ B_{4}=\left(\alpha_{2}, \alpha_{3}\right), \quad\left|B_{4}\right|=16 \neq 0\end{array}\right] x_{B_{4}}=\left[\begin{array}{c}\frac{1}{2} \\ 0 \\ \frac{1}{2} \\ B_{5}=\left(\alpha_{2}, \alpha_{4}\right), \quad\left|B_{5}\right|=32 \neq 0 \\ B_{6}=\left(\alpha_{3}, \alpha_{4}\right), \quad\left|B_{6}\right|=8 \neq 0\end{array}\right] x_{B_{6}}=\left[\begin{array}{c} \\ 0 \\ 2 \\ -1\end{array}\right]$

Basic Solution:-
$\left[\begin{array}{cccc}0 & \frac{1}{2} & 0 & 0\end{array}\right]$, - Degenerate Basic Feasible Solution
$\left[\begin{array}{ccc}-2 & 0 & \frac{-7}{3}\end{array} 0\right],\left[\begin{array}{cccc}\frac{8}{3} & 0 & 0 & \frac{-7}{3}\end{array}\right],\left[\begin{array}{llll}0 & 0 & 2 & -1\end{array}\right]$-Nondegenerate Basic Solutin

Example 1.18 Basic solutions of the system

$$
\begin{array}{r}
x_{1}+2 x_{2}+x_{3}=4 \\
2 x_{1}+x_{2}+5 x_{3}=5
\end{array} \text { are }
$$

$x_{1}=2, x_{2}=1, x_{3}=0$
$x_{1}=5, x_{2}=0, x_{3}=-1$
$x_{1}=0, x_{2}=\frac{5}{3}, x_{3}=\frac{2}{3}$
All basic solutions are degenerate.

Number of Basic Solution:

If $A x=b, A: m \times n, \rho(A)=m$ then maximum number of basic solutions is ${ }^{n} C_{m}$.
In L.P.P. a feasible solution which is also basic is called a basic feasible solution. Recall that feasible solution satisfies the set of constraints and the non-negativity restriction.

A feasible solution in which $n-m$ variables are zero and the vectors associated to the remaining m variables, called basic variables, are Linearly Independent, is called a B.F.S.

Obviously a feasible solution which contains more than m positive variables is not a basic feasible solution.

Definition1.14 Degenerate Basic Solution: If any of the basic variables vanishes, the solution is called degenerate basic solution. On the other hand if none of the basic
variables vanishes, the solution is called non-degenerate basic solution. Thus, a nondegenerate basic solution contains exactly m non-zero and $n-m$ zero variables.

Theorem 1.7 Every extreme point of a convex set of all feasible solution of the L.P.P.

$$
\begin{aligned}
\operatorname{Max} z & =c x \\
\text { subject to } A x & =b \\
x & \geq 0
\end{aligned}
$$

is a basic feasible solution and vice-versa.
Example 1.19 Which of the following vectors is a basic feasible solution of system

$$
\begin{array}{rr}
x_{1}+2 x_{2}+x_{3}+3 x_{4}+x_{5}= & 9 \\
2 x_{1}+x_{2}+3 x_{4}+x_{6}= & 9 \\
-x_{1}+x_{2}+3 x_{4}+x_{7}= & 0 \\
x_{i} \geq & 0 \\
x_{1}=(2,2,0,1,0,0,0), & x_{3}=(3,3,0,0,0,0,0) \\
x_{2}=(0,0,9,0,0,9,-9), & x_{4}=(0,0,0,0,9,9,0) \\
x_{5}=(1,0,0,0,8,7,1), & x_{6}=(0,0,0,3,0,0,0)
\end{array}
$$

Solution.(i) Columns associated with non-zero variable in x_{1} are

$$
a_{1}=\left(\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right), a_{2}=\left(\begin{array}{l}
2 \\
1 \\
1
\end{array}\right), a_{4}=\left(\begin{array}{l}
3 \\
3 \\
0
\end{array}\right)
$$

There exist scalars $1,1,-1$ such that

1. $a_{1}+1 . a_{2}-1 . a_{4}=0 \Rightarrow$ Linearly Dependent
$\Rightarrow x_{1}$ is not basic feasible solution.
(ii) Vectors associated with non-zero variables are $a_{3}=(1,0,1)^{T}, a_{6}=(0,1,0)^{T}$, $a_{7}=(0,0,1)^{T}$.
$|B|=\left|\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 1\end{array}\right|=1 \neq 0$
\Rightarrow vectors a_{3}, a_{6}, a_{7} is Linearly Independent.
$\Rightarrow x_{2}$ is a basic solution but not an basic feasible solution as $x_{7}<0$.
(iii) Vectors associated with non-zero variables are $a_{1}=\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right), a_{2}=\left(\begin{array}{l}2 \\ 1 \\ 1\end{array}\right)$

