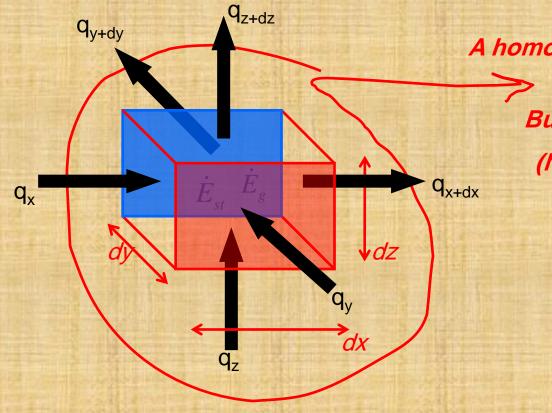
Chapter 2 One Dimensional, Steady-State Heat Conduction

Chapter 2: One Dimensional, steadystate heat Conduction

Objectives

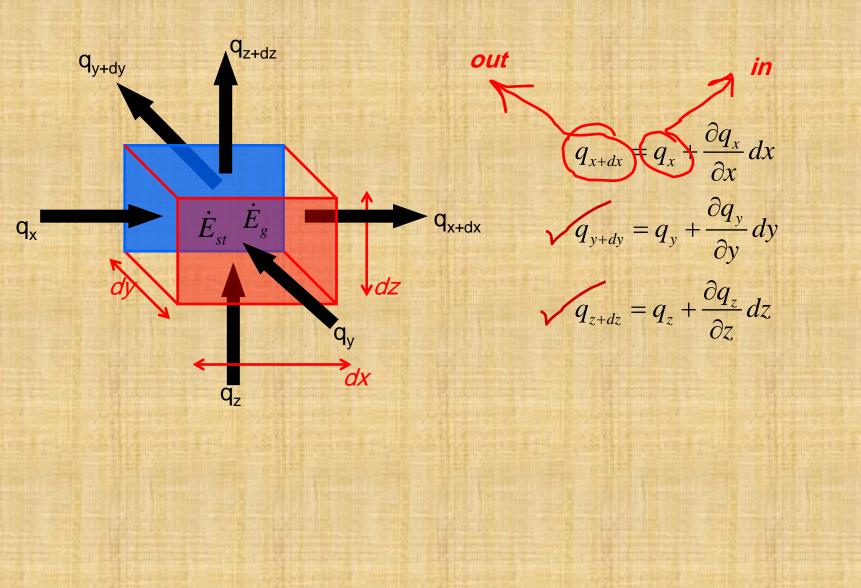
- To determine expressions for the temperature distribution and heat transfer rate in common (planar, cylindrical, and spherical) geometries.
- To introduce the concept of thermal resistance and the use of thermal circuits to model heat flow.

The heat diffusion equation



A homogenous medium in which Bulk velocity = 0 (No advection) T(x,y,z)

The heat diffusion equation



4

The heat diffusion equation



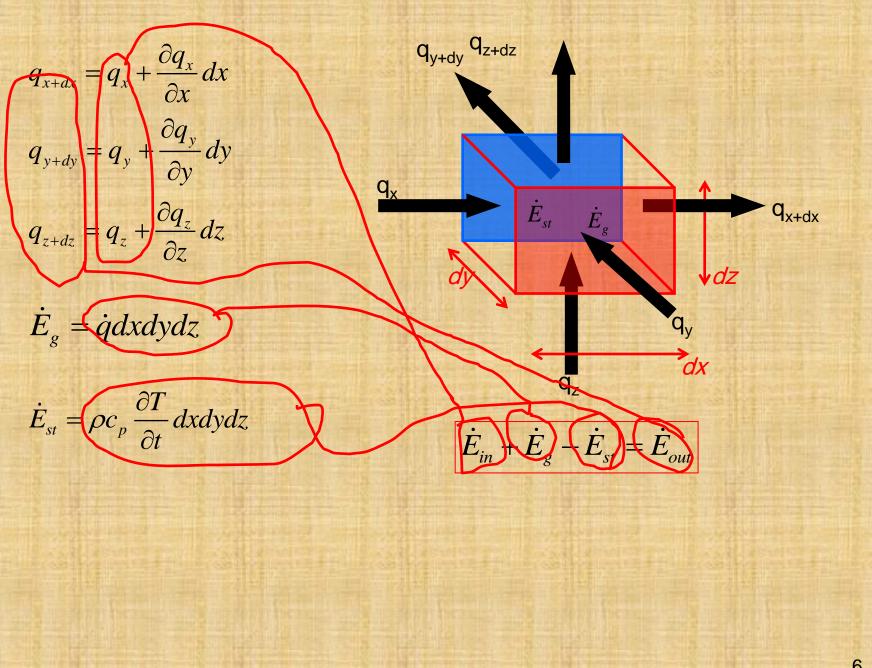
 $q_{x+dx} = q_x + \frac{\partial q_x}{\partial x} dx$ $q_{y+dy} = q_y + \frac{\partial q_y}{\partial y} dy$ $q_{z+dz} = q_z + \frac{\partial q_z}{\partial z} dz$ $\dot{E}_{g} = \dot{q}dxdydz$

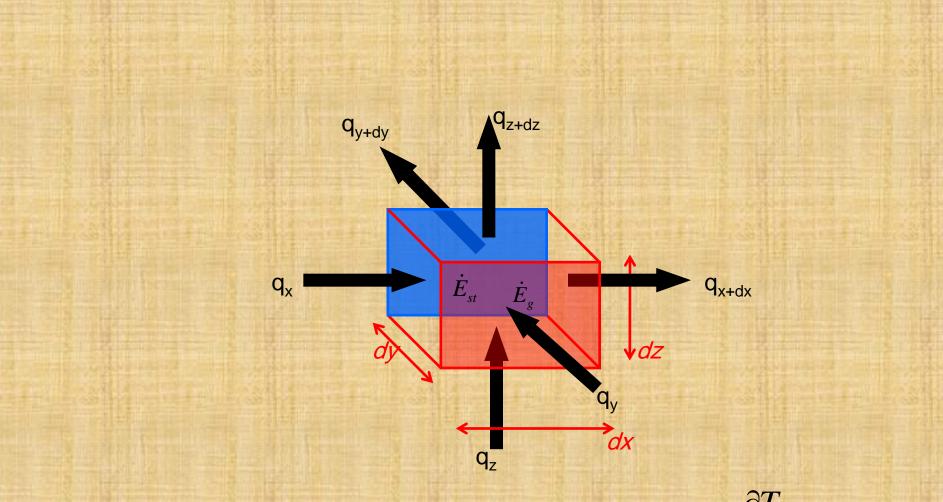
 $\dot{E}_{st} = \rho c_p \frac{\partial T}{\partial t} dx dy dz$

