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Chapter 2: One Dimensional, steady-
state heat Conduction

Objectives
« To determine expressions for the temperature distribution
and heat transfer rate in common (planar, cylindrical, and

spherical) geometries.

« To introduce the concept of thermal resistance and the use

of thermal circuits to model heat flow.



The heat diffusion equation

A homogenous medium in

>/> which

Bulk velocity =0

(No advection)
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The heat diffusion equation




The heat diffusion eguation
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The energy balance (law of conservation energy) may be made :

Energy conducted in the element + Heat generated with element

= Change in internal energy + Energy conducted out the element
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Recall Fourier’s Law
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Finally divide the whole equation by the volume dxdyadz
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The Diffusion equation:
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If thermal conductivity is constant, you can divide the whole equation by & and
this leads to the simplification

82T+82T+82T e b all
ONiE SOy S Aok = e a ot

Where a is the thermal diffusivity

given by

K
=t
PC,

Thermal diffusivity has units of square meters per seconds (m?/s).
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Under steady state conditions and with no heat generation then the storage
guantity reduces to zero and the heat equation reduces to

R ST L
oXx\ ox) oy\ oy ) oz\ oz

For one dimensional steady state heat transfer (w/o heat generated)

99T ¢
oX\ OX

I.e the heat flux is constant in the direction of the heat transfer.



One dimensional steady state heat transfer
(w/o heat generated)

q
TooZ, hooZ
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TooZ, hooZ

s2

Tool,hool

X X=L

Integrate twice wrt x




T(x

)

N

=C,x+C,

In order to calculate C1 and C2 we need to
apply the BOUNDARY CONDITIONS:

ﬁ |

@x=l T=T5 5\

C2:Ts,1 ’
i e

@x): Cx+T,,

T (X): (Ts,z _Ts,l)E +Ts,1

iy
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i (X): (Ts,z _Ts,l )E +Ts,1

For one dimensional steady state conduction in a plane wall with no
heat generation and constant thermal conductivity the temperature
varies /inearly with x ,

Fourier’s law can now be stated as

dT A
qx:-kA& =k E(Ts,l _Ts,z)
l.e the fluxis
K
q IIx - E(Ts,l _Ts,z)
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The electrical resistance analogy
AV

R = AT Ohm’s law
: T =T 8L 3 kA
< conduction resistance : R, 4 = ’lq L 7 based on: q= T(Ts,l_Ts,Z)
] : T -T

¢ convection resistance : Rt e e based on:d = hA(Ts —Too)

| q hA

Fs=Teur 1 %
< Radiation resistance : Rt rad = = based on: qrad = hr ATs ~Teur )
Jrad hr A

2 2
where hr=eo(Ts +Tsur)(Ts +Tsurj
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©,1 j

Tsa

S,

Cold fluid
Too, 2; hZ

H .
ot fluid T.,
7

0, 1;h1 l
& T

i ; T

x=L The thermal circuit for

" , . § ... heat transfer through
S o= AN OIS YR = Al this plane wall

Since g, is constant throughout the network, it follows that

i Too, 1= Tsd sifs 15150713 Tg[Psoo 2
M LA L/KA Vhy A

In terms of the overall temperature difference, the heat transfer rate may also be
expressed as

T T oo iy Bk 2L
qx = where "1t = A T A T oA
Rtot

resistances in series 2



The Composite Wall

g

A series composite wall separating two fluids
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Tool 4 TooZ

d, =
e e e ]
h,A K,A K,A K.A h,A

Alternatively, g, can be related to the temperature difference and resistance associated

with each element :

To1-Ts1  Ts1-T2 T2 713

q = = = =
" WmaA)  (LakaA) (Lg/kgA)
q, = UAAT
Where U Ret 1
Aot -oly ok S
ool KA KB KC hOOZ
ATt

In general, we may write Rtot = ZRt R e

ad, UA
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A parallel composite of two materials

‘ Hj B K':r-.-lﬁ
—— N\
L
N A |
L AAN—
R - L
KAy
! =l Bl . 1
The heat transfer rate in the network is Ux = —— where tot =
Riot YRIFYR2

The heat transfer rate can be calculated as the sum of heat transfer rates in the individual
materials:

ki Pt i 13 S
_|_
R1 R2

Ox = J1x +42x =
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Series-parallel configurations

LF LG B —— — LH —b/ Area A
o A F ky o A
: kG
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o—> oA~ L A0 > {11 L Ly _ Ly T
‘1 ¥ II.-'|'?' g i T’ﬁ '\ ‘ k 2
d 'AAYAYA —/\/\/\/—0—” \/\/\/\/\r—*—/ \/\/\/—
(a) Surfaces normal to the x direction (b) Surfaces parallel to the x direction
are isothermal are adiabatic

The actual value of g lies between the values obtained with circuits (a) and (b).
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Contact resistance
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For a steady state one dimensional heat
transfer and no energy generation

Cylindrical coordinates
criEsE Sy e

+
o2t or r28¢2 oz’

The heat equation for a steady state
one dimensional heat transfer and
no energy generation for a hollow

cylinder
rdr dr
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Fourier's Law

We stated the phenomenologically found
Fourier’s law of conduction in one direction
Fourier’s law of conduction in one
direction namely the radial
direction
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Cylindrical heat transfer

Steady state conditions with no heat generation }i(kr d—Tj
Cold fluid

r dr dr

Why is it
curved ?