Now these vectors together with vector $a_{5}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ are Linearly Independent as
$|B|=\left|\begin{array}{ccc}1 & 2 & 1 \\ 2 & 1 & 0 \\ -1 & 1 & 0\end{array}\right|=3 \neq 0$

This solution is a basic feasible solution taking x_{1}, x_{2}, x_{3} as basic variables. Degenerate B.F.S. as $x_{5}=0$.
(iv) Columns a_{5}, a_{6} together with a_{7} are Linearly Independent. So solution x_{4} is a degenerate B.F.S. as basic variable $x_{7}=0$.
(v) The solution x_{5} contains more than 3 non-zero variables so it is not a B.F.S.
(vi) There is only one nonzero variable with column $a_{4}=\left(\begin{array}{l}3 \\ 3 \\ 0\end{array}\right)$

This vector along with a_{6} and a_{7} is L.I. as
$|B|=\left|\begin{array}{lll}3 & 0 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & 1\end{array}\right|=3 \neq 0$
This Solution is a degenerate B.F.S..

Fundamental Theorem of Linear Programming

Theorem 1.8 If there is a feasible solution to the system $A x=b, x \geq 0$, where A is $m \times n$ matrix, $m<n, \rho(A)=m$, then there is also a B.F.S.
Proof: Let $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a feasible solution of given system of equations $A x=b$, $x \geq 0$.
Suppose out of these n components of x, k are non-zero and rest $(n-k)$ are zero. Without loss of generality, we assume that first k components of x are non zero. Thus, we have $x=\left(x_{1}, x_{2}, \ldots, x_{k}, 0, \ldots, 0\right)$.
Since x is a feasible solution, we have

$$
\begin{equation*}
A x=b \Rightarrow \sum_{j=i}^{k} a_{j} x_{j}=b \tag{1}
\end{equation*}
$$

and $x \geq 0 \Rightarrow x_{j}>0, \forall j=1,2, \ldots, k$
Now if $\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ are L.I. then x is a B.F.S.
Suppose this is not the case, i.e., the vectors are L.D. Then there exist scalars $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$, not all zero, such that

$$
\sum_{j=i}^{k} \lambda_{j} a_{j}=0
$$

Suppose $\lambda_{r} \neq 0$. Then we get

$$
a_{r}=-\sum_{j=i j \neq r}^{k} \frac{\lambda_{j}}{\lambda_{r}} a_{j}=0 .
$$

Substituting value of a_{r} in (1), we get

$$
\sum_{j=i j \neq r}^{k}\left(x_{j}-\frac{\lambda_{j}}{\lambda_{r}} x_{r}\right) a_{j}=b
$$

$$
\left.\Rightarrow \sum_{j=1}^{k} \hat{x}_{j}\right) a_{j}=b
$$

Now, $\hat{x}_{j}=x_{j}-\frac{\lambda_{j}}{\lambda_{r}} x_{r}, j \neq r$.
$\hat{x}=\left(\hat{x}_{1}, \hat{x}_{2}, \ldots, \hat{x}_{k}, 0, \ldots, 0\right)$ is a feasible solution of the system $A x=b, x \geq 0$ if $\hat{x} \geq 0$.
That means

$$
x_{j}-\frac{\lambda_{j}}{\lambda_{r}} x_{\geq} 0 r, \forall j=1, \ldots, k, j \neq r .
$$

Now, if $\lambda_{j} \leq 0$ then since $x_{j}>0, x_{r}>0, \lambda_{r}>0$ we get $\hat{x}_{j}=x_{j}-\frac{\lambda_{j}}{\lambda_{r}} x_{r} \geq 0$. The only cases are for those $\lambda_{j} \geq 0$.
Then, $x_{j}-\frac{\lambda_{j}}{\lambda_{r}} x_{r} \geq 0 \Rightarrow \frac{x_{j}}{\lambda_{j}} \geq \frac{x_{r}}{\lambda_{r}}$.
Thus, $\frac{x_{r}}{\lambda_{r}}=\min _{j}\left\{\frac{x_{j}}{\lambda_{j}}: \lambda_{j}>0\right\}$

If we choose r according to rule (2) then $\hat{x}_{j} \geq 0 \forall j=1, \ldots, k$. So, \hat{x} is a feasible solution of the given system with atmost $(k-1)$ non-zero components. If the columns of A associated with these $(k-1)$ non-zero components is linearly independent then \hat{x} is a B.F.S.