The energy balance (law of conservation energy) may be made :

Energy conducted in the element

- + Heat generated with element
- Change in internal energy =
- Energy conducted out the element





 $q_{x} + q_{y} + q_{z} + \dot{q}dxdydz - q_{x+dx} - q_{y+dy} - q_{z+dz} = \rho c_{p} \frac{\partial T}{\partial t} dxdydz$

7

 $q_{x} + q_{y} + q_{z} + \dot{q}dxdydz - q_{x+dx} - q_{y+dy} - q_{z+dz} = \rho c_{p} \frac{\partial T}{\partial t} dxdydz$

 q_{x+dx}

 q_{y+dy}

 q_{z+dz}

 $\partial q_x dx$

 $\partial q_y dy$

 $\frac{\partial q_z}{\partial dz} dz$

Recall that

 $-\frac{\partial q_x}{\partial x}dx - \frac{\partial q_y}{\partial y}dy - \frac{\partial q_z}{\partial z}dz + \dot{q}dxdydz = \rho c_p \frac{\partial T}{\partial t}dxdydz$ **Recall Fourier's Law** Area ∂T q_x dz q_x q_{x+dx} 9

 $-\frac{\partial q_y}{\partial y}dy - \frac{\partial q_z}{\partial z}dz + \dot{q}dxdydz = \rho c_p \frac{\partial T}{\partial t}dxdydz$

kdydz. ∂x

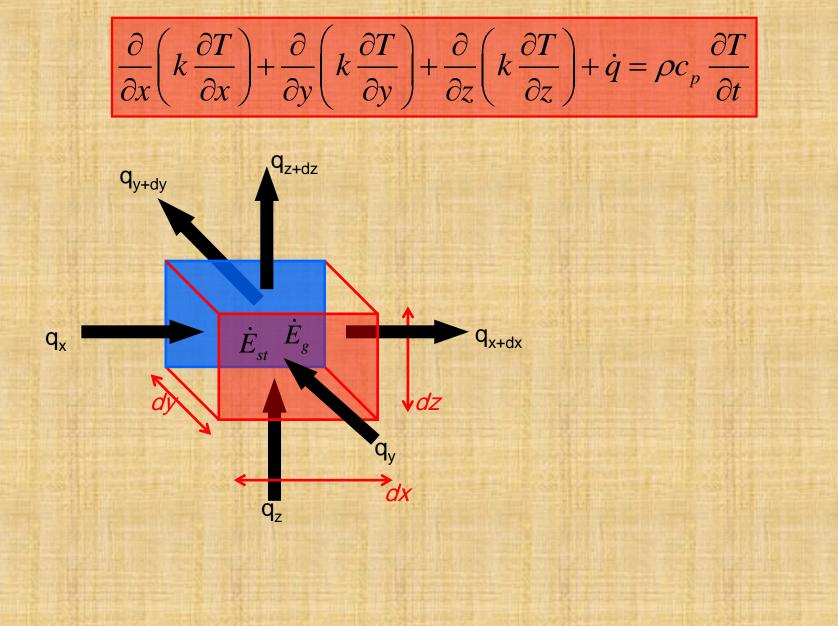
 $q_y = -kdxdz\frac{\partial I}{\partial z}$

 $qz = -kdxdy \frac{\partial T}{\partial z}$

Finally divide the whole equation by the volume dxdydz

10

The Diffusion equation:



11

If thermal conductivity is constant, you can divide the whole equation by k and this leads to the simplification

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} + \frac{\dot{q}}{k} = \frac{1}{\alpha} \frac{\partial T}{\partial t}$$

Where α is the thermal diffusivity given by

$$\alpha = \frac{k}{\rho c_p}$$

Thermal diffusivity has units of square meters per seconds (m^2/s) .

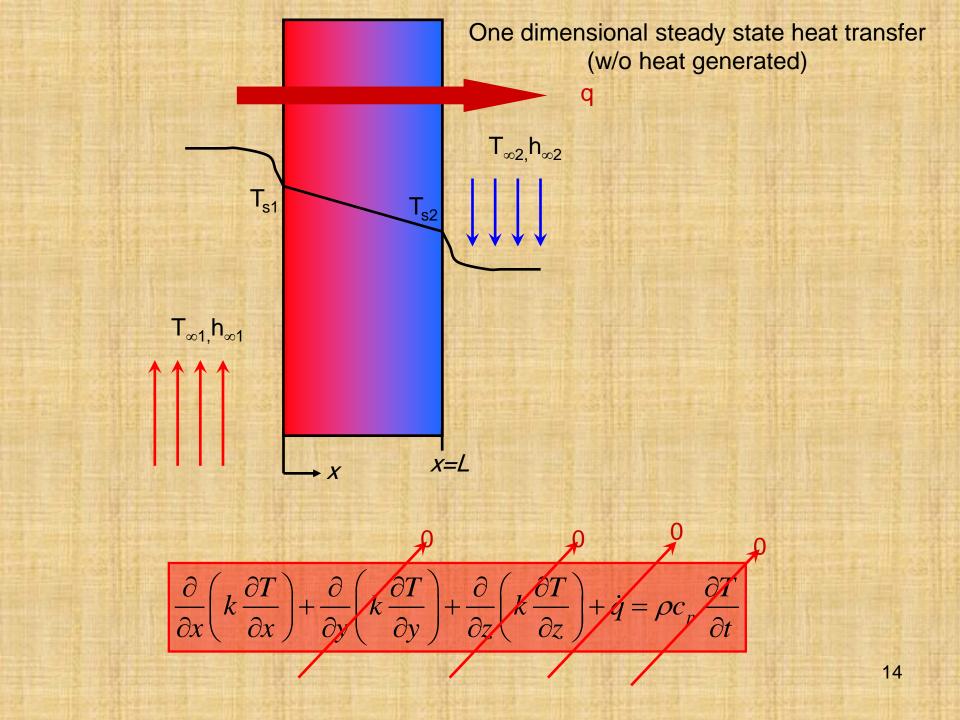
Under steady state conditions *and with no heat generation* then the storage quantity reduces to zero and the heat equation reduces to