We would like to solve for the radial temperature field

Assume the conduction coefficient is constant and

integrate the heat equation twice J.

T(r)=C,Inr+C,

Apply the boundary conditions

T(ry) =Ts,
T(r) =Ts,

Ts, =C,Inr, +C,

Which gives Ts, =C,Inr, +C,
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Ts2

: : T(r)=
Solving the two equations (r ) Inr /r,

simultaneously gives C1 and
C2 and substituting into the
general solution gives

The wall temperature in the cylinder is logarithmic and not linear
like the case for the plane wall under the same conditions

Take the derivative of T(r) wrt r and substitute dT/dr in Fourier’s
Law in cylindrical form

Which gives 49, = In (rz ’/rl)
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The electrical resistance analogy

o

dT

Gr==KkA—=—=k(27T

dr

Recall the electrical resistance
analogy

Which gives the conductivity
resistance

In (,/r)
o B 1

Note that the heat rate is

NOT a linear function of

radius but a logarithmic
function of the radius

30



Cylindrical heat transfer

Cold fluid
h2 ’T002
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4 =

The heat transfer rate

1 4 In(r, /r,) i< In(r, /r,) ot In(r, /1) - 1

h2zrL 2zk,L  2zk;,L  2zk.L h,2zr,L
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Spherical heat transfer

The appropriate form of Fourier’s law is

qr = —kAd—T o2 —k(47zr2jd—T
dr dr

» The heat transfer rate is then (assuming constant k)

47k(Ts1-Tg 2)
i o e WO P R

.vu/’-»-’>” - Wry)-lro)

The thermal resistance is

v AT 1 1 1
Rt cond = 16 e -

dr :47rk r ro

Note: Spherical composites may be treated the same way as composite walls
and cylinders.
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Critical radius of insulation

- For a plane wall exposed to a fluid, an increase in the thickness of the wall results in an

increase in the conduction resistance R, = L/(kA) but does not change the convection

resistance ~

conv*

Hence, the heat transfer rate will reduce as the wall thickness increases.

» For geometries with non-constant cross-sectional area (e.g. a cylinder, a sphere), increase

in the wall thickness does not always bring about a decrease in the heat transfer rate.

K

*The critical radius of insulation for a cylinder exposed to convectionis I, = —

where k is the of thermal conductivity of the insulation material and /4 is the
convection heat transfer coefficient on the insulation.

2k
*The critical radius of insulation for a sghere exposed to convectionis Fer = T
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Wall with Heat generation

* We looked at a wall with no heat generation.

Many cases require the consideration of a wall
with heat generation.

* One such case Is heat generation due to
resistance.

The rate at which energy is generated by passing

- E =1I°R
a current /through the resistance R g/
If you assume the power generated is uniform In e B i |°R
this case Volume Volume

Let us solve for the temperature field starting with the
heat diffudion equation e



Plane wall with uniform heat generation

Pt ks
B TR T AT 3 e AT P
&@m} 8y}+8 Ejp

7 S \‘/

Plane wall Uniform
Assume conductivity means this
IS constant term is
constant
2 .
The heat rate equation  [d°T @ =
simplifies to dx oy E e
Integrate twice gives T= i X% + Clx IE C2
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Plane wall with uniform heat generation

Solving for C1 and C2
depends on the boundary
conditions

Case 1

The boundary conditions are
T(-L)=Ts, and T(L)=T,,

This gives



Plane wall with uniform heat
generation
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PO I g

SolvingforClandC2 | =0 o> =
depends on the boundary T :E‘tx +C1X+ -2
conditions £ TECINGES N IES IR TS

Case 2

Plane wall with uniform heat generation, both sides
maintained at the same temperature

The boundary conditions are
T(-L)=T, and T(L)=T,

This gives a symmetrical T
temperature distribution

T(x) L@——zjn
Sl e

19"




* The maximum temperature for this case is
at the center and is given by

gL
F(0) =—+T
et

* The temperature gradient at this location is

d
&(T(x)):O

« Which means that no heat crosses the mid-plane
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The problem may be represented with an adiabatic
mid-plane




