
Chapter 2 
 

One Dimensional, Steady-

State Heat Conduction 
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Objectives 

• To determine expressions for the temperature distribution 

and heat transfer rate in common (planar, cylindrical, and 

spherical) geometries. 

• To introduce the concept of thermal resistance and the use 

of thermal circuits to model heat flow. 
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Chapter 2:  One Dimensional, steady-
state heat Conduction 



The heat diffusion equation  
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The energy balance (law of conservation energy) may be made : 

 
   Energy conducted in the element          +        Heat generated with element 

 

 =        Change in internal energy             +        Energy conducted out the element 
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Recall Fourier’s Law 

9 



x

T
q kdydz

x


 



y

T
q kdxdz

y


 



T
qz kdxdy

z


 



yx z
p

qq q T
dx dy dz qdxdydz c dxdydz

x y z t


  
    
   

Finally divide the whole equation by the volume dxdydz 
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The Diffusion equation: 
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
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Where  is the thermal diffusivity 

given by   

If thermal conductivity is constant, you can divide the whole equation by k and 

this leads to the simplification 

Thermal diffusivity has units of square meters per seconds (m2/s). 
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Under steady state conditions and with no heat generation then the storage 

quantity reduces to zero and the heat equation reduces to  

For one dimensional steady state heat transfer (w/o heat generated)  

i.e the heat flux is constant in the direction of the heat transfer.  
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T1,h1 
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One dimensional steady state heat transfer 

(w/o heat generated)  
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T1,h1 
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Integrate twice wrt x 
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Ts2 

Ts1 
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1 ,1( ) sT x C x T 

1 2( )T x C x C  In order to calculate C1 and C2 we need to 

apply the BOUNDARY CONDITIONS:   

@x=0 T=Ts,1 

 

@x=l T=Ts,2 

 

C2=Ts,1 

 ,2 ,1 ,1( ) s s s

x
T x T T T

L
  
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 ,2 ,1 ,1( ) s s s

x
T x T T T

L
  

 ,1 ,2x s s

dT A
q kA k T T

dx L
  

 ,1 ,2''x s s

k
q T T

L
 

For one dimensional steady state conduction in a plane wall with no 

heat generation and constant thermal conductivity the temperature 

varies linearly with x ,  

Fourier’s law can now be stated as  

 

i.e the  flux is  

17 



,

1s
t conv

T T
R

q hA


 

V
R

I




,1 ,2

,

s s

t cond

x

T T L
R

q kA


 

 convection resistance :  

 conduction resistance :  

R 

V 

I 

q 

T 

 sq hA T T 

The electrical resistance analogy  

Ohm’s law 

based on:  

based on:  

 Radiation resistance :  
Arhradq

surTsT
radtR

1
, 


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where 

 2,1, ss TT
L

kA
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




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18 



Hot fluid 

T, 1;h1 

Cold fluid 

T, 2; h2 

x 

T,1 

T,2 

Ts,1 

Ts,2 

x = L The thermal circuit for 

heat transfer through 

this plane wall 

Since qx is constant throughout the network, it follows that 
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sTT
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In terms of the overall temperature difference, the heat transfer rate may also be 

expressed as 

totR

TT
xq
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 where  AhAk

L
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resistances in series 
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T1,h1 

T2,h2 
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The Composite Wall 

A series composite wall separating two fluids 

The 1-D heat transfer rate for the 

system may be expressed as 
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Where  

Alternatively, qx can be related to the temperature difference and resistance associated 

with each element : 

In general, we may write 
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T
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A parallel composite of two materials  
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T1 T2 

The heat transfer rate in the network is  
totR

TT
xq

21 
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2111

1

RR
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
where  

The heat transfer rate can be calculated as the sum of heat transfer rates in the individual 

materials: 
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Series-parallel configurations 
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LE LF = LG 

  

LH 

T2 

Area A 

(a) Surfaces normal to the x direction 

are isothermal 

(b) Surfaces parallel to the x direction 

are adiabatic 

The actual value of q lies between the values obtained with circuits (a) and (b). 
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Contact resistance  

A B 

q”x 

q”x 

 

q”contact 

 

q”gap 

 

,"
''

A B
t c

x

T T
R

q


Thermal contact resistance : 
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For a steady state one dimensional heat 

transfer and no energy generation  

The heat equation for a steady state 

one dimensional heat transfer and 

no energy generation for a hollow 

cylinder  
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Fourier’s Law  

x

dT
q kA

dx
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 2x

dT dT
q kA k rL

dr dr
   

We stated the phenomenologically found 

Fourier’s law of conduction in one direction   

Fourier’s law of conduction in one 

direction namely the radial 

direction  
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Cylindrical heat transfer  

2 1

1

2h r L1 1

1

2h r L

1 d dT
kr

r dr dr

 
 
 

Steady state conditions with no heat generation 

Ts2 

Ts1 

L 

Cold fluid 

h 2 ,T2 

Hot fluid 

h 1 ,T1 

r1 r2  

Ts2 

Ts1 

r2 

r1 

Why is it 

curved ? 