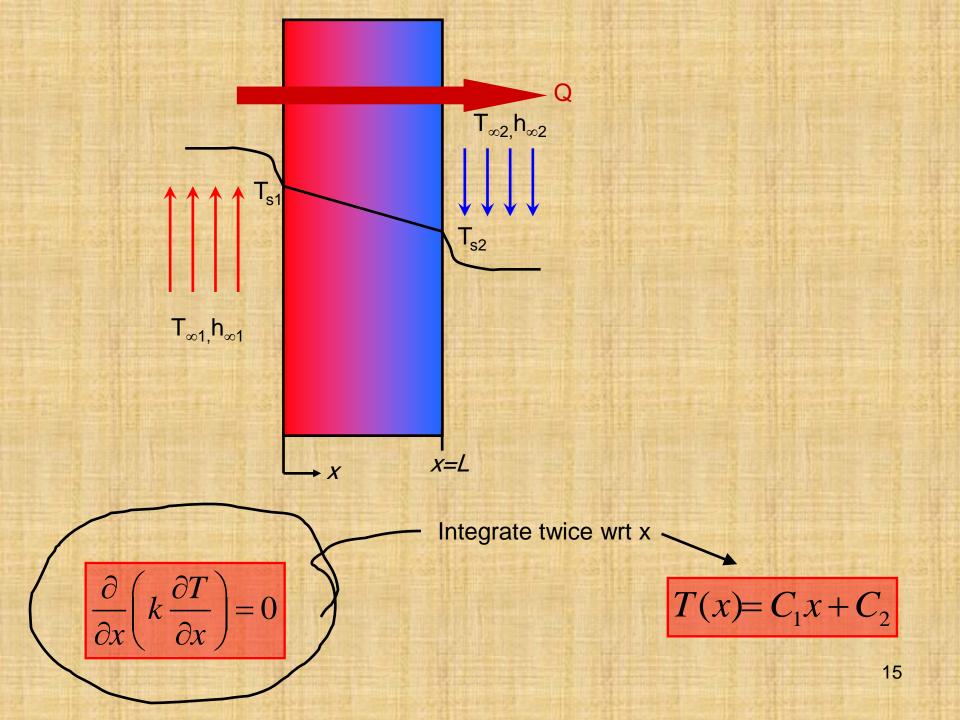
$$\frac{\partial}{\partial x}\left(k\frac{\partial T}{\partial x}\right) + \frac{\partial}{\partial y}\left(k\frac{\partial T}{\partial y}\right) + \frac{\partial}{\partial z}\left(k\frac{\partial T}{\partial z}\right) + \dot{q} = 0$$

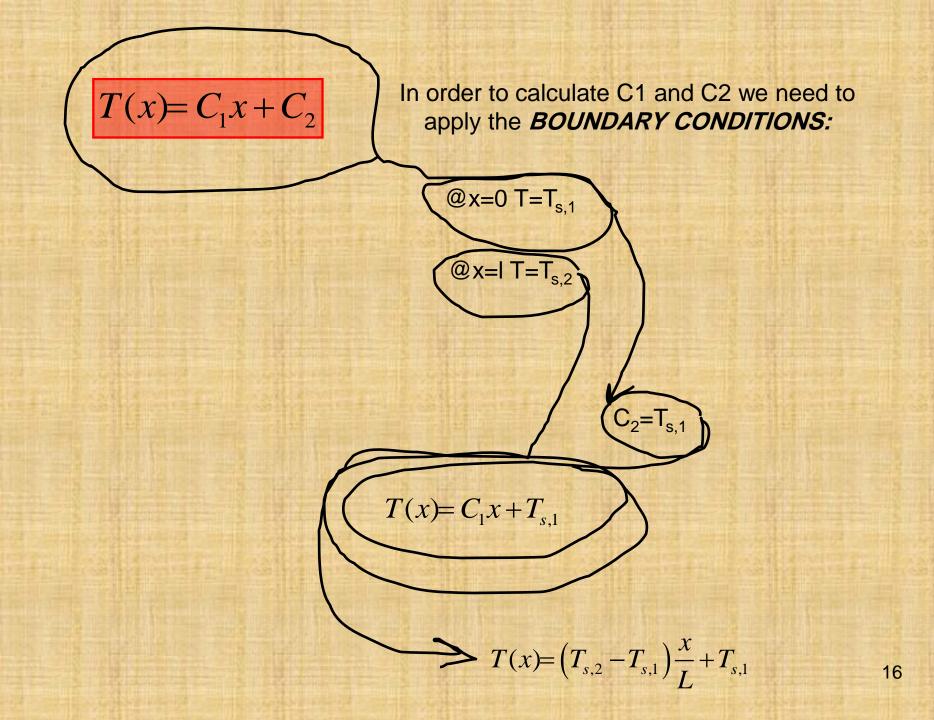
For one dimensional steady state heat transfer (w/o heat generated)

$$\frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right) = 0$$

i.e the heat flux is constant in the direction of the heat transfer.







$T(x) = \left(T_{s,2} - T_{s,1}\right) \frac{x}{L} + T_{s,1}$

For one dimensional steady state conduction in a plane wall with no heat generation and constant thermal conductivity the temperature varies *linearly* with x,

Fourier's law can now be stated as

$$q_x = -kA \frac{dT}{dx} = k \frac{A}{L} \left(T_{s,1} - T_{s,2} \right)$$

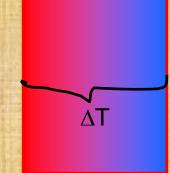
i.e the flux is

$$q''_{x} = \frac{k}{L} (T_{s,1} - T_{s,2})$$

The electrical resistance analogy

 ΔV

 $R = \frac{\Delta V}{I}$ Ohm's law



★ conduction resistance :
$$R_{t,cond} = \frac{T_{s,1} - T_{s,2}}{q_x} = \frac{L}{kA}$$
 based on: $q = \frac{kA}{L} (T_{s,1} - T_{s,2})$

