
Chapter 5 

Numerical method in steady-

state heat conduction 



 

 

 

 

 

 

 

- Analytical solutions that allow for the determination of the exact 

temperature distribution are only available for limited ideal cases. 

 

- Graphical solutions have been used to gain an insight into complex heat 

transfer problems, where analytical solutions are not available, but they 

have limited accuracy and are primarily used for two-dimensional problems. 

 

- Advances in numerical computing now allow for complex heat transfer 

problems to be solved rapidly on computers, i.e., "numerical techniques“. 

 

- Current numerical techniques include: finite-difference analysis; finite 

element analysis; and finite-volume analysis. 

 

- In general, these techniques are routinely used to solve problems in heat 

transfer, fluid dynamics, stress analysis, electrostatics and magnetics, etc. 

 

- We will show the use of finite-difference analysis to solve conduction heat 

transfer problems. 

Numerical methods 



The Finite-Difference Method 

•  An approximate method for determining temperatures at discrete (nodal) 

points of the physical system. 

•  Procedure: 

–  Represent the physical system by a nodal network. 

 

 

–  Use the energy balance method to obtain a finite-difference     

equation for each node of unknown temperature. 

 

 

–  Solve the resulting set of algebraic equations for the unknown      

nodal temperatures. 
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The Nodal Network and Finite-Difference Approximation 

•  The nodal network identifies discrete 

    points at which the temperature is 

    to be determined and uses an 

   m,n notation to designate their location. 

  What is represented by the temperature determined at a nodal point, 

  as for example, Tm,n? 

•  A finite-difference approximation 

   is used to represent temperature 

   gradients in the domain. 

How is the accuracy of the solution affected by construction of the nodal 

network? What are the trade-offs between selection of a fine or a coarse mesh? 
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Derivation of the Finite-Difference Equations 

-  The Energy Balance Method - 
•  As a convenience that obviates the need to predetermine the direction of heat 

   flow, assume all heat flows are into the nodal region of interest, and express all 

   heat rates accordingly. 

  

Hence, the energy balance becomes: 

0in gE E 

•  Consider application to an interior nodal point (one that exchanges heat by 

    conduction with four, equidistant nodal points): 
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Is it possible for all heat flows to be into the m,n nodal region? 

What feature of the analysis insures a correct form of the energy balance  

equation despite the assumption of conditions that are not realizable? 
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•  A summary of finite-difference equations for common nodal regions is provided 

   in Table 1.2. Consider an external corner with convection heat transfer. 
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Table 1.2. A summary of finite-difference equations for common nodal regions 

13 



Table 1.2. A summary of finite-difference equations for common nodal regions 

(Cont.) 
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•  Note potential utility of using thermal resistance concepts to express rate 

   equations.  E.g., conduction between adjoining dissimilar materials with  

   an interfacial contact resistance. 
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Treating Insulated Boundary Nodes as Interior Nodes: 

The Mirror Image Concept 

The mirror image approach can also be 

used for problems that possess thermal 

symmetry by replacing the plane of 

symmetry by a mirror.  

Alternately, we can replace the plane of 

symmetry by insulation and consider only 

half of the medium in the solution.  

The solution in the other half of the 

medium is simply the mirror image of the 

solution obtained. 



Solutions Methods 
•  Matrix Inversion:  Expression of system of N finite-difference equations for 

   N unknown nodal temperatures as: 

    A T C (4.52) 

Coefficient 

Matrix (NxN) 
Solution Vector 

(T1,T2, …TN) 
Right-hand Side Vector of Constants 

            (C1,C2…CN) 

Solution       
1

T A C




Inverse of Coefficient Matrix (4.53) 

•  Gauss-Seidel Iteration:  Each finite-difference equation is written in explicit 

   form, such that its unknown nodal temperature appears alone on the left- 

   hand side: 
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(4.55) 

where i =1, 2,…, N and k is the level of iteration. 

Iteration proceeds until satisfactory convergence is achieved for all nodes: 

   1k k
i iT T 


 

•  What measures may be taken to insure that the results of a finite-difference 

   solution provide an accurate prediction of the temperature field? 17 
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Example1.3: Steady heat conduction in a large Uranium plate 
 

Consider a large uranium plate of thickness L = 4 cm and thermal 

conductivity k = 28 W/m °C in which heat is generated uniformly at a constant 

rate of . One side of the plate is maintained at 0 °C by iced water while the 

other side is subjected to convection to an environment at  with a heat transfer 

coefficient of h = 45 W/m2°C, as shown in the figure bellow. Considering a 

total of three equally spaced nodes in the medium, two at the boundaries and 

one at the middle, estimate the exposed surface temperature of the plate under 

steady conditions using finite difference approach. 
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Solution: 

Node 1 

Node 2 
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Exact solution: 



Example 1.4:   Finite-difference equations for (a) nodal point on a diagonal 

 surface and (b) tip of a cutting tool. 

