Lecture-4

Basic Feasible Solution:

Consider a system of linear equation

 $Ax = b, A = m \times n = [a_{ij}], b: m \times 1; x: n \times 1.$ The matrix [A, b]

is called augumented matrix. The necessary and sufficient condition for a system to be consistent is that $\rho(A) = \rho([A, b])$.

Further, if $\rho(A) = \rho([A, b]) = n$ (no. of unknown) then the system has a unique solution, while if $\rho(A) = \rho([A, b]) < n$ then the system has infinite solutions.

Example 1.15

$$x_1 + x_2 + x_3 = 1$$

$$x_1 + 2x_2 = 3$$

$$3x_1 + x_2 - x_3 = 5$$

$$[A,b] = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 0 & 3 \\ 3 & 1 & -1 & 5 \end{bmatrix}$$

$$R_2 \to R_2 - R_1, R_3 \to R_3 - 3R_1$$

$$= \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & -1 & 2 \\ 0 & -2 & -4 & 2 \end{bmatrix}$$

$$R_3 \to -\frac{1}{2}R_31$$

$$= \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & -1 & 2 \\ 0 & 1 & 2 & 1 \end{bmatrix}$$

Now
$$\rho(A) = 3 = \rho([A, b]) = n$$
. So the system has a unique solution i.e. $x_1 = 1, \ x_2 = 1, x_3 = -1$

Consider a system Ax = b of m equations in n unknown(n > m). Let $\rho(A) = \rho([A, b]) = m$, i.e., none of the equations is redundant.

Definition1.13 Basic Solution: A solution obtained by setting exactly n-m variables to zero provided the determinant formed by the columns associated to the remaining m variables is non zero is called Basic Solution.

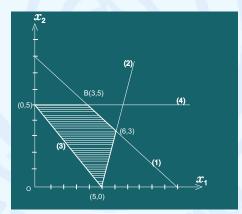
The remaining m variables are termed as basic variables

$$Ax = b \implies [B, N] \begin{bmatrix} x_B \\ x_N \end{bmatrix} = b, |B| \neq 0$$
 (B-basis matrix)
 $x_N = 0 \implies Bx_B = b \implies x_B = B^{-1}b$ (x_N -non basic variables).

Thus a solution in which the vectors associated to m variables are L.I. and remaining n-m variables are zero is called a basic solution. Note that for a solution to be basic, at least n-m variables must be zero.

Example 1.16 Find(Graphically) basic feasible solution of

$$\begin{array}{rcl}
2x_1 + 3x_2 & \leq & 21 \\
3x_1 - x_2 & \leq & 15 \\
x_1 + x_2 & \geq & 5 \\
x_2 & \leq & 5 \\
x_1, x_2 & \geq & 0
\end{array}$$



 $(0,5) \rightarrow (0,5,6,20,0,0) \rightarrow \text{degenerate BFS}$ $(5,0) \rightarrow (5,0,11,0,0,5) \rightarrow \text{degenerate BFS}$ $(6,3) \rightarrow (6,3,0,0,4,2) \rightarrow \text{nondegenerate BFS}$ $(3,5) \rightarrow (3,5,0,4,3,0) \rightarrow \text{nondegenerate BFS}$

Example 1.17 Find all basic solutions of the system

$$2x_1 + 6x_2 + 2x_3 + x_4 = 3$$

$$6x_1 + 4x_2 + 4x_3 + 6x_4 = 2$$

Solution: $\alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 + \alpha_4 x_4 = b$

$$\alpha_1 = \begin{bmatrix} 2 \\ 6 \end{bmatrix}, \ \alpha_2 = \begin{bmatrix} 6 \\ 4 \end{bmatrix}, \ \alpha_3 = \begin{bmatrix} 2 \\ 4 \end{bmatrix}, \ \alpha_4 = \begin{bmatrix} 1 \\ 6 \end{bmatrix}, \ b = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

$$B_1 = (\alpha_1, \alpha_2), |B_1| = -28 \neq 0 \implies x_{B_1} = \begin{bmatrix} 0\\ \frac{1}{2} \end{bmatrix}$$