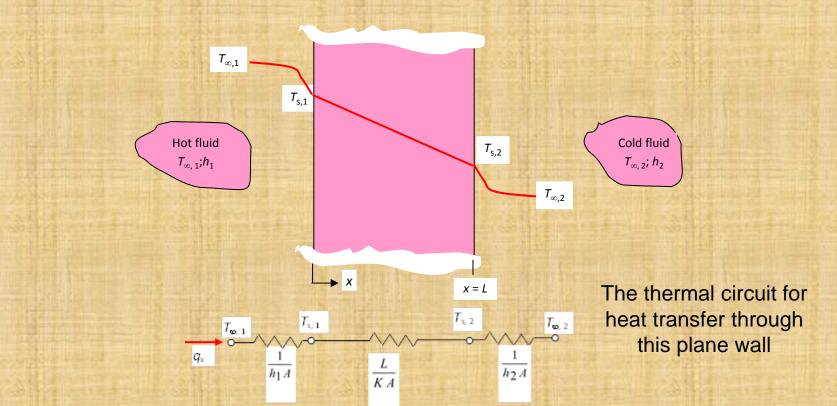
convection resistance : R

$$P_{t,conv} = \frac{T_s - T_{\infty}}{q} = \frac{1}{hA}$$
 based on: $q = hA(T_s - T_{\infty})$

♦ Radiation resistance: $R_{t,rad} = \frac{T_s - T_{sur}}{q_{rad}} = \frac{1}{h_r A}$ based on: $q_{rad} = h_r A (T_s - T_{sur})$

where $h_r = \varepsilon \sigma (T_s + T_{sur}) (T_s^2 + T_{sur}^2)$

q

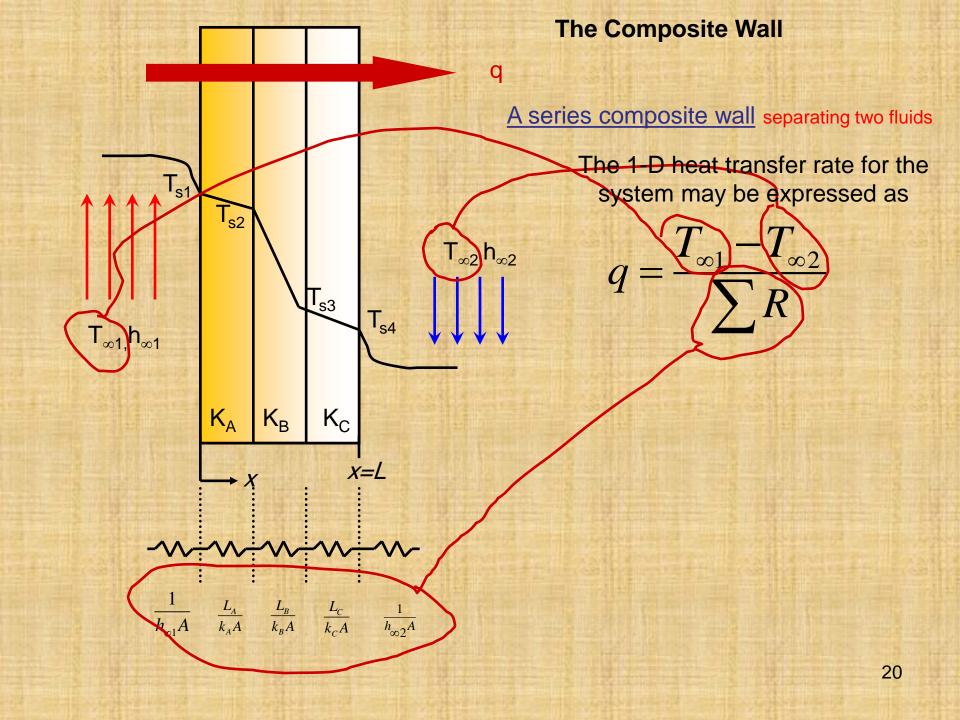


Since q_x is constant throughout the network, it follows that

$$q_{x} = \frac{T_{\infty,1} - T_{s,1}}{1/h_{1}A} = \frac{T_{s,1} - T_{s,2}}{L/kA} = \frac{T_{s,2} - T_{\infty,2}}{1/h_{2}A}$$

In terms of the overall temperature difference, the heat transfer rate may also be expressed as

$$q_{x} = \frac{T_{\infty,1} - T_{\infty,2}}{R_{tot}} \quad \text{where} \quad R_{tot} = \frac{1}{h_{1}A} + \frac{L}{kA} + \frac{1}{h_{2}A}$$



$$q_{x} = \frac{T_{\infty 1} - T_{\infty 2}}{\frac{1}{h_{\infty 1}A} + \frac{L_{A}}{K_{A}A} + \frac{L_{B}}{K_{B}A} + \frac{L_{C}}{K_{C}A} + \frac{1}{h_{\infty 2}A}}$$

Alternatively, q_x can be related to the temperature difference and resistance associated with each element :

$$q_{x} = \frac{T_{\infty,1} - T_{s,1}}{(1/h_{1}A)} = \frac{T_{s,1} - T_{2}}{(L_{A}/k_{A}A)} = \frac{T_{2} - T_{3}}{(L_{B}/k_{B}A)} = \dots$$

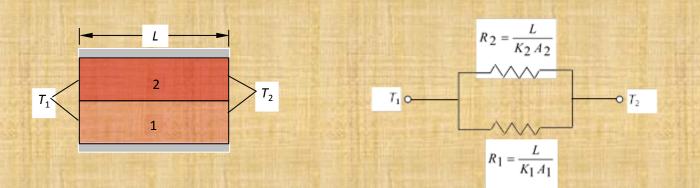
 $q_x = UA\Delta T$

Where
$$U = \frac{R_{tot}}{A} = \frac{1}{\frac{1}{h_{\infty 1}} + \frac{L_A}{K_A} + \frac{L_B}{K_B} + \frac{L_C}{K_C} + \frac{1}{h_{\infty 2}}}$$

In general, we may write $R_{tot} = \sum R_t = \frac{\Delta T}{q_x} = \frac{1}{UA}$

21

A parallel composite of two materials

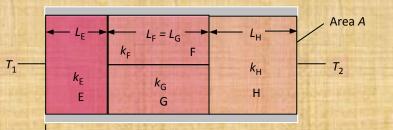


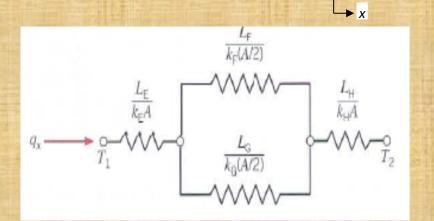
The heat transfer rate in the network is $q_x = \frac{T_1 - T_2}{R_{tot}}$ where $R_{tot} = \frac{1}{\frac{1}{R_1 + 1/R_2}}$