Radial Systems with uniform heat generation

«*Cylindrical system
. o T
S o , 1d( dT q " \__Lzms
Heat diffusion equation: — r =" =
D rdr{ dr ¢ i
=t o daT £ ‘: 5
Boundary Conditions: Fr= r=0_ and T(r 0) =Ts . ‘}";.; ‘ =
12 T
4ré
centerline temperature T(0) = = i3 s S04 T 2
: i aenl S g iy o=iily
1 I r,

Note: To relate 7. to 7, apply an overall energy balance on the

cylinder to obtain: 0'](7[ ro2 L) = h(27Tro L)(Ts —Too)
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Boundary and Initial Conditions

Specified Temperature Boundary
Condition

Specified Heat Flux Boundary Condition
Convection Boundary Condition
Radiation Boundary Condition

Interface Boundary Conditions
Generalized Boundary Conditions
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Specified Temperature Boundary
Condition

For one-dimensional heat
transfer through a plane wall ol —
: 150°C T(x, 1) 70°C
thickness L, for example, the
specified temperature boundan 04 .
conditions can be expressed a “

5 7(0. 1) = 150°C
70, 9=1T, T(L. 1) = 70°C

L =T,

The specified temperatures can be constant, which is
the case for steady heat conduction, or may vary with
time. i



Specified Heat Flux Boundary
Condition

The heat flux In the pOSItive X flux Conduction
direction anywhere in the medium

dT(0, 1)

1 : : q. =—K
including the boundaries, can be™ ~ @ e
expressed by Fourier’s law of hea CO“”C““.“ “'
conduction as 4D,
dT '
. :—k—: Oe I j
=k T

The sign of the specified heat flux Is determined
by Iinspection: positive If the heat flux is In the
positive direction of the coordinate axis, and
negative if it is in the opposite direction.
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Two Special Cases

Insulated boundary

] T
Insulation T(x, 1) 60°C
Ol 'L -
ox

1(L, r) = 60°C

k@T(O,t):O o aT(O,t):
OX OX

|,— Center plane
I

Zero |
slope |

/ Temperature
| distribution
(symmetric
I

about center
plane)

0

a7



Convection Boundary Condition

Convection | Conduction
h,
T,

adT(0, 1) -
- J _TO. B
Heat convection | "17=~T0-0l==k=5
: at the Surface In Conduction | Convection

the same - [
direction K LD (7 p) - T, )
0 ! >
fr
8T 0,t
; ) [T, -TO)
fik 8T(L t)
T(L,t)-T_
= h, [T(L,t)-T,, ]

48



Radiation Boundary Condition

Radiation | Conduction
e o [T | —TO.0% =k anai’ J
Radiation e, e,
= exchange at the TS e
Surface in Conduction | Radiation
the same IT(L. 1) N
d | reCtlon N ox = EZZO_[T{L' " - rﬂm'rzil
I
0 TL -
ol (0,t
4 4
Rt - &0 | T —T(0,1)* |
OX |
and
T (L,1)
i 4 4
Kk =50 T(LY TS,

OX 49



Interface Boundary Conditions

At the interface the requirements are:

(1) two bodies in contact must have the
same temperature at the area of
contact,

(2) an Interface (which iIs a surface)
cannot store any energy, and thus

the on the two sides of an
Interface
TAXxp 0= Tg(Xp D)
and
K, OTp (X, 1) _ o OT5 (X, 1)

OX OX

Material

Interface

TA(.I‘O, = TB(.x'O. f)

Conduction

Material
B

TB(.\'. f)

50

X



Generalized Boundary Conditions

In general, a surface may involve convection, radiation,
and specified heat flux simultaneously. The boundary
condition in such cases Is again obtained from a surface
energy balance, expressed as

Heat transfer
T from the surface
In all modes

Heat Generation In Solids

The quantities of major interest in a medium with
heat generation are the surface temperature 7.
and the maximum temperature 7, ., that occurs in
the medium In sfteady operation. i3



Heat Generation In Solids -The Surface
Temperature

Rate of
i energy
w1 generation
within the solid

For uniform heat generation within the medium
Q - e.gen\/ (VV)

The heat transfer rate by convection can also
Y Dbe expressed from Newton’s law of cooling as
- | Q:h'A\s (Ts _Too) (VV)

A

hAg 52

T =T 1+




Heat Generation In Solids -The Surface
Temperature

For a large plane wall of thickness 2L (A.=2A,,.
and V=2LA,.,)

Eon L
Ts,plane wall :Too 33
For a of radius r, (A.=27x/,L
and V=nr L) 6.1,
T =T + 2

s,cylinder o0 2h

For a solid sphere of radius r, (A.=4zr/7 and V=/7r,7)

Eri

gen

T
3h 53

s,sphere

=T, +