$$B_{2} = (\alpha_{1}, \alpha_{3}), \quad |B_{2}| = -4 \neq 0 \quad \Rightarrow \quad x_{B_{2}} = \begin{bmatrix} -2 \\ \frac{7}{2} \\ \frac{8}{3} \\ \frac{3}{-7} \end{bmatrix}$$

$$B_{3} = (\alpha_{1}, \alpha_{4}), \quad |B_{3}| = 6 \neq 0 \quad \Rightarrow \quad x_{B_{3}} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ 0 \\ 0 \end{bmatrix}$$

$$B_{4} = (\alpha_{2}, \alpha_{3}), \quad |B_{4}| = 16 \neq 0 \quad \Rightarrow \quad x_{B_{4}} = \begin{bmatrix} \frac{1}{2} \\ 0 \\ \frac{1}{2} \\ 0 \end{bmatrix}$$

$$B_{5} = (\alpha_{2}, \alpha_{4}), \quad |B_{5}| = 32 \neq 0 \quad \Rightarrow \quad x_{B_{5}} = \begin{bmatrix} \frac{1}{2} \\ 0 \\ 0 \end{bmatrix}$$

$$B_{6} = (\alpha_{3}, \alpha_{4}), \quad |B_{6}| = 8 \neq 0 \quad \Rightarrow \quad x_{B_{6}} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

Basic Solution:-

Example 1.18 Basic solutions of the system

$$x_1 + 2x_2 + x_3 = 4$$

 $2x_1 + x_2 + 5x_3 = 5$ are

$$x_1 = 2, x_2 = 1, x_3 = 0$$

 $x_1 = 5, x_2 = 0, x_3 = -1$
 $x_1 = 0, x_2 = \frac{5}{3}, x_3 = \frac{2}{3}$

All basic solutions are degenerate.

Number of Basic Solution:

If Ax = b, $A: m \times n$, $\rho(A) = m$ then maximum number of basic solutions is ${}^{n}C_{m}$.

In L.P.P. a feasible solution which is also basic is called a basic feasible solution. Recall that feasible solution satisfies the set of constraints and the non-negativity restriction.

A feasible solution in which n-m variables are zero and the vectors associated to the remaining m variables, called basic variables, are Linearly Independent, is called a B.F.S.

Obviously a feasible solution which contains more than m positive variables is not a basic feasible solution.

Definition1.14 Degenerate Basic Solution: If any of the basic variables vanishes, the solution is called degenerate basic solution. On the other hand if none of the basic

variables vanishes, the solution is called non-degenerate basic solution. Thus, a non-degenerate basic solution contains exactly m non-zero and n-m zero variables.

Theorem 1.7 Every extreme point of a convex set of all feasible solution of the L.P.P.

is a basic feasible solution and vice-versa.

Example 1.19 Which of the following vectors is a basic feasible solution of system

$$x_{1} + 2x_{2} + x_{3} + 3x_{4} + x_{5} = 9$$

$$2x_{1} + x_{2} + 3x_{4} + x_{6} = 9$$

$$-x_{1} + x_{2} + 3x_{4} + x_{7} = 0$$

$$x_{i} \geq 0$$

$$x_{1} = (2, 2, 0, 1, 0, 0, 0), \quad x_{3} = (3, 3, 0, 0, 0, 0, 0, 0)$$

$$x_{2} = (0, 0, 9, 0, 0, 9, -9), \quad x_{4} = (0, 0, 0, 0, 9, 9, 0)$$

Solution.(i) Columns associated with non-zero variable in x_1 are

$$a_1 = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}, a_2 = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}, a_4 = \begin{pmatrix} 3 \\ 3 \\ 0 \end{pmatrix}$$

There exist scalars 1,1,-1 such that

 $1.a_1 + 1.a_2 - 1.a_4 = 0 \implies \text{Linearly Dependent}$

 $x_5 = (1, 0, 0, 0, 8, 7, 1),$ $x_6 = (0, 0, 0, 3, 0, 0, 0)$

- $\Rightarrow x_1$ is not basic feasible solution.
- (ii) Vectors associated with non-zero variables are $a_3 = (1,0,1)^T$, $a_6 = (0,1,0)^T$, $a_7 = (0,0,1)^T$.