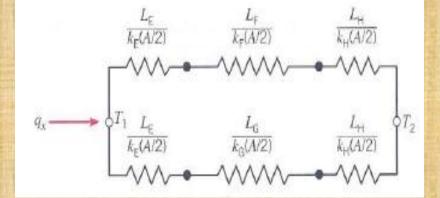
The heat transfer rate can be calculated as the sum of heat transfer rates in the individual materials:

$$q_x = q_{1x} + q_{2x} = \frac{T_1 - T_2}{R_1} + \frac{T_1 - T_2}{R_2}$$

Series-parallel configurations





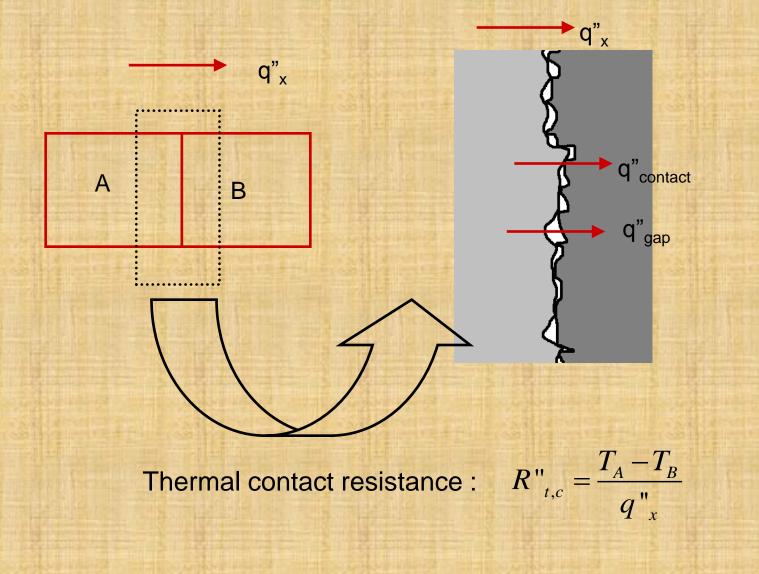


(a) Surfaces normal to the x direction are isothermal

(b) Surfaces parallel to the x direction are adiabatic

The actual value of q lies between the values obtained with circuits (a) and (b).

Contact resistance



For a steady state one dimensional heat transfer and no energy generation

 $\left(k\frac{\partial T}{\partial x}\right) + \frac{\partial}{\partial y}\left(k\frac{\partial T}{\partial y}\right)$

 ∂

 ∂z

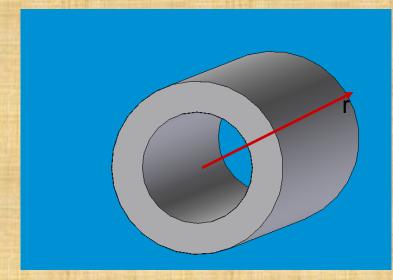
 ∂z

 $k \frac{\partial T}{\partial x}$ \widetilde{o} =0 ∂x

 $+\dot{q} = \rho c$

Cylindrical coordinates

$$\frac{\partial^2 T}{\partial r^2} + \frac{1}{r} \frac{\partial T}{\partial r} + \frac{1}{r^2} \frac{\partial^2 T}{\partial \phi^2} + \frac{\partial^2 T}{\partial z^2} + \frac{\dot{q}}{k} = \frac{1}{\alpha} \frac{\partial T}{\partial t}$$



The heat equation for a steady state one dimensional heat transfer and no energy generation for a hollow cylinder

$$\frac{1}{r}\frac{d}{dr}\left(k\,r\frac{d\,T}{d\,r}\right) = 0$$

lz+dz

Fourier's Law

We stated the phenomenologically found Fourier's law of conduction in one direction

$$q_x = -kA\frac{dT}{dx}$$

Fourier's law of conduction in one direction namely the radial direction

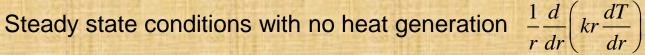
$$q_x = -kA\frac{dT}{dr} = -k\left(2\pi rL\right)\frac{dT}{dr}$$

Cylindrical heat transfer

T_{s1}

T_{s2}

T_{s2}



Cold fluid

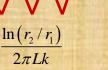
 $h_{\infty 2}, T_{\infty 2}$

 \mathbf{r}_2

Why is it curved ?

 \mathbf{r}_2

r₁



 $h_2 2\pi r_1 L$

We would like to solve for the radial temperature field

Assume the conduction coefficient is constant and integrate the heat equation twice

$$\int \int \frac{1}{r} \frac{d}{dr} \left(kr \frac{dT}{dr} \right) = 0$$

$$T(r) = C_1 \ln r + C_2$$

Apply the boundary conditions

 $T(r_1) = Ts_1$ $T(r_1) = Ts_2$

Which gives

$$Ts_1 = C_1 \ln r_1 + C_2$$
$$Ts_2 = C_1 \ln r_2 + C_2$$

Solving the two equations simultaneously gives C1 and C2 and substituting into the general solution gives

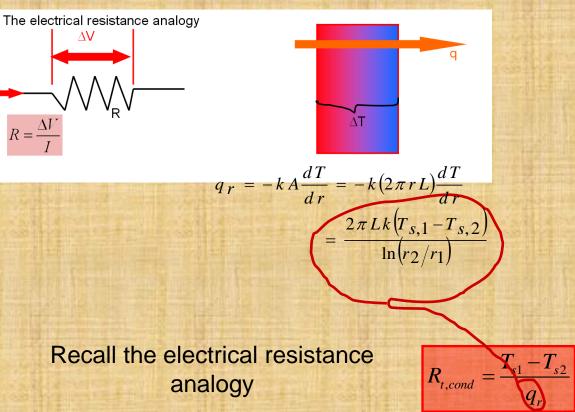
 $T(r) = \frac{Ts_1 - Ts_2}{\ln r_1 / r_2} \ln \frac{r}{r_2} + Ts_2$

dT/dr

The wall temperature in the cylinder is logarithmic and not linear like the case for the plane wall under the same conditions