 2 1ln /

2

r r

Lk

1 d dT
kr

r dr dr

 
 
 
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1 d dT
kr

r dr dr

 
 
 

 

1 1 1 2

2 1 2 2

ln

ln

Ts C r C

Ts C r C

 

 

1 2( ) lnT r C r C 

Assume the conduction coefficient is constant and 

integrate the heat equation twice 

Apply the boundary conditions  

We would like to solve for the radial temperature field  

T(r1) = Ts1 

T(r1) = Ts2 

Which gives  

= 0 
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1 2
2

1 2 2

( ) ln
ln /

Ts Ts r
T r Ts

r r r


 Solving the two equations 

simultaneously gives C1 and 

C2 and substituting into the 

general solution gives   

The wall temperature in the cylinder is logarithmic and not linear 

like the case for the plane wall under the same conditions    

Which gives  

 2r

dT
q k rL

dr
 

Take the derivative of T(r) wrt r and substitute  dT/dr in Fourier’s 

Law in cylindrical form 

dT/dr 

 
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TTkL
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r





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1 2
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T T
R
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
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Recall the electrical resistance 

analogy  

Which gives the conductivity 

resistance  

 2 1

,

ln /

2
t cond

r r
R

Lk


Note that the heat rate is 

NOT a linear function of 

radius but a logarithmic 

function of the radius  
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Cylindrical heat transfer  
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2h r L
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r dr dr
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Ts2 
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Cold fluid 

h2 ,T2 

Hot fluid 
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2
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Lrh 22 2
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T1 T2 

Ts2 
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3 2ln( / )

2 B
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k L
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2 C
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k L1 1
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2 1ln( / )

2 A

r r

k L 2 4
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Composite cylindrical 

wall  
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The heat transfer rate  

1 2

3 2 4 32 1

1 1 2 4
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2 2 2 2 2
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Spherical heat transfer  

rd

Td
rk

rd

Td
Akrq 






 24

The appropriate form of Fourier’s law is 

 The heat transfer rate is then (assuming constant k) 

 
   2111

2,1,4

rr

sTsTk

rq

























2

1

1

1

4

1
,

rrkrq

T
condtR



The thermal resistance is 

Note: Spherical composites may be treated the same way as composite walls 

and cylinders. 
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Critical radius of insulation 

• For a plane wall exposed to a fluid, an increase in the thickness of the wall results in an 

increase in the conduction resistance Rcond = L/(kA) but does not change the convection 

resistance Rconv. Hence, the heat transfer rate will reduce as the wall thickness increases. 

 

•  For geometries with non-constant cross-sectional area (e.g. a cylinder, a sphere), increase 

in the wall thickness does not always bring about a decrease in the heat transfer rate. 

 

•The critical radius of insulation for a cylinder exposed to convection is 
                                                              h

k
rcr 

where k is the of thermal conductivity of the insulation material and h is the 

convection heat transfer coefficient on the insulation.  

•The critical radius of insulation for a sphere exposed to convection is 
h

k
rcr

2

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Wall with Heat generation 

• We looked at a wall with no heat generation. 

Many cases require the consideration of a wall 

with heat generation. 

• One such case is heat generation due to 

resistance.  

2

gE I R
The rate at which energy is generated by passing 

a current I through the resistance R 

2
gE I R

q
Volume Volume

 
If you assume the power generated  is uniform In 

this case  

Let us solve  for the temperature field starting with the 

heat diffudion equation   36 
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1 2
2

q
T x C x C

k


  Integrate twice gives   

2

0
d T q

dx k
 

The heat rate equation 

simplifies to   

p

T T T T
k k k q c

x x y y z z t


          
       

          

Plane wall with uniform heat generation  

0 0 

Uniform 

means this 

term is 

constant  

Plane wall  

0 

ss 

Assume conductivity 

is constant 
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2

1 2
2

q
T x C x C

k


  Solving for C1 and C2 

depends on the boundary 

conditions    

Plane wall with uniform heat generation  

Case 1  

T1,h1 

T2,h2 

 x  x=-L 

Ts1 

Ts2 

 x=L 

The boundary conditions are  

 T(-L)=Ts,1 and T(L)=Ts,2  

This gives   
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Plane wall with uniform heat 

generation  

 
2

1 2
2

q
T x C x C

k


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,2 ,1

1
2

s sT T
C

L




2 2
,2 ,1 ,2 ,1

2
( ) 1

2 2 2

s s s sT T T TqL x x
T x

k L L

    
      

  

22

2,1,
2

2

ss TT

k

Lq
C





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1 2
2

q
T x C x C

k


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Solving for C1 and C2 

depends on the boundary 

conditions    

Case 2  

Plane wall with uniform heat generation, both sides 

maintained at the same temperature  

T1,h1 

T2,h2 

 x  x=-L 

Ts Ts 

 x=L 

The boundary conditions are  

 T(-L)=Ts and T(L)=Ts 

2 2

2
( ) 1

2
s

qL x
T x T

k L

 
   