$$|B| = \left| \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{array} \right| = 1 \neq 0$$

- \Rightarrow vectors a_3 , a_6 , a_7 is Linearly Independent.
- $\Rightarrow x_2$ is a basic solution but not an basic feasible solution as $x_7 < 0$.
 - (iii) Vectors associated with non-zero variables are $a_1 = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$, $a_2 = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$

Now these vectors together with vector $a_5 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ are Linearly Independent as

$$|B| = \begin{vmatrix} 1 & 2 & 1 \\ 2 & 1 & 0 \\ -1 & 1 & 0 \end{vmatrix} = 3 \neq 0$$

This solution is a basic feasible solution taking x_1, x_2, x_3 as basic variables. Degenerate B.F.S. as $x_5 = 0$.

- (iv) Columns a_5 , a_6 together with a_7 are Linearly Independent. So solution x_4 is a degenerate B.F.S. as basic variable $x_7 = 0$.
 - (v) The solution x_5 contains more than 3 non-zero variables so it is not a B.F.S.

(vi) There is only one nonzero variable with column
$$a_4 = \begin{pmatrix} 3 \\ 3 \\ 0 \end{pmatrix}$$

This vector along with a_6 and a_7 is L.I. as

$$|B| = \left| \begin{array}{ccc} 3 & 0 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right| = 3 \neq 0$$

This Solution is a degenerate B.F.S..

Fundamental Theorem of Linear Programming

Theorem 1.8 If there is a feasible solution to the system Ax = b, $x \ge 0$, where A is $m \times n$ matrix, m < n, $\rho(A) = m$, then there is also a B.F.S.

Proof: Let $x = (x_1, x_2, ..., x_n)$ be a feasible solution of given system of equations Ax = b, $x \ge 0$.

Suppose out of these n components of x, k are non-zero and rest (n-k) are zero. Without loss of generality, we assume that first k components of x are non zero. Thus, we have $x = (x_1, x_2, \ldots, x_k, 0, \ldots, 0)$.

Since x is a feasible solution, we have

$$Ax = b \Rightarrow \sum_{i=1}^{k} a_j x_j = b \tag{1}$$

and $x \ge 0 \implies x_j > 0, \ \forall \ j = 1, 2, \dots, k$

Now if $\{a_1, a_2, \dots, a_k\}$ are L.I. then x is a B.F.S.

Suppose this is not the case, i.e., the vectors are L.D. Then there exist scalars $\lambda_1, \lambda_2, \dots, \lambda_k$, not all zero, such that

$$\sum_{j=i}^{k} \lambda_j a_j = 0.$$

Suppose $\lambda_r \neq 0$. Then we get

$$a_r = -\sum_{j=ij\neq r}^k \frac{\lambda_j}{\lambda_r} a_j = 0.$$

Substituting value of a_r in (1), we get

$$\sum_{j=ij\neq r}^{k} \left(x_j - \frac{\lambda_j}{\lambda_r} x_r \right) a_j = b.$$

$$\Rightarrow \sum_{j=1}^{k} \hat{x}_j) a_j = b.$$

Now, $\hat{x}_j = x_j - \frac{\lambda_j}{\lambda_r} x_r$, $j \neq r$.

 $\hat{x} = (\hat{x}_1, \hat{x}_2, \dots, \hat{x}_k, 0, \dots, 0)$ is a feasible solution of the system $Ax = b, x \ge 0$ if $\hat{x} \ge 0$. That means

$$x_j - \frac{\lambda_j}{\lambda_r} x_{\geq 0} r, \ \forall j = 1, \dots, k, \ j \neq r.$$

Now, if $\lambda_j \leq 0$ then since $x_j > 0$, $x_r > 0$, $\lambda_r > 0$ we get $\hat{x}_j = x_j - \frac{\lambda_j}{\lambda_r} x_r \geq 0$. The only cases are for those $\lambda_j \geq 0$.