Take the derivative of T(r) wrt r and substitute dT/dr in Fourier's Law in cylindrical form

dT $q_r = -k \left(2\pi rL \right)$

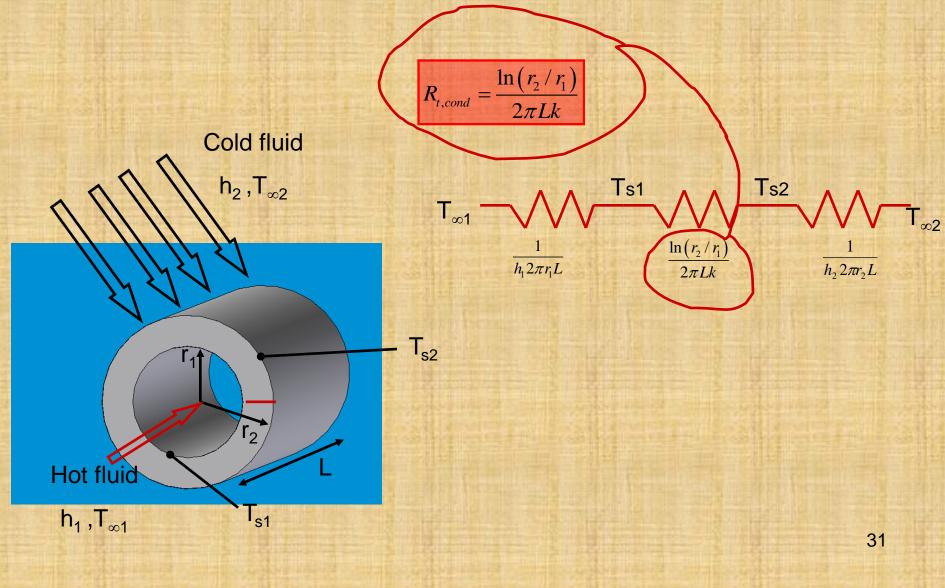


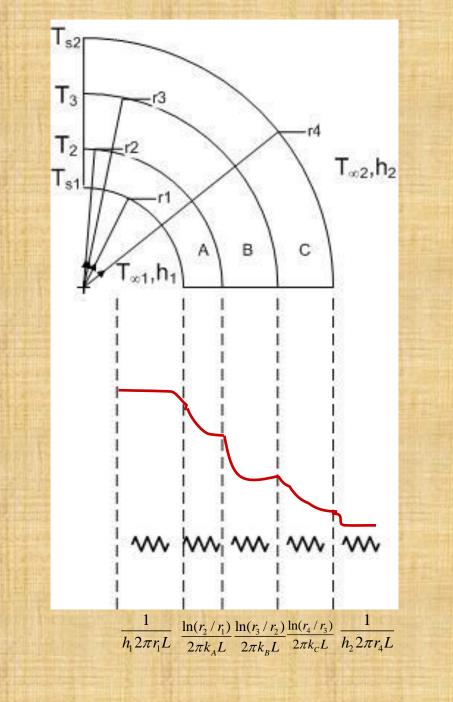
Note that the heat rate is NOT a linear function of radius but a logarithmic function of the radius

Which gives the conductivity resistance

$$R_{t,cond} = \frac{\ln(r_2 / r_1)}{2\pi Lk}$$

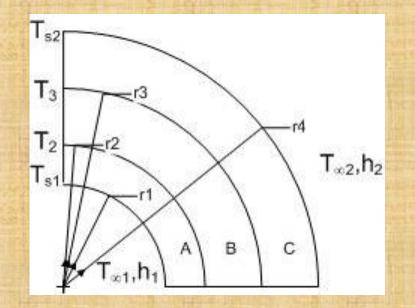
Cylindrical heat transfer





Composite cylindrical wall

The heat transfer rate



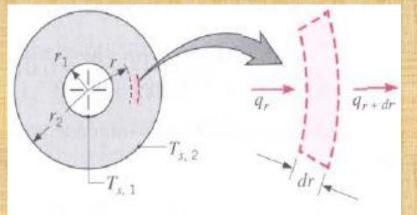
$$q_{r} = \frac{T_{\infty 1} - T_{\infty 2}}{\frac{1}{h_{1} 2\pi r_{1}L} + \frac{\ln(r_{2}/r_{1})}{2\pi k_{A}L} + \frac{\ln(r_{3}/r_{2})}{2\pi k_{B}L} + \frac{\ln(r_{4}/r_{3})}{2\pi k_{C}L} + \frac{1}{h_{2} 2\pi r_{4}L}}$$

Spherical heat transfer

The appropriate form of Fourier's law is

$$q_r = -kA\frac{dT}{dr} = -k\left(4\pi r^2\right)\frac{dT}{dr}$$

• The heat transfer rate is then (assuming constant k)



$$q_{r} = \frac{4 \pi k (T_{s,1} - T_{s,2})}{(1/r_{1}) - (1/r_{2})}$$

The thermal resistance is

$$R_{t,cond} = \frac{\Delta T}{q_r} = \frac{1}{4\pi k} \left(\frac{1}{r_1} - \frac{1}{r_2} \right)$$

Note: Spherical composites may be treated the same way as composite walls and cylinders.

Critical radius of insulation

• For a plane wall exposed to a fluid, an increase in the thickness of the wall results in an increase in the conduction resistance $R_{cond} = L/(kA)$ but does not change the convection resistance R_{conv} . Hence, the heat transfer rate will reduce as the wall thickness increases.

• For geometries with non-constant cross-sectional area (e.g. a cylinder, a sphere), increase in the wall thickness does not always bring about a decrease in the heat transfer rate.

•The critical radius of insulation for a <u>cylinder</u> exposed to convection is r_{cr} =

where k is the of thermal conductivity of the insulation material and h is the convection heat transfer coefficient on the insulation.

•The critical radius of insulation for a <u>sphere</u> exposed to convection is $r_{cr} = \frac{2k}{h}$

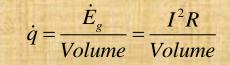
Wall with Heat generation

- We looked at a wall with no heat generation. Many cases require the consideration of a wall with heat generation.
- One such case is heat generation due to resistance.