Else we can continue with \hat{x} in the same manner as done for x to get another feasible solution $\hat{\hat{x}}$ with atmost $(k-2)$ non-zero components.
In atmost $(k-1)$ steps we get a solution \hat{x} with atmost 1 non-zero component and this is a B.F.S.

Example 1.20 If $x_{1}=2, x_{2}=3, x_{3}=1$ be a feasible solution of the LPP

$$
\begin{aligned}
\operatorname{Max} z=x_{1}+2 x_{2}+4 x_{3} & \\
\text { subject to } 2 x_{1}+x_{2}+4 x_{3} & =11 \\
3 x_{1}+x_{2}+5 x_{3} & =14 \\
x_{1}, x_{2}, x_{3} & \geq 0
\end{aligned}
$$

then find the basic feasible solution.
Solution.the constraints can be written as

$$
\begin{align*}
& a_{1} x_{2}+a_{2} x_{2}+a_{3} x_{3}=b, x_{i} \geq 0 \tag{1}\\
& a_{1}=\left[\begin{array}{l}
2 \\
3
\end{array}\right], a_{2}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], a_{3}=\left[\begin{array}{l}
4 \\
5
\end{array}\right], b=\left[\begin{array}{l}
11 \\
14
\end{array}\right]
\end{align*}
$$

Since the vectors $\left\{a_{1}, a_{2}, a_{3}\right\}$ are linearly dependent, we get
$\Rightarrow x_{1}$ is not basic feasible solution.

$$
1 a_{1}+2 a_{2}-a_{3}=0
$$

$$
\text { i.e. } \lambda_{1}=1, \quad \lambda_{2}=2, \quad \lambda_{3}=-1
$$

Select r such that

$$
\begin{aligned}
\frac{x_{r}}{\lambda_{r}} & =\min \left\{\begin{array}{l}
\frac{x_{i}}{\lambda_{i}}, \lambda_{i}>0 \\
\\
\end{array}=\min \left\{\frac{x_{1}}{\lambda_{1}}, \frac{x_{2}}{\lambda_{2}}\right\}\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\min \left\{2, \frac{3}{2}\right\} \\
& =\frac{x_{2}}{\lambda_{2}} \\
\Rightarrow r & =2 \\
\Rightarrow a_{2} & =-\frac{a_{1}}{2}+\frac{a_{3}}{2}
\end{aligned}
$$

Substitute in (1), we get

$$
\begin{aligned}
& a_{1} x_{1}+\left(\frac{-a_{1}}{2}+\frac{a_{3}}{2}\right) x_{2}+a_{3} x_{3}=b \\
& \Rightarrow \quad\left(x_{1}-\frac{x_{2}}{2}\right) a_{1}+\left(x_{3}+\frac{x_{2}}{2}\right) a_{3}=b \\
& \Rightarrow \quad\left(2-\frac{3}{2}\right) a_{1}+\left(1+\frac{3}{2}\right) a_{5}=b \\
& \Rightarrow \quad \frac{1}{2} a_{1}+\frac{5}{2} a_{3}=b
\end{aligned}
$$

$\Rightarrow x_{1}=\frac{1}{2}, x_{2}=0, x_{3}=\frac{5}{2}$ is a feasible solution which is also a B.F.S. as $\left\{a_{1}, a_{3}\right\}$ is linearly independent because

$$
\left.\begin{array}{ll}
2 & 4 \\
3 & 5
\end{array} \right\rvert\,=10-12=-2 \neq 0
$$

Example 1.21 Consider the system of constraints

$$
\begin{aligned}
x_{1} & \geq 6 \\
x_{2}+x_{3} & \geq 2 \\
x_{1}, x_{2}, x_{3} & \geq 0
\end{aligned}
$$

The point $\bar{x}=(7,2,0)^{T}$ is a feasible solution of the system, and the set of column vectors corresponding to positive x_{j} in the system is $\left\{(1,0)^{T},(0,1)^{T}\right\}$ which is linearly independent. However \bar{x} is not a B.F.S. of this system. If we introduce the slack variables.

$$
\begin{aligned}
x_{1}-s_{1} & =6 \\
x_{2}+x_{3}-s_{2} & =2, \\
x_{1}, x_{2}, x_{3}, s_{1}, s_{2} & \geq 0 \\
\text { and }(\bar{x}, \bar{s}) & =(7,2,0,1,0)^{T}
\end{aligned}
$$