Then,
$$x_j - \frac{\lambda_j}{\lambda_r} x_r \ge 0 \implies \frac{x_j}{\lambda_j} \ge \frac{x_r}{\lambda_r}$$
.
Thus, $\frac{x_r}{\lambda_r} = \min_j \{ \frac{x_j}{\lambda_j} : \lambda_j > 0 \}$ (2)

If we choose r according to rule (2) then $\hat{x}_j \geq 0 \,\,\forall j = 1, \ldots, k$. So, \hat{x} is a feasible solution of the given system with atmost (k-1) non-zero components. If the columns of A associated with these (k-1) non-zero components is linearly independent then \hat{x} is a B.F.S.

Else we can continue with \hat{x} in the same manner as done for x to get another feasible solution \hat{x} with atmost (k-2) non-zero components.

In at most (k-1) steps we get a solution \hat{x} with at most 1 non-zero component and this is a B.F.S.

Example 1.20 If $x_1 = 2$, $x_2 = 3$, $x_3 = 1$ be a feasible solution of the LPP

Max
$$z = x_1 + 2x_2 + 4x_3$$

subject to $2x_1 + x_2 + 4x_3 = 11$
 $3x_1 + x_2 + 5x_3 = 14$
 $x_1, x_2, x_3 \ge 0$

then find the basic feasible solution.

Solution. the constraints can be written as

$$a_1x_2 + a_2x_2 + a_3x_3 = b, \ x_i \ge 0$$

$$a_1 = \begin{bmatrix} 2 \\ 3 \end{bmatrix}, \ a_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \ a_3 = \begin{bmatrix} 4 \\ 5 \end{bmatrix}, \ b = \begin{bmatrix} 11 \\ 14 \end{bmatrix}$$

$$(1)$$

Since the vectors $\{a_1, a_2, a_3\}$ are linearly dependent, we get

 $\Rightarrow x_1$ is not basic feasible solution.

$$1a_1 + 2a_2 - a_3 = 0$$

i.e.
$$\lambda_1 = 1, \ \lambda_2 = 2, \ \lambda_3 = -1.$$

Select r such that

$$\frac{x_r}{\lambda_r} = \min \left\{ \frac{x_i}{\lambda_i}, \ \lambda_i > 0 \right\}$$
$$= \min \left\{ \frac{x_1}{\lambda_1}, \ \frac{x_2}{\lambda_2} \right\}$$

$$= \min \left\{ 2, \frac{3}{2} \right\}$$

$$= \frac{x_2}{\lambda_2}$$

$$\Rightarrow r = 2$$

$$\Rightarrow a_2 = -\frac{a_1}{2} + \frac{a_3}{2}$$
Substitute in (1), we get

we get
$$a_1x_1 + \left(\frac{-a_1}{2} + \frac{a_3}{2}\right)x_2 + a_3x_3 = b$$

$$\Rightarrow \left(x_1 - \frac{x_2}{2}\right)a_1 + \left(x_3 + \frac{x_2}{2}\right)a_3 = b$$

$$\Rightarrow \left(2 - \frac{3}{2}\right)a_1 + \left(1 + \frac{3}{2}\right)a_3 = b$$

$$\Rightarrow \frac{1}{2}a_1 + \frac{5}{2}a_3 = b$$

 $\Rightarrow x_1 = \frac{1}{2}, x_2 = 0, x_3 = \frac{5}{2}$ is a feasible solution which is also a B.F.S. as $\{a_1, a_3\}$ is linearly independent because

$$\left| \begin{array}{cc} 2 & 4 \\ 3 & 5 \end{array} \right| = 10 - 12 = -2 \neq 0.$$

Example 1.21 Consider the system of constraints

$$x_1 \geq 6$$

$$x_2 + x_3 \geq 2$$

$$x_1, x_2, x_3 \geq 0$$

The point $\bar{x} = (7, 2, 0)^T$ is a feasible solution of the system, and the set of column vectors corresponding to positive x_j in the system is $\{(1, 0)^T, (0, 1)^T\}$ which is linearly independent. However \bar{x} is not a B.F.S. of this system. If we introduce the slack variables.

$$x_1 - s_1 = 6,$$

 $x_2 + x_3 - s_2 = 2,$
 $x_1, x_2, x_3, s_1, s_2 \ge 0$
and $(\bar{x}, \bar{s}) = (7, 2, 0, 1, 0)^T$