The rate at which energy is generated by passing a current / through the resistance *R*

$$\dot{E}_g = I^2 R$$

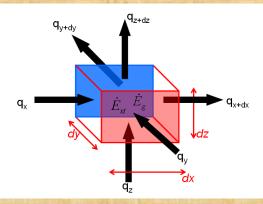
If you assume the power generated is uniform In this case



Let us solve for the temperature field starting with the heat diffudion equation

Plane wall with uniform heat generation

 ∂



Plane wall

 ∂T

дy

 ∂

 ∂z

 ∂I

 ∂z

Assume conductivity is constant

 ∂

 ∂x

k

 ∂x

The heat rate equation simplifies to

$$\frac{d^2T}{dx} + \frac{\dot{q}}{k} = 0$$

Uniform means this term is constant

pc

Integrate twice gives

 $x^{2} + C_{1}x + C_{2}$ 2k

SS

Plane wall with uniform heat generation

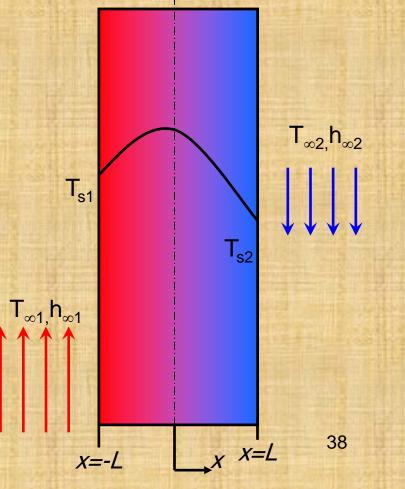
Solving for C1 and C2 depends on the boundary conditions

 $=\frac{-\dot{q}}{2k}x^{2}+C_{1}x+C_{2}$

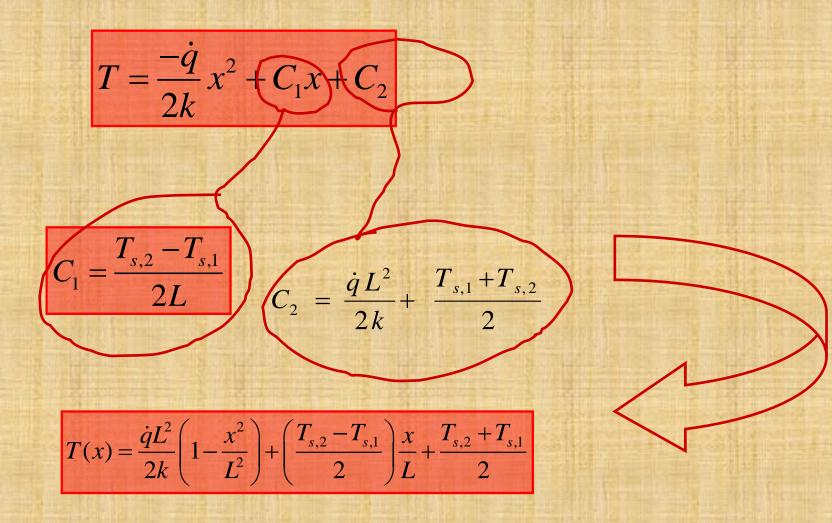
Case 1

The boundary conditions are T(-L)= $T_{s,1}$ and T(L)= $T_{s,2}$

This gives



Plane wall with uniform heat generation



Solving for C1 and C2 depends on the boundary conditions

 $T = \frac{-\dot{q}}{2k}x^2 + C_1 x + C_2$

 $T_{\infty 2}h_{\infty 2}$

40

T_s

x x=L

T_s

X=-

 $T_{\infty 1}h_{\infty 1}$

Case 2

Plane wall with uniform heat generation, both sides maintained at the same temperature

The boundary conditions are $T(-L)=T_s$ and $T(L)=T_s$

This gives a symmetrical temperature distribution

$$T(x) = \frac{\dot{q}L^2}{2k} \left(1 - \frac{x^2}{L^2}\right) + T_s$$

 The maximum temperature for this case is at the center and is given by

$$T(0) = \frac{\dot{q}L^2}{2k} + T_s$$

The temperature gradient at this location is

$$\frac{d}{dx}(T(x)) = 0$$

Which means that no heat crosses the mid-plane

The problem may be represented with an adiabatic mid-plane

 $\mathsf{T}_{\infty2,}\mathsf{h}_{\infty2}$

42

T_s

→x x=L

Radial Systems with uniform heat generation Cylindrical system Cold Hold

Heat diffusion equation:
$$\frac{1}{r} \frac{d}{dr} \left(r \frac{dT}{dr} \right) + \frac{\dot{q}}{k} = 0$$

Boundary Conditions: $\frac{dT}{dr} \Big|_{r=0} = 0$ and $T(r_o) = T_s$
Temperature distribution: $T(r) = \frac{\dot{q}r_o^2}{4k} \left(1 - \frac{r^2}{r_o^2} \right) + T_s$
centerline temperature : $T(0) = T_o = \frac{\dot{q}r_o^2}{4k} + T_s$ $\frac{T(r) - T_s}{T_o - T_s} = 1 - \left(\frac{r}{r_o}\right)^2$

centerline temperature :

Note: To relate T_s to T_{∞} , apply an overall energy balance on the cylinder to obtain: $\dot{q}\left(\pi r_{o}^{2}L\right) = h\left(2\pi r_{o}L\right)\left(T_{s}-T_{\infty}\right)$

Boundary and Initial Conditions

- Specified Temperature Boundary Condition
- Specified Heat Flux Boundary Condition
- Convection Boundary Condition
- Radiation Boundary Condition
- Interface Boundary Conditions
- Generalized Boundary Conditions

Specified Temperature Boundary Condition

For one-dimensional heat transfer through a plane wall of thickness *L*, for example, the specified temperature boundary conditions can be expressed as

$$T(0, t) = T_1$$

 $T(L, t) = T_2$

 $150^{\circ}C$ T(x, t) $70^{\circ}C$ L x

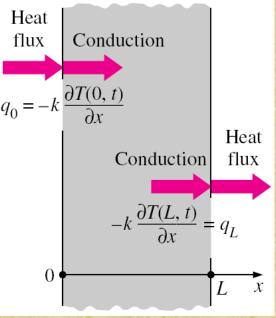
 $T(0, t) = 150^{\circ}\text{C}$ $T(L, t) = 70^{\circ}\text{C}$

The specified temperatures can be constant, which is the case for steady heat conduction, or may vary with time.