(a) Diagonal surface (b) Cutting tool. 

Schematic: 

ASSUMPTIONS:  (1) Steady-state, 2-D conduction, (2) Constant properties 

Solution: 
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ANALYSIS:  (a) The control volume about node m,n is triangular with sides x and y and   diagonal 

(surface) of length 2  x.   

The heat rates associated with the control volume are due to conduction, q1 and q2, and to convection, 

qc.  An energy balance for a unit depth normal to the page yields 
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1 2 c q q q 0  
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With x = y, it follows that  
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(b) The control volume about node m,n is triangular with sides x/2 and y/2 and a lower diagonal 

surface of length  2 x/2 .    

The heat rates associated with the control volume are due to the uniform heat flux, qa,  conduction, qb, 

and convection qc.  An energy balance for a unit depth yields 
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Example 1.5:   Analysis of cold plate used to thermally 

control IBM multi-chip,  thermal conduction module. 

Features: 

•  Heat dissipated in the chips is transferred  

   by conduction through spring-loaded  

   aluminum pistons to an aluminum cold 

   plate. 

 
•  Nominal operating conditions may be 

   assumed to provide a uniformly 

   distributed heat flux of  

   at the base of the cold plate. 5 210 W/m
o

q 

•  Heat is transferred from the cold 

   plate by water flowing through 

   channels in the cold plate. 

Find:  

    (a) Cold plate temperature distribution  

for the prescribed conditions. 

    (b) Options for operating at larger power 

levels while 

remaining within a maximum cold plate 

temperature of 40C. 23 



Schematic: 

ASSUMPTIONS:  (1) Steady-state conditions, (2) Two-dimensional conduction, (3) Constant properties 

Solution: 
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ANALYSIS:  Finite-difference equations must be obtained for each of the 28 nodes.  Applying the energy 

balance method to regions 1 and 5, which are similar, it follows that 
 

Node 1:        2 6 1 0y x T x y T y x x y T               

Node 5:        4 10 5 0y x T x y T y x x y T               

Nodal regions 2, 3 and 4 are similar, and the energy balance method yields a finite-difference equation of 

the form 
 
Nodes 2,3,4:

         1, 1, , 1 ,2 2 0m n m n m n m ny x T T x y T y x x y T                   

   

  

Energy balances applied to the remaining combinations of similar nodes yield the following finite-difference 

equations. 

Nodes 6, 14:             1 7 6x y T y x T x y y x h x k T h x k T                 

              19 15 14x y T y x T x y y x h x k T h x k T                 

Nodes 7, 15:              6 8 2 72 2 2y x T T x y T y x x y h x k T h x k T                  

               14 16 20 152 2 2y x T T x y T y x x y h x k T h x k T                  
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Nodes 8, 16:             7 9 11 32 2 3 3y x T y x T x y T x y T y x x y                  

        8h k x y T h k x y T          

              15 17 11 212 2 3 3y x T y x T x y T x y T y x x y                  

        16h k x y T h k x y T          

Node 11:               8 16 12 11x y T x y T 2 y x T 2 x y y x h y k T 2h y k T                    

Nodes 9, 12, 17, 20, 21, 22: 

                         1, 1, , 1 , 1 ,2 0m n m n m n m n m ny x T y x T x y T x y T x y y x T                      

Nodes 10, 13, 18, 23: 

            1, 1, 1, ,2 2 0n m n m m n m nx y T x y T y x T x y y x T                  

Node 19:            14 24 20 192 2 0x y T x y T y x T x y y x T                

Nodes 24, 28:           19 25 24 ox y T y x T x y y x T q x k               

            23 27 28 ox y T y x T x y y x T q x k               

Nodes 25, 26, 27: 

             1, 1, , 1 ,2 2 2m n m n m n m n oy x T y x T x y T x y y x T q x k  
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Evaluating the coefficients and solving the equations simultaneously, the steady-state temperature 

distribution (C), tabulated according to the node locations, is: 
 

23.77 23.91 24.27 24.61 24.74 

23.41 23.62 24.31 24.89 25.07 

  25.70 26.18 26.33 

28.90 28.76 28.26 28.32 28.35 

30.72 30.67 30.57 30.53 30.52 

32.77 32.74 32.69 32.66 32.65 

 

(b) For the prescribed conditions, the maximum allowable temperature (T24 = 40C) is reached when  

oq  = 1.407  10
5
 W/m

2
 (14.07 W/cm

2
). 

Options for extending this limit could include use of a copper cold plate (k  400 W/mK) and/or increasing 

the convection coefficient associated with the coolant.  

With k = 400 W/mK, a value of oq  = 17.37 W/cm
2
 may be maintained.   

.  With k = 400 W/mK and h = 10,000 W/m
2
K (a practical upper limit), oq  = 28.65 W/cm

2
.  

Additional, albeit small, improvements may be realized by relocating the coolant channels closer to the 

base of the cold plate. 

27 