 

This gives a symmetrical 

temperature distribution   
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• The maximum temperature for this case is 

at the center and is given by  

2

(0)
2

s

qL
T T

k
 

• The temperature gradient at this location is   

 ( ) 0
d

T x
dx



• Which means that no heat crosses the mid-plane 
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The problem may be represented with an adiabatic 

mid-plane 

T2,h2 

 x 

Ts 

 x=L 
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Radial Systems with uniform heat generation  

0
1












k

q

rd

dT
r

rd

d

r



Cylindrical system 

0

0



r
rd

Td

Heat diffusion equation: 

Boundary Conditions:   sTorT and 

  sT

or

r

k

orq
rT 


















2

2

1
4

2
Temperature distribution: 

centerline temperature :   sT
k

orq
oTT 

4

2

0


 
2

1






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Note: To relate Ts to T, apply an overall energy balance on the 

cylinder to obtain: 
  








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Boundary and Initial Conditions 

• Specified Temperature Boundary 

Condition 

• Specified Heat Flux Boundary Condition 

• Convection Boundary Condition 

• Radiation Boundary Condition 

• Interface Boundary Conditions 

• Generalized Boundary Conditions 
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Specified Temperature Boundary 

Condition 

For one-dimensional heat 

transfer through a plane wall of 

thickness L, for example, the 

specified temperature boundary 

conditions can be expressed as 

T(0, t) = T1 

T(L, t) = T2 

The specified temperatures can be constant, which is 

the case for steady heat conduction, or may vary with 

time. 45 



Specified Heat Flux Boundary 

Condition 

 

dT
q k

dx
  

Heat flux in the 

positive x-

direction 

The sign of the specified heat flux is determined 

by inspection: positive if the heat flux is in the 

positive direction of the coordinate axis, and 

negative if it is in the opposite direction. 

The heat flux in the positive x-

direction anywhere in the medium, 

including the boundaries, can be 

expressed by Fourier’s law of heat 

conduction as 
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Two Special Cases 

Insulated boundary 

 

 

 

 

 

 

Thermal symmetry 

(0, ) (0, )
0     or     0 

T t T t
k

x x

 
 

 

 ,
2

0

LT t

x





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Convection Boundary Condition 

 1 1

(0, )
(0, )

T t
k h T T t

x



  



 2 2

( , )
( , )

T L t
k h T L t T

x



  



Heat conduction 

at the surface in 

a 

selected 

direction 

Heat convection 

at the surface in 

the same 

direction 

= 

and 
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Radiation Boundary Condition 

Heat conduction 

at the surface in 

a 

selected 

direction 

Radiation 

exchange at the 

surface in 

the same 

direction 

= 

4 4

1 ,1

(0, )
(0, )surr

T t
k T T t

x
 


    

4 4

2 ,2

( , )
( , ) surr

T L t
k T L t T

x
 


    

and 
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Interface Boundary Conditions 

0 0( , ) ( , )A B
A B

T x t T x t
k k

x x

 
  

 

At the interface the requirements are: 

(1) two bodies in contact must have the 

same temperature at the area of 

contact, 

(2) an interface (which is a surface) 

cannot store any energy, and thus 

the heat flux on the two sides of an  

 interface must be the same. 

TA(x0, t) = TB(x0, t)  

and 
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Generalized Boundary Conditions 

In general, a surface may involve convection, radiation, 

and specified heat flux simultaneously. The boundary 

condition in such cases is again obtained from a surface 

energy balance, expressed as 

Heat transfer 

to the surface 

in all modes 

Heat transfer 

from the surface 

In all modes 
= 

Heat Generation in Solids 
The quantities of major interest in a medium with 

heat generation are the surface temperature Ts 
and the maximum temperature Tmax that occurs in 

the medium in steady operation. 
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The heat transfer rate by convection can also 

be expressed from Newton’s law of cooling as 

       (W)s sQ hA T T 

gen

s

s

e V
T T

hA
 

Rate of 

heat transfer 

from the solid 

Rate of 

energy 

generation 

within the solid 

= 

For uniform heat generation within the medium 

     (W)genQ e V

- 

Heat Generation in Solids -The Surface 

Temperature 

52 



Heat Generation in Solids -The Surface 

Temperature 

For a large plane wall of thickness 2L (As=2Awall 

and V=2LAwall) 

,  

gen

s plane wall

e L
T T

h
 

For a long solid cylinder of radius r0 (As=2r0L 

and V=r0
2L) 

0

,
2

gen

s cylinder

e r
T T

h
 

For a solid sphere of radius r0 (As=4r0
2 and V=4/3r0

3) 

0

,
3

gen

s sphere

e r
T T

h
 

53 