Specified Heat Flux Boundary Condition

The heat flux in the positive x direction anywhere in the medium including the boundaries, can be $q_0 = -k \frac{\partial T(0, t)}{\partial x}$ expressed by Fourier's law of heat conduction as

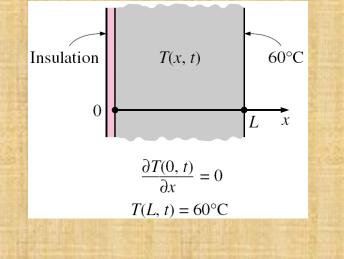
 $\dot{q} = -k \frac{dT}{dx} = \left(\begin{array}{c} \text{Heat flux in the} \\ \text{positive x-} \\ \text{direction} \end{array} \right)$



The sign of the specified heat flux is determined by inspection: positive if the heat flux is in the positive direction of the coordinate axis, and negative if it is in the opposite direction.

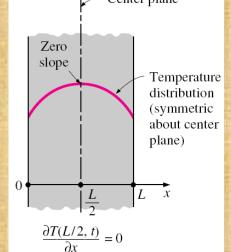
Two Special Cases

Insulated boundary



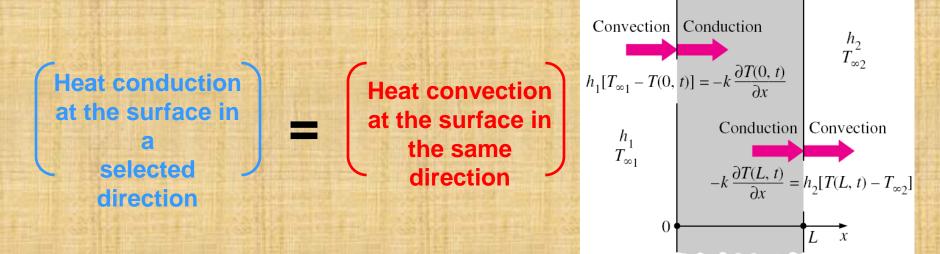
 $k \frac{\partial T(0,t)}{\partial x} = 0$ or $\frac{\partial T}{\partial t}$

$$\frac{\partial T(0,t)}{\partial x} = 0$$



 $\frac{\partial T\left(\frac{L}{2},t\right)}{\partial x} = 0$

Convection Boundary Condition

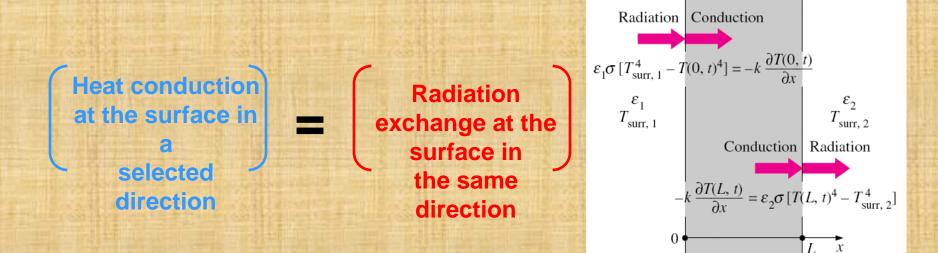


$$-k\frac{\partial T(0,t)}{\partial x} = h_1 \left[T_{\infty 1} - T(0,t) \right]$$
$$-k\frac{\partial T(L,t)}{\partial x} = h_2 \left[T(L,t) - T_{\infty 2} \right]$$

and

48

Radiation Boundary Condition



$$-k\frac{\partial T(0,t)}{\partial x} = \varepsilon_1 \sigma \left[T_{surr,1}^4 - T(0,t)^4\right]$$

and

$$-k\frac{\partial T(L,t)}{\partial x} = \varepsilon_2 \sigma \Big[T(L,t)^4 - T_{surr,2}^4\Big]$$

Interface Boundary Conditions

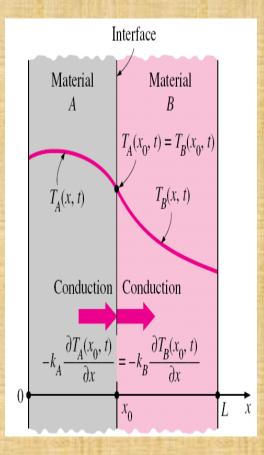
At the interface the requirements are: (1) two bodies in contact must have the *same temperature* at the area of contact,

(2) an interface (which is a surface) cannot store any energy, and thus the *heat flux* on the two sides of an interface *must be the same.*

$$T_A(x_0, t) = T_B(x_0, t)$$

and

$$-k_{A} \frac{\partial T_{A}(x_{0},t)}{\partial x} = -k_{B} \frac{\partial T_{B}(x_{0},t)}{\partial x}$$



Generalized Boundary Conditions

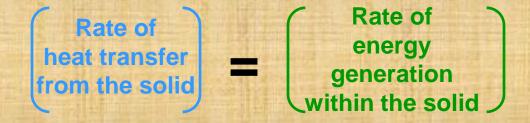
In general, a surface may involve convection, radiation, and specified heat flux simultaneously. The boundary condition in such cases is again obtained from a surface energy balance, expressed as

Heat transfer to the surface in all modes Heat transfer from the surface In all modes

Heat Generation in Solids

The quantities of major interest in a medium with heat generation are the surface temperature T_s and the maximum temperature T_{max} that occurs in the medium in steady operation. 51

Heat Generation in Solids -The Surface Temperature



For *uniform* heat generation within the medium $\dot{Q} = \dot{e}_{gen}V$ (W)

The heat transfer rate by convection can also be expressed from Newton's law of cooling as $\dot{Q} = hA_s (T_s - T_\infty)$ (W)

 $\bullet T_s = T_\infty + \frac{e_{gen}V}{hA_s}$

Heat Generation in Solids -The Surface Temperature

For a large *plane wall* of thickness $2L (A_s = 2A_{wall})$ and $V = 2LA_{wall}$

 $T_{s, plane \ wall} = T_{\infty} + \frac{e_{gen}L}{h}$

For a long solid *cylinder* of radius r_0 ($A_s=2\pi r_0L$ and $V=\pi r_0^2L$) $T_{s,cylinder} = T_{\infty} + \frac{\dot{e}_{gen}r_0}{2h}$

For a solid *sphere* of radius $r_0 (A_s = 4\pi r_0^2 \text{ and } V = \frac{4}{3}\pi r_0^3)$

$$T_{s,sphere} = T_{\infty} + \frac{\dot{e}_{gen}r_0}{3h}$$